JP4658491B2 - Production method of environment-friendly diesel oil - Google Patents

Production method of environment-friendly diesel oil Download PDF

Info

Publication number
JP4658491B2
JP4658491B2 JP2004051916A JP2004051916A JP4658491B2 JP 4658491 B2 JP4658491 B2 JP 4658491B2 JP 2004051916 A JP2004051916 A JP 2004051916A JP 2004051916 A JP2004051916 A JP 2004051916A JP 4658491 B2 JP4658491 B2 JP 4658491B2
Authority
JP
Japan
Prior art keywords
oil
light oil
volume
mass
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004051916A
Other languages
Japanese (ja)
Other versions
JP2005239890A (en
Inventor
勝昭 石田
隆太郎 小出
正臣 雨宮
学 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2004051916A priority Critical patent/JP4658491B2/en
Publication of JP2005239890A publication Critical patent/JP2005239890A/en
Application granted granted Critical
Publication of JP4658491B2 publication Critical patent/JP4658491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、環境保護に対応した環境対応軽油の製造方法に関し、更に詳細には硫黄分を低減することで環境保護に対処しつつ、かつ十分な単位体積あたりの発熱量を確保した環境対応軽油の製造方法に関する。 The present invention relates to a method for producing environmentally friendly diesel fuel corresponding to the environmental protection, more particularly with addressing environmental protection by reducing the sulfur content, and environmental secured amount of heat generated per sufficient unit volume a process for the production of light oil.

近年、環境保護の見地から、ディーゼル自動車においては排出ガス中のPM(粒子状物質)、NOx(窒素酸化物)、HC(炭化水素)といった環境汚染物質の排出量の大幅な低減が求められている。このために、ディーゼルエンジンの改良や酸化触媒、NOx還元触媒、DPF(ディーゼルパティキュレートフィルター)等の後処理システムによるディーゼル自動車の開発が進められている。これらの排ガス後処理システムの能力を効果的に発揮し、かつ耐久性を維持するために、燃料となる軽油には硫黄分の低減が求められている。これは、ディーゼル自動車の排ガス中に含まれるPMやNOxを削減するために装着する排ガス後処理システムに用いられる触媒が、軽油中の硫黄分の燃焼で生成する硫黄酸化物により被毒され、触媒の機能が低下することによる。中央環境審議会「今後の自動車排出ガス低減対策のあり方について(第七次答申)」(2003年7月29日)によると、軽油中の硫黄分の許容限度が2007年から10ppmにされることになっている。   In recent years, from the viewpoint of environmental protection, diesel vehicles have been required to significantly reduce emissions of environmental pollutants such as PM (particulate matter), NOx (nitrogen oxide) and HC (hydrocarbon) in exhaust gas. Yes. For this reason, development of diesel vehicles using post-treatment systems such as diesel engine improvements and oxidation catalysts, NOx reduction catalysts, DPFs (diesel particulate filters), and the like is being promoted. In order to effectively demonstrate the capabilities of these exhaust gas aftertreatment systems and maintain durability, light oil used as fuel is required to be reduced in sulfur content. This is because the catalyst used in the exhaust gas aftertreatment system that is installed to reduce PM and NOx contained in the exhaust gas of diesel automobiles is poisoned by sulfur oxides generated by the combustion of sulfur in light oil, and the catalyst This is because the function of According to the Central Environmental Council “Future vehicle emission reduction measures (7th report)” (July 29, 2003), the allowable limit of sulfur in diesel oil will be 10 ppm from 2007 It has become.

ディーゼル自動車において、軽油の燃焼で生成するPMの量が多いと、DPFに対する負荷が大きくなる。PMの生成と軽油性状との関係については、軽油中の芳香族分が増加するとPMの生成量が増加するが、1環芳香族分の増加はPM生成量にあまり影響がなく、2環以上の多環芳香族分がPMの生成に大きく関係すると考えられている(非特許文献1)。一方、地球温暖化の原因と考えられる二酸化炭素の排出量を削減するため、自動車の燃費向上が求められている。   In a diesel vehicle, if the amount of PM generated by burning light oil is large, the load on the DPF increases. Regarding the relationship between PM production and light oil properties, the amount of PM produced increases as the aromatic content in light oil increases, but the increase in monocyclic aromatics does not significantly affect the amount of PM produced, and more than two rings It is thought that the polycyclic aromatic component of is greatly related to the production of PM (Non-patent Document 1). On the other hand, in order to reduce carbon dioxide emission, which is considered to be a cause of global warming, there is a demand for improvement in automobile fuel consumption.

ところで、被毒を受けた排ガス後処理触媒の機能を回復させる手段として、燃料である軽油自体を触媒上に供給して反応させる方法が通常採用されている。したがって、硫黄分がより一層低い軽油を用いれば、触媒の硫黄被毒回復制御の頻度を下げ、消費される燃料を削減できるので、燃費を改善し、その結果、二酸化炭素の排出量を削減することが可能になる。最新の研究(非特許文献2)によれば、燃料となる軽油の硫黄分に応じて排ガス後処理システムの触媒被毒回復制御頻度を調整すれば、軽油に含まれる硫黄分が10ppmの場合、50ppmの場合に比べ、燃費を3.9%改善することができるとしている。それゆえ、軽油に含まれる硫黄分を10ppmよりさらに低減することにより、一層燃費を改善できることが考えられる。   By the way, as a means for recovering the function of the exhaust gas post-treatment catalyst that has been poisoned, a method is generally employed in which light oil itself, which is a fuel, is supplied onto the catalyst and reacted. Therefore, if diesel oil with a lower sulfur content is used, the frequency of sulfur poisoning recovery control of the catalyst can be reduced and the fuel consumed can be reduced, improving fuel efficiency and consequently reducing carbon dioxide emissions. It becomes possible. According to the latest research (Non-Patent Document 2), if the catalyst poisoning recovery control frequency of the exhaust gas aftertreatment system is adjusted according to the sulfur content of the light oil used as fuel, the sulfur content in the light oil is 10 ppm, The fuel consumption can be improved by 3.9% compared to the case of 50 ppm. Therefore, it is conceivable that fuel efficiency can be further improved by further reducing the sulfur content contained in the light oil from 10 ppm.

加部利明監修,川田襄,高塚透,猪俣誠,石原篤編著,「水素化精製−Science & Technology−」,株式会社アイシーピー,東京(2000年)Supervised by Toshiaki Kabe, Satoshi Kawada, Toru Takatsuka, Makoto Makoto, Atsushi Ishihara, “Hydrogenation Purification-Science & Technology-”, ICP, Tokyo (2000) 内山茂樹,財団法人石油産業活性化センター第17回技術開発研究成果発表会口頭発表資料,東京(2003年6月4日)Shigeki Uchiyama, Petroleum Industry Revitalization Center 17th Technology Development Research Results Presentation Presentation, Tokyo (June 4, 2003)

フィッシャー・トロプシュ(Fischer−Tropsch)法によれば天然ガスの改質で得られる水素と一酸化炭素よりなる合成ガスからノルマルパラフィンを主成分とし、硫黄分をほとんど含まない炭化水素を合成することができることが知られている。この合成された炭化水素を原料として実質的に硫黄分を含まない合成軽油を製造することが近年注目されている(例えば、特許文献1〜7、非特許文献3)。しかし、このような合成軽油は、硫黄分が十分に低いものではあるが、従来の石油系の軽油と比較すると、密度が低く、単位体積あたりの発熱量が低いという欠点がある。   According to the Fischer-Tropsch method, it is possible to synthesize hydrocarbons containing normal paraffin as a main component and containing almost no sulfur from synthesis gas consisting of hydrogen and carbon monoxide obtained by reforming natural gas. It is known that it can be done. In recent years, attention has been focused on producing a synthetic light oil containing substantially no sulfur content from the synthesized hydrocarbon as a raw material (for example, Patent Documents 1 to 7, Non-Patent Document 3). However, such a synthetic light oil has a sufficiently low sulfur content, but has a disadvantage that it has a lower density and a lower calorific value per unit volume than a conventional petroleum light oil.

特表平11−513729号公報Japanese National Patent Publication No. 11-513729 特表平11−513730号公報Japanese National Patent Publication No. 11-513730 特表2001−511207号公報JP-T-2001-511207 特表2001−522382号公報Special table 2001-522382 gazette 特表2002−507635号公報Special table 2002-507635 gazette 特表2002−526636号公報Japanese translation of PCT publication No. 2002-526636 特表2002−526637号公報Japanese translation of PCT publication No. 2002-526637 渋谷昌彦,石油学会第10回触媒シンポジウム講演予稿集,8−14頁,東京(2001年10月3日)Masahiko Shibuya, Petroleum Society 10th Catalysis Symposium Proceedings, pp. 8-14, Tokyo (October 3, 2001)

石油系の減圧軽油留分を、触媒の存在下で、水素圧力10〜25MPa、反応温度350〜450℃の反応条件で水素化処理することによって分解生成する軽油留分は、水素化分解軽油と呼ばれる。上記のような高い水素圧力で反応を行うために比較的容易に硫黄分10質量ppm程度の水素化分解軽油を得ることができるが、水素消費量が多く、プロセスで消費するエネルギーも大きいという問題点があった。また、芳香族成分の水素化反応が進行しすぎるため、得られた水素化分解軽油は、密度が低く、単位体積あたりの発熱量が小さいという問題もあった。   A gas oil fraction cracked and produced by hydrotreating a petroleum-based vacuum gas oil fraction under the reaction conditions of a hydrogen pressure of 10 to 25 MPa and a reaction temperature of 350 to 450 ° C. in the presence of a catalyst is a hydrocracked gas oil and be called. Although the hydrocracked gas oil having a sulfur content of about 10 ppm by mass can be obtained relatively easily because the reaction is performed at the high hydrogen pressure as described above, there is a problem that the amount of hydrogen consumed is large and the energy consumed in the process is large. There was a point. In addition, since the hydrogenation reaction of the aromatic component proceeds excessively, the obtained hydrocracked gas oil has a problem that the density is low and the calorific value per unit volume is small.

本発明の目的は、前記従来技術の問題点を解決するものであり、硫黄分および多環芳香族分が十分に低く、かつ、従来市販されている軽油と同等の単位体積あたりの真発熱量を確保した環境対応軽油の製造方法を提供することにある。 The object of the present invention is to solve the above-mentioned problems of the prior art, the sulfur content and the polycyclic aromatic content are sufficiently low, and the true calorific value per unit volume equivalent to that of light oil that is commercially available in the past. method for producing environmentally friendly diesel fuel to ensure a certain to provide.

本発明者らは、所定の水素化条件の下で石油留分を水素化処理することで以下のような硫黄分が極めて低い軽油を得ることに成功した。   The inventors of the present invention succeeded in obtaining a gas oil having an extremely low sulfur content by hydrotreating a petroleum fraction under predetermined hydrogenation conditions.

本発明の態様に従えば、密度が0.795g/cm 以上、硫黄分が5質量ppm以下、1環芳香族分が5〜18容量%、多環芳香族分が2容量%以下であり、かつ単位体積あたりの真発熱量が34500J/cm 以上である環境対応軽油を製造する方法であって、
硫黄分が0.5質量%以上、密度が0.80〜0.90g/cm、90容量%留出温度が370℃以下である炭化水素油を原料油とし、水素圧力3〜10MPa、反応温度280〜450℃の反応条件下で水素化処理触媒と接触させて反応混合物を得る第1の工程と;
第1の工程で得られた反応混合物を気液分離して粗精製油を得る第2の工程と;
第2の工程で得られた粗精製油を、水素圧力3〜10MPa、反応温度280〜450℃の反応条件下で水素化処理触媒と接触させる第3の工程と;を含み、
第1の工程の全圧が、第3の工程の全圧よりも高い環境対応軽油の製造方法が提供される。
According to the embodiment of the present invention, the density is 0.795 g / cm 3 or more, the sulfur content is 5 mass ppm or less, the monocyclic aromatic content is 5 to 18% by volume, and the polycyclic aromatic content is 2% by volume or less. And a method for producing an environmentally friendly light oil having a true calorific value per unit volume of 34500 J / cm 3 or more,
A hydrocarbon oil having a sulfur content of 0.5% by mass or more, a density of 0.80 to 0.90 g / cm 3 , and a 90% by volume distillation temperature of 370 ° C. or less is used as a raw material oil, a hydrogen pressure of 3 to 10 MPa, a reaction A first step of obtaining a reaction mixture by contacting with a hydrotreating catalyst under reaction conditions of a temperature of 280 to 450 ° C;
A second step of gas-liquid separation of the reaction mixture obtained in the first step to obtain a crudely refined oil;
A third step of contacting the crude refined oil obtained in the second step with a hydrotreating catalyst under reaction conditions of a hydrogen pressure of 3 to 10 MPa and a reaction temperature of 280 to 450 ° C .;
Provided is a method for producing environmentally friendly diesel oil in which the total pressure in the first step is higher than the total pressure in the third step.

本発明は、硫黄分が5質量ppm以下、さらには1質量ppm以下と極めて低く、かつ従来市販されている軽油と同等の単位体積あたりの真発熱量を確保した環境対応軽油を提供することができるため、ディーゼル自動車の環境汚染物質の排出量の削減と二酸化炭素排出量の削減を両方同時に実現している。   The present invention provides an environmentally-friendly light oil that has a sulfur content as low as 5 ppm by mass or less and further as 1 ppm by mass or less and that secures a true calorific value per unit volume equivalent to that of conventionally marketed diesel oil. As a result, both the reduction of environmental pollutant emissions and the reduction of carbon dioxide emissions from diesel vehicles have been realized.

〔環境対応軽油〕
本発明の製造方法により製造される環境対応軽油は、密度が0.795g/cm以上、硫黄分が5質量ppm以下、1環芳香族分が5〜18容量%、多環芳香族分が2容量%以下で、かつ単位体積あたりの真発熱量が34500J/cm以上である。
[Environmentally friendly diesel]
The environment-friendly light oil produced by the production method of the present invention has a density of 0.795 g / cm 3 or more, a sulfur content of 5 mass ppm or less, a monocyclic aromatic content of 5 to 18% by volume, and a polycyclic aromatic content. It is 2% by volume or less and the true calorific value per unit volume is 34500 J / cm 3 or more.

環境対応軽油の密度は、好ましくは、0.800〜0.850g/cm、さらには0.805〜0.845g/cm、特には0.810〜0.840g/cmである。本願明細書における密度とは、JIS K 2249で測定される15℃での密度を指す。環境対応軽油の密度が0.795g/cm未満では、単位体積あたりの真発熱量が低下し、環境対応軽油の単位体積あたりの燃費が悪化するので、好ましくない。密度が0.850g/cm以上では、環境対応軽油の製造コストが高くなる。環境対応軽油の硫黄分は、好ましくは、1質量ppm以下である。硫黄分が5質量ppm以上では、ディーゼル自動車の排ガス後処理装置の触媒の硫黄被毒回復制御の頻度を高くする必要があり、燃費を悪化させるので、好ましくない。本願明細書における1環芳香族分とは、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」で測定された1環芳香族分を指す。環境対応軽油の1環芳香族分は、5〜18容量%であり、好ましくは8〜18容量%、特には10〜16容量%である。1環芳香族分が5容量%未満では、単位体積あたりの真発熱量が低下し、環境対応軽油の単位体積あたりの燃費が悪化し、好ましくない。本願明細書における多芳香族分とは、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」で測定された2環芳香族分と3環以上芳香族分の合計を指す。環境対応軽油の多環芳香族分は、2容量%以下であり、好ましくは1.5容量%以下、特には1容量%以下である。多環芳香族分が2容量%を超えると、PMの生成量が多くなり、DPFへの負荷が高くなるので好ましくない。本願明細書における全芳香族分とは、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」で測定された1環芳香族分、2環芳香族分および3環以上芳香族分の合計を指す。環境対応軽油の全芳香族分は、好ましくは5〜20容量%、さらには8〜20容量%、特には10〜18容量%である。全芳香族分が5容量%未満では、単位体積あたりの真発熱量が低下し、環境対応軽油の単位体積あたりの燃費が悪化し、好ましくない。また、全芳香族分が低下すると、ディーゼル自動車の燃料系のシール材として用いられているゴムの膨潤特性を悪化させるので、好ましくない。全芳香族分が20容量%を超えると、硫黄分を5質量ppm以下とすることが困難になり、好ましくない。本願明細書における単位体積あたりの真発熱量とは、JIS K 2279で求められるものを指す。環境対応軽油の単位体積あたりの真発熱量は、34500J/cm以上であり、好ましくは、34500〜36500J/cmの範囲である。燃費の観点からは、単位体積あたりの真発熱量が高いほど好ましいが、36500J/cmを超えると燃料としての実用特性、例えば、燃焼性や低温流動性を確保することが困難になる。 The density of the environment-friendly light oil is preferably 0.800 to 0.850 g / cm 3 , more preferably 0.805 to 0.845 g / cm 3 , and particularly 0.810 to 0.840 g / cm 3 . The density in this specification refers to the density in 15 degreeC measured by JISK2249. If the density of the environment-friendly light oil is less than 0.795 g / cm 3 , the true calorific value per unit volume is lowered, and the fuel consumption per unit volume of the environment-friendly light oil is deteriorated. When the density is 0.850 g / cm 3 or more, the production cost of environment-friendly light oil increases . Sulfur environmentally friendly diesel fuel is preferably at most 1 mass ppm. When the sulfur content is 5 ppm by mass or more, it is necessary to increase the frequency of sulfur poisoning recovery control of the catalyst of the exhaust gas aftertreatment device of a diesel vehicle, which is not preferable because fuel efficiency is deteriorated. The 1-ring aromatic component in this specification refers to the 1-ring aromatic component measured by JPI-5S-49-97 "Petroleum product-hydrocarbon type test method-high performance liquid chromatograph method" . 1 ring aromatic content of environmentally friendly diesel fuel is a 5 to 18% by volume, preferably 8 to 18% by volume, in particular 10 to 16% by volume. When the aromatic content of one ring is less than 5% by volume, the true calorific value per unit volume is lowered, and the fuel consumption per unit volume of the environmentally friendly light oil is deteriorated. The polyaromatic component in the present specification means a bicyclic aromatic component and a tricyclic or higher aromatic component measured by JPI-5S-49-97 “Petroleum products—hydrocarbon type test method—high performance liquid chromatographic method”. It refers to the sum of. Polycyclic aromatic content of environmentally friendly diesel fuel is less than 2% by volume, preferably 1.5 volume%, particularly less than 1% by volume. If the polycyclic aromatic content exceeds 2% by volume, the amount of PM produced increases and the load on the DPF increases, such being undesirable. The total aromatic content in the present specification means a 1-ring aromatic content, a 2-ring aromatic content and a 2-ring aromatic content measured by JPI-5S-49-97 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatographic method”. Refers to the total aromatic content of 3 or more rings . Total aromatic content of environmentally friendly gas oil, preferably 5-20% by volume, more 8-20 volume%, in particular 10 to 18% by volume. When the total aromatic content is less than 5% by volume, the true calorific value per unit volume is lowered, and the fuel consumption per unit volume of the environmentally friendly light oil is deteriorated. Moreover, if the total aromatic content is lowered, the swelling characteristics of rubber used as a fuel system sealant for diesel automobiles is deteriorated, which is not preferable. When the total aromatic content exceeds 20% by volume, it becomes difficult to control the sulfur content to 5 mass ppm or less, which is not preferable. The true calorific value per unit volume in the specification of the present application refers to that obtained by JIS K 2279 . Net calorific value per unit volume of the environmentally friendly diesel fuel is a 34500J / cm 3 or more, preferably in the range of 34500~36500J / cm 3. From the viewpoint of fuel consumption, the higher the true calorific value per unit volume, the better. However, when it exceeds 36500 J / cm 3 , it becomes difficult to ensure practical characteristics as fuel, for example, combustibility and low-temperature fluidity.

本発明の製造方法により製造される環境対応軽油は、好ましくは、30℃での動粘度が1.7mm/s以上、さらには2.0mm/s以上、特には2.7mm/s以上である。動粘度が1.7mm/sより低いと、ディーゼル自動車の燃料噴射ポンプやノズルの摺動面での潤滑性が悪化し、焼付などの原因となるため、好ましくない。環境対応軽油は、好ましくは、目詰まり点が−5℃以下、さらには−12℃以下、特には−19℃以下である。目詰まり点が低すぎると、低温時、ディーゼル自動車の燃料フィルターの通過性が悪くなるため、好ましくない。環境対応軽油は、好ましくは、流動点が−2.5℃以下、さらには−7.5℃以下、特には−20℃以下である。流動点が高いと、低温時、固化しやすく、好ましくない。環境対応軽油は、好ましくは、曇り点が−5℃以下である。曇り点が高いと、低温時、ディーゼル自動車の燃料フィルターの通過性が悪くなり、好ましくない。環境対応軽油は、好ましくは、セタン指数が45以上、さらには50以上、特には55以上である。セタン指数が低いと、着火性が悪くなり、低温時の始動性が悪くなるため、好ましくない。環境対応軽油は、好ましくは、10%残留炭素分が、0.10質量%以下、さらには0.05質量%以下、特には0.02質量%以下である。10%残留炭素分が高いと、未燃焼物質が発生しやすく、好ましくない。なお、本願明細書における動粘度、目詰まり点、流動点、曇り点、セタン指数および10%残留炭素分は、各々、JIS K 2283、JIS K 2288、JIS K 2269、JIS K 2269、JIS K 2280およびJIS K 2270で規定されるものを指す。環境対応軽油は、90容量%留出温度が、好ましくは360℃以下、さらには300〜355℃、特には310〜340℃であることが好ましい。90容量%留出温度が高いと、燃焼性が悪化し、好ましくない。90容量%留出温度が低いと、単位体積あたりの真発熱量が低下し、環境対応軽油単位体積あたりの燃費が悪化するので、好ましくない。 The environmentally friendly light oil produced by the production method of the present invention preferably has a kinematic viscosity at 30 ° C. of 1.7 mm 2 / s or more, more preferably 2.0 mm 2 / s or more, and particularly 2.7 mm 2 / s. That's it. If the kinematic viscosity is lower than 1.7 mm 2 / s, the lubricity on the sliding surface of the fuel injection pump or nozzle of the diesel vehicle is deteriorated, which causes seizure and the like, which is not preferable . Environmentally friendly diesel fuel, preferably, filter plugging point is -5 ° C. or less, more -12 ° C. or less, in particular is -19 ° C. or less. If the clogging point is too low, the passage through the fuel filter of a diesel vehicle becomes worse at low temperatures, which is not preferable . Environmentally friendly diesel fuel is preferably is -2.5 ° C. or less pour point, further -7.5 ° C. or less, in particular is -20 ° C. or less. A high pour point is not preferable because it tends to solidify at low temperatures . Environmentally friendly diesel fuel is preferably cloud point is -5 ° C. or less. If the cloud point is high, the passing property of the fuel filter of a diesel vehicle is deteriorated at low temperatures, which is not preferable . Environmentally friendly diesel fuel is preferably cetane index of 45 or more, more than 50, in particular 55 or more. If the cetane index is low, the ignitability is deteriorated and the startability at low temperatures is deteriorated . Environmentally friendly diesel fuel is preferably 10% carbon residue, 0.10 wt% or less, further 0.05% or less, particularly equal to or less than 0.02 mass%. If the residual carbon content is high, unburned substances are likely to be generated, which is not preferable. The kinematic viscosity, clogging point, pour point, cloud point, cetane index and 10% residual carbon content in the present specification are JIS K 2283, JIS K 2288, JIS K 2269, JIS K 2269, and JIS K 2280, respectively. And those defined in JIS K 2270 . Environmentally friendly diesel fuel, 90 volume% distillation temperature is preferably 360 ° C. or less, more three hundred to three hundred fifty-five ° C., particularly preferably from 310 to 340 ° C.. If the 90% by volume distillation temperature is high, the combustibility deteriorates, which is not preferable. If the 90% by volume distillation temperature is low, the true calorific value per unit volume is lowered, and the fuel efficiency per unit volume of environment-friendly diesel oil is deteriorated.

本発明の製造方法により製造される環境対応軽油は、50容量%留出温度が、好ましくは240〜310℃、さらには245〜305℃、特には250〜300℃である。50容量%留出温度が高すぎると燃焼性が悪化し、50容量%留出温度が低すぎると単位体積あたりの真発熱量が低下して環境対応軽油単位体積あたりの燃費が悪化するので、好ましくない。環境対応軽油は、10容量%留出温度が、好ましくは180〜260℃、さらには195〜255℃、特には205〜250℃である。10容量%留出温度が高すぎると環境対応軽油の得率が低下して製造コストが高くなり、10容量%留出温度が低すぎると環境対応軽油の引火点が高くなるため、好ましくない。なお、本願明細書における90容量%留出温度、50容量%留出温度、10容量%留出温度等の蒸留性状は、JIS K 2254で規定されるものを指す。 The environment-friendly light oil produced by the production method of the present invention has a 50% by volume distillation temperature of preferably 240 to 310 ° C, more preferably 245 to 305 ° C, particularly 250 to 300 ° C. If the 50% by volume distillation temperature is too high, the flammability will deteriorate, and if the 50% by volume distillation temperature is too low, the true calorific value per unit volume will decrease and the fuel efficiency per unit volume of environmentally friendly light oil will deteriorate. It is not preferable . Environmentally friendly diesel fuel, 10 volume% distillation temperature is preferably 180 to 260 ° C., further one hundred and ninety-five to two hundred and fifty-five ° C., in particular two hundred and five to two hundred and fifty ° C.. If the 10% by volume distillation temperature is too high, the yield of environmentally friendly light oil is reduced and the production cost is increased, and if the 10% by volume distillation temperature is too low, the flash point of the environmentally friendly light oil becomes high, which is not preferable. In addition, the distillation properties such as 90% by volume distillation temperature, 50% by volume distillation temperature, 10% by volume distillation temperature and the like in the present specification refer to those specified by JIS K 2254.

〔環境対応軽油の製造方法〕
本発明の環境対応軽油の製造方法によれば、上述のような環境対応軽油を製造することができる。
[Method for producing environmentally friendly diesel oil]
According to the method for producing environment-friendly light oil of the present invention, the environment-friendly light oil as described above can be produced.

〔原料油〕
本発明の環境対応軽油の製造方法における原料油は、密度が0.80〜0.90g/cm、硫黄分が0.5質量%以上、90容量%留出温度が370℃以下である炭化水素油である。
[Raw oil]
The raw material oil in the production method of the environment-friendly light oil of the present invention has a density of 0.80 to 0.90 g / cm 3 , a sulfur content of 0.5% by mass or more, and a 90 vol% distillation temperature of 370 ° C. or less. Hydrogen oil.

原料油の密度は、好ましくは0.81〜0.89g/cm、特に好ましくはは0.82〜0.88g/cmである。通常、原料油の硫黄分は0.5〜5質量%、特には1〜3質量%である。また、通常、原料油の窒素分は、50質量ppm以上、特には80〜500質量ppmである。上述の条件を満たしていれば、炭化水素油の由来に特に制限はないが、直留軽油留分単独の原料油または直留軽油留分を主成分とする、例えば80容量%以上を含む原料油を用いることが好ましい。また、各種石油精製プロセスから得られるプロセス油を直留軽油留分に混合して用いてもよい。 Density of feedstock, preferably 0.81~0.89g / cm 3, particularly preferably from 0.82~0.88g / cm 3. Usually, the sulfur content of raw material oil is 0.5-5 mass%, especially 1-3 mass%. Further, the nitrogen content of the raw material oil is usually 50 ppm by mass or more, particularly 80 to 500 ppm by mass. As long as the above-described conditions are satisfied, there is no particular limitation on the origin of the hydrocarbon oil, but the raw oil containing the straight-run gas oil fraction alone or the straight-run gas oil fraction as a main component, for example, the raw material containing 80% by volume or more It is preferable to use oil. In addition, process oils obtained from various petroleum refining processes may be used by mixing with straight-run gas oil fractions.

直留軽油留分は、原油を常圧蒸留して得られ、通常、おおよそ10容量%留出温度が180〜280℃、50容量%留出温度が240〜320℃、90%容量留出温度が300〜370℃である。   The straight-run gas oil fraction is obtained by atmospheric distillation of crude oil. Usually, approximately 10% by volume distillation temperature is 180 to 280 ° C, 50% by volume distillation temperature is 240 to 320 ° C, and 90% volume distillation temperature. Is 300-370 degreeC.

直留軽油留分に混合して原料油とすることができるプロセス油としては、例えば、熱分解油、接触分解油、直接脱硫軽油、間接脱硫軽油が挙げられる。熱分解油とは、重質油留分に熱を加えて、ラジカル反応を主体にした反応により得られる軽質留分油で、例えば、ディレードコーキング法、ビスブレーキング法あるいはフルードコーキング法等により得られる留分をいう。これらの留分は得られる全留分を熱分解油として用いてもよいが、留出温度が150〜360℃の範囲内にある留分を用いることが好適である。接触分解油とは、中間留分や重質留分、特には減圧軽油留分や常圧蒸留残油等をゼオライト系触媒と接触分解する際に得られる留分、特に高オクタン価ガソリン製造を目的とした流動接触分解装置において副生する分解軽油留分である。この留分は、一般に、沸点が相対的に低い軽質接触分解油と沸点が相対的に高い重質接触分解油とが別々に採取されている。本発明においては、これらの留分のいずれをも用いることができるが、前者の軽質接触分解油、いわゆるライトサイクルオイル(LCO)を用いることが好ましい。このLCOは、一般に、10容量%留出温度が220〜250℃、50容量%留出温度が260〜290℃、90容量%留出温度が310〜355℃の範囲内にある。また、重質接触分解油、いわゆるヘビーサイクルオイル(HCO)は、通常、10容量%留出温度が280〜340℃、50容量%留出温度が390〜420℃、90容量%留出温度が450℃以上であるので、本発明の環境対応軽油の製造方法に用いる原料油の90容量%留出温度が370℃以下になるよう、HCOをさらに分留して軽質な留分を原料油に混合し、原料油に混合する量を制限することが好ましい。直接脱硫軽油とは、常圧残油および/または減圧残油を直接脱硫装置で水素化処理する際に副生する軽油留分である。間接脱硫軽油とは、減圧軽油留分を間接脱硫装置で水素化処理する際に副生する軽油留分である。直接脱硫軽油や間接脱硫軽油を原料油の一部とする場合も、本発明の環境対応軽油の製造方法に用いる原料油の90容量%留出温度が370℃以下になるよう、適切な分留を行い、原料油に混合する量を制限して用いることが好ましい。   Examples of the process oil that can be mixed with the straight-run gas oil fraction to obtain a raw material oil include pyrolysis oil, catalytic cracking oil, direct desulfurization gas oil, and indirect desulfurization gas oil. Pyrolysis oil is a light fraction oil obtained by applying heat to a heavy oil fraction and mainly using a radical reaction. For example, it can be obtained by the delayed coking method, visbreaking method or fluid coking method. Refers to the fraction to be made. Although these fractions may use the whole fraction obtained as a pyrolysis oil, it is suitable to use the fraction whose distillation temperature exists in the range of 150-360 degreeC. Catalytic cracked oil is a fraction obtained when catalytically cracking middle distillate and heavy distillate, especially vacuum gas oil distillate, atmospheric distillation residue, etc. with zeolitic catalyst, especially for the production of high octane gasoline This is a cracked gas oil fraction by-produced in the fluidized catalytic cracker. In general, a light catalytic cracked oil having a relatively low boiling point and a heavy catalytic cracked oil having a relatively high boiling point are separately collected from this fraction. In the present invention, any of these fractions can be used, but it is preferable to use the former light catalytic cracking oil, so-called light cycle oil (LCO). The LCO generally has a 10 vol% distillation temperature of 220 to 250 ° C, a 50 vol% distillation temperature of 260 to 290 ° C, and a 90 vol% distillation temperature of 310 to 355 ° C. In addition, heavy catalytic cracked oil, so-called heavy cycle oil (HCO), typically has a 10 vol% distillation temperature of 280-340 ° C, a 50 vol% distillation temperature of 390-420 ° C, and a 90 vol% distillation temperature of 450. Since the temperature is higher than ℃, the HCO is further fractionated to mix the light fraction into the raw material oil so that the 90 vol% distillation temperature of the raw material oil used in the production method of the environment-friendly light oil of the present invention is 370 ° C or lower. In addition, it is preferable to limit the amount mixed with the raw material oil. The direct desulfurized gas oil is a light oil fraction produced as a by-product when hydrotreating the atmospheric residue and / or the vacuum residue with a direct desulfurizer. Indirect desulfurized gas oil is a gas oil fraction that is produced as a by-product when a vacuum gas oil fraction is hydrotreated with an indirect desulfurization apparatus. Even when direct desulfurized gas oil or indirect desulfurized gas oil is used as part of the feedstock, an appropriate fractionation is performed so that the 90 vol% distillation temperature of the feedstock used in the method for producing the environment-friendly diesel oil of the present invention is 370 ° C or lower. It is preferable that the amount mixed with the raw material oil is limited and used.

〔水素化処理〕
本発明の環境対応軽油の製造方法における水素化処理に用いる反応装置は、バッチ式、流通式、固定床式、流動床式等の反応形式に特に制限はないが、固定床流通式反応装置に充填された水素化処理触媒に水素と原料油とを連続的に供給して接触させる形式が好ましい。本発明の環境対応軽油の製造方法における水素化処理は、反応温度が280〜450℃、好ましくは300〜420℃、特には320〜400℃、水素圧力が3〜10MPa、好ましくは4〜9MPa、特には4.5〜8.5MPaの反応条件で行われる。反応温度が280℃未満では、環境対応軽油の硫黄分を5質量ppm以下にすることが困難になり、450℃を超えると分解反応が著しく起こり軽油得率低下やコーキングが発生し、好ましくない。水素圧力が3MPaより低いと、環境対応軽油の硫黄分を5質量ppm以下にすることが困難になり、10MPaを超えると環境対応軽油の単位体積あたりの発熱量が小さくなり、好ましくない。本発明の環境対応軽油の製造方法における水素化処理は、好ましくは、液空間速度(LHSV)が0.1〜5h−1、さらには0.3〜3h−1の、特には0.5〜2h−1の反応条件で行うことが好ましい。LHSVが0.1h−1未満では、一定量の環境対応軽油を製造するための反応装置が大きくなり過ぎ、LHSVが5h−1を超えると、環境対応軽油の硫黄分を5質量ppm以下にすることが困難になり、好ましくない。また、本発明の環境対応軽油の製造方法における水素化処理は、好ましくは、水素/オイル比が100〜2000NL/L、さらには100〜1000NL/L、特には150〜800NL/Lの反応条件で行う。水素/オイル比が100NL/L未満では、環境対応軽油の硫黄分を5質量ppm以下にすることが困難になり、2000NL/Lを超えると、水素供給のためのコストが嵩み、経済的な環境対応軽油の製造が困難になり、好ましくない。固定床流通式反応装置で水素化処理を行う場合、水素化処理触媒は、単一触媒床に充填してもよいし、2つ以上の触媒床に分割して充填してもよい。2つ以上の触媒床に分割して水素化処理触媒を充填する場合においては、触媒床間にクエンチ水素を供給することが好ましい。触媒床間にクエンチ水素を供給する場合にあっては、反応器入口に原料油とともに供給する水素とクエンチ水素の合計量と原料油の供給量の比が、100〜2000NL/L、さらには100〜1000NL/L、特には150〜800NL/Lとすることが好ましい。
[Hydrogenation treatment]
The reaction apparatus used for the hydrotreating in the method for producing environmentally-friendly light oil of the present invention is not particularly limited in the reaction type such as batch type, flow type, fixed bed type, fluidized bed type, etc. A form in which hydrogen and raw material oil are continuously supplied and brought into contact with the filled hydroprocessing catalyst is preferable. The hydrogenation treatment in the method for producing environment-friendly light oil of the present invention is performed at a reaction temperature of 280 to 450 ° C., preferably 300 to 420 ° C., particularly 320 to 400 ° C., and a hydrogen pressure of 3 to 10 MPa, preferably 4 to 9 MPa. In particular, it is carried out under reaction conditions of 4.5 to 8.5 MPa. If the reaction temperature is less than 280 ° C., it becomes difficult to make the sulfur content of the environmentally friendly light oil 5 ppm by mass or less, and if it exceeds 450 ° C., the decomposition reaction is remarkably caused, resulting in a decrease in light oil yield and coking. When the hydrogen pressure is lower than 3 MPa, it is difficult to make the sulfur content of the environmentally friendly light oil 5 ppm by mass or less, and when it exceeds 10 MPa, the calorific value per unit volume of the environmentally friendly light oil becomes small, which is not preferable. The hydrogenation treatment in the method for producing environmentally-friendly light oil of the present invention preferably has a liquid hourly space velocity (LHSV) of 0.1 to 5 h −1 , more preferably 0.3 to 3 h −1 , particularly 0.5 to 0.5. It is preferable to carry out under the reaction conditions of 2h- 1 . The LHSV is less than 0.1 h -1, the reactor becomes too large for the manufacture of a certain amount of environmental light oil, when LHSV exceeds 5h -1, the sulfur content of the environmental gas oil below 5 ppm by mass This is not preferable. Moreover, the hydrogenation treatment in the method for producing an environmentally-friendly light oil of the present invention is preferably performed under reaction conditions of a hydrogen / oil ratio of 100 to 2000 NL / L, more preferably 100 to 1000 NL / L, and particularly 150 to 800 NL / L. Do. If the hydrogen / oil ratio is less than 100 NL / L, it becomes difficult to reduce the sulfur content of the environmentally friendly light oil to 5 ppm by mass or less, and if it exceeds 2000 NL / L, the cost for supplying hydrogen increases and is economical. Production of environmentally friendly light oil becomes difficult, which is not preferable. When hydrotreating in a fixed bed flow type reactor, the hydrotreating catalyst may be filled into a single catalyst bed or divided into two or more catalyst beds. When the hydrotreatment catalyst is divided into two or more catalyst beds and charged with the hydrotreating catalyst, it is preferable to supply quench hydrogen between the catalyst beds. In the case of supplying quench hydrogen between the catalyst beds, the ratio of the total amount of hydrogen and quench hydrogen supplied together with the raw material oil to the reactor inlet and the supply amount of the raw material oil is 100 to 2000 NL / L, further 100 It is preferable to set it to -1000NL / L, especially 150-800NL / L.

〔水素化処理触媒〕
本発明の環境対応軽油の製造方法に用いる水素化処理触媒は、活性金属元素として、モリブデンおよびタングステンから選ばれる1種以上の元素とコバルトまたはニッケルから選ばれる1種以上の元素を含む多孔質体であり、公知のコバルト−モリブデン系水素化処理触媒、ニッケル−モリブデン系水素化処理触媒、ニッケル−コバルト−モリブデン系水素化処理触媒、ニッケル−タングステン系水素化処理触媒等を用いることができる。好ましくは、モリブデンとタングステンの合計の含有量が5〜50質量%、コバルトとニッケルの合計の含有量が1〜15質量%である。また、リン、ホウ素、フッ素などの元素を含むものであってよい。さらに、エチレンジアミン四酢酸(EDTA)、trans−1,2−シクロヘキサンジアミン−N,N,N’,N’−四酢酸、ニトリロ三酢酸、クエン酸等、キレート性の有機化合物を含ませた水素化処理触媒も好ましく用いられる。これらのキレート性の有機化合物は、コバルトまたはニッケルと錯体を形成した形態で水素化処理触媒に含まれていると一層好ましい。本発明の環境対応軽油の製造方法に用いる水素化処理触媒は、好ましくは、メソポアの中央細孔直径が、4〜20nmであり、さらに好ましくは4〜15nmである。さらに、好ましくは、比表面積が、30〜800m/gであり、一層好ましくは50〜600m/gである。本発明の環境対応軽油の製造方法に用いる水素化処理触媒は、粉体ではなく、成形体であることが好ましい。成形体の形状や成形方法に特に制限はないが、球状や柱状の形状が好ましい。球状の場合は、直径が0.5〜20mmであることが好ましい。柱状の場合の断面形状は、特に制限はないが、円型、三つ葉型、四つ葉型が好ましい断面形状として挙げられる。柱状の場合の成形体の寸法は、断面積が0.25〜400mm、長さ0.5〜20mm程度であることが好ましい。水素化処理触媒の製造方法に特に制限はないが、多孔質無機酸化物担体に上述の活性金属元素やリン等の添加元素を含ませて製造することが好ましい。多孔質無機酸化物としては、アルミナ、シリカ、チタニア、マグネシア、ジルコニア等の酸化物、シリカ−アルミナ、シリカ−チタニア、シリカ−ジルコニア、シリカ−マグネシア、シリカ−アルミナ−チタニア、シリカ−アルミナ−ジルコニア等の複合酸化物、Y型ゼオライト、安定化Y型ゼオライト、βゼオライト、モルデナイト型ゼオライトまたはMCM−22等のゼオライトから選ばれる1種または2種以上からなるものが好ましい。また、本発明の環境対応軽油の製造方法においては、2種以上の水素化処理触媒を組合せて、反応装置内で積層させて用いてよい。軽油留分中に含まれている4−メチルジベンゾチオフェン(4−MDBT)、4,6−ジメチルジベンゾチオフェン(4,6−DMDBT)のように、ジベンゾチオフェン(DBT)の4位または6位にアルキル置換基を有する硫黄原子に対する立体障害をもつ硫黄化合物が存在することが知られており、難脱硫性硫黄化合物と呼ばれている(T.Kabe,A.Ishihara,W.Quin,“Hydrodesulfurization and Hydrodenitrogenation”,Kodansha(1999年)参照)。軽油留分を水素化処理すると、難脱硫性硫黄化合物が選択的に残留することになる。一方、このような難脱硫性硫黄化合物の脱硫には、DBT骨格中の硫黄原子を直接脱硫する反応ルート(直接脱硫ルート)よりも、DBT骨格内のベンゼン環を水素化して置換基による立体障害を緩和した後に脱硫する反応ルート(水素化脱硫ルート)を取りやすい水素化処理触媒を用いた触媒の方が有利であることが知られており、コバルト−モリブデン系水素化処理触媒とニッケル−モリブデン系水素化処理触媒とを比較すると、後者の方が水素化脱硫ルートを取りやすいことが知られている(礒田隆聡,馬筱良,持田勲,石油学会誌,37巻,368−375頁(1994年)参照)。したがって、2種類以上の水素化処理触媒を組合せて、反応装置内に積層させて用いる場合は、水素化処理触媒中に含まれるコバルトとニッケルの含有量合計に占めるニッケルの比率がより小さいものをより原料油が供給される反応器入口に近い側に、コバルトとニッケルの含有量合計に占めるニッケルの比率がより大きいものをより反応器出口に近い側に配置することが好ましい。
[Hydroprocessing catalyst]
The hydrotreating catalyst used in the method for producing environmentally friendly light oil of the present invention is a porous body containing, as active metal elements, one or more elements selected from molybdenum and tungsten and one or more elements selected from cobalt or nickel. A known cobalt-molybdenum-based hydrogenation catalyst, nickel-molybdenum-based hydrogenation catalyst, nickel-cobalt-molybdenum-based hydrogenation catalyst, nickel-tungsten-based hydrogenation catalyst, or the like can be used. Preferably, the total content of molybdenum and tungsten is 5 to 50% by mass, and the total content of cobalt and nickel is 1 to 15% by mass. Further, it may contain an element such as phosphorus, boron or fluorine. Further, hydrogenation containing a chelating organic compound such as ethylenediaminetetraacetic acid (EDTA), trans-1,2-cyclohexanediamine-N, N, N ′, N′-tetraacetic acid, nitrilotriacetic acid, citric acid, etc. A treatment catalyst is also preferably used. These chelating organic compounds are more preferably contained in the hydrotreating catalyst in the form of a complex with cobalt or nickel. The hydrotreating catalyst used in the method for producing environment-friendly light oil of the present invention preferably has a mesopore central pore diameter of 4 to 20 nm, more preferably 4 to 15 nm. Furthermore, preferably, a specific surface area is 30-800 m < 2 > / g, More preferably, it is 50-600 m < 2 > / g. The hydrotreating catalyst used in the method for producing environmentally friendly light oil of the present invention is preferably not a powder but a molded body. Although there is no restriction | limiting in particular in the shape of a molded object, and a shaping | molding method, A spherical shape or a columnar shape is preferable. In the case of a spherical shape, the diameter is preferably 0.5 to 20 mm. The cross-sectional shape in the case of a columnar shape is not particularly limited, but a circular shape, a three-leaf shape, and a four-leaf shape are preferable cross-sectional shapes. The dimensions of the molded body in the case of a columnar shape are preferably about 0.25 to 400 mm 2 in cross-sectional area and about 0.5 to 20 mm in length. Although there is no restriction | limiting in particular in the manufacturing method of a hydroprocessing catalyst, It is preferable to manufacture by including additional elements, such as the above-mentioned active metal element and phosphorus, in a porous inorganic oxide support | carrier. Examples of porous inorganic oxides include oxides such as alumina, silica, titania, magnesia, zirconia, silica-alumina, silica-titania, silica-zirconia, silica-magnesia, silica-alumina-titania, silica-alumina-zirconia, etc. Of these, a composite oxide, Y-type zeolite, stabilized Y-type zeolite, β-zeolite, mordenite-type zeolite, or one or more selected from zeolites such as MCM-22 is preferable. Moreover, in the manufacturing method of the environmentally friendly light oil of the present invention, two or more hydroprocessing catalysts may be combined and stacked in the reaction apparatus. In 4-position or 6-position of dibenzothiophene (DBT) such as 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) contained in the light oil fraction It is known that there exists a sulfur compound having a steric hindrance to a sulfur atom having an alkyl substituent, and is called a non-desulfurization sulfur compound (T. Kabe, A. Ishihara, W. Quinn, “Hydrosulfurization and Hydrodenitrogenation ", Kodansha (1999)). When the light oil fraction is hydrotreated, the difficult-to-desulfurize sulfur compound remains selectively. On the other hand, in the desulfurization of such a hard-to-desulfurize sulfur compound, a steric hindrance due to a substituent is caused by hydrogenating the benzene ring in the DBT skeleton rather than a reaction route (direct desulfurization route) in which sulfur atoms in the DBT skeleton are directly desulfurized. It is known that a catalyst using a hydrotreating catalyst that can easily take a reaction route (hydrodesulfurization route) that desulfurizes after relaxing the catalyst is more advantageous, and a cobalt-molybdenum-based hydrotreating catalyst and nickel-molybdenum. It is known that the latter is easier to take a hydrodesulfurization route when compared with a hydrotreating catalyst (Takashi Hamada, Ryo Mabuchi, Isao Mochida, Journal of Petroleum Institute, 37, 368-375 (1994). Year)). Therefore, when two or more types of hydrotreating catalysts are combined and used in a reactor, a catalyst having a smaller proportion of nickel in the total content of cobalt and nickel contained in the hydrotreating catalyst. It is preferable to arrange the one having a larger proportion of nickel in the total content of cobalt and nickel on the side closer to the reactor outlet, closer to the reactor inlet to which the raw material oil is supplied.

〔水素化処理触媒の硫化処理〕
本発明の環境対応軽油の製造方法に用いる水素化処理触媒は、通常、硫化処理することによって活性化される。通常、硫化処理は、水素化処理触媒前駆体を、本発明の環境対応軽油の製造方法に用いる反応装置中に充填した後に行われる。この硫化処理は、約75〜400℃、好ましくは約100〜350℃で、常圧あるいはそれ以上の水素分圧の水素雰囲気下、硫黄化合物を含む石油蒸留物、それに硫黄含有化合物を添加したもの、あるいは硫化水素を用いて行う。石油蒸留物に硫黄含有化合物を添加して用いる場合の硫黄含有化合物は、硫化処理条件下で分解して硫化水素に転化し得るものであれば特に限定はないが、好ましくは、チオール類、二硫化炭素、チオフェン類、ジメチルスルフィド、ジメチルジスルフィドおよび種々のポリスルフィド類である。水素化処理触媒前駆体を反応装置に充填した後、硫化処理を開始する前に、水素化処理触媒前駆体に付着した水分を除去するための乾燥処理を行ってもよい。この乾燥処理は、水素または不活性ガスの雰囲気下で、常圧あるいはそれ以上の圧力でガスを流通させ、常温〜220℃、好ましくは150℃以下で行う。
[Sulfurization treatment of hydrotreating catalyst]
The hydrotreating catalyst used in the method for producing environmentally friendly light oil of the present invention is usually activated by sulfiding. Usually, the sulfiding treatment is performed after the hydrotreating catalyst precursor is charged into the reaction apparatus used in the method for producing the environment-friendly light oil of the present invention. This sulfuration treatment is performed at about 75 to 400 ° C., preferably about 100 to 350 ° C., under a hydrogen atmosphere of normal pressure or higher, and a petroleum distillate containing a sulfur compound and a sulfur-containing compound added thereto. Alternatively, hydrogen sulfide is used. The sulfur-containing compound in the case of adding a sulfur-containing compound to petroleum distillate is not particularly limited as long as it can be decomposed and converted into hydrogen sulfide under the sulfidizing treatment conditions. Carbon sulfide, thiophenes, dimethyl sulfide, dimethyl disulfide and various polysulfides. After filling the hydrotreating catalyst precursor into the reaction apparatus and before starting the sulfiding treatment, a drying process for removing water adhering to the hydrotreating catalyst precursor may be performed. This drying treatment is carried out at normal temperature to 220 ° C., preferably 150 ° C. or lower, under a hydrogen or inert gas atmosphere, with the gas flowing at normal pressure or higher.

〔気液分離工程を含む水素化処理〕
本発明の環境対応軽油の製造方法の好ましい態様として、原料油の水素化処理によって粗精製を行う第1の工程、第1の工程で得られる反応混合物の気液分離を行う第2の工程、第2の工程で得られた粗精製油の硫黄分を5質量ppm以下に減じる水素化処理を行う第3の工程を含む環境対応軽油の製造方法がある。原料油を水素化処理すると、脱硫反応や脱窒素反応が進行し、硫化水素やアンモニアが生成するが、硫化水素やアンモニアは水素化処理触媒を被毒し、脱硫反応を阻害する性質がある。そこで、第1の工程で得られる反応混合物を第2の工程で気液分離して硫化水素やアンモニアを除去し、得られた粗精製油を第3の工程でさらに水素化処理することで、効率よく脱硫を進行させることができ、よりマイルドな条件で環境対応軽油を製造できたり、環境対応軽油を増産できたりするので好ましい。
[Hydrogenation including gas-liquid separation process]
As a preferred embodiment of the method for producing environmentally friendly light oil of the present invention, a first step of performing crude purification by hydrotreating raw material oil, a second step of performing gas-liquid separation of the reaction mixture obtained in the first step, There is a method for producing an environmentally-friendly light oil including a third step of performing a hydrogenation treatment in which the sulfur content of the crude refined oil obtained in the second step is reduced to 5 mass ppm or less. When raw material oil is hydrotreated, desulfurization reaction and denitrogenation reaction proceed to produce hydrogen sulfide and ammonia. However, hydrogen sulfide and ammonia poison the hydrotreating catalyst and inhibit the desulfurization reaction. Therefore, the reaction mixture obtained in the first step is gas-liquid separated in the second step to remove hydrogen sulfide and ammonia, and the obtained crude refined oil is further hydrotreated in the third step. It is preferable because desulfurization can proceed efficiently, environmentally friendly light oil can be produced under milder conditions, and production of environmentally friendly light oil can be increased.

第1の工程と第3の工程は異なる反応器を用いて行ってもよいし、第1の工程と第3の工程とを同一の反応器内で行ってもよい。第1の工程と第3の工程を異なる反応器を用いて行う場合にあっては、第1の工程のための反応器と第3の工程のための反応器の間に、第1の工程のための反応器から得られる反応混合物の気液分離を行う気液分離装置と、気液分離装置から得られる粗精製油を水素とともに第3の工程のための反応器に供給する装置を備えた一連の装置を用いて水素化処理を行うことが好ましい。気液分離装置としては、高圧分離槽、ストリッパー、フラッシャー、蒸留塔等の公知の分離装置を用いることが好ましく、2つ以上の分離装置を組合せて用いてもよい。例えば、高圧分離槽での気液分離で得られた粗精製油をさらにストリッパーを用いて気液分離すると硫化水素やアンモニアを、効果的に除去できるので、特に好ましい。ストリッパーによるストリッピング処理のために供給するガス流としては、水素、不活性ガスまたはスチームが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴン、二酸化炭素などの粗精製油と化学反応を起こさないガスであれば用いることができる。一方、第1の工程と第3の工程とを同一の反応器内で行う場合にあっては、再表2000−42130号公報や国際公開特許2002−31088号公報で開示されている装置や方法を用いることが好ましい。第1の工程から第2の工程に単位時間あたりに供給される硫化水素量、アンモニア量に対する第3の工程に単位時間あたりに供給される硫化水素量、アンモニア量の比率を、本発明では、各々、硫化水素の残存率、アンモニアの残存率と呼ぶが、これらの残存率は、好ましくは0〜50%である。これら残存率が50%より高いと、気液分離による第3の工程での反応阻害低減効果が小さくなり好ましくない。これらの残存率は低いほど第3の工程での反応阻害低減効果が高いが、残存率を0%に近づけると環境対応軽油の製造におけるエネルギー消費量が増加し、経済性を損ねるので、これらの残存率は、より好ましくは1〜40%、特には3〜20%とすることが好ましい。   The first step and the third step may be performed using different reactors, or the first step and the third step may be performed in the same reactor. In the case where the first step and the third step are performed using different reactors, the first step is provided between the reactor for the first step and the reactor for the third step. Gas-liquid separation device for performing gas-liquid separation of the reaction mixture obtained from the reactor for the gas, and a device for supplying the crude refined oil obtained from the gas-liquid separation device to the reactor for the third step together with hydrogen The hydrogenation treatment is preferably performed using a series of apparatuses. As the gas-liquid separator, a known separator such as a high-pressure separator, a stripper, a flasher, or a distillation tower is preferably used, and two or more separators may be used in combination. For example, it is particularly preferable to carry out gas-liquid separation of crude refined oil obtained by gas-liquid separation in a high-pressure separation tank using a stripper because hydrogen sulfide and ammonia can be effectively removed. The gas stream supplied for the stripping process by the stripper is preferably hydrogen, an inert gas or steam. As the inert gas, any gas that does not cause a chemical reaction with a crude oil such as nitrogen, helium, argon, and carbon dioxide can be used. On the other hand, in the case where the first step and the third step are carried out in the same reactor, the apparatus and method disclosed in Table No. 2000-42130 and International Patent Publication No. 2002-31088. Is preferably used. In the present invention, the ratio of the amount of hydrogen sulfide supplied per unit time to the second step from the first step, the amount of hydrogen sulfide supplied per unit time to the third step relative to the amount of ammonia, and the amount of ammonia in the present invention, The residual ratio of hydrogen sulfide and the residual ratio of ammonia are referred to as the residual ratio, and these residual ratios are preferably 0 to 50%. If the residual ratio is higher than 50%, the reaction inhibition reducing effect in the third step by gas-liquid separation is reduced, which is not preferable. The lower these residual ratios, the higher the reaction inhibition reduction effect in the third step. However, if the residual ratio is brought close to 0%, the energy consumption in the production of environmentally friendly light oil increases and the economic efficiency is impaired. The residual ratio is more preferably 1 to 40%, and particularly preferably 3 to 20%.

前記好ましい態様においては、第1の工程と第3の工程とを同一の反応器内で行うか、第1の工程と第3の工程を異なる反応器を用いて行うかによらず、水素化処理触媒や反応条件について、以下のように選択することが好ましい。第1の工程と第3の工程に用いられる水素化処理触媒の総量に対する第1の工程に用いられる水素化処理触媒の割合は、好ましくは20〜80容量%、特には30〜70容量%である。この割合が20容量%未満では、難脱硫性硫黄化合物以外の硫黄化合物が第3の工程に供給され、第3の工程に用いられる水素化処理触媒が十分な脱硫性能を発揮できないため、好ましくなく、80容量%を超えると、硫化水素やアンモニアの共存濃度を低減された脱硫反応に有利な反応ゾーンが減少するので好ましくない。第1の工程と第3の工程に用いる水素化処理触媒は、同一のものでもよいが、異なる水素化処理触媒を用いることが好ましい。第1の工程と第3の工程に異なる水素化処理触媒を用いる場合にあっては、水素化処理触媒中に含まれるコバルトとニッケルの含有量合計に占めるニッケルの比率がより小さいものを第1の工程に、コバルトとニッケルの含有量合計に占めるニッケルの比率がより大きいものを第の工程に用いることが好ましい。 In the preferred embodiment, the hydrogenation is performed regardless of whether the first step and the third step are performed in the same reactor, or whether the first step and the third step are performed using different reactors. The treatment catalyst and reaction conditions are preferably selected as follows. The ratio of the hydroprocessing catalyst used in the first step to the total amount of the hydroprocessing catalyst used in the first step and the third step is preferably 20 to 80% by volume, particularly 30 to 70% by volume. is there. If this ratio is less than 20% by volume, sulfur compounds other than the hard-to-desulfurize sulfur compound are supplied to the third step, and the hydrotreating catalyst used in the third step cannot exhibit sufficient desulfurization performance. If it exceeds 80% by volume, the reaction zone advantageous for the desulfurization reaction in which the coexisting concentration of hydrogen sulfide and ammonia is reduced is not preferable. The hydrotreating catalyst used in the first step and the third step may be the same, but it is preferable to use different hydrotreating catalysts. In the case where different hydrotreating catalysts are used in the first step and the third step, the first one having a smaller ratio of nickel to the total content of cobalt and nickel contained in the hydrotreating catalyst. In this step, it is preferable to use a material having a larger ratio of nickel in the total content of cobalt and nickel in the third step.

第1の工程と第3の工程に用いる水素化処理触媒は、各々、単一の水素化処理触媒でもよいし、2種類以上の触媒を組合せて積層充填してもよい。2種類以上の触媒を組合せて積層充填して用いる場合にあっては、水素化処理触媒中に含まれるコバルトとニッケルの含有量合計に占めるニッケルの比率がより小さいものをより原料油または粗精製油が供給される反応器入口に近い側に、コバルトとニッケルの含有量合計に占めるニッケルの比率がより大きいものをより反応器出口に近い側に配置することが好ましい。第1の工程および第3の工程の反応温度は、280〜450℃の範囲から選ばれ、好ましくは300〜420℃、特には320〜400℃の範囲から選ばれる。第1の工程および第3の工程の水素圧力は、好ましくは3〜10MPaの範囲から選ばれ、好ましくは4〜9MPa、特には4.5〜8.5MPaの範囲から選ばれる。第1の工程と第3の工程の反応温度は必ずしも同じにする必要はなく、各々の工程に対して上記範囲から独立に選択してよい。第1の工程の全圧は、第3の工程の全圧よりも高いことが好ましく、第3の工程の全圧に比べ、0.01〜1MPa程度高くすることが特に好ましい。第3の工程の全圧と同じまたはより低いと、流体の流れが円滑でなくなり好ましくない。   Each of the hydrotreating catalysts used in the first step and the third step may be a single hydrotreating catalyst, or two or more types of catalysts may be combined and stacked. When two or more types of catalysts are combined and stacked and used, the one with a smaller ratio of nickel to the total content of cobalt and nickel contained in the hydrotreating catalyst is used as a raw material oil or a crude refining It is preferable to arrange | position the thing with a larger ratio of the nickel which occupies for the total content of cobalt and nickel in the side near the reactor inlet to which oil is supplied, in the side nearer to the reactor outlet. The reaction temperature in the first step and the third step is selected from the range of 280 to 450 ° C, preferably 300 to 420 ° C, particularly 320 to 400 ° C. The hydrogen pressure in the first step and the third step is preferably selected from the range of 3 to 10 MPa, preferably 4 to 9 MPa, particularly 4.5 to 8.5 MPa. The reaction temperatures of the first step and the third step are not necessarily the same, and may be selected independently from the above range for each step. The total pressure in the first step is preferably higher than the total pressure in the third step, and is particularly preferably about 0.01 to 1 MPa higher than the total pressure in the third step. If the total pressure is the same as or lower than the total pressure in the third step, the fluid flow becomes unsatisfactory.

第1の工程および第3の工程に用いられる水素化処理触媒の総容量に対する原料油の容量基準での供給量比である総合液空間速度は、好ましくは0.1〜5h−1、特には0.3〜3h−1である。また、第1の工程における水素/オイル比は、好ましくは50〜2000NL/L、さらには100〜1000NL/L、特には150〜800NL/Lである。第3の工程における水素/オイル比は、好ましくは20〜1000NL/L、さらには40〜800NL/L、特には50〜500NL/Lである。第3の工程で消費される水素量は、第1の工程で消費される水素量より少ないので、第3の工程の水素/オイル比は、第1の工程の水素/オイル比より低くてもよい。固定床流通式反応装置で水素化処理を行う場合、第1の工程および第3の工程に用いられる水素化処理触媒は、各々、単一触媒床に充填してもよいし、2つ以上の触媒床に分割して充填してもよい。2つ以上の触媒床に分割して水素化処理触媒を充填する場合においては、触媒床間にクエンチ水素を供給することが好ましい。触媒床間にクエンチ水素を供給する場合にあっては、反応器入口に原料油または粗精製油とともに供給する水素とクエンチ水素の合計量と原料油または粗精製油の供給量の比が、第1の工程に対して、好ましくは50〜2000NL/L、さらには100〜1000NL/L、特には150〜800NL/L、第3の工程に対して、好ましくは20〜1000NL/L、さらには40〜800NL/L、特には50〜500NL/Lとすることが好ましい。また、本態様においては、第3の工程に供給される粗精製油中に含まれるアルキル置換基のないDBTが、硫黄分として、好ましくは10質量ppm以下、さらには5質量ppm以下、特には1質量ppm以下であることが好ましい。DBTが極めて低濃度になるまで脱硫されていると、難脱硫性硫黄化合物が粗精製油中に選択的に残留することになり、第3の工程の反応条件下で難脱硫性硫黄化合物が効率よく脱硫されるので好ましい。さらに本態様においては、第3の工程に供給される粗精製油中に含まれる硫黄分が、好ましくは2000質量ppm以下、さらには1000質量ppm以下、特には50〜500質量ppmであることが好ましい。通常、このような硫黄分レベルにまで脱硫された粗精製油中には難脱硫性硫黄化合物が選択的に残留することになり、第3の工程の反応条件下で難脱硫性硫黄化合物が効率よく脱硫されるので好ましい。 The total liquid space velocity, which is the ratio of the feed amount on the volume basis of the feedstock to the total volume of the hydrotreating catalyst used in the first step and the third step, is preferably 0.1 to 5 h −1 , in particular 0.3 to 3h- 1 . The hydrogen / oil ratio in the first step is preferably 50 to 2000 NL / L, more preferably 100 to 1000 NL / L, and particularly preferably 150 to 800 NL / L. The hydrogen / oil ratio in the third step is preferably 20 to 1000 NL / L, further 40 to 800 NL / L, particularly 50 to 500 NL / L. Since the amount of hydrogen consumed in the third step is less than the amount of hydrogen consumed in the first step, the hydrogen / oil ratio in the third step may be lower than the hydrogen / oil ratio in the first step. Good. When hydrotreating in a fixed bed flow type reactor, each of the hydrotreating catalysts used in the first step and the third step may be packed in a single catalyst bed, or two or more The catalyst bed may be divided and filled. When the hydrotreatment catalyst is divided into two or more catalyst beds and charged with the hydrotreating catalyst, it is preferable to supply quench hydrogen between the catalyst beds. When quench hydrogen is supplied between the catalyst beds, the ratio of the total amount of hydrogen and quench hydrogen supplied to the reactor inlet together with the raw material oil or the crude refined oil and the supply amount of the raw material oil or the crude refined oil is For one step, preferably 50-2000 NL / L, more preferably 100-1000 NL / L, especially 150-800 NL / L, for the third step, preferably 20-1000 NL / L, further 40 It is preferable to set it to -800NL / L, especially 50-500NL / L. Moreover, in this aspect, DBT without an alkyl substituent contained in the roughly refined oil supplied to the third step is preferably 10 ppm by mass or less, more preferably 5 ppm by mass or less, especially as a sulfur content. It is preferable that it is 1 mass ppm or less. If DBT is desulfurized to a very low concentration, the hardly-desulfurizable sulfur compound will remain selectively in the crude refined oil, and the difficult-to-desulfurize sulfur compound will become efficient under the reaction conditions of the third step. It is preferable because it is well desulfurized. Furthermore, in this aspect, the sulfur content contained in the roughly refined oil supplied to the third step is preferably 2000 ppm by mass or less, more preferably 1000 ppm by mass or less, and particularly 50 to 500 ppm by mass. preferable. Usually, in the crude refined oil desulfurized to such a sulfur level, the hardly-desulfurizable sulfur compound remains selectively, and the hardly-desulfurizable sulfur compound is efficiently used under the reaction conditions of the third step. It is preferable because it is well desulfurized.

第2の工程における液相の温度は特に制限はないが、30〜450℃、さらには200〜420℃、特には220〜400℃の範囲から選択することが好ましく、第1の工程の出口反応温度と同じかまたは100℃以内の範囲でより低い温度であることが特に好ましい。第2の工程の液相の温度が低過ぎると、第3の工程に供給する粗精製油や水素を加熱するために必要なエネルギーが大きくなり、好ましくない。第2の工程でストリッピング処理を行う場合にストリッパーに供給される水素または不活性ガスの温度に特に制限はないが、常温より高い温度であることが好ましく、100℃〜第1の工程の出口反応温度の範囲であることが特に好ましい。第2の工程でストリッピング処理を行う場合にストリッパーに供給される水素または不活性ガスの流量は、第1の工程に供給される水素の流量に対して0.01〜2倍、さらには0.1〜1倍の範囲から選択することが好ましい。   The temperature of the liquid phase in the second step is not particularly limited, but is preferably selected from the range of 30 to 450 ° C., more preferably 200 to 420 ° C., particularly 220 to 400 ° C., and the outlet reaction in the first step. It is particularly preferred that the temperature is the same as the temperature or lower in the range of 100 ° C. or less. If the temperature of the liquid phase in the second step is too low, the energy required for heating the crude refined oil or hydrogen supplied to the third step increases, which is not preferable. There is no particular limitation on the temperature of hydrogen or inert gas supplied to the stripper when the stripping treatment is performed in the second step, but it is preferably a temperature higher than room temperature, and the outlet of the first step is from 100 ° C. A reaction temperature range is particularly preferred. When the stripping process is performed in the second step, the flow rate of hydrogen or inert gas supplied to the stripper is 0.01 to 2 times the flow rate of hydrogen supplied to the first step, and further 0 It is preferable to select from a range of 1 to 1 times.

〔配合〕
本発明の環境対応軽油の製造方法では、上述の製造方法で得られる軽油留分をそのまま環境対応軽油として、あるいは他の基材と混合して環境対応軽油製品を調製するための基材として用いることができる。他の軽油基材としては、例えば、原油を精製して生産される灯油、フィッシャー・トロプシュ法等で誘導される合成軽油、水素化分解軽油、あるいはそれらの半製品、中間製品などの配合用基材が挙げられる。また、植物油メチルエステルなども他の軽油基材として配合することができる。本発明の製造方法で得られる軽油留分と他の軽油基材とを配合して環境対応軽油を調製する場合、所望の品質の軽油となるように適宜の割合で配合することができるが、他の軽油基材の配合割合は、20質量%以下、特には5〜15質量%にすることが好ましい。
[Combination]
In the method for producing environmentally-friendly light oil of the present invention, the light oil fraction obtained by the above-described production method is used as it is as an environmentally-friendly light oil or as a base material for mixing with other base materials to prepare an environmentally-friendly light oil product. be able to. Other light oil bases include, for example, kerosene produced by refining crude oil, synthetic light oil derived by the Fischer-Tropsch process, hydrocracked light oil, or semi-finished products, intermediate products, etc. Materials. Moreover, vegetable oil methyl ester etc. can be mix | blended as another light oil base material. When preparing compounded to environmentally friendly diesel gas oil fraction obtained with other gas oil bases in the production method of the present invention, can be blended at an appropriate ratio so that the desired quality of the gas oil The blending ratio of the other light oil base is preferably 20% by mass or less, particularly 5 to 15% by mass.

また、本発明の環境対応軽油の製造方法においては、添加剤として、低温流動性向上剤、耐摩耗性向上剤、セタン価向上剤、酸化防止剤、金属不活性化剤、腐食防止剤等の公知の燃料添加剤を添加してよい。低温流動性向上剤としては、エチレン共重合体などを用いることができるが、特には、酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなどの飽和脂肪酸のビニルエステルが好ましく用いられる。耐摩耗性向上剤としては、長鎖(例えば、炭素数12〜24)の脂肪酸またのその脂肪酸エステルが好ましく用いられる。10〜500ppm、好ましくは50〜100ppmの添加量で十分に耐摩耗性が向上する。   Further, in the method for producing environmentally friendly light oil of the present invention, as additives, low-temperature fluidity improver, wear resistance improver, cetane improver, antioxidant, metal deactivator, corrosion inhibitor, etc. Known fuel additives may be added. As the low temperature fluidity improver, an ethylene copolymer or the like can be used, and in particular, a vinyl ester of a saturated fatty acid such as vinyl acetate, vinyl propionate or vinyl butyrate is preferably used. As the wear resistance improver, a long chain (for example, having 12 to 24 carbon atoms) fatty acid or fatty acid ester thereof is preferably used. The wear resistance is sufficiently improved by the addition amount of 10 to 500 ppm, preferably 50 to 100 ppm.

以下、実施例に基づき本発明を詳細に説明するが、この実施例により、本発明が限定されるものではない EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited by this Example .

[参考例]
〔水素化処理触媒A〕
γ-アルミナを主成分とする断面形状が三つ葉型で呼び寸法1/20インチのペレット状の担体にモリブデン、ニッケル、リンを担持して調製した水素化処理触媒Aは、触媒中にモリブデンを12質量%、ニッケルを3.3質量%、リンを2質量%含み、窒素吸着法で分析した細孔容積が0.43mL/g、比表面積が183m/g、中央細孔径が7.8nmであった。
[Reference example]
[Hydroprocessing catalyst A]
The hydrotreating catalyst A prepared by supporting molybdenum, nickel, and phosphorus on a pellet-shaped carrier having a trefoil shape of γ-alumina as a main component and having a nominal size of 1/20 inch, has 12 molybdenum in the catalyst. Contains 3.3% by mass of nickel, 3.3% by mass of nickel, 2% by mass of phosphorus, the pore volume analyzed by the nitrogen adsorption method is 0.43 mL / g, the specific surface area is 183 m 2 / g, and the median pore diameter is 7.8 nm. there were.

〔水素化処理〕
水素化処理触媒A100mLを固定床流通式反応装置に充填し、水素圧力5.0MPa、40L/hで水素を流通させながら2時間で室温から150℃まで昇温した。その後、以下の手順で水素化処理触媒Aを硫化処理した。硫化剤(市販軽油に1質量%の二硫化炭素を混合したもの)を水素圧力5.0MPa、水素/オイル比200NL/L、LHSV 2.0h−1、150℃の条件下で2時間通油した。その後、温度以外の条件を一定として硫化剤と水素の供給を継続し、20℃/hで230℃まで昇温して、4時間、230℃で一定とした。その後さらに、17.5℃/hで300℃まで昇温して、7時間、300℃で一定とした。この後、表1に性状を示す軽油留分Aを原料油として、水素圧力6.5MPa、水素/オイル比350NL/L、LHSV 1.0h−1、反応温度352℃の条件で水素化処理反応を行った。得られた生成油(軽油A)の性状分析結果を表2に示す。
[Hydrogenation treatment]
100 mL of the hydrotreating catalyst A was charged into a fixed bed flow reactor, and the temperature was raised from room temperature to 150 ° C. in 2 hours while flowing hydrogen at a hydrogen pressure of 5.0 MPa and 40 L / h. Thereafter, the hydrotreating catalyst A was subjected to sulfurization treatment by the following procedure. Sulfurizing agent (commercial light oil mixed with 1% carbon disulfide) was passed for 2 hours under conditions of hydrogen pressure 5.0 MPa, hydrogen / oil ratio 200 NL / L, LHSV 2.0 h −1 , 150 ° C. did. Thereafter, the supply of the sulfiding agent and hydrogen was continued under constant conditions other than temperature, the temperature was raised to 230 ° C. at 20 ° C./h, and the temperature was kept constant at 230 ° C. for 4 hours. Thereafter, the temperature was further increased to 300 ° C. at 17.5 ° C./h, and the temperature was kept constant at 300 ° C. for 7 hours. Thereafter, a hydrotreating reaction was performed under the conditions of a gas oil fraction A having properties shown in Table 1 as a raw material oil, a hydrogen pressure of 6.5 MPa, a hydrogen / oil ratio of 350 NL / L, LHSV of 1.0 h −1 , and a reaction temperature of 352 ° C. Went. Table 2 shows the property analysis results of the resulting product oil (light oil A).

Figure 0004658491
Figure 0004658491

Figure 0004658491
Figure 0004658491

[実施例]
〔水素化処理触媒B〕
イオン交換水50gに、三酸化モリブデン(太陽鉱工株式会社製)31.8g、45.6%炭酸コバルト(関西触媒化学株式会社製)10.7g、45.0%炭酸ニッケル(日本化学産業株式会社製)3.6g、85%リン酸(関東化学株式会社製)4.9gを加え、80℃で撹拌しながら溶解した。さらに、60℃まで自然放冷したのち、クエン酸(関東化学株式会社製)24gを加え、撹拌しながら溶解し、40℃まで自然放冷したのち、35%過酸化水素(関東化学株式会社製)8gを加え、撹拌しながら室温まで放冷して担持液を調製した。参考例で用いた担体A120gにこの担持液をポアフィリング法で含浸させた。含浸物を130℃で一晩乾燥後、通気式ロータリーキルンで空気中550℃、30分間焼成して水素化処理触媒Bを調製した。水素化処理触媒Bの組成分析結果は、モリブデン12.6質量%、コバルト2.9質量%、ニッケル1.0質量%、リン0.8質量%であった。水素化処理触媒Bのメソポア構造を窒素吸着法で分析したところ、細孔容積は0.42mL/g、比表面積は201m/g、中央細孔径は7.3nmだった。
[Example]
[Hydroprocessing catalyst B]
50 g of ion-exchanged water, 31.8 g of molybdenum trioxide (manufactured by Taiyo Mining Co., Ltd.), 45.6% cobalt carbonate (manufactured by Kansai Catalysts Chemical Co., Ltd.) 10.7 g, 45.0% nickel carbonate (Nippon Chemical Industrial Co., Ltd.) 3.6 g and 85% phosphoric acid (Kanto Chemical Co., Ltd.) 4.9 g were added and dissolved at 80 ° C. with stirring. Furthermore, after naturally cooling to 60 ° C., 24 g of citric acid (manufactured by Kanto Chemical Co., Inc.) was added, dissolved while stirring, and naturally cooled to 40 ° C., and then 35% hydrogen peroxide (manufactured by Kanto Chemical Co., Ltd.). ) 8 g was added and allowed to cool to room temperature with stirring to prepare a support liquid. 120 g of the carrier A used in the reference example was impregnated with this supporting liquid by a pore filling method. The impregnated material was dried at 130 ° C. overnight and then calcined in the air at 550 ° C. for 30 minutes in a ventilated rotary kiln to prepare a hydrotreating catalyst B. The composition analysis result of the hydrotreating catalyst B was 12.6% by mass of molybdenum, 2.9% by mass of cobalt, 1.0% by mass of nickel, and 0.8% by mass of phosphorus. When the mesopore structure of the hydrotreating catalyst B was analyzed by a nitrogen adsorption method, the pore volume was 0.42 mL / g, the specific surface area was 201 m 2 / g, and the median pore diameter was 7.3 nm.

〔水素化処理触媒C〕
乾燥担体基準でシリカアルミナ80質量%およびアルミナ20質量%からなるような配合比で、シリカアルミナ粉体および擬ベーマイト粉体を混合し、硝酸水溶液を添加して混練し、呼び寸法1/20インチ三つ葉型のダイスを通して押出成形した後、乾燥し、空気気流下600℃で1時間焼成することで担体Bを調製した。シリカアルミナ粉体としては、シリカ/アルミナモル比4.4、平均粒経8.8μm、強熱減量15.3質量%の粉体を用いた。関東化学株式会社製アンモニア水(28%)9.0gを約20mLのイオン交換水に加えて攪拌した。ここに、エチレンジアミン四酢酸(EDTA、関東化学株式会社製鹿特級)14.0gを加えて攪拌し、EDTAを溶解させた。この溶液に硝酸ニッケル六水和物(関東化学株式会社製鹿特級)29.51gを加えて攪拌し、青緑色の均一な溶液を得た。この溶液にメタタングステン酸アンモニウム水溶液(日本無機化学工業株式会社製MW−2、W濃度693g/L)47.26mLを添加して、均一な担持液約130mLを得た。担体B120gにこの担持液をポアフィリング法で含浸させた。含浸物を130℃で24時間乾燥し、水素化処理触媒Cを得た。水素化処理触媒Cの組成分析結果は、タングステン17.4質量%、ニッケル3.1質量%、炭素3.1質量%、窒素2.8質量%であった。水素化処理触媒Cのメソポア構造を窒素吸着法で分析したところ、細孔容積は0.12mL/g、比表面積は63m/g、中央細孔径は6.3nmだった。
[Hydroprocessing catalyst C]
Silica alumina powder and pseudo boehmite powder are mixed at a blending ratio of 80% by mass of silica alumina and 20% by mass of alumina on a dry carrier basis, and a nitric acid aqueous solution is added and kneaded, and the nominal size is 1/20 inch. After extrusion through a three-leaf die, the carrier B was prepared by drying and firing at 600 ° C. for 1 hour in an air stream. As the silica-alumina powder, a powder having a silica / alumina molar ratio of 4.4, an average particle size of 8.8 μm, and a loss on ignition of 15.3% by mass was used. 9.0 g of ammonia water (28%) manufactured by Kanto Chemical Co., Inc. was added to about 20 mL of ion exchange water and stirred. To this, 14.0 g of ethylenediaminetetraacetic acid (EDTA, Kanto Chemical Co., Ltd. deer special grade) was added and stirred to dissolve EDTA. To this solution was added 29.51 g of nickel nitrate hexahydrate (Kanto Chemical Co., Ltd. deer special grade) and stirred to obtain a blue-green uniform solution. To this solution, 47.26 mL of ammonium metatungstate aqueous solution (MW-2, W concentration 693 g / L, manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) was added to obtain about 130 mL of a uniform support liquid. 120 g of carrier B was impregnated with this supporting liquid by a pore filling method. The impregnated product was dried at 130 ° C. for 24 hours to obtain a hydrotreating catalyst C. The composition analysis result of the hydrotreating catalyst C was 17.4% by mass of tungsten, 3.1% by mass of nickel, 3.1% by mass of carbon, and 2.8% by mass of nitrogen. When the mesopore structure of the hydrotreating catalyst C was analyzed by a nitrogen adsorption method, the pore volume was 0.12 mL / g, the specific surface area was 63 m 2 / g, and the median pore diameter was 6.3 nm.

〔気液分離機構を備えた反応装置を用いた水素化処理〕
用いた反応装置の概略フローを図1に示す。本反応装置は、反応器1および反応器2の2つの反応器を備え、その間に高圧分離槽3とストリッパー4を備え、反応器2は高圧分離槽5、ミスト分離槽6及びストリッパー7に連結されており、それらは配管16〜42で連結されている。反応器1および2に対する水素供給は、各々、配管14および配管29、30から行われる。原料油は、配管13,15を通じて反応器1に送られる。ストリッパー4には配管23から水素ガスを供給して、ストリッパー4内に滞留する液体と気液接触させることができる。高圧分離槽3およびストリッパー4からは、各々、配管21および配管24を通して水素化処理反応で生成した硫化水素やアンモニアを含むガス(オフガス)を反応系外に除去することができる。ストリッパー4から取り出された液体は、配管26〜28,31を通じて反応器2に供給される。反応器2で水素化処理された反応混合物は、高圧分離槽5およびミスト分離槽6で気液分離され、液体成分がストリッパー7に送られてストリッピングされた後に、生成油として取り出される。
[Hydrogenation using a reactor equipped with a gas-liquid separation mechanism]
A schematic flow of the reactor used is shown in FIG. This reactor comprises two reactors, reactor 1 and reactor 2, with a high pressure separation tank 3 and a stripper 4 between them, and the reactor 2 is connected to a high pressure separation tank 5, a mist separation tank 6 and a stripper 7. They are connected by piping 16-42. Hydrogen supply to the reactors 1 and 2 is performed from the pipe 14 and the pipes 29 and 30, respectively. The raw material oil is sent to the reactor 1 through the pipes 13 and 15. Hydrogen gas can be supplied to the stripper 4 from the pipe 23 and brought into gas-liquid contact with the liquid staying in the stripper 4. From the high-pressure separation tank 3 and the stripper 4, the gas (off-gas) containing hydrogen sulfide and ammonia generated by the hydrotreatment reaction can be removed from the reaction system through the pipe 21 and the pipe 24, respectively. The liquid taken out from the stripper 4 is supplied to the reactor 2 through the pipes 26 to 28 and 31. The reaction mixture hydrotreated in the reactor 2 is gas-liquid separated in the high-pressure separation tank 5 and the mist separation tank 6, and the liquid component is sent to the stripper 7 and stripped, and then taken out as product oil.

反応器1に水素化処理触媒Bを50mL、反応器2に水素化処理触媒Cを50mL充填し、開閉バルブ8および10を閉じ、開閉バルブ9を開いた状態で、水素圧力5.0MPa、40L/hで水素を流通させながら2時間で室温から120℃まで昇温した。その後、以下の手順で水素化処理触媒BおよびCの硫化処理を行った。硫化剤(市販軽油に1質量%の二硫化炭素を混合したもの)を水素圧力5.0MPa、水素/オイル比200NL/L、反応器1と反応器2の触媒充填量合計に対する総合液空間速度2.0h−1、120℃の条件下で2時間通油した。その後、温度以外の条件を一定として硫化剤と水素の供給を継続し、27.5℃/hで230℃まで昇温して、4時間、230℃で一定とした。その後さらに、42.5℃/hで300℃まで昇温して、7時間、300℃で一定とした。この後、表1に性状を示す軽油留分Bを原料油として水素化処理反応を行った。開閉バルブ8、10および11を開き、開閉バルブ9を閉じて、反応器1の水素圧力5.1MPa、反応器2の水素圧力5.0MPa、反応器1および反応器2各々に対する水素/原料油供給比200NL/L、反応器1と反応器2の触媒充填量合計に対する総合液空間速度
1.5h−1およびストリッパー4に対する配管23からの水素供給30L/hとし、反応器1、反応器2、高圧分離槽3およびストリッパー4の温度をいずれも345℃として反応を行った。得られた生成油(軽油B)の性状分析結果を表2に示す。また、開閉バルブ11を閉じ、開閉バルブ12を開いてサンプリングされた中間生成油を窒素ガスでストリッピング処理して中間生成油の硫黄分を分析したところ、121質量ppmだった。
Reactor 1 is filled with 50 mL of hydrotreating catalyst B, and reactor 2 is filled with 50 mL of hydrotreating catalyst C, and on-off valves 8 and 10 are closed and on-off valve 9 is opened, and hydrogen pressure is 5.0 MPa, 40 L. The temperature was raised from room temperature to 120 ° C. in 2 hours while flowing hydrogen at / h. Thereafter, the sulfiding treatment of the hydrotreating catalysts B and C was performed according to the following procedure. Sulfurizing agent (commercial light oil mixed with 1% carbon disulfide) hydrogen pressure 5.0MPa, hydrogen / oil ratio 200NL / L, total liquid space velocity with respect to total catalyst charge in reactor 1 and reactor 2 Oil was passed for 2 hours under the conditions of 2.0 h −1 and 120 ° C. Thereafter, the supply of the sulfiding agent and hydrogen was continued under the conditions other than the temperature, the temperature was raised to 230 ° C. at 27.5 ° C./h, and the temperature was kept constant at 230 ° C. for 4 hours. Thereafter, the temperature was further increased to 300 ° C. at 42.5 ° C./h, and the temperature was kept constant at 300 ° C. for 7 hours. Thereafter, a hydrotreating reaction was carried out using a light oil fraction B having properties shown in Table 1 as a feedstock. Open / close valves 8, 10 and 11 are opened, and open / close valve 9 is closed, hydrogen pressure of reactor 1 is 5.1 MPa, hydrogen pressure of reactor 2 is 5.0 MPa, hydrogen / feed oil for reactor 1 and reactor 2 respectively. Reactor 1, Reactor 2 with a feed ratio of 200 NL / L, a total liquid space velocity of 1.5 h −1 with respect to the total catalyst charge in reactor 1 and reactor 2 and a hydrogen supply of 30 L / h from pipe 23 to stripper 4 The reaction was carried out at a temperature of 345 ° C. in both the high-pressure separation tank 3 and the stripper 4. Table 2 shows the property analysis results of the resulting product oil (light oil B). Further, when the open / close valve 11 was closed and the open / close valve 12 was opened, the sampled intermediate product oil was stripped with nitrogen gas, and the sulfur content of the intermediate product oil was analyzed.

[比較例1]
〔水素化処理触媒D〕
乾燥担体基準で、モルデナイト7質量%およびアルミナ93質量%からなり、直径1.4mmのシリンダー形状の担体150gに、モリブデン酸アンモニウム46.5g、硝酸ニッケル六水和物41.8g、リン酸溶液19.6gを含む含浸液を用いてモリブデン、ニッケル、リンを含浸した。これを130℃で一晩乾燥した後、ロータリーキルンを用いて500℃で30分間焼成して、触媒中にモリブデンを12質量%、ニッケルを4質量%およびリンを2.5質量%含む水素化処理触媒Dを調製した。なお、モルデナイト原料としては、シリカ/アルミナモル比210、ゼオライト細孔長径0.70nmの粉体を用いた。
[Comparative Example 1]
[Hydroprocessing catalyst D]
On a dry carrier basis, composed of 7% by mass of mordenite and 93% by mass of alumina, 150 g of a cylindrical carrier having a diameter of 1.4 mm, 46.5 g of ammonium molybdate, 41.8 g of nickel nitrate hexahydrate, 19 of phosphoric acid solution 19 An impregnation solution containing 0.6 g was impregnated with molybdenum, nickel and phosphorus. This was dried overnight at 130 ° C., and then calcined at 500 ° C. for 30 minutes using a rotary kiln, and hydrotreated with 12% by mass of molybdenum, 4% by mass of nickel and 2.5% by mass of phosphorus in the catalyst. Catalyst D was prepared. As a mordenite raw material, a powder having a silica / alumina molar ratio of 210 and a zeolite pore major axis of 0.70 nm was used.

〔フィッシャー・トロプシュ合成油からの軽油製造〕
固定床流通式反応装置に水素化処理触媒Dを100mL充填し、水素圧力9MPa、40L/hで水素を流通させながら2時間で室温から120℃まで昇温した。その後、以下の手順で水素化処理触媒Dを硫化処理した。硫化剤(市販軽油に1質量%の二硫化炭素を混合したもの)を水素圧力5.0MPa、水素/オイル比200NL/L、LHSV 2.0h−1、120℃の条件下で2時間通油した。その後、温度以外の条件を一定として硫化剤と水素の供給を継続し、27.5℃/hで230℃まで昇温して、4時間、230℃で一定とした。その後さらに、42.5℃/hで300℃まで昇温して、7時間、300℃で一定とした。この後、後述のノルマルパラフィン原料を用い、水素圧力9MPa、水素/原料油供給比1500NL/L、LHSV=0.5h−1、反応温度370℃の反応条件で水素化分解および異性化反応を行い、得られた生成油から実施例で得られた軽油Bとほぼ同等の50容量%留出温度となるよう分留し、軽油Cを得た。ノルマルパラフィン原料としては、SMDS(Shell Middle Distillate Synthesis)製SX−60Mを用いた。これは、15℃換算での密度0.82g/mL、初留点343℃、10容量%留出温度401℃、90容量%留出温度524℃、終点581℃であり、フィッシャー・トロプシュ法により合成されたものである。
[Manufacture of light oil from Fischer-Tropsch synthetic oil]
The fixed bed flow reactor was charged with 100 mL of the hydrogenation catalyst D, and the temperature was raised from room temperature to 120 ° C. in 2 hours while flowing hydrogen at a hydrogen pressure of 9 MPa and 40 L / h. Thereafter, the hydrotreating catalyst D was subjected to sulfurization treatment by the following procedure. A sulfurizing agent (commercial light oil mixed with 1% carbon disulfide) was passed for 2 hours under conditions of hydrogen pressure 5.0 MPa, hydrogen / oil ratio 200 NL / L, LHSV 2.0 h −1 , 120 ° C. did. Thereafter, the supply of the sulfiding agent and hydrogen was continued under the conditions other than the temperature, the temperature was raised to 230 ° C. at 27.5 ° C./h, and the temperature was kept constant at 230 ° C. for 4 hours. Thereafter, the temperature was further increased to 300 ° C. at 42.5 ° C./h, and the temperature was kept constant at 300 ° C. for 7 hours. Then, hydrogenolysis and isomerization reaction are performed using normal paraffin raw materials described later under the reaction conditions of hydrogen pressure 9 MPa, hydrogen / raw oil supply ratio 1500 NL / L, LHSV = 0.5 h −1 , reaction temperature 370 ° C. Then, fractionation was carried out from the resulting product oil so as to obtain a 50 vol% distillation temperature almost equal to that of the light oil B obtained in the Example, whereby a light oil C was obtained. SX-60M manufactured by SMDS (Shell Middle Distillate Synthesis) was used as the normal paraffin raw material. This is a density of 0.82 g / mL in terms of 15 ° C., an initial distillation point of 343 ° C., a 10% by volume distillation temperature of 401 ° C., a 90% by volume distillation temperature of 524 ° C., and an end point of 581 ° C., according to the Fischer-Tropsch method. It is synthesized.

[比較例2]
現在市販されている軽油(軽油D)を入手した。その性状を表2に示す。
[Comparative Example 2]
The light oil (light oil D) currently on the market was obtained. The properties are shown in Table 2.

表2から、参考例の軽油Aおよび実施例の軽油Bは、硫黄分が1質量ppm以下と市販軽油の軽油Dより極めて低く、かつ軽油Dと同等の単位体積あたりの真発熱量を有している。また、硫黄分が1質量ppm以下であるフィッシャー・トロプシュ合成油から誘導された軽油Cと比べて、単位体積あたりの真発熱量について格段に優れていることがわかる。 From Table 2, the light oil A of the reference example and the light oil B of the example have a sulfur content of 1 mass ppm or less, which is extremely lower than the light oil D of the commercially available light oil, and has a true calorific value per unit volume equivalent to the light oil D. ing. Further, it can be seen that the true calorific value per unit volume is remarkably superior to the light oil C derived from the Fischer-Tropsch synthetic oil having a sulfur content of 1 mass ppm or less.

参考例、実施例および比較例での測定方法は、以下の方法を用いた。 The following methods were used as measurement methods in the reference examples, examples, and comparative examples.

〔細孔特性の測定方法〕
窒素ガス吸着法による細孔特性の測定には、Micromeritics社製ASAP2400型測定器を用いた。
[Measurement method of pore characteristics]
For measurement of pore characteristics by the nitrogen gas adsorption method, an ASAP2400 type measuring instrument manufactured by Micromeritics was used.

〔硫黄分の測定方法〕
軽油留分の硫黄分の測定は、理学電機工業株式会社製ZSX101e型蛍光X線分析装置を用いて行った。
[Method for measuring sulfur content]
The sulfur content of the light oil fraction was measured using a ZSX101e type fluorescent X-ray analyzer manufactured by Rigaku Corporation.

本発明の製造方法によって製造される環境対応軽油は、硫黄分が5質量ppm以下、さらには1質量ppm以下と極めて低く、かつ従来市販されている軽油と同等の単位体積あたりの真発熱量を確保しているので、ディーゼル自動車の環境汚染物質の排出量の削減と二酸化炭素排出量の削減を両方同時に実現することができ、それによって地球環境の保護に貢献することができる。 The environmentally-friendly light oil produced by the production method of the present invention has a sulfur content of 5 ppm by mass or less, further 1 ppm by mass or less, and a true calorific value per unit volume equivalent to that of conventionally marketed diesel oil. As a result, it is possible to simultaneously reduce both the emission of environmental pollutants and the reduction of carbon dioxide emissions from diesel vehicles, thereby contributing to the protection of the global environment.

実施例で用いた、反応器間に気液分離装置を備えた反応装置の概略フローを示す説明図である。It is explanatory drawing which shows the schematic flow of the reaction apparatus provided with the gas-liquid separation apparatus between the reactors used in the Example .

1および2: 反応器、3: 高圧分離槽、4: ストリッパー、5: 高圧分離槽、6: ミスト分離槽、7: ストリッパー、8〜12: 開閉バルブ、 13〜42: 配管 1 and 2: Reactor, 3: High pressure separation tank, 4: Stripper, 5: High pressure separation tank, 6: Mist separation tank, 7: Stripper, 8-12: Open / close valve, 13-42: Piping

Claims (4)

密度が0.795g/cm 以上、硫黄分が5質量ppm以下、1環芳香族分が5〜18容量%、多環芳香族分が2容量%以下であり、かつ単位体積あたりの真発熱量が34500J/cm 以上である環境対応軽油を製造する方法であって、
硫黄分が0.5質量%以上、密度が0.80〜0.90g/cm、90容量%留出温度が370℃以下である炭化水素油を原料油とし、水素圧力3〜10MPa、反応温度280〜450℃の反応条件下で水素化処理触媒と接触させて反応混合物を得る第1の工程と;
第1の工程で得られた反応混合物を気液分離して粗精製油を得る第2の工程と;
第2の工程で得られた粗精製油を、水素圧力3〜10MPa、反応温度280〜450℃の反応条件下で水素化処理触媒と接触させる第3の工程と;を含み、
第1の工程の全圧が、第3の工程の全圧よりも高い環境対応軽油の製造方法。
The density is 0.795 g / cm 3 or more, the sulfur content is 5 mass ppm or less, the monocyclic aromatic content is 5 to 18% by volume, the polycyclic aromatic content is 2% by volume or less, and the true heat generation per unit volume. A method for producing an environmentally friendly light oil having an amount of 34500 J / cm 3 or more,
A hydrocarbon oil having a sulfur content of 0.5% by mass or more, a density of 0.80 to 0.90 g / cm 3 , and a 90% by volume distillation temperature of 370 ° C. or less is used as a raw material oil, a hydrogen pressure of 3 to 10 MPa, a reaction A first step of obtaining a reaction mixture by contacting with a hydrotreating catalyst under reaction conditions of a temperature of 280 to 450 ° C;
A second step of gas-liquid separation of the reaction mixture obtained in the first step to obtain a crudely refined oil;
A third step of contacting the crude refined oil obtained in the second step with a hydrotreating catalyst under reaction conditions of a hydrogen pressure of 3 to 10 MPa and a reaction temperature of 280 to 450 ° C .;
A method for producing environmentally friendly diesel oil, wherein the total pressure in the first step is higher than the total pressure in the third step.
第1の工程と第3の工程には、異なる水素化処理触媒が用いられ、水素化処理触媒中に含まれるコバルトとニッケルの含有量合計に占めるニッケルの比率がより小さいものを第1の工程に、コバルトとニッケルの含有量合計に占めるニッケルの比率がより大きいものを第2の工程に用いる請求項1に記載の環境対応軽油の製造方法。  In the first step and the third step, different hydrotreating catalysts are used, and the first step is performed with a smaller proportion of nickel in the total content of cobalt and nickel contained in the hydrotreating catalyst. Furthermore, the manufacturing method of the environment-friendly light oil of Claim 1 which uses what has a larger ratio of nickel to the total content of cobalt and nickel for a 2nd process. 前記第3の工程の水素化処理触媒に含まれるモリブデンとタングステンの合計の含有量が、5〜50質量%である請求項1または2に記載の環境対応軽油の製造方法。
The method for producing environmentally friendly diesel oil according to claim 1 or 2, wherein a total content of molybdenum and tungsten contained in the hydrotreating catalyst in the third step is 5 to 50% by mass.
前記第3の工程の水素化処理触媒が、キレート性の有機化合物を含有する請求項1から3のいずれか一項に記載の環境対応軽油の製造方法。  The method for producing an environmentally friendly light oil according to any one of claims 1 to 3, wherein the hydrotreating catalyst in the third step contains a chelating organic compound.
JP2004051916A 2004-02-26 2004-02-26 Production method of environment-friendly diesel oil Expired - Lifetime JP4658491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051916A JP4658491B2 (en) 2004-02-26 2004-02-26 Production method of environment-friendly diesel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051916A JP4658491B2 (en) 2004-02-26 2004-02-26 Production method of environment-friendly diesel oil

Publications (2)

Publication Number Publication Date
JP2005239890A JP2005239890A (en) 2005-09-08
JP4658491B2 true JP4658491B2 (en) 2011-03-23

Family

ID=35021956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051916A Expired - Lifetime JP4658491B2 (en) 2004-02-26 2004-02-26 Production method of environment-friendly diesel oil

Country Status (1)

Country Link
JP (1) JP4658491B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009159A (en) * 2005-07-04 2007-01-18 Nippon Oil Corp Method for producing hydrogenation-purified gas oil, hydrogenation-purified gas oil and gas oil composition
JP5072430B2 (en) * 2006-05-17 2012-11-14 Jx日鉱日石エネルギー株式会社 Method for producing light oil composition
JP4881662B2 (en) * 2006-06-20 2012-02-22 コスモ石油株式会社 LIGHT OIL COMPOSITION AND METHOD FOR PRODUCING LIGHT OIL COMPOSITION
JP2008031218A (en) * 2006-07-26 2008-02-14 Nippon Oil Corp Method for hydrodesulfurization
JP5154817B2 (en) * 2007-03-30 2013-02-27 Jx日鉱日石エネルギー株式会社 Gas oil base and gas oil composition
JP5518460B2 (en) * 2009-12-25 2014-06-11 Jx日鉱日石エネルギー株式会社 Light oil composition
JP6770953B2 (en) * 2015-05-29 2020-10-21 Eneos株式会社 Method for producing hydrotreated oil and method for producing catalytically cracked oil
JP7101021B2 (en) * 2018-03-30 2022-07-14 コスモ石油株式会社 Manufacturing method of high calorific value light oil base material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201479A (en) * 2000-12-20 2002-07-19 Inst Fr Petrole Method for treating hydrocarbon feedstock comprising fixed bed hydrotreating step under countercurrent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201479A (en) * 2000-12-20 2002-07-19 Inst Fr Petrole Method for treating hydrocarbon feedstock comprising fixed bed hydrotreating step under countercurrent

Also Published As

Publication number Publication date
JP2005239890A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
KR101355722B1 (en) Method for Producing Super-Low Sulfur Gas Oil Base Material or Super-Low Sulfur Gas Oil Composition, and Super-Low Sulfur Gas Oil Compositon
JP3871449B2 (en) Hydrodesulfurization method of light oil
WO2006038555A1 (en) Process for producing hydrorefined gas oil, hydrorefind gas oil, and gas oil composition
RU2652991C1 (en) Method of hydroameliorative triglycerides of fatty acids in the mixture with oil fractions
SG178490A1 (en) Aviation fuel oil composition
JP2009540021A (en) Improved hydrocracker aftertreatment catalyst for the production of low sulfur fuel
CN103773488A (en) Hydrogenation method for reducing condensation point of diesel
JP4658491B2 (en) Production method of environment-friendly diesel oil
Olaremu et al. Sustainable development and enhancement of cracking processes using metallic composites
TW201107035A (en) A hydrotreating catalyst system suitable for use in hydrotreating hydrocarbonaceous feedstreams
KR101514954B1 (en) Process for producing gasoline base and gasoline
JP5537780B2 (en) Light oil composition
JP4680520B2 (en) Low sulfur gas oil production method and environmentally friendly gas oil
JP5364438B2 (en) Heavy oil composition
JP4444690B2 (en) Hydrotreating catalyst precursor, method for producing the same, and method for producing refined hydrocarbon oil
CN103059976A (en) Method for producing high-quality low-freezing diesel oil
JP4854075B2 (en) Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition comprising the ultra-low sulfur gas oil base
JP4854076B2 (en) Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition
JP4632738B2 (en) Unleaded gasoline composition and method for producing the same
JP4803785B2 (en) Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same
JP2006035052A (en) Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method
JP4850412B2 (en) Method for producing environmentally friendly gasoline composition
RU2803873C1 (en) Method and system for hydroprocessing of de-oiled asphalt
CN103059942A (en) Method for producing low freezing point diesel oil with excellent quality by coked gasoline and diesel oil
JP4249632B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4658491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250