JP7101021B2 - Manufacturing method of high calorific value light oil base material - Google Patents

Manufacturing method of high calorific value light oil base material Download PDF

Info

Publication number
JP7101021B2
JP7101021B2 JP2018068901A JP2018068901A JP7101021B2 JP 7101021 B2 JP7101021 B2 JP 7101021B2 JP 2018068901 A JP2018068901 A JP 2018068901A JP 2018068901 A JP2018068901 A JP 2018068901A JP 7101021 B2 JP7101021 B2 JP 7101021B2
Authority
JP
Japan
Prior art keywords
oil
base material
content
raw material
light oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018068901A
Other languages
Japanese (ja)
Other versions
JP2019178252A (en
Inventor
敏之 廣瀬
弘之 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2018068901A priority Critical patent/JP7101021B2/en
Publication of JP2019178252A publication Critical patent/JP2019178252A/en
Application granted granted Critical
Publication of JP7101021B2 publication Critical patent/JP7101021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高い発熱量を有する軽油基材の製造方法に関する。 The present invention relates to a method for producing a light oil base material having a high calorific value.

従来、軽油基材としては、原油の常圧蒸留装置から得られる直留軽油に水素化精製処理や水素化脱硫処理を施したものが知られている。従来の軽油組成物は上記軽油基材及び灯油基材を1種または2種以上配合することにより製造されている。 Conventionally, as a light oil base material, a straight-run gas oil obtained from an atmospheric distillation apparatus for crude oil, which has been subjected to hydrorefining treatment or hydrodesulfurization treatment, is known. The conventional gas oil composition is produced by blending one or more of the above gas oil base material and kerosene base material.

一方、最近の石油製品の需要は軽質化傾向にあり、重油の需要が低迷し、重油の基材として用いられる芳香族炭化水素の含有量が多い流動接触分解装置(FCC装置)から得られる接触分解軽油(LCO;Light Cycle Oil)や、熱分解装置から得られる熱分解軽油等の分解軽油が余剰となりつつある。そこで、これら分解軽油を、軽油を製造する際の原料油に混合して処理することが考えられる。 On the other hand, the recent demand for petroleum products has been lightening, the demand for heavy oil has been sluggish, and the contact obtained from a fluid catalytic cracking device (FCC device) having a high content of aromatic hydrocarbons used as a base material for heavy oil. Decomposed gas oil such as cracked gas oil (LCO; Light Cycle Oil) and heat cracked gas oil obtained from a thermal cracking apparatus is becoming a surplus. Therefore, it is conceivable to mix these decomposed gas oils with the raw material oil for producing the gas oil and treat them.

さらに芳香族炭化水素の含有量が多い接触分解循環油や熱分解軽油を水素化処理するとナフテン環を有する化合物が生成するため、前記化合物を有する留分の密度が高まり、それに伴う発熱量の向上が期待される。 Further, when a catalytically decomposed circulating oil or a thermally decomposed gas oil having a high content of aromatic hydrocarbons is hydrogenated, a compound having a naphthen ring is produced, so that the density of the distillate having the compound is increased and the calorific value is improved accordingly. There is expected.

特許文献1には、直留軽油を70~90容量%、接触分解循環油を10~30容量%含む原料油を水素化処理することによって、ディーゼル自動車等のエンジンの燃料噴射ポンプの耐摩耗性に優れ、かつ燃料消費量が少ないディーゼル軽油組成物が得られることが開示されている。 Patent Document 1 describes the wear resistance of fuel injection pumps for engines of diesel vehicles and the like by hydrotreating raw material oil containing 70 to 90% by volume of straight-run gas oil and 10 to 30% by volume of catalytically decomposed circulating oil. It is disclosed that a diesel gas oil composition having excellent fuel consumption and low fuel consumption can be obtained.

一方、オレフィン及び芳香族炭化水素の含有量が多い接触分解軽油、熱分解軽油を水素化処理すると、多量のコークが発生し、触媒の寿命が短くなるという問題があり、特許文献1に記載の原料油においても原料油中の接触分解循環油の含有量を低くする必要がある。
従って、特許文献1に記載の軽油組成物においては、ナフテン環を有する化合物の含有量が低いため、軽油組成物の密度が低く、それに伴い発熱量も低いという問題がある。
On the other hand, when catalytically cracked gas oil and thermally cracked gas oil having a high content of olefins and aromatic hydrocarbons are hydrogenated, there is a problem that a large amount of cork is generated and the life of the catalyst is shortened, which is described in Patent Document 1. It is also necessary to reduce the content of catalytically cracked circulating oil in the raw material oil in the raw material oil.
Therefore, in the gas oil composition described in Patent Document 1, since the content of the compound having a naphthenic ring is low, there is a problem that the density of the gas oil composition is low and the calorific value is also low accordingly.

特開平8-311462号公報Japanese Unexamined Patent Publication No. 8-31462

本発明は、密度が高く、高い発熱量を有する軽油基材の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a light oil base material having a high density and a high calorific value.

本発明者らは、上記目的を達成するために鋭意検討した結果、90容量%留出温度が320~360℃であり、芳香族炭化水素を37~65質量%含む原料油を、水素分圧10~18MPaで水素化処理を行うことによって、硫黄分の含有量が15質量ppm以下であり、10容量%留出温度が240~300℃であり、90容量%留出温度が310~360℃であり、発熱量が36,000~37,300J/mLである軽油基材を得られることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventors have divided a raw material oil having a 90% by volume distillation temperature of 320 to 360 ° C. and containing 37 to 65% by mass of aromatic hydrocarbons into hydrogen. By performing the hydrogenation treatment at 10 to 18 MPa, the sulfur content is 15 mass ppm or less, the 10% by volume distillation temperature is 240 to 300 ° C., and the 90% by volume distillation temperature is 310 to 360 ° C. The present invention was completed by finding that a light oil base material having a calorific value of 36,000 to 37,300 J / mL can be obtained.

すなわち、本発明は軽油基材の製造方法に関する。
[1] 90容量%留出温度が320~360℃であり、芳香族炭化水素を37~65質量%含む原料油を、水素分圧10~18MPaで水素化処理を行う工程を含むことを特徴とする、硫黄分の含有量が15質量ppm以下であり、10容量%留出温度が240~300℃であり、90容量%留出温度が310~360℃であり、発熱量が36,000~37,300J/mLである軽油基材の製造方法。
[2] 前記原料油は、熱分解軽質軽油(LCGO)、接触分解軽油(LCO)、及び熱分解重質軽油を水素化処理して得られた軽質軽油(DS-LHCGO)からなる群から選ばれる少なくとも1種の基材を含む[1]に記載の軽油基材の製造方法。
That is, the present invention relates to a method for producing a light oil base material.
[1] It is characterized by comprising a step of hydrotreating a raw material oil having a 90% by volume distillation temperature of 320 to 360 ° C. and containing 37 to 65% by mass of aromatic hydrocarbons at a hydrogen partial pressure of 10 to 18 MPa. The sulfur content is 15 mass ppm or less, the 10% by volume distillation temperature is 240 to 300 ° C., the 90% by volume distillation temperature is 310 to 360 ° C., and the calorific value is 36,000. A method for producing a light oil base material having a temperature of ~ 37,300 J / mL.
[2] The raw material oil is selected from the group consisting of thermally cracked gas oil (LCGO), catalytically cracked gas oil (LCO), and light oil obtained by hydrogenating thermally cracked heavy oil (DS-LHCGO). The method for producing a diesel fuel substrate according to [1], which comprises at least one substrate.

本発明の軽油基材の製造方法によれば、高発熱量が得られる軽油基材を得ることができる。 According to the method for producing a light oil base material of the present invention, a light oil base material having a high calorific value can be obtained.

本発明の一実施形態に係る軽油基材の製造フローの模式図である。It is a schematic diagram of the manufacturing flow of the light oil base material which concerns on one Embodiment of this invention.

以下、本発明の実施の形態について詳細に説明するが、以下の記載は本発明の実施態様の一例であり、本発明はこれらの内容に限定されず、その要旨の範囲内で変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail, but the following description is an example of embodiments of the present invention, and the present invention is not limited to these contents, and is modified and implemented within the scope of the gist thereof. can do.

本発明に係る軽油基材の製造方法は、90容量%留出温度が320~360℃であり、芳香族炭化水素を37~65質量%含む原料油を、水素分圧10~18MPaで水素化処理を行う工程を含み、前記軽油基材は、硫黄分の含有量が15質量ppm以下であり、10容量%留出温度が240~300℃であり、90容量%留出温度が310~360℃であり、発熱量が36,000~37,300J/mLである。 In the method for producing a gas oil base material according to the present invention, a raw material oil having a 90% by volume distillation temperature of 320 to 360 ° C. and containing 37 to 65% by mass of aromatic hydrocarbons is hydrogenated at a hydrogen partial pressure of 10 to 18 MPa. Including the step of performing the treatment, the gas oil base material has a sulfur content of 15% by mass or less, a 10% by volume distillation temperature of 240 to 300 ° C., and a 90% by volume distillation temperature of 310 to 360. The temperature is 36,000 to 37,300 J / mL and the calorific value is 36,000 to 37,300 J / mL.

<原料油>
本実施形態の軽油基材の製造方法で用いる原料油は、90容量%留出温度が320~360℃であり、芳香族炭化水素を37~65質量%含む原料油である。
<Raw oil>
The raw material oil used in the method for producing a light oil base material of the present embodiment is a raw material oil having a 90% by volume distillation temperature of 320 to 360 ° C. and containing 37 to 65% by mass of aromatic hydrocarbons.

原料油の90容量%留出温度(以下、単にT90ともいう)は、320~360℃であり、330~360℃が好ましく、340~360℃がより好ましい。T90が前記範囲の下限値以上であると、原料油中の芳香族炭化水素の含有量が高くなり、水素化処理によりナフテン環を有する化合物が多く生成し、得られる軽油基材の発熱量が向上する。T90が前記範囲の上限値以下であると、原料油中の芳香族炭化水素の含有量が高くなりすぎず、水素化処理反応におけるコークの発生が抑制され、水素化処理触媒の寿命が長くなる。
なお、90容量%留出温度、後述する50容量%留出温度、及び10容量%留出温度とは、それぞれJIS K2254「石油製品-蒸留試験方法-常圧法蒸留試験方法」に準拠して測定される値を意味する。
The 90% by volume distillation temperature of the feedstock oil (hereinafter, also simply referred to as T90) is 320 to 360 ° C., preferably 330 to 360 ° C., more preferably 340 to 360 ° C. When T90 is at least the lower limit of the above range, the content of aromatic hydrocarbons in the raw material oil becomes high, and the hydrogenation treatment produces a large amount of compounds having a naphthen ring, and the calorific value of the obtained light oil base material is high. improves. When T90 is not more than the upper limit of the above range, the content of aromatic hydrocarbons in the raw material oil does not become too high, the generation of cork in the hydrogenation treatment reaction is suppressed, and the life of the hydrogenation treatment catalyst becomes long. ..
The 90% by volume distillation temperature, the 50% by volume distillation temperature described later, and the 10% by volume distillation temperature are measured in accordance with JIS K2254 "Petroleum products-Distillation test method-Atmospheric distillation test method", respectively. Means the value to be.

原料油中の芳香族炭化水素の含有量は、37~65質量%であり、40~60質量%が好ましく、45~60質量%がより好ましく、50~60質量%が特に好ましい。芳香族炭化水素の含有量が前記範囲の下限値以上であると、水素化処理によりナフテン環を有する化合物が多く生成し、得られる軽油基材の発熱量が向上する。芳香族炭化水素の含有量が前記範囲の上限値以下であると、水素化処理反応におけるコークの発生が抑制され、水素化処理触媒の寿命が長くなる。
なお、芳香族炭化水素の含有量とは、IP 548「Determination of aromatic hydrocarbon types in middle distillates - High performance liquid chromatography method with refractive index detection」に準拠して測定される値を意味する。
The content of aromatic hydrocarbons in the feedstock oil is 37 to 65% by mass, preferably 40 to 60% by mass, more preferably 45 to 60% by mass, and particularly preferably 50 to 60% by mass. When the content of the aromatic hydrocarbon is at least the lower limit of the above range, a large amount of the compound having a naphthenic ring is produced by the hydrogenation treatment, and the calorific value of the obtained light oil base material is improved. When the content of the aromatic hydrocarbon is not more than the upper limit of the above range, the generation of cork in the hydrogenation treatment reaction is suppressed, and the life of the hydrogenation treatment catalyst is extended.
The content of aromatic hydrocarbons means a value measured in accordance with IP 548 "Determination of aromatic hydrocarbon types in middle distillates --High performance liquid chromatography method with refractive index detection".

原料油中の硫黄分の含有量は3質量ppm以下が好ましく、2質量ppm以下がより好ましい。硫黄分の含有量が前記上限値以下であると、水素化処理の運転条件を厳しくする必要がないため、触媒の寿命が長くなり、かつ経済的にも有利である。
硫黄分の含有量は低ければ低いほど好ましいため、硫黄分の含有量の下限値は特に限定されないが、通常0.5質量ppm以上である。
なお、硫黄分の含有量とは、JIS K 2541「原油及び石油製品-硫黄分試験方法」に準拠して測定される値を意味する。
The sulfur content in the raw material oil is preferably 3% by mass or less, more preferably 2% by mass or less. When the sulfur content is not more than the upper limit value, it is not necessary to make the operating conditions of the hydrogenation treatment strict, so that the life of the catalyst is extended and it is economically advantageous.
The lower the sulfur content is, the more preferable it is. Therefore, the lower limit of the sulfur content is not particularly limited, but is usually 0.5 mass ppm or more.
The sulfur content means a value measured in accordance with JIS K 2541 "Crude oil and petroleum products-Sulfur content test method".

原料油中の窒素分の含有量は1,000質量ppm以下が好ましく、800質量ppm以下がより好ましい。窒素分の含有量が前記上限値以下であると、水素化処理の運転条件を厳しくする必要がないため、触媒の寿命が長くなり、かつ経済的にも有利である。また、製造した軽油基材の色相にも悪影響を及ぼさない。
窒素分の含有量は低ければ低いほど好ましいため、窒素分の含有量の下限値は特に限定されないが、通常100質量ppm以上である。
なお、窒素分の含有量とは、JIS K 2609「原油及び石油製品-窒素分試験方法」に準拠して測定される値を意味する。
The nitrogen content in the feedstock is preferably 1,000 mass ppm or less, more preferably 800 mass ppm or less. When the nitrogen content is not more than the upper limit, it is not necessary to tighten the operating conditions of the hydrogenation treatment, so that the life of the catalyst is extended and it is economically advantageous. In addition, it does not adversely affect the hue of the manufactured gas oil base material.
Since the lower the nitrogen content is, the more preferable it is, the lower limit of the nitrogen content is not particularly limited, but it is usually 100 mass ppm or more.
The nitrogen content means a value measured in accordance with JIS K 2609 "Crude Oil and Petroleum Products-Nitrogen Content Test Method".

原料油の15℃における密度は、0.86~0.91g/mLが好ましく、0.865~0.905g/mLがより好ましい。15℃における密度が前記範囲内であると、脱硫反応時に使用する原料油の送液ポンプのキャビテーションが防止され、かつ経済的にも有利である。
なお、15℃における密度とは、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」に準拠して測定される値を意味する。
The density of the feedstock oil at 15 ° C. is preferably 0.86 to 0.91 g / mL, more preferably 0.865 to 0.905 g / mL. When the density at 15 ° C. is within the above range, cavitation of the feedstock pump for the feedstock oil used during the desulfurization reaction is prevented, and it is economically advantageous.
The density at 15 ° C. means a value measured in accordance with JIS K 2249 "Density test method for crude oil and petroleum products and density / mass / capacity conversion table".

本実施形態の原料油は、熱分解軽質軽油(LCGO)、接触分解軽油(LCO)、及び熱分解重質軽油を水素化処理して得られた軽質軽油(DS-LHCGO)からなる群から選ばれる少なくとも1種の基材を含むことが好ましい。
以下、各基材について図1を参照して説明を行う。
The raw material oil of the present embodiment is selected from the group consisting of pyrolyzed gas oil (LCGO), catalytically cracked gas oil (LCO), and light oil obtained by hydrogenating the pyrolyzed gas oil (DS-LHCGO). It is preferable to contain at least one kind of substrate.
Hereinafter, each base material will be described with reference to FIG.

(熱分解軽質軽油)
本実施形態の原料油に含まれる基材としては、熱分解軽質軽油(以下、「LCGO」ともいう)が例として挙げられる。LCGOとは、図1に示すように減圧蒸留残渣を熱分解して得られる軽油のうちの軽質留分であり、10容量%留出温度が180~260℃、90容量%留出温度が310~380℃である留分である。
LCGOは、芳香族含有量が多い留分であるため、得られる軽油基材の総発熱量の向上に寄与する。
原料油の総容積に対するLCGOの含有量は、10~90容量%が好ましく、20~80容量%がより好ましく、30~70容量%がさらに好ましい。
LCGOの含有量が前記範囲の下限値以上であると、原料油中の芳香族炭化水素の含有量が高くなり、水素化処理によりナフテン環を有する化合物が多く生成し、得られる軽油基材の発熱量が向上する。LCGOの含有量が前記範囲の上限値以下であると、原料油中の芳香族炭化水素の含有量が高くなりすぎず、水素化処理反応におけるコークの発生が抑制され、水素化処理触媒の寿命が長くなる。
(Pyrolysis light oil)
Examples of the base material contained in the raw material oil of the present embodiment include pyrolyzed light oil (hereinafter, also referred to as “LCGO”). As shown in FIG. 1, LCGO is a light fraction of light oil obtained by thermally decomposing a vacuum distillation residue, and has a 10% by volume distillation temperature of 180 to 260 ° C. and a 90% by volume distillation temperature of 310. It is a distillate having a temperature of about 380 ° C.
Since LCGO is a fraction having a high aromatic content, it contributes to the improvement of the total calorific value of the obtained gas oil base material.
The content of LCGO with respect to the total volume of the feedstock is preferably 10 to 90% by volume, more preferably 20 to 80% by volume, still more preferably 30 to 70% by volume.
When the content of LCGO is not more than the lower limit of the above range, the content of aromatic hydrocarbons in the raw material oil becomes high, and a large amount of compounds having a naphthen ring are produced by hydrogenation treatment, and the obtained light oil base material The amount of heat generated is improved. When the content of LCGO is not more than the upper limit of the above range, the content of aromatic hydrocarbons in the raw material oil does not become too high, the generation of cork in the hydrogenation treatment reaction is suppressed, and the life of the hydrogenation treatment catalyst is suppressed. Becomes longer.

(接触分解軽油)
本実施形態の原料油に含まれる基材としては、接触分解軽油(以下、「LCO」ともいう)が例として挙げられる。LCOとは、図1に示すように流動接触分解装置から留出される留分であり、例えば、10容量%留出温度が185~250℃、90容量%留出温度が270~370℃である留分である。
LCOは、芳香族含有量が多い留分であるため、得られる軽油基材の総発熱量の向上に寄与する。
原料油の総容積に対するLCOの含有量は、10~65容量%が好ましく、20~65容量%がより好ましく、22~63容量%がさらに好ましい。
LCOの含有量が前記範囲の下限値以上であると、原料油中の芳香族炭化水素の含有量が高くなり、水素化処理によりナフテン環を有する化合物が多く生成し、得られる軽油基材の発熱量が向上する。LCOの含有量が前記範囲の上限値以下であると、原料油中の芳香族炭化水素の含有量が高くなりすぎず、水素化処理反応におけるコークの発生が抑制され、水素化処理触媒の寿命が長くなる。
(Cracking light oil)
Examples of the base material contained in the raw material oil of the present embodiment include catalytically cracked gas oil (hereinafter, also referred to as “LCO”). As shown in FIG. 1, the LCO is a fraction distilled from the fluidized cracking apparatus, and for example, the 10% by volume distillation temperature is 185 to 250 ° C. and the 90% by volume distillation temperature is 270 to 370 ° C. There is a distillate.
Since LCO is a fraction having a high aromatic content, it contributes to the improvement of the total calorific value of the obtained gas oil base material.
The content of LCO with respect to the total volume of the feedstock is preferably 10 to 65% by volume, more preferably 20 to 65% by volume, still more preferably 22 to 63% by volume.
When the LCO content is at least the lower limit of the above range, the content of aromatic hydrocarbons in the raw material oil becomes high, and the hydrogenation treatment produces a large amount of compounds having a naphthen ring, so that the obtained gas oil base material can be used. The amount of heat generated is improved. When the LCO content is not more than the upper limit of the above range, the content of aromatic hydrocarbons in the raw material oil does not become too high, the generation of cork in the hydrogenation treatment reaction is suppressed, and the life of the hydrogenation treatment catalyst is suppressed. Becomes longer.

(熱分解重質軽油を水素化処理して得られた軽質軽油)
本実施形態の原料油に含まれる基材としては、熱分解重質軽油(HCGO)を水素化処理して得られた軽質軽油(以下、「DS-LHCGO」ともいう)が例として挙げられる。DS-LHCGOとは、図1に示すように減圧蒸留残渣を熱分解し得られる軽油のうちLCGOよりも重質留分であるHCGOを水素化処理して得られた軽質軽油である。
DS-LHCGOは、芳香族含有量が多い留分であるため、得られる軽油基材の総発熱量の向上に寄与する。
DS-LHCGOは、10容量%留出温度が200~260℃である。また、DS-LHCGOは、90容量%留出温度が300~350℃である。
原料油の総容積に対するDS-LHCGOの含有量は、3~10容量%が好ましく、4~10容量%がより好ましく、5~10容量%がさらに好ましい。
DS-LHCGOの含有量が前記範囲の下限値以上であると、原料油中の芳香族炭化水素の含有量が高くなり、水素化処理によりナフテン環を有する化合物が多く生成し、得られる軽油基材の発熱量が向上する。DS-LHCGOの含有量が前記範囲の上限値以下であると、原料油中の芳香族炭化水素の含有量が高くなりすぎず、水素化処理反応におけるコークの発生が抑制され、水素化処理触媒の寿命が長くなる。
(Light gas oil obtained by hydrogenating pyrolyzed heavy light oil)
Examples of the base material contained in the raw material oil of the present embodiment include light gas oil (hereinafter, also referred to as “DS-LHCGO”) obtained by hydrogenating a thermally decomposed heavy light oil (HCGO). As shown in FIG. 1, DS-LHCGO is a gas oil obtained by hydrogenating HCGO, which is a heavier fraction than LCGO, among the gas oils obtained by thermally decomposing a vacuum distillation residue.
Since DS-LHCGO is a fraction having a high aromatic content, it contributes to the improvement of the total calorific value of the obtained gas oil base material.
DS-LHCGO has a 10% by volume distillation temperature of 200 to 260 ° C. Further, DS-LHCGO has a 90% by volume distillation temperature of 300 to 350 ° C.
The content of DS-LHCGO with respect to the total volume of the feedstock is preferably 3 to 10% by volume, more preferably 4 to 10% by volume, and even more preferably 5 to 10% by volume.
When the content of DS-LHCGO is at least the lower limit of the above range, the content of aromatic hydrocarbons in the raw material oil becomes high, and a large amount of compounds having a naphthenic ring are produced by hydrogenation treatment, and the obtained gas oil group is obtained. The calorific value of the material is improved. When the content of DS-LHCGO is not more than the upper limit of the above range, the content of aromatic hydrocarbons in the raw material oil does not become too high, the generation of cork in the hydrogenation treatment reaction is suppressed, and the hydrogenation treatment catalyst is used. Life will be longer.

上述の本実施形態の原料油に含まれる基材の中でも芳香族含有量が多い留分であるLCGO、及びLCOを含有することが好ましい。
原料油の総容積に対するLCGOとLOの合計含有量は、30~100容量%が好ましく、40~98容量%がより好ましく、50~95容量%がさらに好ましく、60~95容量%が特に好ましい。
LCGOとLCOの合計含有量が前記範囲の下限値以上であると、原料油中の芳香族炭化水素の含有量が高くなり、水素化処理によりナフテン環を有する化合物が多く生成し、得られる軽油基材の発熱量が向上する。LCGOとLCOの含有量が前記範囲の上限値以下であると、原料油中の芳香族炭化水素の含有量が高くなりすぎず、水素化処理反応におけるコークの発生が抑制され、水素化処理触媒の寿命が長くなる。
本発明の一つの側面としては、原料油の総容積に対して、LCGOの含有量が30~45容量%で、かつLCOの含有量が45~65容量%が好ましい。
LCGO及びLCOの含有量がそれぞれ前記範囲の下限値以上であると、原料油中の芳香族炭化水素の含有量が高くなり、水素化処理によりナフテン環を有する化合物が多く生成し、得られる軽油基材の発熱量が向上する。LCGO及びLCOの含有量がそれぞれ前記範囲の上限値以下であると、原料油中の芳香族炭化水素の含有量が高くなりすぎず、水素化処理反応におけるコークの発生が抑制され、水素化処理触媒の寿命が長くなる。
Among the base materials contained in the raw material oil of the present embodiment described above, it is preferable to contain LCGO and LCO, which are fractions having a high aromatic content.
The total content of LCGO and LCO with respect to the total volume of the feedstock is preferably 30 to 100% by volume, more preferably 40 to 98% by volume, further preferably 50 to 95% by volume, and particularly preferably 60 to 95% by volume. preferable.
When the total content of LCGO and LCO is at least the lower limit of the above range, the content of aromatic hydrocarbons in the raw material oil becomes high, and the hydrogenation treatment produces a large amount of compounds having a naphthenic ring, resulting in light oil. The calorific value of the base material is improved. When the contents of LCGO and LCO are not more than the upper limit of the above range, the content of aromatic hydrocarbons in the raw material oil does not become too high, the generation of cork in the hydrogenation treatment reaction is suppressed, and the hydrogenation treatment catalyst is used. Life will be longer.
As one aspect of the present invention, the LCGO content is preferably 30 to 45% by volume and the LCO content is preferably 45 to 65% by volume with respect to the total volume of the raw material oil.
When the contents of LCGO and LCO are each above the lower limit of the above range, the content of aromatic hydrocarbons in the raw material oil becomes high, and a large amount of compounds having a naphthenic ring are produced by hydrogenation treatment, and the obtained light oil is obtained. The calorific value of the base material is improved. When the contents of LCGO and LCO are each below the upper limit of the above range, the content of aromatic hydrocarbons in the raw material oil does not become too high, the generation of cork in the hydrogenation treatment reaction is suppressed, and the hydrogenation treatment is performed. The life of the catalyst is extended.

<その他の基材>
本実施形態の原料油は、前記LCGO、LCO、及びDS-LHCGO以外のその他の基材を含有してもよい。
その他の基材としては、常圧蒸留によって得られる直留軽油、間接脱硫装置から得られる軽油留分、直接脱硫装置から得られる軽油留分等が例として挙げられる。
原料油の総容積に対するその他の基材の含有量は、0~70容量%が好ましく、2~60容量%がより好ましく、5~50容量%がさらに好ましい。
<Other base materials>
The raw material oil of the present embodiment may contain other base materials other than the LCGO, LCO, and DS-LHCGO.
Examples of other base materials include gas oil distillate obtained by atmospheric distillation, gas oil distillate obtained from an indirect desulfurization apparatus, and gas oil distillate obtained from a direct desulfurization apparatus.
The content of the other base material with respect to the total volume of the feedstock is preferably 0 to 70% by volume, more preferably 2 to 60% by volume, still more preferably 5 to 50% by volume.

<水素化処理>
本発明に係る軽油基材の製造方法における水素化処理は、水素分圧10~18MPaで行う。以下、水素化処理の条件の詳細を説明する。
<Hydrogenation treatment>
The hydrogenation treatment in the method for producing a light oil base material according to the present invention is carried out at a hydrogen partial pressure of 10 to 18 MPa. Hereinafter, the details of the conditions for hydrogenation treatment will be described.

(水素化処理触媒)
水素化処理触媒を構成する担体を構成する混合物としては、アルミナを含有する多孔質無機酸化物が使用できる。
水素化処理触媒を構成する活性成分としては、周期表第6族から選ばれる少なくとも1種の金属元素、周期表第8~10族から選ばれる少なくとも1種の金属元素が例として挙げられる。
周期表第6族から選ばれる少なくとも1種の金属元素としては、モリブデン、タングステンが好ましい。モリブデン化合物としては、三酸化モリブデン、モリブデン酸アンモニウム等が好ましく、タングステン化合物としては、三酸化タングステン、タングステン酸アンモニウム等が好ましい。第6族金属の担持量は、酸化物換算で水素化処理触媒の総質量に対して8~20質量%が好ましい。
周期表第8~10族から選ばれる少なくとも1種の金属元素としては、コバルト、ニッケルが好ましい。コバルト化合物としては、炭酸コバルト、塩基性炭酸コバルト、硝酸コバルト等が好ましく、ニッケル化合物としては、炭酸ニッケル、塩基性炭酸ニッケル、硝酸ニッケル等が好ましい。第9族と第10族の金属元素の担持量は、酸化物換算で水素化処理触媒の総質量に対して2~6質量%が好ましい。
上述した活性成分のなかでは、モリブデンとニッケルとを組み合わせたモリブデンニッケル系触媒が好ましい。
また、上述の水素化処理触媒を、水素雰囲気下で、300~400℃で、1~36時間、水素還元処理して使用することが好ましい。
(Hydrogenation catalyst)
As the mixture constituting the carrier constituting the hydrogenation treatment catalyst, a porous inorganic oxide containing alumina can be used.
Examples of the active component constituting the hydrogenation treatment catalyst include at least one metal element selected from Group 6 of the Periodic Table and at least one metal element selected from Group 8 to 10 of the Periodic Table.
Molybdenum and tungsten are preferable as at least one metal element selected from Group 6 of the periodic table. As the molybdenum compound, molybdenum trioxide, ammonium molybdate and the like are preferable, and as the tungsten compound, tungsten trioxide, ammonium tungstate and the like are preferable. The amount of the Group 6 metal supported is preferably 8 to 20% by mass with respect to the total mass of the hydrogenation treatment catalyst in terms of oxide.
Cobalt and nickel are preferable as at least one metal element selected from the 8th to 10th groups of the periodic table. As the cobalt compound, cobalt carbonate, basic cobalt carbonate, cobalt nitrate and the like are preferable, and as the nickel compound, nickel carbonate, basic nickel carbonate, nickel nitrate and the like are preferable. The amount of the metal elements of Group 9 and Group 10 carried is preferably 2 to 6% by mass with respect to the total mass of the hydrogenation treatment catalyst in terms of oxide.
Among the above-mentioned active ingredients, a molybdenum nickel-based catalyst in which molybdenum and nickel are combined is preferable.
Further, it is preferable to use the above-mentioned hydrogenation treatment catalyst by hydrogen reduction treatment at 300 to 400 ° C. for 1 to 36 hours in a hydrogen atmosphere.

(水素化処理条件)
水素化処理における水素分圧は、10~18MPaであり、11~16MPaが好ましく、13~15MPaがより好ましい。水素分圧が前記範囲の下限値以上であると、本実施形態のようなオレフィン、芳香族炭化水素の含有量の多い原料油を水素化処理してもコークの発生が抑制され、水素化処理触媒の寿命が長くなる。水素分圧が前記範囲の上限値以下であると、水素化処理設備にコストがかかりすぎないため経済的に有利である。
(Hydrogenation treatment conditions)
The partial pressure of hydrogen in the hydrogenation treatment is 10 to 18 MPa, preferably 11 to 16 MPa, more preferably 13 to 15 MPa. When the hydrogen partial pressure is equal to or higher than the lower limit of the above range, the generation of cork is suppressed even if the raw material oil having a high content of olefins and aromatic hydrocarbons as in the present embodiment is hydrogenated, and the hydrogenation treatment is performed. The life of the catalyst is extended. When the hydrogen partial pressure is not more than the upper limit of the above range, it is economically advantageous because the hydrogenation treatment equipment does not cost too much.

水素化処理を流通式反応装置で実施する場合、反応器入り口の水素/油比(以下、「水素/油比」と記載)は、例えば100~800Nm/KLであり、200~700Nm/KLが好ましく、300~650Nm/KLがより好ましい。
水素/油比が前記範囲の下限値以上であると、充分に水素化処理反応が進行する。水素/油比が前記範囲の上限値以下であると、過剰に水素を消費することもなく、処理コストを削減できる。また、反応器内の発熱に応じてクエンチ水素を加えても良い。
When the hydrogenation treatment is carried out in a flow reactor, the hydrogen / oil ratio at the reactor inlet (hereinafter referred to as “hydrogen / oil ratio”) is, for example, 100 to 800 Nm 3 / KL and 200 to 700 Nm 3 /. KL is preferable, and 300 to 650 Nm 3 / KL is more preferable.
When the hydrogen / oil ratio is at least the lower limit of the above range, the hydrogenation treatment reaction proceeds sufficiently. When the hydrogen / oil ratio is not more than the upper limit of the above range, the processing cost can be reduced without consuming excessive hydrogen. Further, quench hydrogen may be added according to the heat generated in the reactor.

水素化処理を流通式反応装置で実施する場合、液空間速度(LHSV)は、例えば0.1~3hr-1であり、0.2~2hr-1が好ましく、0.25~1hr-1がより好ましい。
液空間速度が前記範囲の下限値以上であると、水素化処理の効率が向上する。液空間速度が前記範囲の上限値以下であると、水素化処理触媒と原料油との接触時間が充分となり、水素化処理触媒の活性が充分に発揮される。
When the hydrogenation treatment is carried out in a flow-type reactor, the liquid space velocity (LHSV) is, for example, 0.1 to 3 hr -1 , preferably 0.2 to 2 hr -1 , and 0.25 to 1 hr -1 . More preferred.
When the liquid space velocity is equal to or higher than the lower limit of the above range, the efficiency of the hydrogenation treatment is improved. When the liquid space velocity is not more than the upper limit of the above range, the contact time between the hydrogenation treatment catalyst and the raw material oil becomes sufficient, and the activity of the hydrogenation treatment catalyst is sufficiently exhibited.

触媒層の温度は、例えば300~420℃であり、310~400℃が好ましく、310~390℃がより好ましい。
触媒層の温度が前記範囲の下限値以上であると、水素化触媒の触媒活性が向上する。触媒層の温度が前記範囲の上限値以下であると、水素化処理油の着色や、水素化処理触媒の寿命の低下が起こりにくくなる。
The temperature of the catalyst layer is, for example, 300 to 420 ° C, preferably 310 to 400 ° C, and more preferably 310 to 390 ° C.
When the temperature of the catalyst layer is equal to or higher than the lower limit of the above range, the catalytic activity of the hydrogenation catalyst is improved. When the temperature of the catalyst layer is not more than the upper limit of the above range, coloring of the hydrotreated oil and shortening of the life of the hydrotreated catalyst are less likely to occur.

反応形式としては、固定床、移動床又は流動床が例として挙げられ、この反応器に上記の原料油を導入し、上記の水素化処理条件で処理すればよい。最も一般的には、上述の触媒を上記の態様で固定床として維持し、原料油が前記固定床を下方に通過するようにする。 Examples of the reaction type include a fixed bed, a moving bed, and a fluidized bed, and the above-mentioned raw material oil may be introduced into this reactor and treated under the above-mentioned hydrogenation treatment conditions. Most commonly, the catalyst described above is maintained as a fixed bed in the above manner so that the feedstock oil passes downward through the fixed bed.

水素化処理して得られた基材を蒸留分離して、硫黄分の含有量が15質量ppm以下であり、10容量%留出温度が240~300℃であり、90容量%留出温度が310~360℃であり、発熱量が36,000~37,300J/mLである軽油基材を得る。 The substrate obtained by hydrogenation is distilled and separated, and the sulfur content is 15 mass ppm or less, the 10% by volume distillation temperature is 240 to 300 ° C., and the 90% by volume distillation temperature is A gas oil substrate having a calorific value of 36,000 to 37,300 J / mL at 310 to 360 ° C. is obtained.

前記蒸留分離には、蒸留装置を用いることが好ましい。ここで、蒸留装置とは、液体混合物を沸点の差を利用して分離する装置で、常温、常圧で液体又は固体の混合物でも温度と圧力調節により液体混合物として蒸留により分離できる装置を意味する。 It is preferable to use a distillation apparatus for the distillation separation. Here, the distillation apparatus is an apparatus for separating a liquid mixture by utilizing the difference in boiling point, and means an apparatus capable of separating a mixture of a liquid or a solid at normal temperature and pressure as a liquid mixture by controlling the temperature and pressure. ..

<軽油基材>
本発明に係る軽油基材は、硫黄分の含有量が15質量ppm以下であり、10容量%留出温度が240~300℃であり、90容量%留出温度が310~360℃であり、発熱量が36,000~37,300J/mLである軽油基材である。
<Light oil base material>
The gas oil substrate according to the present invention has a sulfur content of 15% by mass or less, a 10% by mass distillation temperature of 240 to 300 ° C., and a 90% by mass distillation temperature of 310 to 360 ° C. It is a light oil base material having a calorific value of 36,000 to 37,300 J / mL.

軽油基材の硫黄分の含有量は、15質量ppm以下であり、10質量ppm以下が好ましく、8質量ppm以下がより好ましい。硫黄分の含有量は低ければ低いほど好ましいため、硫黄分の含有量の下限値は特に限定されないが、通常1質量ppm以上である。 The sulfur content of the light oil base material is 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less. The lower the sulfur content is, the more preferable it is. Therefore, the lower limit of the sulfur content is not particularly limited, but is usually 1 mass ppm or more.

軽油基材の10容量%留出温度(以下、単にT10ともいう)は、240~300℃であり、250~300℃が好ましく、260~300℃がより好ましい。
T10が前記範囲の下限値以上であると、軽油として適切な引火点および動粘度を保つことができるとともに、容量あたりの炭化水素の含有量が多くなり、軽油基材の発熱量が向上する。T10が前記範囲の上限値以下であると、ワックス析出温度が制限され、低温流動性を保つ面で好ましい。
軽油基材のT90は、310~360℃であり、320~360℃が好ましく、330~360℃がより好ましい。
T90が前記範囲の下限値以上であると、軽油として適切な引火点および動粘度を保つことができるとともに、容量あたりの炭化水素の含有量が多くなり、軽油基材の発熱量が向上する。T90が前記範囲の上限値以下であると、燃料噴霧時の霧化不良に伴う燃焼室汚染、ノズルへのカーボン付着などを抑えることができるため好ましい。
The 10% by volume distillation temperature of the light oil base material (hereinafter, also simply referred to as T10) is 240 to 300 ° C., preferably 250 to 300 ° C., more preferably 260 to 300 ° C.
When T10 is at least the lower limit of the above range, an appropriate flash point and kinematic viscosity can be maintained as light oil, the content of hydrocarbon per capacity increases, and the calorific value of the light oil base material improves. When T10 is not more than the upper limit of the above range, the wax precipitation temperature is limited, which is preferable in terms of maintaining low temperature fluidity.
The temperature of the light oil base material T90 is 310 to 360 ° C, preferably 320 to 360 ° C, and more preferably 330 to 360 ° C.
When T90 is at least the lower limit of the above range, an appropriate flash point and kinematic viscosity can be maintained as light oil, the content of hydrocarbon per capacity increases, and the calorific value of the light oil base material improves. When T90 is not more than the upper limit of the above range, it is preferable because it is possible to suppress contamination of the combustion chamber due to poor atomization at the time of fuel spraying, carbon adhesion to the nozzle, and the like.

軽油基材のセタン指数は、40~65が好ましく、45~60がより好ましい。
セタン指数が前記範囲内であると、軽油基材をディーゼルエンジンに使用した場合に、ディーゼルエンジンの低温時始動性が向上するほか、エンジンからのCO等の排出量を抑制することができる。
なお、セタン指数とは、ASTM D613-84に準拠して測定される値を意味する。
The cetane number of the light oil base material is preferably 40 to 65, more preferably 45 to 60.
When the cetane index is within the above range, when the diesel fuel base material is used for the diesel engine, the startability at low temperature of the diesel engine is improved and the emission of CO and the like from the engine can be suppressed.
The cetane index means a value measured according to ASTM D613-84.

軽油基材のくもり点は、-10~6℃が好ましく、-10~5℃がより好ましい。
くもり点が前記範囲内であると、軽油基材をディーゼルエンジンに使用した場合に、ディーゼルエンジンの低温始動性、及び低温運転性が向上する。
なお、くもり点とは、JIS K2269「原油および石油製品の流動点並びに石油製品の曇り点試験方法」に準拠して測定される値を意味する。
The cloud point of the light oil base material is preferably −10 to 6 ° C, more preferably −10 to 5 ° C.
When the cloud point is within the above range, the low temperature startability and low temperature operability of the diesel engine are improved when the light oil base material is used for the diesel engine.
The cloud point means a value measured in accordance with JIS K2269 "Pour point of crude oil and petroleum products and cloud point test method of petroleum products".

軽油基材の流動点は、-15~7.5℃が好ましく、-15~5℃がより好ましい。
流動点が前記範囲内であると、軽油基材をディーゼルエンジンに使用した場合に、低温運転時におけるフィルター閉塞を防止することができる。
なお流動点とは、JIS K2269「原油および石油製品の流動点並びに石油製品の曇り点試験方法」に準拠して測定される値を意味する。
The pour point of the light oil base material is preferably −15 to 7.5 ° C, more preferably −15 to 5 ° C.
When the pour point is within the above range, it is possible to prevent the filter from clogging during low temperature operation when the diesel fuel base material is used in the diesel engine.
The pour point means a value measured in accordance with JIS K2269 "Pour point of crude oil and petroleum products and cloud point test method of petroleum products".

軽油基材の芳香族炭化水素の含有量は、11~30質量%が好ましく、13~30質量%がより好ましい。芳香族炭化水素の含有量が前記下限値以上であると、密度が大きくなり発熱量を高くすることができる。また芳香族炭化水素の含有量が前記上限値以下であると、エンジンからのCO等の排出量を抑制することができる。 The content of the aromatic hydrocarbon of the light oil base material is preferably 11 to 30% by mass, more preferably 13 to 30% by mass. When the content of the aromatic hydrocarbon is at least the above lower limit value, the density becomes high and the calorific value can be increased. Further, when the content of aromatic hydrocarbons is not more than the above upper limit value, the amount of CO and the like emitted from the engine can be suppressed.

軽油基材の発熱量は、36,000~37,300J/mLであり、36,300~37,100J/mLが好ましく、36,500~37,000J/mLがより好ましく、36,600~37,000J/mLがさらに好ましい。
発熱量が前記前記範囲の下限値以上であると、軽油基材をディーゼル燃料とした場合、燃費が向上する。
なお、発熱量とは、JIS K2279「原油及び石油製品-発熱量試験方法及び計算による推定方法」に準拠して測定される値を意味する。
The calorific value of the light oil base material is 36,000 to 37,300 J / mL, preferably 36,300 to 37,100 J / mL, more preferably 36,500 to 37,000 J / mL, and 36,600 to 37. 000 J / mL is more preferable.
When the calorific value is not less than the lower limit of the above range, the fuel efficiency is improved when the diesel fuel is used as the light oil base material.
The calorific value means a value measured in accordance with JIS K2279 "Crude oil and petroleum products-calorific value test method and estimation method by calculation".

軽油基材の15℃における密度は、0.82~0.875g/mLが好ましく、0.83~0.87g/mLがより好ましい。15℃における密度が前記範囲の下限値以上であると、容量あたりの炭化水素の含有量が多くなり、軽油基材の発熱量が向上する。 The density of the light oil substrate at 15 ° C. is preferably 0.82 to 0.875 g / mL, more preferably 0.83 to 0.87 g / mL. When the density at 15 ° C. is equal to or higher than the lower limit of the above range, the content of hydrocarbons per capacity increases, and the calorific value of the light oil substrate is improved.

本実施形態の軽油基材は、そのまま軽油製品として用いることができるが、他の基材と混合して軽油製品を調製するための軽油基材として用いてもよい。
本実施形態の軽油基材と混合される他の軽油基材としては、例えば、原油を精製して生産される灯油、フィッシャー・トロプシュ合成等により製造される合成軽油、水素化分解軽油等が例として挙げられる。また、植物油メチルエステル、エ-テル類等を他の軽油基材として配合してもよい。本実施形態で得られる軽油基材と他の軽油基材とを混合して、製品軽油を製造する場合、目的の品質の軽油となるように適宜配合割合を選定することができるが、他の軽油基材の配合割合は、40質量%以下、特には30質量%以下にすることが好ましい。
The light oil base material of the present embodiment can be used as it is as a light oil product, but it may be used as a light oil base material for preparing a light oil product by mixing with other base materials.
Examples of other gas oil base materials mixed with the gas oil base material of the present embodiment include kerosene produced by refining crude oil, synthetic gas oil produced by Fischer-Tropsch synthesis, hydrolyzed gas oil, and the like. Is mentioned as. Further, vegetable oil methyl ester, ethers and the like may be blended as other light oil base materials. When the light oil base material obtained in the present embodiment is mixed with another light oil base material to produce a product light oil, the blending ratio can be appropriately selected so as to obtain the desired quality light oil. The blending ratio of the light oil base material is preferably 40% by mass or less, particularly preferably 30% by mass or less.

以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

原料油、及び軽油基材の性状は次の方法に準拠して求めた。
[15℃における密度]
JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」に準拠して測定した。
[硫黄分の含有量]
JIS K 2541「原油及び石油製品-硫黄分試験方法」に準拠して測定した。
[芳香族炭化水素の含有量]
IP 548「 Determination of aromatic hydrocarbon types in middle distillates - High performance liquid chromatography method with refractive index detection」に準拠して測定した。
[10容量%留出温度、50容量%留出温度、90容量%留出温度]
JIS K2254「石油製品-蒸留試験方法-常圧法蒸留試験方法」に準拠して測定した。
[窒素分]
JIS K 2609「原油及び石油製品-窒素分試験方法」に準拠して測定した。
[セタン指数]
ASTM D613-84に準拠して測定した。
[くもり点及び流動点]
JIS K2269「原油および石油製品の流動点並びに石油製品の曇り点試験方法」に準拠して測定した。
[発熱量]
JIS K2279「原油及び石油製品-発熱量試験方法及び計算による推定方法」に準拠して測定した。発熱量を算出するために必要な水分量はJIS K2275に、灰分量はJIS K2272に準拠して測定した。なお、後述の実施例1~8、及び比較例1~2の軽油基材の水分、灰分は0質量%であった。
The properties of the feedstock oil and the light oil base material were determined according to the following method.
[Density at 15 ° C]
Measurements were made in accordance with JIS K 2249 "Density test method for crude oil and petroleum products and density / mass / capacity conversion table".
[Sulfur content]
Measured according to JIS K 2541 "Crude oil and petroleum products-Sulfur content test method".
[Contents of aromatic hydrocarbons]
Measurements were made according to IP 548 "Determination of aromatic hydrocarbon types in middle distillates --High performance liquid chromatography method with refractive index detection".
[10% by volume distillation temperature, 50% by volume distillation temperature, 90% by volume distillation temperature]
Measurement was performed in accordance with JIS K2254 "Petroleum products-Distillation test method-Atmospheric distillation test method".
[Nitrogen]
Measured according to JIS K 2609 "Crude oil and petroleum products-Nitrogen content test method".
[Cetane index]
Measured according to ASTM D613-84.
[Cloud point and pour point]
The measurement was performed in accordance with JIS K2269 "Pour point test method for crude oil and petroleum products and cloud point test method for petroleum products".
[Calorific value]
Measurements were made in accordance with JIS K2279 "Crude oil and petroleum products-calorific value test method and calculation estimation method". The amount of water required to calculate the calorific value was measured according to JIS K2275, and the amount of ash was measured according to JIS K2272. The water content and ash content of the light oil base materials of Examples 1 to 8 and Comparative Examples 1 and 2 described later were 0% by mass.

熱分解軽質軽油(LCGO)、接触分解軽油(LCO)、熱分解重質軽油を水素化処理して得られた軽質軽油(DS-LHCGO)、及び直留軽油(LGO)を用意した。使用したLCGO、LCO、DS-LHCGO、及びLGOの15℃における密度、硫黄分の含有量、窒素分の含有量、芳香族炭化水素の含有量、T10、50容量%留出温度(以下、単にT50ともいう)、及びT90を表1~4に示す。さらに表5に示す割合で配合し、原料油とした。配合1~10の原料油の15℃における密度、硫黄分の含有量、窒素分の含有量、芳香族炭化水素の含有量、T10、T50、及びT90を表5に示す。 Pyrolytic gas oil (LCGO), catalytic cracking gas oil (LCO), gas oil obtained by hydrogenation of pyrolysis gas oil (DS-LHCGO), and direct distillate gas oil (LGO) were prepared. Density of LCGO, LCO, DS-LHCGO, and LGO used at 15 ° C, sulfur content, nitrogen content, aromatic hydrocarbon content, T10, 50% by volume distillation temperature (hereinafter, simply (Also referred to as T50) and T90 are shown in Tables 1 to 4. Further, the oils were blended in the ratios shown in Table 5 to obtain raw material oils. Table 5 shows the densities of the feedstocks of Formulations 1 to 10 at 15 ° C., sulfur content, nitrogen content, aromatic hydrocarbon content, T10, T50, and T90.

Figure 0007101021000001
Figure 0007101021000001

Figure 0007101021000002
Figure 0007101021000002

Figure 0007101021000003
Figure 0007101021000003

Figure 0007101021000004
Figure 0007101021000004

Figure 0007101021000005
Figure 0007101021000005

(水素化処理触媒)
水素化処理触媒としては、モリブデンニッケル系触媒を使用した。
(Hydrogenation catalyst)
A molybdenum nickel-based catalyst was used as the hydrogenation treatment catalyst.

実施例1
配合1の原料油を水素/油比:400Nm/KL、水素分圧:14.2MPa、液空間速度(LHSV):0.54hr-1、反応温度:340℃で水素化処理し、その後分留することにより軽油基材を得た。得られた軽油基材の性状(15℃における密度、硫黄分の含有量、窒素分の含有量、芳香族炭化水素の含有量、T10、T50、T90、流動点、くもり点、セタン指数、発熱量)を表6に示す。
Example 1
The raw material oil of Formulation 1 was hydrogenated at hydrogen / oil ratio: 400 Nm 3 / KL, hydrogen partial pressure: 14.2 MPa, liquid space velocity (LHSV): 0.54 hr -1 , reaction temperature: 340 ° C, and then fractionated. A light oil base material was obtained by distillation. Properties of the obtained gas oil base material (density at 15 ° C, sulfur content, nitrogen content, aromatic hydrocarbon content, T10, T50, T90, pour point, cloud point, cetan index, heat generation Amount) is shown in Table 6.

実施例2
配合2の原料油を水素/油比:490Nm/KL、水素分圧:14.0MPa、液空間速度(LHSV):0.52hr-1、反応温度:339℃で水素化処理し、その後分留することにより軽油基材を得た。得られた軽油基材の性状を表6に示す。
Example 2
The raw material oil of Formulation 2 is hydrogenated at hydrogen / oil ratio: 490 Nm 3 / KL, hydrogen partial pressure: 14.0 MPa, liquid space velocity (LHSV): 0.52 hr -1 , reaction temperature: 339 ° C., and then fractionated. A light oil base material was obtained by distillation. Table 6 shows the properties of the obtained gas oil base material.

実施例3
配合3の原料油を水素/油比:410Nm/KL、水素分圧:14.2MPa、液空間速度(LHSV):0.49hr-1、反応温度:337℃で水素化処理し、その後分留することにより軽油基材を得た。得られた軽油基材の性状を表6に示す。
Example 3
The raw material oil of Formulation 3 was hydrogenated at hydrogen / oil ratio: 410 Nm 3 / KL, hydrogen partial pressure: 14.2 MPa, liquid space velocity (LHSV): 0.49 hr -1 , reaction temperature: 337 ° C., and then fractionated. A light oil base material was obtained by distillation. Table 6 shows the properties of the obtained gas oil base material.

実施例4
配合4の原料油を水素/油比:630Nm/KL、水素分圧:13.4MPa、液空間速度(LHSV):0.32hr-1、反応温度:334℃で水素化処理し、その後分留することにより軽油基材を得た。得られた軽油基材の性状を表6に示す。
Example 4
The raw material oil of Formulation 4 is hydrogenated at hydrogen / oil ratio: 630 Nm 3 / KL, hydrogen partial pressure: 13.4 MPa, liquid space velocity (LHSV): 0.32 hr -1 , reaction temperature: 334 ° C., and then fractionated. A light oil base material was obtained by distillation. Table 6 shows the properties of the obtained gas oil base material.

実施例5
配合5の原料油を水素/油比:520Nm/KL、水素分圧:14.0MPa、液空間速度(LHSV):0.39hr-1、反応温度:334℃で水素化処理し、その後分留することにより軽油基材を得た。得られた軽油基材の性状を表6に示す。
Example 5
The raw material oil of Formulation 5 is hydrogenated at hydrogen / oil ratio: 520 Nm 3 / KL, hydrogen partial pressure: 14.0 MPa, liquid space velocity (LHSV): 0.39 hr -1 , reaction temperature: 334 ° C., and then fractionated. A light oil base material was obtained by distillation. Table 6 shows the properties of the obtained gas oil base material.

実施例6
配合6の原料油を水素/油比:480Nm/KL、水素分圧:14.0MPa、液空間速度(LHSV):0.42hr-1、反応温度:341℃で水素化処理し、その後分留することにより軽油基材を得た。得られた軽油基材の性状を表6に示す。
Example 6
The raw material oil of Formulation 6 was hydrogenated at hydrogen / oil ratio: 480 Nm 3 / KL, hydrogen partial pressure: 14.0 MPa, liquid space velocity (LHSV): 0.42 hr -1 , reaction temperature: 341 ° C., and then fractionated. A light oil base material was obtained by distillation. Table 6 shows the properties of the obtained gas oil base material.

実施例7
配合7の原料油を水素/油比:570Nm/KL、水素分圧:13.5MPa、液空間速度(LHSV):0.37hr-1、反応温度:342℃で水素化処理し、その後分留することにより軽油基材を得た。得られた軽油基材の性状を表6に示す。
Example 7
The raw material oil of Formulation 7 was hydrogenated at hydrogen / oil ratio: 570 Nm 3 / KL, hydrogen partial pressure: 13.5 MPa, liquid space velocity (LHSV): 0.37 hr -1 , reaction temperature: 342 ° C, and then fractionated. A light oil base material was obtained by distillation. Table 6 shows the properties of the obtained gas oil base material.

実施例8
配合8の原料油を水素/油比:630Nm/KL、水素分圧:13.8MPa、液空間速度(LHSV):0.31hr-1、反応温度:334℃で水素化処理し、その後分留することにより軽油基材を得た。得られた軽油基材の性状を表6に示す。
Example 8
The raw material oil of Formulation 8 is hydrogenated at hydrogen / oil ratio: 630 Nm 3 / KL, hydrogen partial pressure: 13.8 MPa, liquid space velocity (LHSV): 0.31 hr -1 , reaction temperature: 334 ° C., and then fractionated. A light oil base material was obtained by distillation. Table 6 shows the properties of the obtained gas oil base material.

比較例1
配合9の原料油を水素/油比:510Nm/KL、水素分圧:13.9MPa、液空間速度(LHSV):0.40hr-1、反応温度:336℃で水素化処理し、その後分留することにより軽油基材を得た。得られた軽油基材の性状を表6に示す。
Comparative Example 1
The raw material oil of Formulation 9 is hydrogenated at hydrogen / oil ratio: 510 Nm 3 / KL, hydrogen partial pressure: 13.9 MPa, liquid space velocity (LHSV): 0.40 hr -1 , reaction temperature: 336 ° C, and then fractionated. A light oil base material was obtained by distillation. Table 6 shows the properties of the obtained gas oil base material.

比較例2
配合10の原料油を水素/油比:610Nm/KL、水素分圧:12.8MPa、液空間速度(LHSV):0.33hr-1、反応温度:335℃で水素化処理し、その後分留することにより軽油基材を得た。得られた軽油基材の性状を表6に示す。
Comparative Example 2
The raw material oil of formulation 10 is hydrogenated at hydrogen / oil ratio: 610 Nm 3 / KL, hydrogen partial pressure: 12.8 MPa, liquid space velocity (LHSV): 0.33 hr -1 , reaction temperature: 335 ° C, and then fractionated. A light oil base material was obtained by distillation. Table 6 shows the properties of the obtained gas oil base material.

Figure 0007101021000006
Figure 0007101021000006

表6に示されるように本発明の製造方法によって製造された軽油基材は、発熱量が非常に高いことがわかった。 As shown in Table 6, it was found that the gas oil base material produced by the production method of the present invention had a very high calorific value.

Claims (2)

90容量%留出温度が320~360℃であり、芳香族炭化水素を37~65質量%含む原料油を、水素分圧10~18MPa、水素/油比100~800Nm /KL、液空間速度0.1~3hr -1 、触媒層の温度300~420℃で水素化処理を行う工程と、水素化処理して得られた基材を蒸留分離する工程と、を含む、軽油基材の製造方法であって
前記原料油は、熱分解軽質軽油(LCGO)、接触分解軽油(LCO)、及び熱分解重質軽油を水素化処理して得られた軽質軽油(DS-LHCGO)からなる群から選ばれる少なくとも1種の基材を含み、
前記原料油の総容積に対するLCGOとLCOの合計含有量は、30~100容量%であり、
前記軽油基材は、硫黄分の含有量が15質量ppm以下であり、10容量%留出温度が240~300℃であり、90容量%留出温度が310~360℃であり、発熱量が36,000~37,300J/mLである軽油基材の製造方法。
90% by volume distillation temperature is 320 to 360 ° C., raw material oil containing 37 to 65% by mass of aromatic hydrocarbons, hydrogen partial pressure 10 to 18 MPa , hydrogen / oil ratio 100 to 800 Nm 3 / KL, liquid space velocity. Production of a light oil base material including a step of performing a hydrogenation treatment at a temperature of 0.1 to 3 hr -1 and a catalyst layer temperature of 300 to 420 ° C. , and a step of distilling and separating the base material obtained by the hydrogenation treatment. It ’s a method ,
The raw material oil is at least one selected from the group consisting of pyrolyzed gas oil (LCGO), catalytically cracked gas oil (LCO), and light oil obtained by hydrogenating pyrolyzed gas oil (DS-LHCGO). Contains seed substrate,
The total content of LCGO and LCO with respect to the total volume of the raw material oil is 30 to 100% by volume.
The gas oil base material has a sulfur content of 15% by mass or less, a 10% by mass distillation temperature of 240 to 300 ° C., a 90% by mass distillation temperature of 310 to 360 ° C., and a calorific value. A method for producing a light oil base material having a temperature of 36,000 to 37,300 J / mL.
前記原料油は、前記LCGO、前記LCO、及び前記DS-LHCGOを含む請求項1に記載の軽油基材の製造方法。 The method for producing a gas oil base material according to claim 1, wherein the raw material oil contains the LCGO, the LCO, and the DS-LHCGO.
JP2018068901A 2018-03-30 2018-03-30 Manufacturing method of high calorific value light oil base material Active JP7101021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018068901A JP7101021B2 (en) 2018-03-30 2018-03-30 Manufacturing method of high calorific value light oil base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018068901A JP7101021B2 (en) 2018-03-30 2018-03-30 Manufacturing method of high calorific value light oil base material

Publications (2)

Publication Number Publication Date
JP2019178252A JP2019178252A (en) 2019-10-17
JP7101021B2 true JP7101021B2 (en) 2022-07-14

Family

ID=68277901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018068901A Active JP7101021B2 (en) 2018-03-30 2018-03-30 Manufacturing method of high calorific value light oil base material

Country Status (1)

Country Link
JP (1) JP7101021B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239890A (en) 2004-02-26 2005-09-08 Japan Energy Corp Light oil responding to environment and method for producing the same
JP2009242507A (en) 2008-03-31 2009-10-22 Idemitsu Kosan Co Ltd Method and apparatus for producing ultra low-sulfur fuel oil
JP2009292856A (en) 2008-06-02 2009-12-17 Idemitsu Kosan Co Ltd Light oil composition
US20100270205A1 (en) 2008-10-22 2010-10-28 Chevron U.S.A. Inc. High energy distillate fuel composition and method of making the same
JP2010254796A (en) 2009-04-24 2010-11-11 Jx Nippon Oil & Energy Corp Fuel oil composition for diesel engine
JP2011213898A (en) 2010-03-31 2011-10-27 Jx Nippon Oil & Energy Corp Method for producing gas oil base material or gas oil composition
JP2014196395A (en) 2013-03-29 2014-10-16 Jx日鉱日石エネルギー株式会社 Method for manufacturing petroleum product
CN106947519A (en) 2012-11-06 2017-07-14 纳幕尔杜邦公司 Light cycle in the full liquid reactor of hydrotreating

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239890A (en) 2004-02-26 2005-09-08 Japan Energy Corp Light oil responding to environment and method for producing the same
JP2009242507A (en) 2008-03-31 2009-10-22 Idemitsu Kosan Co Ltd Method and apparatus for producing ultra low-sulfur fuel oil
JP2009292856A (en) 2008-06-02 2009-12-17 Idemitsu Kosan Co Ltd Light oil composition
US20100270205A1 (en) 2008-10-22 2010-10-28 Chevron U.S.A. Inc. High energy distillate fuel composition and method of making the same
JP2010254796A (en) 2009-04-24 2010-11-11 Jx Nippon Oil & Energy Corp Fuel oil composition for diesel engine
JP2011213898A (en) 2010-03-31 2011-10-27 Jx Nippon Oil & Energy Corp Method for producing gas oil base material or gas oil composition
CN106947519A (en) 2012-11-06 2017-07-14 纳幕尔杜邦公司 Light cycle in the full liquid reactor of hydrotreating
JP2014196395A (en) 2013-03-29 2014-10-16 Jx日鉱日石エネルギー株式会社 Method for manufacturing petroleum product

Also Published As

Publication number Publication date
JP2019178252A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP4335879B2 (en) Method for producing synthetic naphtha fuel and synthetic naphtha fuel produced by the method
CA2895950C (en) Hydrotreated hydrocarbon tar, fuel oil composition, and process for making it
JP5912299B2 (en) Production method of diesel oil fraction
JP2000212579A (en) Production of lamp oil
JP7101021B2 (en) Manufacturing method of high calorific value light oil base material
JP5295476B2 (en) Composition consisting essentially of hydrocarbons for use as a fuel with enhanced lubricating properties
JP4658491B2 (en) Production method of environment-friendly diesel oil
JP7101019B2 (en) Manufacturing method of high calorific value jet fuel base material
JP7101020B2 (en) Manufacturing method of high calorific value kerosene base material
JP5676344B2 (en) Kerosene manufacturing method
JP2011195755A (en) Method for hydrorefining gas oil fraction
JP4216624B2 (en) Method for producing deep desulfurized diesel oil
JP4803785B2 (en) Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same
JP4626950B2 (en) Eco-friendly gasoline and method for producing the same
US7332071B2 (en) Process for improving aromatic and naphtheno-aromatic gas oil fractions
JP2023009429A (en) Gas oil composition
JP6258756B2 (en) Method for producing fuel oil base material
JP6548223B2 (en) Method of producing fuel oil base material
JP5334903B2 (en) A heavy oil composition
Zhang et al. Process research on the hydrocarbon conversion of straight-run gas oil (SRGO) to chemical materials
JP6283561B2 (en) Method for producing fuel oil base material
CN114437821B (en) Hydrocracking method for producing aviation kerosene
JP5036074B2 (en) Environmentally friendly gasoline
CN112708462B (en) Combined process for treating heavy oil
JP2008007675A (en) Gas oil composition

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7101021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150