JP2986838B2 - Hydrotreatment of residual oil - Google Patents

Hydrotreatment of residual oil

Info

Publication number
JP2986838B2
JP2986838B2 JP2093919A JP9391990A JP2986838B2 JP 2986838 B2 JP2986838 B2 JP 2986838B2 JP 2093919 A JP2093919 A JP 2093919A JP 9391990 A JP9391990 A JP 9391990A JP 2986838 B2 JP2986838 B2 JP 2986838B2
Authority
JP
Japan
Prior art keywords
catalyst
molybdenum
total
residual oil
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2093919A
Other languages
Japanese (ja)
Other versions
JPH03292394A (en
Inventor
庸之 大石
真人 酒井
泰宏 久保田
和夫 清水
忠一 山下
章 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKYU SANGYO KATSUSEIKA SENTAA
Eneos Corp
Original Assignee
SEKYU SANGYO KATSUSEIKA SENTAA
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKYU SANGYO KATSUSEIKA SENTAA, Nippon Oil Corp filed Critical SEKYU SANGYO KATSUSEIKA SENTAA
Priority to JP2093919A priority Critical patent/JP2986838B2/en
Publication of JPH03292394A publication Critical patent/JPH03292394A/en
Application granted granted Critical
Publication of JP2986838B2 publication Critical patent/JP2986838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特に残油に含有される硫黄分、窒素分およ
びニッケル、バナジウム等の金属分を除去する水素化処
理方法に関し、特に高い脱硫率を得られ、また生成した
高沸点留分の製品安定性が良好となる残油の水素化処理
方法である。
Description: FIELD OF THE INVENTION The present invention relates to a hydrotreating method for removing sulfur, nitrogen and metals such as nickel and vanadium contained in a residual oil, and particularly to a high desulfurization method. This is a method for hydrotreating a residual oil that can obtain a high boiling point fraction and improve the product stability of the produced high-boiling fraction.

[従来の技術] 最近の石油動向として輸入される原油が重質化の傾向
にある。そのため有用な軽質留分を取り去った後、重質
留分、とりわけ残油が多量に副生する。従って、この残
油を処理することが重要な問題となっている。この残油
は、硫黄分、窒素分および金属分が濃縮され、極めて高
濃度となる。残油を処理して軽質化する方法として、水
素化分解、流動接触分解等があるが、硫黄分、窒素分お
よび金属分を高濃度に含んだ残油をそのまま原料として
用いると、製品品質の低下あるいは触媒毒の原因とな
り、さらには硫黄分および窒素分は大気汚染の基とな
る。
[Prior art] As a recent oil trend, imported crude oil tends to be heavier. Therefore, after removing the useful light fraction, a large amount of the heavy fraction, especially the residual oil, is by-produced. Therefore, treating this residual oil is an important problem. This residual oil has a very high concentration due to the concentration of sulfur, nitrogen and metal. There are hydrocracking, fluid catalytic cracking, etc. as methods for treating and reducing residual oil.However, if residual oil containing a high concentration of sulfur, nitrogen and metal is used as a raw material as it is, It causes reduction or catalyst poisoning, and furthermore, the sulfur and nitrogen contents are a source of air pollution.

そこで残油を水素化処理することで、硫黄分、窒素分
あるいは金属分を取り除く方法が重要性を増しつつあ
る。水素化処理とは水素加圧下に原料油を接触的に処理
し、原料油中の硫黄分、窒素分を硫化水素やアンモニア
等に転化して除く、あるいは金属分を触媒中に堆積させ
取り除く方法である。従来、間接脱硫においては減圧軽
油の処理が主であり、原料油中に金属分は少なかった。
しかしながら、最近の世界的な原油の重質化に伴ない、
原油に含まれる硫黄やニッケル、バナジウム等の金属分
は多くなり、またプロセス的にも残油を直接脱硫するこ
とが盛んに行われるようになった。
Therefore, a method of removing sulfur, nitrogen or metal by hydrotreating the residual oil is becoming increasingly important. Hydrotreating is a method of catalytically treating a feedstock under hydrogen pressure and converting sulfur and nitrogen in the feedstock to hydrogen sulfide, ammonia, etc., or removing metal by depositing in a catalyst. It is. Conventionally, indirect desulfurization has mainly involved the treatment of vacuum gas oil, and the amount of metal in the feedstock oil has been small.
However, with recent heavy crude oil worldwide,
Metal components such as sulfur, nickel, and vanadium contained in crude oil have been increased, and direct desulfurization of residual oil has been actively performed in the process.

ところで、残油に多量に含有される硫黄分は脱硫され
にくく、高い脱硫率を達成しようとすると高い反応温度
が必要となるが、反応温度を高くするとコークの生成が
起こりやすくなることが知られている。また別の課題は
触媒細孔の金属分やコークによる閉塞であり、このため
触媒活性の低下を補償するため反応温度を高くする必要
が生じ、装置の運転に支障をきたす。そこで安定した運
転を行うためには、原料油に含まれる硫黄や金属分を効
率よく除去でき、しかも活性を長期にわたり維持できる
と共に、生成油の安定性が良好なものを与える水素化処
理方法の開発が必要である。
By the way, sulfur contained in a large amount in residual oil is not easily desulfurized, and a high reaction temperature is required to achieve a high desulfurization rate. However, it is known that when the reaction temperature is increased, coke is easily generated. ing. Another problem is the clogging of the catalyst pores by metal and coke, which necessitates increasing the reaction temperature to compensate for the decrease in catalyst activity, which hinders the operation of the apparatus. Therefore, in order to perform stable operation, it is necessary to use a hydrotreating method that can efficiently remove sulfur and metals contained in the feedstock oil, maintain the activity for a long period of time, and provide a product with good stability. Development is required.

[発明が解決しようとする課題] 残油中にはバナジウム、ニッケル等の金属分が多く含
有され、またアスファルテン等の大きな分子が含まれ、
これがコーク生成の原因となる。金属分や生成コークに
より触媒上の活性点が覆われたり、細孔の閉塞が起こる
ため触媒は劣化しやすく寿命が短くなる。
[Problems to be Solved by the Invention] Residual oil contains a large amount of metals such as vanadium and nickel, and also contains large molecules such as asphaltenes.
This causes coke generation. The active points on the catalyst are covered by the metal component and the generated coke, and the pores are blocked, so that the catalyst is easily deteriorated and its life is shortened.

そのため脱硫率や分解率向上のため反応温度を高く設
定することが通常行われ、これによって分解率、脱硫
率、脱窒素率、脱メタル率等が向上する。しかしなが
ら、その際得られる製品性状、特に360℃以上の沸点を
有する留分の性状が悪くなることが知られている。つま
りこの留分はスラッジが生じやすく操作、輸送、あるい
は貯蔵等の際にトラブルの原因となる。スラッジについ
ては定量化方法として、トルエン不溶分を測定すること
が行われる。これが0.05wt%、好ましくは0.03wt%以下
なら問題はないとされる。通常の触媒を用いて高温で高
分解率を得る場合、例えば分解率が50〜60%の場合、ト
ルエン不溶分は0.1wt%となることもある。
Therefore, the reaction temperature is usually set high to improve the desulfurization rate and the decomposition rate, thereby improving the decomposition rate, desulfurization rate, denitrification rate, demetallization rate, and the like. However, it is known that the properties of the product obtained at that time, in particular, the properties of the fraction having a boiling point of 360 ° C. or more deteriorate. In other words, this fraction is liable to form sludge and causes trouble during operation, transportation, storage, or the like. As for the sludge, as a quantification method, a toluene insoluble content is measured. If this is 0.05 wt% or less, preferably 0.03 wt% or less, there is no problem. When a high decomposition rate is obtained at a high temperature using an ordinary catalyst, for example, when the decomposition rate is 50 to 60%, the toluene-insoluble content may be 0.1 wt%.

該留分の製品性状は主にトルエン不溶分によって良好
か否かが決まり、トルエン不溶分が多いほど製品として
好ましくない。そこで重質油の水素化処理を行うために
は反応温度が低くても高い脱硫率が得られ、また製品性
状の好ましいものを与える水素化処理方法の開発が必要
である。
Whether or not the product properties of the fraction are good depends mainly on the toluene-insoluble matter, and the more toluene-insoluble matter, the more unfavorable as a product. Therefore, in order to carry out the hydrotreating of heavy oil, it is necessary to develop a hydrotreating method capable of obtaining a high desulfurization rate even at a low reaction temperature and giving favorable product properties.

[課題を解決するための手段] 本発明者等らは前記の課題を解決するために鋭意検討
を行った結果、所定の細孔構造を持ち、低い活性金属量
の触媒と所定の細孔構造を持ち、高い活性金属量とホウ
素化合物および/またはリン化合物を含有する触媒を組
み合わせることで、長期間にわたり高い脱硫活性と生成
油の重質留分の製品性状が好ましい残油の水素化処理方
法を見い出した。
[Means for Solving the Problems] The present inventors have conducted intensive studies in order to solve the above problems, and as a result, have a predetermined pore structure, a catalyst having a low active metal content and a predetermined pore structure. A hydrotreating method for a residual oil having a high active metal content and a catalyst containing a boron compound and / or a phosphorus compound, and having a high desulfurization activity and a product property of a heavy fraction of the produced oil for a long period of time. I found

すなわち本発明は、アルミナ担体にニッケル−モリブ
デン、コバルト−モリブデン、およびニッケル−コバル
ト−モリブデンから選ばれる複合活性金属から選ばれた
複合活性金属を酸化物として1.0〜7.0wt%担持してな
り、窒素吸着法で測定した全表面積が150m2/g以上、平
均細孔直径が100Å以上、全細孔容積が0.6ml/g以上、か
つ平均細孔直径120〜200Åの細孔が占める容積が全細孔
容積の75%以上である触媒を充填した第一層と、アルミ
ナ担体にニッケル−モリブデン、コバルト−モリブデ
ン、およびニッケル−コバルト−モリブデンから選ばれ
る複合活性金属から選ばれた複合活性金属を酸化物とし
て8.0〜15.0wt%とホウ素化合物および/またはリン化
合物を酸化物で0.5〜10.0wt%担持してなり、窒素吸着
法で測定した全表面積が150m2/g以上、平均細孔直径が1
00Å以上、全細孔容積が0.5ml/g以上、かつ平均細孔直
径100〜200Åの細孔が占める容積が全細孔容積の75%以
上である触媒を充填した第二層からなる反応部で、水素
圧力100Kg/cm2以上、LHSV0.1〜1.0、温度300℃以上で残
油を水素化処理することを特徴とする残油の水素化処理
方法を提供するものである。
That is, the present invention provides an alumina carrier having a composite active metal selected from nickel-molybdenum, cobalt-molybdenum, and nickel-cobalt-molybdenum supported on an alumina carrier in an amount of 1.0 to 7.0 wt% as an oxide, The total surface area measured by the adsorption method is 150 m 2 / g or more, the average pore diameter is 100 mm or more, the total pore volume is 0.6 ml / g or more, and the volume occupied by pores having an average pore diameter of 120 to 200 mm is very small. A first layer filled with a catalyst having a pore volume of 75% or more and a composite active metal selected from nickel-molybdenum, cobalt-molybdenum, and a composite active metal selected from nickel-cobalt-molybdenum on an alumina carrier; as a 8.0~15.0Wt% boron compound and / or phosphorus compounds and 0.5~10.0Wt% supported oxide becomes, the total surface area measured by nitrogen adsorption method 150 meters 2 / g or more, an average pore Diameter 1
A reaction section comprising a second layer filled with a catalyst having a volume of at least 00%, a total pore volume of at least 0.5 ml / g, and an average pore diameter of 100 to 200 mm occupying 75% or more of the total pore volume. Accordingly, the present invention provides a method for hydrotreating residual oil, wherein the residual oil is hydrotreated at a hydrogen pressure of 100 kg / cm 2 or more, an LHSV of 0.1 to 1.0 and a temperature of 300 ° C. or more.

本発明に使用されるアルミナ担体は公知の調製法によ
り調製出来る。例えば、硫酸アルミニウム等のアルミニ
ウム塩をアンモニア等のアルカリで中和し、あるいはア
ルミン酸ソーダ等のアルミン酸塩で中和し、生成したア
ルミナ水和物に適当なアルカリを添加しアルミナ水和物
スラリーのpHを8〜10の弱アルカリ性に調整し、60〜15
0℃で1〜100時間熟成してベーマイトを生成し、該ベー
マイトを混練して押出成形等で任意の形に成形した後、
乾燥、焼成することにより得られる。但し、熟成が不十
分であったりすると本発明で言う担体は得られないこと
もある。また市販されているベーマイトの粉末を用い、
酸等で解膠し成形後、乾燥焼成することによっても得ら
れる。
The alumina carrier used in the present invention can be prepared by a known preparation method. For example, an aluminum salt such as aluminum sulfate is neutralized with an alkali such as ammonia or an aluminate such as sodium aluminate, and an appropriate alkali is added to the generated alumina hydrate to form an alumina hydrate slurry. PH is adjusted to 8-10 weak alkaline, 60-15
After aging at 0 ° C. for 1 to 100 hours to produce boehmite, kneading the boehmite and forming it into an arbitrary shape by extrusion or the like,
It is obtained by drying and baking. However, if the maturation is insufficient, the carrier referred to in the present invention may not be obtained. Also, using commercially available boehmite powder,
It can also be obtained by pulverizing with an acid or the like, molding, and then drying and firing.

本発明で用いる複合活性金属は、Ni,Co,Moから選ばれ
た少なくとも1種を含むものであり、Ni−Mo,Co−Mo,Ni
−Co−Moから選択される。これ以外の活性金属を少量で
あれば含んでもよい。活性金属の担持量は、触媒の全重
量を基準に金属酸化物と計算し、第一層の触媒は1.0〜
7.0wt%、好ましくは3.0〜6.5wt%の範囲が適当で、第
二層の触媒は8.0〜15.0wt%、好ましくは10.0〜14.0wt
%である。また複合の場合、Coが0.5〜3.0wt%、Niが0.
5〜3.0wt%、Moが2.0〜15.0wt%、の範囲が好ましい。
The composite active metal used in the present invention includes at least one selected from Ni, Co, and Mo, and includes Ni-Mo, Co-Mo, Ni
-Selected from Co-Mo. Other active metals may be included in small amounts. The amount of active metal supported is calculated as metal oxide based on the total weight of the catalyst, and the catalyst of the first layer is 1.0 to
The range of 7.0 wt%, preferably 3.0 to 6.5 wt% is suitable, and the catalyst of the second layer is 8.0 to 15.0 wt%, preferably 10.0 to 14.0 wt%.
%. In the case of a composite, 0.5% to 3.0% by weight of Co and 0.1% of Ni are used.
The range of 5 to 3.0 wt% and Mo of 2.0 to 15.0 wt% are preferred.

本発明において、第二層の触媒のホウ素化合物および
/またはリン化合物の添加量は、触媒の全重量を基準に
酸化物として計算して0.5〜10.0wt%であり、好ましく
は0.6〜5.0wt%の範囲である。ホウ素化合物やリン化合
物の添加量が酸化物として0.5wt%未満であると添加効
果がなく、また10.0wt%を越える量を用いても触媒の脱
硫活性はあまり変わらないが、細孔直径が小さくなると
いう欠点がある。また本発明の触媒では、ホウ素化合物
およびリン化合物を両方とも含む場合、それぞれの酸化
物の添加割合は好ましくは1:9〜9:1(重量比)であり、
さらに好ましくは1:4〜4:1(重量比)である。
In the present invention, the addition amount of the boron compound and / or the phosphorus compound in the catalyst of the second layer is 0.5 to 10.0 wt%, preferably 0.6 to 5.0 wt%, calculated as an oxide based on the total weight of the catalyst. Range. If the amount of the boron compound or the phosphorus compound is less than 0.5% by weight as an oxide, there is no effect, and if the amount exceeds 10.0% by weight, the desulfurization activity of the catalyst does not change much, but the pore diameter is small. Disadvantage. In the catalyst of the present invention, when both the boron compound and the phosphorus compound are contained, the addition ratio of each oxide is preferably 1: 9 to 9: 1 (weight ratio),
More preferably, the ratio is 1: 4 to 4: 1 (weight ratio).

本発明で用いるホウ素化合物としては、ホウ素の無機
化合物あるいは有機化合物のどちらでもよく、触媒を焼
成した際に酸化ホウ素に転化しうるものである。例え
ば、ホウ酸、ホウ酸アンモニウム、オルトホウ酸、四ホ
ウ酸、重ホウ酸アンモニウム、ジボラン、ホウ酸メチ
ル、ホウ酸ブチル、ホウ酸トリシクロヘキシル等が挙げ
られる。
The boron compound used in the present invention may be either an inorganic compound or an organic compound of boron, and can be converted to boron oxide when the catalyst is calcined. For example, boric acid, ammonium borate, orthoboric acid, tetraboric acid, ammonium biborate, diborane, methyl borate, butyl borate, tricyclohexyl borate and the like can be mentioned.

本発明で用いるリン化合物としては、リンの無機化合
物あるいは有機化合物のどちらでもよく、触媒を焼成し
た際に酸化リンに転化しうるものである。例えば、リン
酸、リン酸アンモニウム、リン酸二アンモニウム等が挙
げられる。
The phosphorus compound used in the present invention may be either an inorganic compound or an organic compound of phosphorus, and can be converted to phosphorus oxide when the catalyst is calcined. For example, phosphoric acid, ammonium phosphate, diammonium phosphate and the like can be mentioned.

本発明によるホウ素化合物、リン化合物および活性金
属分のアルミナ担体への担持の方法は、特に限定しな
い。例えば、含浸法、共沈法等がある。また担持順序は
限定されない。例えば各成分を別々に担持しても良い
し、同時に担持しても良い。さらには二つの成分を初め
に担持し、残りの成分を後で担持することでも良い。
The method for supporting the boron compound, the phosphorus compound and the active metal on the alumina carrier according to the present invention is not particularly limited. For example, there are an impregnation method and a coprecipitation method. The order of loading is not limited. For example, each component may be supported separately or simultaneously. Further, two components may be supported first, and the remaining components may be supported later.

本発明に用いる第一層の触媒は、窒素吸着法で測定し
た全表面積が150m2/g以上、好ましくは150〜250m2/g、
平均細孔直径が100Å以上、好ましくは100〜300Å、全
細孔容積が0.6ml/g以上、好ましくは0.6〜1.0ml/gであ
り、平均細孔直径120〜200Åの細孔が占める容積が全細
孔容積の75%以上、好ましくは75〜85%の細孔分布を有
する。触媒の全表面積が150m2/g未満であると十分な活
性が得られない。平均細孔直径が100Å未満であると細
孔の閉塞が起こり易く寿命が短くなる。全細孔容積が0.
6ml/g未満であると、原料油中の金属の触媒への蓄積量
が少ない。また平均細孔直径120〜200Åの細孔が占める
容積が全細孔容積の75%より少ない細孔分布であると、
残油中の分子の転化に必要な反応場が少なく有効に活性
が発現しない。
The catalyst of the first layer used in the present invention, the total surface area measured by nitrogen adsorption method 150 meters 2 / g or more, preferably 150 to 250 2 / g,
The average pore diameter is 100 mm or more, preferably 100 to 300 mm, the total pore volume is 0.6 ml / g or more, preferably 0.6 to 1.0 ml / g, and the volume occupied by pores having an average pore diameter of 120 to 200 mm is It has a pore distribution of 75% or more, preferably 75-85% of the total pore volume. If the total surface area of the catalyst is less than 150 m 2 / g, sufficient activity cannot be obtained. If the average pore diameter is less than 100 °, the pores are likely to be blocked and the life is shortened. The total pore volume is 0.
When it is less than 6 ml / g, the amount of metal in the feedstock accumulated on the catalyst is small. In addition, if the volume occupied by pores having an average pore diameter of 120 to 200 mm is a pore distribution of less than 75% of the total pore volume,
The reaction field required for conversion of the molecules in the residual oil is small and the activity is not effectively exhibited.

また、第二層の触媒では、窒素吸着法で測定した全表
面積が150m2/g以上、好ましくは150〜250m2/g、平均細
孔直径が100Å以上、好ましくは100〜200Å、全細孔容
積が0.5ml/g以上、好ましくは0.5〜1.0ml/gであり、平
均細孔直径100〜200Åの細孔が占める容積が全細孔容積
の75%以上、好ましくは75〜85%の細孔分布を有する。
触媒の全表面積が150m2/g未満であると十分な活性が得
られない。平均細孔直径が100Å未満であると細孔の閉
塞が起こり易く寿命が短くなる。全細孔容積が0.5ml/g
未満であると、原料油中の金属の触媒への蓄積量が少な
い。また平均細孔直径100〜200Åの細孔が占める容積が
全細孔容積の75%より少ない細孔分布であると、残油中
の分子の転化に必要な反応場が少なく有効に活性が発現
しない。
Further, in the catalyst of the second layer, the total surface area measured by nitrogen adsorption method 150 meters 2 / g or more, preferably 150 to 250 2 / g, an average pore diameter of 100Å or more, preferably 100 to 200 Å, a total pore The volume is 0.5 ml / g or more, preferably 0.5 to 1.0 ml / g, and the volume occupied by pores having an average pore diameter of 100 to 200 mm is 75% or more, preferably 75 to 85% of the total pore volume. Has a pore distribution.
If the total surface area of the catalyst is less than 150 m 2 / g, sufficient activity cannot be obtained. If the average pore diameter is less than 100 °, the pores are likely to be blocked and the life is shortened. 0.5ml / g total pore volume
When the amount is less than the above, the amount of metal accumulated in the catalyst in the feed oil is small. In addition, if the volume occupied by pores having an average pore diameter of 100 to 200 mm is less than 75% of the total pore volume, the reaction field required for the conversion of molecules in the residual oil is small, and the activity is effectively exhibited. do not do.

本発明においては好ましい細孔構造が示してあり、こ
れより外れた場合、例えば細孔直径が小さいと触媒寿命
が短く、また製品性状も良好でない。本発明の触媒は球
状、錠剤または円柱状等の所望の形状で用いることが出
来る。本発明において第一層と第二層の割合は1:1〜1:4
(重量比)が好ましい。
In the present invention, a preferred pore structure is shown, and if it is out of this range, for example, if the pore diameter is small, the catalyst life is short and the product properties are not good. The catalyst of the present invention can be used in a desired shape such as a sphere, a tablet or a column. In the present invention, the ratio of the first layer and the second layer is 1: 1 to 1: 4.
(Weight ratio) is preferred.

本発明の方法に採用される反応条件は、反応圧力100K
g/cm2以上、好ましくは100〜170Kg/cm2、反応温度300℃
以上、好ましくは300〜500℃、さらに好ましくは350〜4
50℃、LHSV0.1〜1.0、好ましくは0.1〜0.5、さらに好ま
しくは0.1〜0.3、水素/原料油比は100〜2000Nl/Nlであ
る。
The reaction conditions employed in the method of the present invention are as follows:
g / cm 2 or more, preferably 100~170Kg / cm 2, the reaction temperature 300 ° C.
Above, preferably 300 ~ 500 ℃, more preferably 350 ~ 4
50 ° C, LHSV 0.1 to 1.0, preferably 0.1 to 0.5, more preferably 0.1 to 0.3, and the hydrogen / feed oil ratio is 100 to 2000 Nl / Nl.

反応部の第一触媒層および第二触媒層は共に固定床、
移動床、流動床等の反応方式を用いることができる。ま
た反応部への原料の供給は反応器上部、下部のいずれか
ら行ってもよい。すなわち上向流、下向流のいずれの方
式を用いてもよい。また第一触媒層と第二触媒層は別々
の反応器に設けてもよいし、同一の反応器内に設けても
よい。
Both the first catalyst layer and the second catalyst layer in the reaction section are fixed beds,
A reaction system such as a moving bed and a fluidized bed can be used. The supply of the raw material to the reaction section may be performed from either the upper part or the lower part of the reactor. That is, either of the upward flow and the downward flow may be used. Further, the first catalyst layer and the second catalyst layer may be provided in separate reactors, or may be provided in the same reactor.

本発明で言う残油とは、バナジウム、ニッケル等の重
金属成分が多量に含有され、またアスファルテン等の大
きな分子が含まれる油であり、例えば原油の常圧あるい
は減圧蒸留によって得られる残油、オイルサンド油ある
いはタールサンド抽出原油の常圧あるいは減圧蒸留によ
って得られる残油等あるいはこれらの混合油が挙げられ
る。本発明では減圧蒸留残油が好ましく用いられる。
The residual oil referred to in the present invention is an oil containing a large amount of heavy metal components such as vanadium and nickel, and also containing large molecules such as asphaltenes.For example, residual oil obtained by normal pressure or reduced pressure distillation of crude oil, oil Residual oil obtained by normal pressure or reduced pressure distillation of sand oil or tar sands extracted crude oil, or a mixed oil thereof. In the present invention, a vacuum distillation residue is preferably used.

本発明の方法を用いて残油を処理することにより、分
解率は50〜60%で、中間留分の収率は13〜20%程度であ
る。また、360℃以上の沸点を有する留分のトルエン不
溶分は0.05wt%以下である。
By treating the residual oil using the method of the present invention, the cracking rate is 50-60% and the yield of middle distillate is about 13-20%. The fraction having a boiling point of 360 ° C. or higher has a toluene insoluble content of 0.05% by weight or less.

[発明の効果] 以上説明したように本発明の方法を用いて減圧残油等
の水素化処理をすることで、高い脱硫率、分解率と生成
油性状が好ましものが得られる。
[Effects of the Invention] As described above, by subjecting a vacuum residue to hydrogenation treatment using the method of the present invention, a product having a high desulfurization rate, a high decomposition rate and favorable properties of the produced oil can be obtained.

[実施例] 次に、実施例等によって本発明を更に詳しく述べる。[Examples] Next, the present invention will be described in more detail with reference to Examples and the like.

担体調製例 硫酸アルミニウム水溶液とアルミン酸ナトリウム水溶
液より水酸化アルミニウムを調製し、それを所定の条件
下で熟成した。得られたゲルを加熱混練して押出成形の
後、110℃で乾燥し、550℃で焼成してアルミナ担体を得
た。この操作で、熟成条件を変化させることで異なった
細孔構造を有するアルミナ担体を得た。AM−1は120℃
で8時間、AM−2は90℃で3時間、AS−1は120℃で5
時間、AS−2は90℃で1時間、それぞれ熟成することで
調製した。
Example of Preparation of Carrier Aluminum hydroxide was prepared from an aqueous solution of aluminum sulfate and an aqueous solution of sodium aluminate, and aged under predetermined conditions. The obtained gel was heated and kneaded, extruded, dried at 110 ° C., and calcined at 550 ° C. to obtain an alumina carrier. In this operation, an alumina support having a different pore structure was obtained by changing the aging conditions. AM-1 is 120 ° C
For 8 hours, AM-2 for 3 hours at 90 ° C, AS-1 for 5 hours at 120 ° C
Time and AS-2 were prepared by aging at 90 ° C. for 1 hour, respectively.

以下の触媒調製例のMo、Co、Ni、PおよびBの濃度は
各々最終触媒での酸化物(MoO3、CoO、NiO、P2O5および
B2O3)に換算した濃度である。
In the following catalyst preparation examples, the concentrations of Mo, Co, Ni, P and B were determined by using oxides (MoO 3 , CoO, NiO, P 2 O 5 and
B 2 O 3 ).

触媒調製例1 Moを5.0wt%、Coを1.1wt%、クエン酸を10.0wt%含有
する水溶液を、担体AM−1にポアーフィリング法により
含浸させた。その担体を放置乾燥後、110℃で乾燥し、5
50℃で焼成した。得られた触媒をHM−1とした。
Catalyst Preparation Example 1 The carrier AM-1 was impregnated with an aqueous solution containing 5.0 wt% of Mo, 1.1 wt% of Co, and 10.0 wt% of citric acid by a pore filling method. The carrier is left to dry, then dried at 110 ° C.
Fired at 50 ° C. The obtained catalyst was designated as HM-1.

触媒調製例2 Moを10.2wt%、Niを2.2wt%、Pを5.0wt%、クエン酸
を15.0wt%含有する水溶液を、担体AS−1にポアーフィ
リング法により含浸させた。その担体を放置乾燥後、11
0℃で乾燥し、550℃で焼成した。得られた触媒をHS−1
とした。
Catalyst Preparation Example 2 A carrier AS-1 was impregnated with an aqueous solution containing 10.2 wt% of Mo, 2.2 wt% of Ni, 5.0 wt% of P, and 15.0 wt% of citric acid by a pore filling method. After leaving the carrier to dry, 11
Dried at 0 ° C and calcined at 550 ° C. The resulting catalyst was HS-1
And

触媒調製例3 Moを10.1wt%、Niを2.1wt%、Bを5.0wt%、クエン酸
を15.0wt%含有する水溶液を、担体AS−1にポアーフィ
リング法により含浸させた。その担体を放置乾燥後、11
0℃で乾燥し、550℃で焼成した。得られた触媒をHS−2
とした。
Catalyst Preparation Example 3 An aqueous solution containing 10.1 wt% of Mo, 2.1 wt% of Ni, 5.0 wt% of B, and 15.0 wt% of citric acid was impregnated into the support AS-1 by a pore filling method. After leaving the carrier to dry, 11
Dried at 0 ° C and calcined at 550 ° C. The resulting catalyst was HS-2
And

触媒調製例4 Moを5.0wt%、Coを1.0wt%、クエン酸を10.0wt%含有
する水溶液を、担体AM−2にポアーフィリング法により
含浸させた。その担体を放置乾燥後、110℃で乾燥し、5
50℃で焼成した。得られた触媒をHM−2とした。
Catalyst Preparation Example 4 The carrier AM-2 was impregnated with an aqueous solution containing 5.0 wt% of Mo, 1.0 wt% of Co, and 10.0 wt% of citric acid by a pore filling method. The carrier is left to dry, then dried at 110 ° C.
Fired at 50 ° C. The obtained catalyst was designated as HM-2.

触媒調製例5 Moを10.1wt%、Niを2.2wt%、クエン酸を15.0wt%含
有する水溶液を、担体AS−1にポアーフィリング法によ
り含浸させた。その担体を放置乾燥後、110℃で乾燥
し、550℃で焼成した。得られた触媒をHS−3とした。
Catalyst Preparation Example 5 The carrier AS-1 was impregnated with an aqueous solution containing 10.1 wt% of Mo, 2.2 wt% of Ni, and 15.0 wt% of citric acid by a pore filling method. After the carrier was left to dry, it was dried at 110 ° C and calcined at 550 ° C. The resulting catalyst was designated as HS-3.

触媒調製例6 Moを10.2wt%、Niを2.1wt%、クエン酸を15.0wt%含
有する水溶液を、担体AS−2にポアーフィリング法によ
り含浸させた。その担体を放置乾燥後、110℃で乾燥
し、550℃で焼成した。得られた触媒をHS−4とした。
Catalyst Preparation Example 6 The carrier AS-2 was impregnated with an aqueous solution containing 10.2 wt% of Mo, 2.1 wt% of Ni, and 15.0 wt% of citric acid by a pore filling method. After the carrier was left to dry, it was dried at 110 ° C and calcined at 550 ° C. The obtained catalyst was designated as HS-4.

以上のように調製した触媒の性状を第1表にまとめ
る。
Table 1 summarizes the properties of the catalyst prepared as described above.

*1:HM−1,HM−2は細孔直径120〜200Åの容積割合、HS
−1,HS−2,HS−3,HS−4は細孔直径100〜200Åの容積割
合。
* 1: HM-1 and HM-2 are volume ratios with pore diameters of 120 to 200 mm, HS
-1, HS-2, HS-3, and HS-4 are volume ratios of pore diameters of 100 to 200 mm.

実施例1〜2および比較例1〜3(評価例) 触媒調製例1〜6で調製した触媒をそれぞれ組合せ
て、第一層、第二層を1:2の割合(重量比)で、それぞ
れ内径200mmφのマイクロリアクターに充填し、硫化後
に第2表の性状を持つ減圧残油を水素化処理した。
Examples 1 and 2 and Comparative Examples 1 to 3 (Evaluation Examples) The catalysts prepared in Catalyst Preparation Examples 1 to 6 were respectively combined, and the first layer and the second layer were each in a ratio of 1: 2 (weight ratio). After filling in a microreactor having an inner diameter of 200 mmφ, the vacuum residue having the properties shown in Table 2 was hydrogenated after sulfuration.

また、第3表に下記の所定の条件で反応させた結果を
まとめて示した。なお、反応条件は、反応温度400℃、L
HSV0.2、圧力115Kg/cm2、水素/油700Nl/Nlで行った。
Table 3 summarizes the results of the reaction under the following predetermined conditions. The reaction conditions were as follows: reaction temperature 400 ° C, L
HSV 0.2, pressure 115 kg / cm 2 , hydrogen / oil 700 Nl / Nl.

*2:170℃以下の留分の原料油に対する比率、 *3:170〜360℃の留分の原料油に対する比率、 *4:360℃以上の留分中のトルエン不溶分、 第3表に示されるように、実施例1〜2は比較例1〜
3と比較し、脱硫率、脱金属率に優れ、中間留分の収率
も高い。また転化率が高いのにもかかわらず、高沸点留
分のトルエン不溶分は少なく、製品として好ましいもの
であった。
* 2: Ratio of fraction below 170 ° C to feedstock, * 3: Ratio of fraction from 170 to 360 ° C to feedstock, * 4: Toluene insolubles in fraction above 360 ° C, see Table 3. As shown, Examples 1-2 are Comparative Examples 1-2.
As compared with No. 3, the desulfurization rate and the demetalization rate are excellent, and the yield of the middle distillate is also high. Moreover, despite the high conversion, the toluene-insoluble content of the high boiling point fraction was small, and it was preferable as a product.

さらに脱硫率を一定とするための反応温度の上昇の変
化を第1図に示した。ここで限界反応温度とは、良好な
製品を得るための最高温度である。すなわち、この温度
以上では製品安定性が悪くなるために運転は行えない。
FIG. 1 shows the change in the rise of the reaction temperature for keeping the desulfurization rate constant. Here, the critical reaction temperature is the maximum temperature for obtaining a good product. That is, above this temperature, the operation cannot be performed because the product stability is deteriorated.

この第1図に示されるように、本発明の方法では限界
反応温度に達するまでの時間が長いために、それだけ長
く装置を運転できるため、それによって大きなメリット
がある。
As shown in FIG. 1, in the method of the present invention, since the time required to reach the limit reaction temperature is long, the apparatus can be operated for a longer time, thereby providing a great advantage.

【図面の簡単な説明】 第1図は、実施例と比較例における運転時間と反応温度
との関係を示すグラフ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the relationship between operating time and reaction temperature in Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C10G 45/06 C10G 45/06 A 45/08 45/08 A (72)発明者 久保田 泰宏 神奈川県横浜市中区千鳥町8番地 日本 石油株式会社中央技術研究所内 (72)発明者 清水 和夫 神奈川県横浜市中区千鳥町8番地 日本 石油株式会社中央技術研究所内 (72)発明者 山下 忠一 神奈川県横浜市中区千鳥町8番地 日本 石油株式会社中央技術研究所内 (72)発明者 井上 章 神奈川県横浜市中区千鳥町8番地 日本 石油株式会社中央技術研究所内 (56)参考文献 特開 平2−35938(JP,A) 特開 昭59−150537(JP,A) 特開 昭55−18499(JP,A) (58)調査した分野(Int.Cl.6,DB名) C10G 45/04 - 45/08 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C10G 45/06 C10G 45/06 A 45/08 45/08 A (72) Inventor Yasuhiro Kubota 8 Chidoricho, Naka-ku, Yokohama-shi, Kanagawa Address Japan Central Oil Research Institute (72) Kazuo Shimizu, Inventor Kazuo Shimizu 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Prefecture Japan Petroleum Corporation Central Technology Research Institute (72) Tadakazu Yamashita 8, Chidori-cho, Naka-ku, Yokohama, Kanagawa Address: Japan Petroleum Co., Ltd. Central Research Laboratory (72) Inventor Akira Inoue 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Japan Petroleum Co., Ltd. Central Research Laboratory (56) References JP-A-2-35938 (JP, A) JP-A-59-150537 (JP, A) JP-A-55-18499 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C10G 45/04-45/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミナ担体にニッケル−モリブデン、コ
バルト−モリブデンおよびニッケル−コバルト−モリブ
デンから選ばれる複合活性金属を酸化物として触媒の全
重量を基準に1.0〜7.0wt%担持してなり、窒素吸着法で
測定した全表面積が150m2/g以上、平均細孔直径が100Å
以上、全細孔容積が0.6ml/g以上であり、平均細孔直径1
20〜200Åの細孔が占める容積が全細孔容積の少なくと
も75%である触媒を充填した第一層と、 アルミナ担体に、ニッケル−モリブデン、コバルト−モ
リブデンおよびニッケル−コバルト−モリブデンから選
ばれる複合活性金属を酸化物として触媒の全重量を基準
に8.0〜15.0wt%とホウ素化合物および/またはリン化
合物を酸化物として0.5〜10.0wt%担持してなり、窒素
吸着法で測定した全表面積が150m2/g以上、平均細孔直
径が100Å以上、全細孔容積が0.5ml/g以上、かつ平均細
孔直径100〜200Åの細孔が占める容積が全細孔容積の少
なくとも75%である触媒を充填した第二層からなる反応
部で、水素圧力100kg/cm2以上、LHSV0.1〜1.0、温度300
℃以上の条件で残油を水素化処理することを特徴とする
残油の水素化処理方法。
1. An alumina carrier having a composite active metal selected from the group consisting of nickel-molybdenum, cobalt-molybdenum and nickel-cobalt-molybdenum supported as an oxide in an amount of 1.0 to 7.0% by weight based on the total weight of the catalyst. The total surface area measured by the method is 150 m 2 / g or more, and the average pore diameter is 100 mm
As described above, the total pore volume is 0.6 ml / g or more, and the average pore diameter is 1
A composite layer selected from nickel-molybdenum, cobalt-molybdenum, and nickel-cobalt-molybdenum on a first layer filled with a catalyst in which the volume occupied by pores of 20 to 200 ° is at least 75% of the total pore volume; 8.0-15.0 wt% based on the total weight of the catalyst, based on the active metal as an oxide, and 0.5-10.0 wt% of a boron compound and / or a phosphorus compound as an oxide, and the total surface area measured by a nitrogen adsorption method is 150 m. 2 / g or more, average pore diameter is 100 mm or more, total pore volume is 0.5 ml / g or more, and the volume occupied by pores having an average pore diameter of 100 to 200 mm is at least 75% of the total pore volume the reaction unit consisting of the second layer of filled, the hydrogen pressure 100 kg / cm 2 or more, LHSV0.1~1.0, temperature 300
A method for hydrotreating residual oil, the method comprising hydrotreating residual oil at a temperature of not less than ° C.
JP2093919A 1990-04-11 1990-04-11 Hydrotreatment of residual oil Expired - Lifetime JP2986838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2093919A JP2986838B2 (en) 1990-04-11 1990-04-11 Hydrotreatment of residual oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2093919A JP2986838B2 (en) 1990-04-11 1990-04-11 Hydrotreatment of residual oil

Publications (2)

Publication Number Publication Date
JPH03292394A JPH03292394A (en) 1991-12-24
JP2986838B2 true JP2986838B2 (en) 1999-12-06

Family

ID=14095870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2093919A Expired - Lifetime JP2986838B2 (en) 1990-04-11 1990-04-11 Hydrotreatment of residual oil

Country Status (1)

Country Link
JP (1) JP2986838B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318453B2 (en) 2009-04-21 2022-05-03 Albemarle Catalysts Company B.V. Hydrotreating catalyst containing phosphorus and boron

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773633B2 (en) * 2001-06-08 2011-09-14 日本ケッチェン株式会社 Two-stage hydroprocessing method for heavy hydrocarbon oil
JP4773634B2 (en) * 2001-06-08 2011-09-14 日本ケッチェン株式会社 Two-stage hydroprocessing method for heavy hydrocarbon oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318453B2 (en) 2009-04-21 2022-05-03 Albemarle Catalysts Company B.V. Hydrotreating catalyst containing phosphorus and boron

Also Published As

Publication number Publication date
JPH03292394A (en) 1991-12-24

Similar Documents

Publication Publication Date Title
US4431526A (en) Multiple-stage hydroprocessing of hydrocarbon oil
US4255282A (en) Hydrotreating catalyst and process for its preparation
EP1402948A1 (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
US20060054536A1 (en) Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
JP2007512132A5 (en)
US4689314A (en) Method of preparation of mild hydrocracking catalyst for the production of middle distillates
GB2156847A (en) Demetallization of heavy crudes
EP0341893A2 (en) Hydroprocessing catalyst and method of preparation
US20040163999A1 (en) HPC process using a mixture of catalysts
CN108745392B (en) Hydrodemetallization catalyst and preparation method thereof
CN101468317B (en) Hydrocracking catalyst and its preparing process
US4857494A (en) Mild hydrocracking catalyst for the production of middle distillates
WO2002032570A2 (en) Hydrodemetallation catalyst and method for making same
CN109718866B (en) Hydrofining catalyst system and application thereof, preparation method of hydrofining catalyst and hydrofining method of distillate oil
CN101085934B (en) Coal liquefied oil boiling bed hydrogenation treatment catalyst and preparation method thereof
RU2468864C1 (en) Catalyst, method of its preparation and method of hydrorefining diesel distillates
JP2986838B2 (en) Hydrotreatment of residual oil
CN1853779A (en) Fluorinated hydrogenation catalyst with silicon oxide-alumina as carrier and its production
JPH03273092A (en) Catalyst for hydrogenation of residual oil
JPH0593190A (en) Hydrogenation of residual oil
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
CN109718867B (en) Hydrofining catalyst system and application thereof, preparation method of hydrofining catalyst and hydrofining method of distillate oil
JPH0295443A (en) Catalyst for hydrogenation treatment of residual oil
CA2306947A1 (en) Hydrotreating catalyst for heavy oil, carrier for the catalyst, and process for the preparation of the catalyst
CN1243083C (en) Inferior heavy oil and residual oil modifying method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11