JP2006035052A - Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method - Google Patents
Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method Download PDFInfo
- Publication number
- JP2006035052A JP2006035052A JP2004216337A JP2004216337A JP2006035052A JP 2006035052 A JP2006035052 A JP 2006035052A JP 2004216337 A JP2004216337 A JP 2004216337A JP 2004216337 A JP2004216337 A JP 2004216337A JP 2006035052 A JP2006035052 A JP 2006035052A
- Authority
- JP
- Japan
- Prior art keywords
- hydrodesulfurization
- catalyst
- metal
- group
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 67
- 239000003209 petroleum derivative Substances 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims description 44
- 229910052751 metal Inorganic materials 0.000 claims abstract description 60
- 239000002184 metal Substances 0.000 claims abstract description 60
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 31
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000011593 sulfur Substances 0.000 claims abstract description 30
- 238000006243 chemical reaction Methods 0.000 claims abstract description 29
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 16
- 239000011574 phosphorus Substances 0.000 claims abstract description 16
- 150000002739 metals Chemical class 0.000 claims abstract description 11
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 10
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 10
- 230000000737 periodic effect Effects 0.000 claims abstract description 8
- 229930195733 hydrocarbon Natural products 0.000 claims description 25
- 150000002430 hydrocarbons Chemical class 0.000 claims description 25
- 239000003208 petroleum Substances 0.000 claims description 24
- 239000011148 porous material Substances 0.000 claims description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 238000009835 boiling Methods 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- 125000003118 aryl group Chemical group 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 238000004438 BET method Methods 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 1
- 239000010937 tungsten Substances 0.000 claims 1
- 238000006477 desulfuration reaction Methods 0.000 abstract description 36
- 230000023556 desulfurization Effects 0.000 abstract description 35
- 229910017464 nitrogen compound Inorganic materials 0.000 abstract description 8
- 150000002830 nitrogen compounds Chemical class 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 4
- 239000003921 oil Substances 0.000 description 41
- 230000000694 effects Effects 0.000 description 36
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 18
- 239000003350 kerosene Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 239000002002 slurry Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 10
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000004821 distillation Methods 0.000 description 9
- 230000009257 reactivity Effects 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 7
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 6
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 229910001388 sodium aluminate Inorganic materials 0.000 description 6
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 5
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 5
- 239000010779 crude oil Substances 0.000 description 5
- 239000001630 malic acid Substances 0.000 description 5
- 235000011090 malic acid Nutrition 0.000 description 5
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 4
- 238000007872 degassing Methods 0.000 description 4
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052815 sulfur oxide Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 229910008332 Si-Ti Inorganic materials 0.000 description 3
- 229910008423 Si—B Inorganic materials 0.000 description 3
- 229910006749 Si—Ti Inorganic materials 0.000 description 3
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 3
- 229940024546 aluminum hydroxide gel Drugs 0.000 description 3
- SMYKVLBUSSNXMV-UHFFFAOYSA-K aluminum;trihydroxide;hydrate Chemical compound O.[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-K 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 238000004523 catalytic cracking Methods 0.000 description 3
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003009 desulfurizing effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000002283 diesel fuel Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 150000004687 hexahydrates Chemical class 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- 150000003464 sulfur compounds Chemical class 0.000 description 3
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 229910003296 Ni-Mo Inorganic materials 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000005486 sulfidation Methods 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000004227 thermal cracking Methods 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- DGUACJDPTAAFMP-UHFFFAOYSA-N 1,9-dimethyldibenzo[2,1-b:1',2'-d]thiophene Natural products S1C2=CC=CC(C)=C2C2=C1C=CC=C2C DGUACJDPTAAFMP-UHFFFAOYSA-N 0.000 description 1
- MYAQZIAVOLKEGW-UHFFFAOYSA-N 4,6-dimethyldibenzothiophene Chemical compound S1C2=C(C)C=CC=C2C2=C1C(C)=CC=C2 MYAQZIAVOLKEGW-UHFFFAOYSA-N 0.000 description 1
- 229910000761 Aluminium amalgam Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910020515 Co—W Inorganic materials 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910008341 Si-Zr Inorganic materials 0.000 description 1
- 229910006682 Si—Zr Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 150000002897 organic nitrogen compounds Chemical class 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002683 reaction inhibitor Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- -1 salt compounds Chemical class 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、石油系炭化水素の水素化脱硫触媒および水素化脱硫方法に関する。詳細には、硫黄分を含有する石油系炭化水素を水素化処理によって脱硫する際に、特定の触媒を使用し、かつ特定の反応条件で石油系炭化水素を脱硫する方法に関する。 The present invention relates to a hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons. Specifically, the present invention relates to a method for desulfurizing petroleum hydrocarbons using a specific catalyst and under specific reaction conditions when desulfurizing petroleum hydrocarbons containing sulfur.
近年、環境問題、大気汚染に対する意識が高くなりつつあり、輸送用燃料油に含まれる硫黄分は特に注目を集めている。特に、軽油を燃料として用いるディーゼル車から排出される排気ガス中にはSOx、NOxといった化学物質のほかにパティキュレートと呼ばれる微細粒子が含まれており、健康への被害が懸念されている。このため、パティキュレートの除去対策としてエンジン後段にDPFなどのパティキュレート除去フィルターやパティキュレート燃焼除去機能をもつ装置を装着することが提案されており、ディーゼルエンジン車への適用が検討されている。また、NOxについては還元除去触媒などが開発されつつある状況にある。しかしながら、これらの装置や触媒は、燃料油中の硫黄分が変化して生成するSOxなどにより被毒や劣化を引き起こす。ガソリン車に比べ走行距離の多い輸送用トラックなどのディーゼル車では、これらの排ガス清浄装置や触媒の劣化はより深刻な問題である。このような問題を解決するためにも軽油中の硫黄含有量を極力下げることが強く望まれている。このとき、ディーゼル燃料として使用される軽油には沸点範囲として灯油留分に区分される留分も、製品性状を最適に維持するためにある一定の割合で混合されており、燃料としての軽油の硫黄分を下げるためには灯油留分、軽油留分のいずれについても低硫黄化が必要となる。さらには、ストーブなどの暖房器具燃料として用いる際に、有害な硫黄酸化物等の発生を低減できる。 In recent years, awareness of environmental problems and air pollution is increasing, and the sulfur content in transportation fuel oil has attracted particular attention. In particular, exhaust gas discharged from diesel vehicles using light oil as fuel contains fine particles called particulates in addition to chemical substances such as SOx and NOx, and there is concern about damage to health. For this reason, it has been proposed to install a particulate removal filter such as DPF or a device having a particulate combustion removal function at the rear stage of the engine as a measure for removing particulates, and application to diesel engine vehicles is being studied. Further, for NOx, a reduction removal catalyst or the like is being developed. However, these devices and catalysts cause poisoning and deterioration due to SOx generated by changing the sulfur content in the fuel oil. In diesel vehicles such as transport trucks, which have a longer mileage than gasoline vehicles, deterioration of these exhaust gas cleaning devices and catalysts is a more serious problem. In order to solve such problems, it is strongly desired to reduce the sulfur content in light oil as much as possible. At this time, the light oil used as diesel fuel is also mixed with a fraction that is classified into kerosene fraction as the boiling range in order to maintain the product properties optimally. In order to lower the sulfur content, it is necessary to reduce the sulfur content in both the kerosene fraction and the light oil fraction. Furthermore, generation of harmful sulfur oxides or the like can be reduced when used as a heating appliance fuel such as a stove.
原油の蒸留あるいは重油分解反応で得られる残さ油を除く石油系炭化水素留分には0.1〜3質量%程度の硫黄分が含有されているため、通常、水素化脱硫処理を実施した後に燃料基材として使用される。これらの石油系炭化水素留分に存在する主な硫黄化合物は、チオフェン、ベンゾチオフェン、ジベンゾチオフェンおよびこれらの誘導体であるが、石油系炭化水素において灯油、軽油などそれぞれの留分について、脱硫深度が進むにつれて低硫黄領域まで脱硫を進める際には、反応性が乏しくなる傾向がある。すなわち、各留分において水素化脱硫の進行とともに残存する硫黄化合物は反応性に乏しく、より厳しい条件でなければ脱硫が進みにくくなるためである。例えば、灯油留分についてはベンゾチオフェン類、軽油留分については4,6−ジメチルジベンゾチオフェンに代表される複数のメチル基を置換基として持つアルキル置換ジベンゾチオフェン類は特に反応性に乏しく、硫黄分10質量ppmといった、より低硫黄領域まで脱硫を進める際の障害となっている。 Since petroleum hydrocarbon fractions other than residual oil obtained by crude oil distillation or heavy oil cracking reaction contain sulfur content of about 0.1 to 3% by mass, usually after hydrodesulfurization treatment Used as fuel substrate. The main sulfur compounds present in these petroleum hydrocarbon fractions are thiophene, benzothiophene, dibenzothiophene and their derivatives, but the desulfurization depth of each fraction such as kerosene and light oil in petroleum hydrocarbons is low. As desulfurization proceeds to a low sulfur region as the progress proceeds, the reactivity tends to be poor. That is, the sulfur compound remaining in the fractions with the progress of hydrodesulfurization is poor in reactivity, and desulfurization is difficult to proceed unless the conditions are more severe. For example, benzothiophenes for kerosene fractions and alkyl-substituted dibenzothiophenes having a plurality of methyl groups represented by 4,6-dimethyldibenzothiophene as substituents for gas oil fractions are particularly poor in reactivity and sulfur content. This is an obstacle to proceeding with desulfurization to a lower sulfur region such as 10 ppm by mass.
石油系炭化水素の水素化脱硫反応では、硫黄化合物から直接硫黄原子を引き抜く反応機構と、硫黄原子に隣接する芳香環が水素化される反応を経由する反応機構が存在することが知られている。特に脱硫反応性の乏しい化合物を脱硫する際には、後者の芳香環水素化を経由する経路も必要と思われる。さらに、水素化反応のみならず、効率よく硫黄−炭素結合を開裂しうる分解反応も強く要求される。 In the hydrodesulfurization reaction of petroleum hydrocarbons, it is known that there is a reaction mechanism that directly extracts sulfur atoms from sulfur compounds and a reaction mechanism that involves a reaction in which an aromatic ring adjacent to the sulfur atom is hydrogenated. . In particular, when desulfurizing a compound having poor desulfurization reactivity, a route via the latter aromatic ring hydrogenation is considered necessary. Furthermore, not only a hydrogenation reaction but also a decomposition reaction that can efficiently cleave a sulfur-carbon bond is strongly required.
従来、石油精製における水素化脱硫触媒として、従来考えられる範囲で活性金属種およびその金属量と比率が最適化されてきた。このような中で、特にコバルト−モリブデンやニッケル−モリブデンといった活性金属を含む触媒について精力的にその最適化がなされ、これらの金属を活性金属とした水素化脱硫触媒では、コバルト/モリブデンあるいはニッケル/モリブデンのモル比が0.3〜1の範囲に最も脱硫活性が高い最適点があるとされてきた(例えば、非特許文献1、非特許文献2参照。)。しかしながら、発明者らが種々検討を重ねたところ、硫黄分を10質量ppm以下という極めて高い脱硫深度まで到達するためには、このような従来の金属比率を持つ水素化処理触媒では充分な脱硫活性を発揮できないことが判明した。これは、前述のように従来の脱硫レベルで求められていた触媒活性機能とは異なる機能が必要であることを強く示唆するものである。 Conventionally, as a hydrodesulfurization catalyst in petroleum refining, the active metal species and the amount and ratio of the metal have been optimized within the range conceivable in the past. Under such circumstances, the catalyst containing active metals such as cobalt-molybdenum and nickel-molybdenum is vigorously optimized. In hydrodesulfurization catalysts using these metals as active metals, cobalt / molybdenum or nickel / molybdenum are used. It has been said that there is an optimum point with the highest desulfurization activity in the molar ratio of molybdenum in the range of 0.3 to 1 (see, for example, Non-Patent Document 1 and Non-Patent Document 2). However, as a result of various studies by the inventors, in order to reach a very high desulfurization depth of 10 ppm by mass or less, such a conventional hydrotreating catalyst having a metal ratio has sufficient desulfurization activity. It was found that could not be demonstrated. This strongly suggests that a function different from the catalytic activity function required at the conventional desulfurization level as described above is necessary.
高い脱硫活性を達成する方法としては、活性金属担持量を増加させて活性点の数を増やす方法が考えられるが、アルミナを主成分とする高表面積な多孔質担体をもってしても活性金属の担持量には限界があり、過度に担持すると活性金属が凝集し、かえって活性が低下してしまう。さらに活性金属を過度に担持することで触媒の細孔が閉塞し、十分な活性を発揮できない、あるいは活性低下が著しくなるといった技術的な限界もあった。
ところで、一般的には、原油の蒸留あるいは重油分解反応で得られる残さ油を除く石油系炭化水素留分には硫黄分のほかに窒素分が含まれている。窒素分は有機窒素化合物として存在し、例えばアミン、ピリジン、ピロール、インドール、キノリン、カルバゾールおよびこれらの誘導体などが含まれているといわれている。このような窒素化合物は触媒に吸着し、活性を阻害することが知られており(例えば、非特許文献3参照。)、原油種や精製工程によっては窒素化合物が多く含まれる炭化水素を処理する場合もあり、従来技術を使用する限りにおいて窒素化合物の存在は脱硫を進める上で大きな障害のひとつとされてきた。
As a method of achieving a high desulfurization activity, a method of increasing the number of active sites by increasing the amount of active metal supported can be considered. However, even when a porous support mainly composed of alumina and having a high surface area is used, active metal is supported. There is a limit to the amount, and if it is excessively supported, the active metal aggregates and the activity is reduced. Furthermore, there is a technical limit that the active metal is excessively supported and the pores of the catalyst are blocked, so that sufficient activity cannot be exhibited, or the decrease in activity becomes significant.
By the way, in general, petroleum hydrocarbon fractions other than residual oil obtained by distillation of crude oil or heavy oil decomposition reaction contain nitrogen in addition to sulfur. Nitrogen is present as an organic nitrogen compound, and is said to contain, for example, amine, pyridine, pyrrole, indole, quinoline, carbazole, and derivatives thereof. Such nitrogen compounds are known to adsorb to the catalyst and inhibit the activity (see, for example, Non-Patent Document 3), and depending on the crude oil type and the refining process, hydrocarbons containing a large amount of nitrogen compounds are treated. In some cases, as long as the prior art is used, the presence of nitrogen compounds has been regarded as one of the major obstacles in promoting desulfurization.
本発明の目的は、極めて高い脱硫活性を有し、特に硫黄分10質量ppm以下という極めて高い脱硫深度を達成し得る触媒および水素化脱硫方法を提供することにある。さらには窒素化合物の脱硫反応阻害の影響を受けにくい触媒を提供することにもある。 An object of the present invention is to provide a catalyst and a hydrodesulfurization method which have a very high desulfurization activity and can achieve a very high desulfurization depth of 10 ppm by mass or less. Furthermore, the present invention provides a catalyst that is not easily affected by inhibition of desulfurization reaction of nitrogen compounds.
発明者らは、かかる課題について鋭意研究を重ねた結果、本発明を完成するに至った。 すなわち、本発明は、アルミナおよびリンを含む無機多孔質担体に、活性金属として周期律表第8族金属から選ばれた少なくとも1種類の金属と周期律第6A族金属から選ばれた少なくとも1種類の金属が[第8族金属酸化物]/[第6A族金属酸化物]のモル比で0.105〜0.265の範囲で含まれており、かつ、第6A族金属の含有量が酸化物換算で触媒重量に対して20〜30質量%の範囲であることを特徴とする石油系炭化水素の水素化脱硫触媒に関する。 As a result of intensive studies on such problems, the inventors have completed the present invention. That is, the present invention relates to an inorganic porous carrier containing alumina and phosphorus, and at least one metal selected from Group 8A metals and Periodic Table Group 8A metals as active metals. Is contained in a molar ratio of [Group 8 metal oxide] / [Group 6A metal oxide] in the range of 0.105 to 0.265, and the Group 6A metal content is oxidized. The present invention relates to a hydrodesulfurization catalyst for petroleum hydrocarbons, characterized in that it is in the range of 20 to 30% by mass in terms of catalyst.
また本発明は、前記の水素化脱硫触媒を用いて石油系炭化水素を水素化脱硫処理することを特徴とする石油系炭化水素の水素化脱硫方法に関する。 The present invention also relates to a hydrodesulfurization method for petroleum hydrocarbons, characterized in that petroleum hydrocarbons are hydrodesulfurized using the hydrodesulfurization catalyst.
以下に本発明を詳述する。 The present invention is described in detail below.
本発明における触媒はアルミナおよびリンを含む無機多孔質物質を担体としている。アルミナの含有量としては担体に対して80質量%以上であることが好ましく、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。アルミナは特に沸点230〜380℃を有する炭化水素分子が拡散するのに好適な細孔容積を与えるのに適した多孔質担体であり、アルミナの含有量が80質量%より少ない場合には、充分な担体細孔容積を得ることが難しくなる。 The catalyst in the present invention uses an inorganic porous material containing alumina and phosphorus as a carrier. The content of alumina is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more with respect to the support. Alumina is a porous carrier particularly suitable for providing a pore volume suitable for diffusing hydrocarbon molecules having a boiling point of 230 to 380 ° C., and is sufficient when the content of alumina is less than 80% by mass. It is difficult to obtain a large support pore volume.
また、無機多孔質担体に含まれるリンの含有量は酸化物換算で担体に対して0.5〜10質量%であることが好ましく、1〜9質量%であることがより好ましく、2〜6質量%であることがさらに好ましい。リンの含有量が酸化物換算で0.5質量%未満であると充分な脱硫活性を発揮できず、一方、10質量%を超えると担体の酸性質が上昇し、炭化水素の分解が生じ、収率の低下や分解に伴うコーク生成による活性低下の恐れがある。 The content of phosphorus contained in the inorganic porous carrier is preferably 0.5 to 10% by mass, more preferably 1 to 9% by mass, more preferably 2 to 6% by mass in terms of oxide. More preferably, it is mass%. If the phosphorus content is less than 0.5% by mass in terms of oxide, sufficient desulfurization activity cannot be exhibited. On the other hand, if it exceeds 10% by mass, the acidity of the carrier is increased, and hydrocarbon decomposition occurs. There is a risk of a decrease in yield and a decrease in activity due to coke formation accompanying decomposition.
担体は、アルミナおよびリン以外の成分として、さらにSi、Ti、Zr、Mg、CaおよびBから選ばれる少なくとも1種類を、酸化物換算で1〜10質量%の範囲で含有していることが好ましい。含有量は1.2〜9質量%がより好ましく、1.5〜8質量%がさらに好ましい。これらの元素としては、Si、Ti、Zr、Bが好ましく、Si、Ti、Bがより好ましく、特にSiが好ましい。また、これらの元素は組み合わせて使用することもできる。これらの元素を組み合わせて使用する場合には、Si−Ti、Si−Zr、Si−B、Ti−Bの組み合わせが好ましく、Si−Ti、Si−B、Ti−Bがより好ましく、Si−Ti、Si−Bがさらに好ましい。これらの元素による効果発現の機構は解明できていないが、アルミナと複合的な酸化物状態を形成し、担持した活性金属の効果と相乗的に働き、硫黄化合物や窒素化合物の炭素原子と窒素原子間あるいは硫黄原子間結合の開裂を促進するものと思われ、脱硫活性と窒素耐性の向上が見られる。これらの元素の含有量が酸化物換算で1質量%より少ない場合には、脱硫活性と窒素耐性が低下してしまい、10質量%を超える場合には担体の酸性質が強くなり、分解等の望ましくない副反応が起きる懸念がある。 The carrier preferably contains at least one selected from Si, Ti, Zr, Mg, Ca and B as a component other than alumina and phosphorus in the range of 1 to 10% by mass in terms of oxide. . The content is more preferably 1.2 to 9% by mass, and further preferably 1.5 to 8% by mass. As these elements, Si, Ti, Zr, and B are preferable, Si, Ti, and B are more preferable, and Si is particularly preferable. Moreover, these elements can also be used in combination. When these elements are used in combination, a combination of Si-Ti, Si-Zr, Si-B, and Ti-B is preferable, Si-Ti, Si-B, and Ti-B are more preferable, and Si-Ti Si-B is more preferable. Although the mechanism of the effect of these elements has not been elucidated, it forms a complex oxide state with alumina, works synergistically with the effect of the supported active metal, and the carbon and nitrogen atoms of sulfur and nitrogen compounds It is thought that it promotes the cleavage of the bond between or between the sulfur atoms, and the desulfurization activity and nitrogen resistance are improved. When the content of these elements is less than 1% by mass in terms of oxide, the desulfurization activity and nitrogen resistance are reduced. When the content exceeds 10% by mass, the acidity of the carrier becomes strong, and decomposition and the like. There are concerns about undesirable side reactions.
担体の主成分であるアルミナの調製法は特に限定されない。例えば、アルミニウム塩とアルミン酸塩を中和または加水分解する方法、あるいはアルミニウムアマルガム、アルミニウムアルコレートを加水分解する方法などから得られるアルミナ中間体を経由することにより得ることができる。また、市販のアルミナ中間体、ベーマイトパウダーを使用しても良い。 The method for preparing alumina as the main component of the carrier is not particularly limited. For example, it can be obtained via an alumina intermediate obtained from a method of neutralizing or hydrolyzing aluminum salt and aluminate, or a method of hydrolyzing aluminum amalgam or aluminum alcoholate. Moreover, you may use a commercially available alumina intermediate body and boehmite powder.
リンを担体に含有させる方法についても特に限定はない。通常は、リン酸あるいはリン酸のアルカリ塩をアルミナ調製時に添加する方法が好ましく採用される。例えば予めアルミニウム水溶液に添加した後にリンを含む水酸化アルミニウムゲルとしてもよく、調合した水酸化アルミニウムゲルに添加してもよく、あるいは市販のアルミナ中間体やベーマイトパウダーに水あるいは酸性水溶液を添加して混練する工程に添加してもよい。好ましくは水酸化アルミニウムゲルを調合する工程ですでにリンを含んでいる方がよい。なお、リンは酸化物の形態で担体中に存在する。 There is no particular limitation on the method for incorporating phosphorus into the carrier. Usually, a method in which phosphoric acid or an alkali salt of phosphoric acid is added during the preparation of alumina is preferably employed. For example, it may be added to an aluminum aqueous solution in advance and then an aluminum hydroxide gel containing phosphorus, may be added to a prepared aluminum hydroxide gel, or water or an acidic aqueous solution may be added to a commercially available alumina intermediate or boehmite powder. It may be added to the kneading step. It is preferable that phosphorus is already contained in the step of preparing the aluminum hydroxide gel. Phosphorus is present in the support in the form of an oxide.
Si、Ti、Zr、Mg、CaおよびBから選ばれる元素を担体に含有させる方法についても特に限定はない。例えば、アルミナを調合するいずれかの段階で、これらの元素の酸化物、水酸化物、硝酸塩、硫酸塩あるいはその他の塩化合物を、固体あるいは溶液の状態で添加する方法が挙げられる。あるいは、アルミナのみを一旦焼成したのち、溶液の状態で含浸担持してもよい。好ましくはアルミナを焼成する前のいずれかの段階で添加することが好ましい。なお、これらの元素は酸化物の形態で担体中に存在する。 There is no particular limitation on the method of incorporating an element selected from Si, Ti, Zr, Mg, Ca and B into the support. For example, there is a method of adding oxides, hydroxides, nitrates, sulfates or other salt compounds of these elements in a solid or solution state at any stage of preparing alumina. Alternatively, only alumina may be once fired and then impregnated and supported in a solution state. Preferably, it is added at any stage before firing the alumina. These elements are present in the support in the form of oxides.
本発明において、担体に担持させる活性金属としては、周期律表第8族金属から選ばれた少なくとも1種類の金属と周期律表第6A族金属から選ばれた少なくとも1種類の金属が用いられる。 第8族金属としてはCo、Niが挙げられ、第6A族金属としてはMo、Wが挙げられる。第8族金属と第6A族金属の組み合わせとしては、Co−Mo、Ni−Mo、Co−W、Ni−W、Co−Ni−Mo、Co−Ni−Wが好ましく、Co−MoあるいはNi−Moの組み合わせが特に好ましい。第6A族金属の含有量は酸化物換算で触媒重量の20〜30質量%の範囲であることが好ましく、より好ましくは21〜26質量%の範囲であり、さらにより好ましくは22〜25質量%の範囲である。20質量%より少ない場合には、活性点が少なく、充分な脱硫活性と窒素耐性を発揮できない。30質量%より多い場合には、金属の凝集が生じ、かえって脱硫活性が低下する恐れがある。 In the present invention, as the active metal supported on the carrier, at least one metal selected from Group 8 metal of the periodic table and at least one metal selected from Group 6A metal of the periodic table are used. The Group 8 metal includes Co and Ni, and the Group 6A metal includes Mo and W. As the combination of the Group 8 metal and the Group 6A metal, Co—Mo, Ni—Mo, Co—W, Ni—W, Co—Ni—Mo, and Co—Ni—W are preferable, and Co—Mo or Ni— A combination of Mo is particularly preferred. The content of the Group 6A metal is preferably in the range of 20 to 30% by mass of the catalyst weight in terms of oxide, more preferably in the range of 21 to 26% by mass, and even more preferably 22 to 25% by mass. Range. When it is less than 20% by mass, there are few active sites and sufficient desulfurization activity and nitrogen resistance cannot be exhibited. When the amount is more than 30% by mass, metal agglomeration occurs, and the desulfurization activity may be lowered.
第8族金属と第6A族金属の担持比率は、[第8族金属酸化物]/[第6A族金属酸化物]のモル比で0.105〜0.265の範囲であることが必要である。好ましくは0.110〜0.260であり、より好ましくは0.115〜0.250、さらにより好ましくは0.140〜0.245である。モル比が0.105より小さい場合には第8族金属の助触媒効果が十分発揮できず脱硫活性が低下してしまう。また、モル比が0.265より大きい場合には充分な水素化活性を発揮することができず、また窒素化合物による活性への阻害効果が大きくなり、脱硫活性や窒素耐性が低下してしまう恐れがある。 The supporting ratio of the Group 8 metal to the Group 6A metal needs to be in the range of 0.105 to 0.265 in terms of a [Group 8 metal oxide] / [Group 6A metal oxide] molar ratio. is there. Preferably it is 0.110-0.260, More preferably, it is 0.115-0.250, More preferably, it is 0.140-0.245. When the molar ratio is less than 0.105, the cocatalyst effect of the Group 8 metal cannot be sufficiently exerted and the desulfurization activity is lowered. Further, when the molar ratio is larger than 0.265, sufficient hydrogenation activity cannot be exhibited, and the inhibitory effect on the activity by the nitrogen compound is increased, and the desulfurization activity and nitrogen resistance may be reduced. There is.
第8族金属および第6A族金属の合計含有量は、酸化物換算で触媒重量に対して22質量%以上が好ましく、より好ましくは23質量%以上、さらに好ましくは25質量%以上である。22質量%より少ない場合には活性金属が少ないため充分な脱硫活性を発揮できない懸念がある。 The total content of the Group 8 metal and the Group 6A metal is preferably 22% by mass or more, more preferably 23% by mass or more, and further preferably 25% by mass or more based on the catalyst weight in terms of oxide. When the amount is less than 22% by mass, there is a concern that sufficient desulfurization activity cannot be exhibited because there are few active metals.
また、活性成分として活性金属とともにリンが担持されていることが好ましい。担体に担持されるリンの担持量は、[五酸化リン]/[第6A族金属酸化物]のモル比で0.105〜0.255の範囲が好ましく、より好ましくは0.120〜0.240であり、最も好ましくは0.125〜0.205である。モル比が0.105より小さい場合には、リンの効果が十分発揮できず、0.255より大きい場合には触媒の酸性質が強くなり分解反応やコーク生成反応が促進されてしまう可能性がある。 Moreover, it is preferable that phosphorus is carried with the active metal as an active ingredient. The amount of phosphorus supported on the carrier is preferably in the range of 0.105 to 0.255, more preferably 0.120 to 0.005 in terms of a molar ratio of [phosphorus pentoxide] / [Group 6A metal oxide]. 240, most preferably 0.125 to 0.205. If the molar ratio is less than 0.105, the effect of phosphorus cannot be sufficiently exerted, and if it is greater than 0.255, the acidity of the catalyst becomes strong and the decomposition reaction or coke formation reaction may be promoted. is there.
活性金属成分である第8族金属および第6A族金属を担体に担持させる方法は特に限定されず、通常の水素化脱硫触媒を製造する際に適用される公知の方法を用いることができる。例えば、活性金属の塩を含む溶液を担体に含浸する方法が好ましく採用される。また平衡吸着法、Pore−filling法、Incipient−wetness法なども好ましく採用される。例えば、Pore−filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法であるが、含浸方法は特に限定されるものではなく、金属担持量や担体の物性に応じて適当な方法で含浸することができる。 The method for supporting the group 8 metal and the group 6A metal, which are active metal components, on the carrier is not particularly limited, and a known method applied when producing an ordinary hydrodesulfurization catalyst can be used. For example, a method of impregnating a support with a solution containing a salt of an active metal is preferably employed. Further, an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are also preferably employed. For example, the pore-filling method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of the metal salt solution, but the impregnation method is not particularly limited, and the amount of metal supported Depending on the physical properties of the carrier and the carrier, it can be impregnated by an appropriate method.
リンを担体に担持させる方法も特に限定されず、前述の第8族金属および第6A族金属を含む水溶液に共存させて担持してもよく、金属を担持する前、あるいは担持した後に逐次的に担持してもよい。また、担持する手法についても平衡吸着法などの前述の手法が好ましく採用される。 The method for supporting phosphorus on the carrier is not particularly limited, and it may be supported in the aqueous solution containing the Group 8 metal and the Group 6A metal described above, or sequentially before or after the metal is supported. You may carry. Further, the method described above such as the equilibrium adsorption method is preferably employed as the method for supporting.
本発明の水素化脱硫触媒は、窒素によるBET法で求められる触媒の平均細孔半径が30〜45Åの範囲であることが好ましく、より好ましくは32〜40Åの範囲である。30Åより小さい場合には反応分子の細孔内拡散が充分でなく活性が低くなってしまうので好ましくない。また、45Åより大きい場合には、触媒の表面積が小さくなり充分な脱硫活性を発揮できないため好ましくない。また、触媒の細孔半径30Å以下の占める細孔容積は全細孔容積の13〜33%の範囲であるのが好ましく、より好ましくは15〜30%の範囲であり、さらに好ましくは25〜30%の範囲である。細孔半径30Å以下の細孔における反応分子の拡散しやすさは、これより大きい細孔より劣るものの脱硫反応への寄与は無視できず、13%より小さい場合には有効な触媒表面積が減少し、活性が低下してしまう懸念がある。一方、33%より大きい場合には拡散の影響によりかえって活性が低下してしまう懸念がある。また、触媒の細孔半径45Å以上の占める細孔容積は5〜20%の範囲であるのが好ましく、より好ましくは8〜15%の範囲であり、さらに好ましくは12〜15%の範囲である。この領域の細孔は反応分子の反応活性点への到達度合いを左右する重要な細孔と思われ、5%より少ない場合には反応分子の拡散が充分でなく活性が低下してしまう懸念がある。しかしながら、20%より多い場合には触媒の表面積そのものが減少してしまい活性が低下する懸念がある。 In the hydrodesulfurization catalyst of the present invention, the average pore radius of the catalyst determined by the BET method using nitrogen is preferably in the range of 30 to 45 mm, more preferably in the range of 32 to 40 mm. If it is less than 30 mm, the reaction molecules do not diffuse sufficiently in the pores and the activity becomes low, which is not preferable. On the other hand, if it is larger than 45 mm, the surface area of the catalyst becomes small and sufficient desulfurization activity cannot be exhibited, which is not preferable. The pore volume occupied by the pore radius of 30 mm or less of the catalyst is preferably in the range of 13 to 33% of the total pore volume, more preferably in the range of 15 to 30%, and further preferably in the range of 25 to 30. % Range. The ease of diffusion of reaction molecules in pores having a pore radius of 30 mm or less is inferior to pores larger than this, but the contribution to the desulfurization reaction cannot be ignored. If it is less than 13%, the effective catalyst surface area decreases. There is a concern that the activity will decrease. On the other hand, if it is larger than 33%, there is a concern that the activity may decrease due to the influence of diffusion. The pore volume occupied by the pore radius of 45 mm or more of the catalyst is preferably in the range of 5 to 20%, more preferably in the range of 8 to 15%, and further preferably in the range of 12 to 15%. . The pores in this region are considered to be important pores that influence the degree of arrival of the reactive molecules at the reaction active point, and if it is less than 5%, there is a concern that the diffusion of the reactive molecules is not sufficient and the activity is lowered. is there. However, when the amount is more than 20%, the surface area of the catalyst itself is decreased, and there is a concern that the activity is lowered.
本発明で用いられる石油系炭化水素としては、沸点範囲140〜550℃の留分を80容量%以上含む原油の常圧蒸留装置、減圧蒸留装置や、熱分解、接触分解、および水素化処理等の石油精製工程で生成する留分が挙げられる。さらには、軽油留分である沸点範囲240〜380℃の留分を70容量%以上含む石油系炭化水素留分、あるいは灯油留分である沸点範囲140〜240℃の留分を70容量%以上含む石油系炭化水素留分であることが好ましく、軽油留分である沸点範囲240〜380℃の留分を70容量%以上含む石油系炭化水素留分がさらにより好ましい。石油系炭化水素としては、原油の蒸留によって得られる留分のほか、熱分解、接触分解反応によって得られる留分も含むことができるが、好ましくは軽油留分中の50容量%以上は直留軽油であり、より好ましくは70容量%である。熱分解軽油や接触分解軽油はオレフィン分、芳香族分などが直留軽油より多く含有されており、これらの留分の割合が多くなると反応性の低下や生成油の色相が悪化する傾向にある。また灯油留分中の50容量%以上は同様の理由から直留灯油であることが好ましく、より好ましくは70容量%である。 Petroleum hydrocarbons used in the present invention include a crude oil atmospheric distillation apparatus, a vacuum distillation apparatus, thermal cracking, catalytic cracking, hydrotreating and the like containing a fraction having a boiling point range of 140 to 550 ° C. of 80% by volume or more. And a fraction produced in the oil refining process. Furthermore, a petroleum hydrocarbon fraction containing 70 vol% or more of a boiling point range of 240 to 380 ° C. which is a light oil fraction, or a 70 wt% or more fraction of a boiling point range of 140 to 240 ° C. which is a kerosene fraction. It is preferably a petroleum hydrocarbon fraction containing, and even more preferably a petroleum hydrocarbon fraction containing 70 vol% or more of a fraction having a boiling range of 240 to 380 ° C. that is a light oil fraction. Petroleum hydrocarbons can include fractions obtained by distillation of crude oil, as well as fractions obtained by thermal cracking and catalytic cracking reactions. Preferably, 50% by volume or more of gas oil fractions are straight-run. Light oil, more preferably 70% by volume. Pyrolysis gas oil and catalytic cracking gas oil contain more olefins and aromatics than straight-run gas oil, and when the proportion of these fractions increases, the reactivity tends to deteriorate and the hue of the product oil tends to deteriorate. . Further, 50% by volume or more in the kerosene fraction is preferably straight-run kerosene for the same reason, more preferably 70% by volume.
本発明の水素化脱硫触媒はチオフェン類、ベンゾチオフェン類、ジベンゾチオフェン類といった構造を有する硫黄分子からの脱硫に適しており、特に軽油留分である沸点240〜380℃の留分を80容量%以上含む石油系炭化水素に適しているが、灯油留分として沸点範囲140〜240℃の留分を80容量%以上含む石油系炭化水素にも良好に使用できる。なお、ここに示す蒸留性状の値についてはJIS K 2254「石油製品−蒸発試験方法」に記載の方法に準拠して測定される値である。 The hydrodesulfurization catalyst of the present invention is suitable for desulfurization from sulfur molecules having a structure such as thiophenes, benzothiophenes, and dibenzothiophenes, and in particular, 80% by volume of a gas oil fraction having a boiling point of 240 to 380 ° C. Although it is suitable for the petroleum-based hydrocarbons contained above, it can also be used favorably for petroleum-based hydrocarbons containing 80% by volume or more of a fraction having a boiling range of 140 to 240 ° C. as a kerosene fraction. In addition, about the value of the distillation property shown here, it is a value measured based on the method as described in JISK2254 "petroleum product-evaporation test method".
本発明では、このような石油系炭化水素を本発明の特定の触媒を用いて水素化脱硫処理することにより、硫黄分濃度を10質量ppm以下、好ましくは7質量ppm以下に低減することができる。 In the present invention, the sulfur concentration can be reduced to 10 mass ppm or less, preferably 7 mass ppm or less by hydrodesulfurizing such a petroleum hydrocarbon using the specific catalyst of the present invention. .
本発明における石油系炭化水素のうち、軽油留分である沸点240〜380℃の留分を80容量%以上含む石油系炭化水素については、窒素分が100質量ppm以上含まれている場合において、より窒素耐性の効果をより発揮でき、好ましくは120質量ppm以上、より好ましくは150質量ppm以上、さらに好ましくは200質量ppm以上でその効果は顕著になる。 Among petroleum-based hydrocarbons in the present invention, for petroleum-based hydrocarbons containing 80 vol% or more of a boiling point of 240 to 380 ° C., which is a light oil fraction, in the case where nitrogen content is 100 ppm or more, The effect of nitrogen resistance can be further exerted, and the effect becomes remarkable when it is preferably 120 mass ppm or more, more preferably 150 mass ppm or more, and further preferably 200 mass ppm or more.
また、灯油留分として沸点範囲140〜240℃の留分を80容量%以上含む石油系炭化水素については、窒素分が4質量ppm以上含まれている場合において、より硫黄耐性の効果をより発揮でき、好ましくは6質量ppm以上、より好ましくは8質量ppm以上、さらに好ましくは10質量ppm以上でその効果は顕著になる。 In addition, petroleum petroleum hydrocarbons containing 80 vol% or more of a boiling point range of 140 to 240 ° C. as a kerosene fraction exhibit more sulfur resistance when nitrogen content is 4 ppm by mass or more. Preferably, the effect becomes remarkable at 6 mass ppm or more, more preferably 8 mass ppm or more, and further preferably 10 mass ppm or more.
なお、本発明において硫黄分濃度(硫黄分含有量)とは、JIS K 2541「硫黄分試験方法」またはASTM−D5453に記載の方法に準拠して測定される石油系炭化水素全量を基準とした硫黄分の質量含有量を意味する。また窒素分含有量とは、JIS K2609「窒素分試験方法」またはASTM−D4629、D−5762に記載の方法に準拠して測定される石油系炭化水素全量を基準とした窒素分の質量含有量を意味する。 In the present invention, the sulfur content (sulfur content) is based on the total amount of petroleum hydrocarbons measured according to the method described in JIS K 2541 “Sulfur Content Test Method” or ASTM-D5453. It means the mass content of sulfur. The nitrogen content is the mass content of nitrogen based on the total amount of petroleum hydrocarbons measured in accordance with JIS K2609 “Method for testing nitrogen content” or ASTM-D4629, D-5762. Means.
灯油留分は、寒冷地における流動性などディーゼル燃料としての性状を調整するため、軽油留分に対して所定量混合して使用する。このため、本発明では、好ましくはこのような灯油留分を特定の触媒を用いて硫黄分濃度10質量ppm以下に低減すべく水素化脱硫することにより、ディーゼルエンジン排ガス処理において前述の硫黄低減効果を発揮することができる。さらにはストーブなどの暖房器具燃料として用いる際に、硫黄分濃度10質量ppm以下の灯油を使用することにより有害な硫黄酸化物等の発生が著しく低減されることが期待できる。 The kerosene fraction is used by mixing a predetermined amount with the diesel oil fraction in order to adjust the properties as diesel fuel such as fluidity in cold regions. For this reason, in the present invention, preferably, such a kerosene fraction is hydrodesulfurized using a specific catalyst so as to reduce the sulfur concentration to 10 ppm by mass or less. Can be demonstrated. Furthermore, when used as a heating appliance fuel such as a stove, the use of kerosene having a sulfur content concentration of 10 mass ppm or less can be expected to significantly reduce the generation of harmful sulfur oxides.
本発明は、前記した触媒を用いて、石油系炭化水素の水素化脱硫処理を行う。
本発明における水素化脱硫反応条件として、LHSVは0.3〜5.0h-1が好ましく、より好ましくは0.35〜4.0h-1、さらに好ましくは0.4〜3.5h-1である。LHSVが0.3h-1より低い場合には、ある通油量を得るための反応塔容積が極めて大きくなるため反応塔の設置など莫大な設備投資が必要となる可能性がある。また、LHSVが5.0h-1より大きい場合には、触媒と油との接触時間が短くなるため脱硫反応の進行が充分でなく、脱硫の効果が発揮できない恐れがある。
In the present invention, hydrodesulfurization treatment of petroleum hydrocarbons is performed using the above-described catalyst.
As hydrodesulfurization reaction conditions in the present invention, LHSV is preferably 0.3~5.0h -1, more preferably at 0.35~4.0h -1, more preferably 0.4~3.5H -1 is there. When LHSV is lower than 0.3 h −1 , the volume of the reaction tower for obtaining a certain oil flow rate becomes extremely large, and therefore a huge capital investment such as installation of a reaction tower may be required. On the other hand, when LHSV is larger than 5.0 h −1 , the contact time between the catalyst and the oil is shortened, so that the desulfurization reaction does not proceed sufficiently and the desulfurization effect may not be exhibited.
水素分圧は3〜8MPaが好ましく、より好ましくは3.5〜7MPa、さらに好ましくは4〜6.5MPaである。水素分圧が3MPaより低い場合には、脱硫の効果が発揮できない懸念があり、8MPaより大きい場合には、圧縮機や装置強度の見直しなど、大きな設備投資が必要となる可能性があり好ましくない。 The hydrogen partial pressure is preferably 3 to 8 MPa, more preferably 3.5 to 7 MPa, and still more preferably 4 to 6.5 MPa. When the hydrogen partial pressure is lower than 3 MPa, there is a concern that the effect of desulfurization cannot be exhibited. When the hydrogen partial pressure is higher than 8 MPa, there is a possibility that a large capital investment such as a review of the compressor and the equipment strength may be required. .
反応温度は280〜380℃が好ましい。反応温度が280℃より低い場合には、充分な脱硫反応速度、あるいは芳香族水素化反応速度を得ることができない恐れがあり好ましくない。また、380℃より高い場合には、生成油の色相の悪化や分解による目的留分収率の低下を招く可能性があるため好ましくない。 The reaction temperature is preferably 280 to 380 ° C. When the reaction temperature is lower than 280 ° C., a sufficient desulfurization reaction rate or aromatic hydrogenation reaction rate may not be obtained. Moreover, when higher than 380 degreeC, since there exists a possibility of causing the fall of the target fraction yield by the deterioration of the hue of a product oil, or decomposition | disassembly, it is unpreferable.
水素/油比は50〜500NL/Lが好ましい。水素/油比は原料油流量に対する水素ガス流量の比を示すものであり、多いほど系内への水素供給が充分になるだけでなく、硫化水素などの触媒活性点を被毒する物質をすばやく系外に除去できるため、反応性が向上する傾向がある。しかしながら500NL/Lを超える場合には、反応性は向上するが、効果としては徐々に小さくなる。また圧縮機など大きな設備投資が必要となる恐れがある。一方、50NL/Lより少ない場合には、反応性が低下し、脱硫・脱芳香族反応の進行が充分でない可能性がある。 The hydrogen / oil ratio is preferably 50 to 500 NL / L. The hydrogen / oil ratio indicates the ratio of the hydrogen gas flow rate to the feed oil flow rate. The higher the hydrogen / oil ratio is, the more hydrogen supply into the system becomes, and the faster the substances that poison the catalytic active sites such as hydrogen sulfide. Since it can be removed out of the system, the reactivity tends to be improved. However, when it exceeds 500 NL / L, the reactivity is improved, but the effect is gradually reduced. Moreover, there is a risk that a large capital investment such as a compressor may be required. On the other hand, when it is less than 50 NL / L, the reactivity is lowered, and the desulfurization / dearomatic reaction may not be sufficiently progressed.
実際の商業装置においては、反応塔に触媒を充填した後、触媒の予備硫化操作を行う。この予備硫化の条件は特に限定されないが、一般的には触媒はコバルト、ニッケル、モリブデンといった活性金属が酸化物の状態で反応塔に充填され、石油系炭化水素留分に含まれる硫黄分やジメチルジスルフィドなどの硫化剤を用い、石油系炭化水素留分単独あるいは硫化剤添加した留分を通油するとともに200℃以上の温度を与えて活性金属を硫化物の状態にする方法が採用されている。 In an actual commercial apparatus, the catalyst is pre-sulfided after the reaction tower is filled with the catalyst. The conditions for the preliminary sulfidation are not particularly limited, but in general, the catalyst is packed in an active metal such as cobalt, nickel, and molybdenum into the reaction tower, and sulfur or dimethyl contained in the petroleum hydrocarbon fraction. A method is used in which a petroleum hydrocarbon fraction alone or a fraction to which a sulfurizing agent is added is passed through a sulfurizing agent such as disulfide and the active metal is brought into a sulfide state by giving a temperature of 200 ° C. or higher. .
水素化脱硫における反応塔の反応形式は特に限定されないが、通常は、固定床、移動床等のプロセスから選択できるが、固定床が好ましい。また、原料油の流通法については、ダウンフロー、アップフローのいずれの形式も採用することができる。 Although the reaction mode of the reaction tower in hydrodesulfurization is not particularly limited, it can usually be selected from processes such as a fixed bed and a moving bed, but a fixed bed is preferred. Moreover, about the distribution | circulation method of raw material oil, any form of a down flow and an up flow can be employ | adopted.
軽油留分について本発明の水素化脱硫処理を行った場合に生成する超低硫黄・低芳香族軽油は単独でディーゼル軽油として用いてもよいが、この超低硫黄・低芳香族軽油に他の基材などの成分を混合してディーゼル軽油として用いることもできる。また、灯油留分について本発明の水素化脱硫処理を行った場合に生成する灯油留分をディーゼル軽油として用いることができる。 The ultra-low sulfur / low aromatic light oil produced when the hydrodesulfurization treatment of the present invention is performed on the light oil fraction may be used alone as diesel light oil. Components such as a base material can be mixed and used as diesel light oil. Moreover, the kerosene fraction produced | generated when the hydrodesulfurization process of this invention is performed about a kerosene fraction can be used as diesel light oil.
本発明の触媒は、極めて高い脱硫活性を有し、硫黄分10質量ppm以下という極めて高い脱硫深度を達成し得る。また、脱硫反応の阻害物質である窒素化合物についても高い窒素耐性を有する。 The catalyst of the present invention has a very high desulfurization activity and can achieve a very high desulfurization depth of 10 ppm by mass or less. In addition, nitrogen compounds that are desulfurization reaction inhibitors also have high nitrogen resistance.
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例によって制限されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(実施例1)
濃度5質量%のアルミン酸ナトリウム水溶液3000gに水ガラス3号18.0gを加え、65℃に保温した容器に入れた。濃度2.5質量%の硫酸アルミニウム水溶液3000gにリン酸(濃度85%)6.0gを加えた溶液を、65℃に保温した別の容器において調製し、前述のアルミン酸ナトリウムを含む水溶液を滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。ケーキ状スラリーを還流冷却器を取り付けた容器に移し、蒸留水150mlと27%アンモニア水溶液10gを加え、80℃で24時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去ながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。
得られた成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら三酸化モリブデン17.3g、硝酸コバルト(II)6水和物13.2g、リン酸(濃度85%)3.9gおよびリンゴ酸4.0gを含む含浸溶液をフラスコ中に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒Aを得た。調製した触媒Aの物性を表1にまとめた。
Example 1
18.0 g of water glass No. 3 was added to 3000 g of an aqueous sodium aluminate solution having a concentration of 5% by mass, and the mixture was placed in a container kept at 65 ° C. A solution in which 6.0 g of phosphoric acid (concentration 85%) is added to 3000 g of an aluminum sulfate aqueous solution having a concentration of 2.5% by mass is prepared in a separate container kept at 65 ° C., and the aqueous solution containing sodium aluminate is added dropwise. did. The end point was when the pH of the mixed solution reached 7.0, and the resulting slurry product was filtered through a filter to obtain a cake-like slurry. The cake-like slurry was transferred to a container equipped with a reflux condenser, 150 ml of distilled water and 10 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 80 ° C. for 24 hours. The slurry was put into a kneading apparatus, heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. The obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier.
50 g of the obtained shaped carrier was put into an eggplant-shaped flask, and while degassing with a rotary evaporator, 17.3 g of molybdenum trioxide, 13.2 g of cobalt nitrate (II) hexahydrate, 3.9 g of phosphoric acid (concentration 85%) And an impregnation solution containing 4.0 g of malic acid was poured into the flask. The impregnated sample was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst A. The physical properties of the prepared catalyst A are summarized in Table 1.
(実施例2)
実施例1で得られた成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら三酸化モリブデン17.0g、硝酸ニッケル(II)6水和物13.2g、リン酸(濃度85%)3.9gおよびリンゴ酸4.0gを含む含浸溶液をフラスコ中に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒Bを得た。調製した触媒Bの物性を表1にまとめた。
(Example 2)
50 g of the shaped carrier obtained in Example 1 was placed in an eggplant-shaped flask, and 17.0 g of molybdenum trioxide, 13.2 g of nickel (II) nitrate hexahydrate, phosphoric acid (concentration 85%) while degassing with a rotary evaporator. ) An impregnation solution containing 3.9 g and 4.0 g malic acid was poured into the flask. The impregnated sample was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain catalyst B. The physical properties of the prepared catalyst B are summarized in Table 1.
(実施例3)
濃度5質量%のアルミン酸ナトリウム水溶液3000gに水ガラス3号10.0gを加え、65℃に保温した容器に入れた。濃度2.5質量%の硫酸アルミニウム水溶液3000gにホウ酸4.0gを加えた溶液を、65℃に保温した別の容器において調製し、前述のアルミン酸ナトリウムを含む水溶液とリン酸(濃度85%)6.0gを含む水溶液50mlを同時に滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。ケーキ状スラリーを還流冷却器を取り付けた容器に移し、蒸留水150mlと27%アンモニア水溶液10gを加え、80℃で24時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去ながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。
得られた成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら三酸化モリブデン17.3g、硝酸コバルト(II)6水和物13.2g、リン酸(濃度85%)3.9gおよびリンゴ酸4.0gを含む含浸溶液をフラスコ中に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒Cを得た。調製した触媒Cの物性を表1にまとめた。
Example 3
10.0 g of water glass No. 3 was added to 3000 g of an aqueous sodium aluminate solution having a concentration of 5% by mass and placed in a container kept at 65 ° C. A solution obtained by adding 4.0 g of boric acid to 3000 g of an aluminum sulfate aqueous solution having a concentration of 2.5% by mass was prepared in another container kept at 65 ° C., and the aqueous solution containing sodium aluminate and phosphoric acid (concentration 85%) ) 50 ml of an aqueous solution containing 6.0 g was added dropwise at the same time. The end point was when the pH of the mixed solution reached 7.0, and the resulting slurry product was filtered through a filter to obtain a cake-like slurry. The cake-like slurry was transferred to a container equipped with a reflux condenser, 150 ml of distilled water and 10 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 80 ° C. for 24 hours. The slurry was put into a kneading apparatus, heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. The obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier.
50 g of the obtained shaped carrier was put into an eggplant-shaped flask, and while degassing with a rotary evaporator, 17.3 g of molybdenum trioxide, 13.2 g of cobalt nitrate (II) hexahydrate, 3.9 g of phosphoric acid (concentration 85%) And an impregnation solution containing 4.0 g of malic acid was poured into the flask. The impregnated sample was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst C. The physical properties of the prepared catalyst C are summarized in Table 1.
(実施例4)
内径15mmの反応管に触媒Aを20ml充填し、硫黄分濃度が3質量%となるようにジメチルジサルファィドを加えた直留軽油(硫黄分3質量%)を用いて触媒層平均温度300℃、水素分圧5MPa、LHSV1h−1、水素/油比200NL/Lの条件下で、4時間触媒の予備硫化を行った。予備硫化後、中東系の直留軽油である原料油A(10%留出点210℃、90%留出点342℃、硫黄分1.00質量%、窒素分90質量ppm)を反応温度340℃、圧力5.0MPa、LHSV1h−1、水素/油比200NL/Lの条件で通油して水素化脱硫を行った。その後原料油B(10%留出点232℃、90%留出点349℃、硫黄分1.20質量%、窒素分210質量ppm)を通油して水素化脱硫を行い、原料油Aを処理した場合と生成油硫黄分の比較を行った。
触媒Bおよび触媒Cについても、それぞれ同様の操作を行った。これらの結果を表2にまとめた。
Example 4
The average catalyst layer temperature is 300 using straight-run gas oil (sulfur content 3% by mass) in which 20 ml of catalyst A is packed in a reaction tube having an inner diameter of 15 mm and dimethyl disulfide is added so that the sulfur concentration is 3% by mass. The catalyst was presulfided for 4 hours under the conditions of ° C., hydrogen partial pressure of 5 MPa, LHSV1 h −1 , hydrogen / oil ratio of 200 NL / L. After preliminary sulfidation, a raw oil A (10% distillation point 210 ° C., 90% distillation point 342 ° C., sulfur content 1.00% by mass, nitrogen content 90% by mass), which is a Middle Eastern straight-run gas oil, is reacted at a reaction temperature 340 Hydrodesulfurization was performed by passing oil under the conditions of ° C., pressure 5.0 MPa, LHSV 1 h −1 , hydrogen / oil ratio 200 NL / L. Thereafter, feed oil B (10% distillation point 232 ° C., 90% distillation point 349 ° C., sulfur content 1.20 mass%, nitrogen content 210 mass ppm) was passed through to perform hydrodesulfurization, A comparison was made between the treated oil and the sulfur content of the product oil.
The same operation was performed for Catalyst B and Catalyst C, respectively. These results are summarized in Table 2.
(比較例1)
実施例1で得られる成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら三酸化モリブデン16.1g、硝酸コバルト(II)6水和物19.0g、リン酸(濃度85%)1.9gおよびリンゴ酸5.0gを含む含浸溶液をフラスコ中に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒Dを得た。調製した触媒Dの物性を表1にまとめた。
(Comparative Example 1)
50 g of the molded carrier obtained in Example 1 was placed in an eggplant-shaped flask and 16.1 g of molybdenum trioxide, 19.0 g of cobalt (II) nitrate hexahydrate, phosphoric acid (concentration 85%) while degassing with a rotary evaporator. An impregnation solution containing 1.9 g and malic acid 5.0 g was poured into the flask. The impregnated sample was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst D. The physical properties of the prepared catalyst D are summarized in Table 1.
(比較例2)
濃度5質量%のアルミン酸ナトリウム水溶液3000gに水ガラス3号10.0gを加え、65℃に保温した容器に入れた。濃度2.5質量%の硫酸アルミニウム水溶液を、65℃に保温した別の容器において調製し、前述のアルミン酸ナトリウムを含む水溶液を滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。ケーキ状スラリーを還流冷却器を取り付けた容器に移し、蒸留水150mlと27%アンモニア水溶液10gを加え、80℃で24時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去ながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。得られた成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら三酸化モリブデン16.1g、硝酸コバルト(II)6水和物19.0g、リン酸(濃度85%)1.9gおよびリンゴ酸5.0gを含む含浸溶液をフラスコ中に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒Eを得た。調製した触媒Eの物性を表1にまとめた。
(Comparative Example 2)
10.0 g of water glass No. 3 was added to 3000 g of an aqueous sodium aluminate solution having a concentration of 5% by mass and placed in a container kept at 65 ° C. An aqueous aluminum sulfate solution having a concentration of 2.5% by mass was prepared in another container kept at 65 ° C., and the aqueous solution containing sodium aluminate was dropped. The end point was when the pH of the mixed solution reached 7.0, and the resulting slurry product was filtered through a filter to obtain a cake-like slurry. The cake-like slurry was transferred to a container equipped with a reflux condenser, 150 ml of distilled water and 10 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 80 ° C. for 24 hours. The slurry was put into a kneading apparatus, heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. The obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier. 50 g of the obtained shaped carrier was placed in an eggplant-shaped flask and degassed with a rotary evaporator. 16.1 g of molybdenum trioxide, 19.0 g of cobalt nitrate (II) hexahydrate, 1.9 g of phosphoric acid (concentration 85%) And an impregnation solution containing 5.0 g of malic acid was poured into the flask. The impregnated sample was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst E. The physical properties of the prepared catalyst E are summarized in Table 1.
(比較例3)
触媒Dおよび触媒Eについて、実施例4と同様の操作をそれぞれ行った。これらの結果を表2に示す。
(Comparative Example 3)
For Catalyst D and Catalyst E, the same operations as in Example 4 were performed. These results are shown in Table 2.
Claims (11)
Hydrodesulfurization treatment of petroleum hydrocarbons under conditions of LHSV 0.3 to 5.0 h −1 , hydrogen pressure 3 to 8 MPa, reaction temperature 280 to 380 ° C., hydrogen / oil ratio 100 to 500 NL / L The hydrodesulfurization method according to claim 6, wherein the hydrodesulfurization method is performed.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004216337A JP2006035052A (en) | 2004-07-23 | 2004-07-23 | Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method |
PCT/JP2005/000435 WO2005065823A1 (en) | 2004-01-09 | 2005-01-07 | Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same |
EP05703674A EP1702682A4 (en) | 2004-01-09 | 2005-01-07 | Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same |
US11/456,160 US20060249429A1 (en) | 2004-01-09 | 2006-07-07 | Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same |
KR1020067015820A KR101218947B1 (en) | 2004-01-09 | 2006-08-04 | Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004216337A JP2006035052A (en) | 2004-07-23 | 2004-07-23 | Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006035052A true JP2006035052A (en) | 2006-02-09 |
Family
ID=35900614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004216337A Pending JP2006035052A (en) | 2004-01-09 | 2004-07-23 | Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006035052A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009167308A (en) * | 2008-01-17 | 2009-07-30 | Japan Energy Corp | Hydrorefining method of naphtha fraction |
JP2010075831A (en) * | 2008-09-25 | 2010-04-08 | Nippon Oil Corp | Method of manufacturing regenerated catalyst for hydrogenation treatment, and method of manufacturing petroleum product |
JP2010222458A (en) * | 2009-03-23 | 2010-10-07 | Jx Nippon Oil & Energy Corp | Hydrorefining method for hydrocarbon oil |
JP2012524649A (en) * | 2009-04-21 | 2012-10-18 | アルベマール・ユーロプ・エスピーアールエル | Hydrotreating catalyst containing phosphorus and boron |
WO2013061913A1 (en) * | 2011-10-24 | 2013-05-02 | 日揮触媒化成株式会社 | Hydrogenation catalyst and method for producing same |
CN118218011A (en) * | 2024-01-23 | 2024-06-21 | 广东石油化工学院 | High-activity gasoline and diesel fraction selective hydrogenation catalyst and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0214745A (en) * | 1988-05-10 | 1990-01-18 | Union Oil Co Calif | Catalyst composition and manufacture thereof |
JPH07194984A (en) * | 1993-12-30 | 1995-08-01 | Cosmo Sogo Kenkyusho:Kk | Production of hydrogenation-desulfurization catalyst for hydrocarbon oil |
JPH08176560A (en) * | 1994-12-22 | 1996-07-09 | Sekiyu Sangyo Kasseika Center | Hydrodesulfurization of light oil |
JPH09150059A (en) * | 1995-11-30 | 1997-06-10 | Cosmo Sogo Kenkyusho:Kk | Production of hydrodesulfurization catalyst for hydrocarbon oil |
JP2000135437A (en) * | 1998-10-30 | 2000-05-16 | Catalysts & Chem Ind Co Ltd | Hydrogenation catalyst and its production |
JP2002028491A (en) * | 2000-07-12 | 2002-01-29 | Catalysts & Chem Ind Co Ltd | Formed catalyst for hydrogenation treatment and producing method thereof |
JP2002504009A (en) * | 1993-09-30 | 2002-02-05 | ユーオーピー | Catalysts for hydroprocessing and their use |
-
2004
- 2004-07-23 JP JP2004216337A patent/JP2006035052A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0214745A (en) * | 1988-05-10 | 1990-01-18 | Union Oil Co Calif | Catalyst composition and manufacture thereof |
JP2002504009A (en) * | 1993-09-30 | 2002-02-05 | ユーオーピー | Catalysts for hydroprocessing and their use |
JPH07194984A (en) * | 1993-12-30 | 1995-08-01 | Cosmo Sogo Kenkyusho:Kk | Production of hydrogenation-desulfurization catalyst for hydrocarbon oil |
JPH08176560A (en) * | 1994-12-22 | 1996-07-09 | Sekiyu Sangyo Kasseika Center | Hydrodesulfurization of light oil |
JPH09150059A (en) * | 1995-11-30 | 1997-06-10 | Cosmo Sogo Kenkyusho:Kk | Production of hydrodesulfurization catalyst for hydrocarbon oil |
JP2000135437A (en) * | 1998-10-30 | 2000-05-16 | Catalysts & Chem Ind Co Ltd | Hydrogenation catalyst and its production |
JP2002028491A (en) * | 2000-07-12 | 2002-01-29 | Catalysts & Chem Ind Co Ltd | Formed catalyst for hydrogenation treatment and producing method thereof |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009167308A (en) * | 2008-01-17 | 2009-07-30 | Japan Energy Corp | Hydrorefining method of naphtha fraction |
JP2010075831A (en) * | 2008-09-25 | 2010-04-08 | Nippon Oil Corp | Method of manufacturing regenerated catalyst for hydrogenation treatment, and method of manufacturing petroleum product |
JP2010222458A (en) * | 2009-03-23 | 2010-10-07 | Jx Nippon Oil & Energy Corp | Hydrorefining method for hydrocarbon oil |
JP2012524649A (en) * | 2009-04-21 | 2012-10-18 | アルベマール・ユーロプ・エスピーアールエル | Hydrotreating catalyst containing phosphorus and boron |
WO2013061913A1 (en) * | 2011-10-24 | 2013-05-02 | 日揮触媒化成株式会社 | Hydrogenation catalyst and method for producing same |
JP2013091010A (en) * | 2011-10-24 | 2013-05-16 | Jgc Catalysts & Chemicals Ltd | Hydrotreatment catalyst and method for producing the same |
US9737883B2 (en) | 2011-10-24 | 2017-08-22 | Jgc Catalysis And Chemicals Ltd. | Hydrogenation catalyst and method for producing same |
CN118218011A (en) * | 2024-01-23 | 2024-06-21 | 广东石油化工学院 | High-activity gasoline and diesel fraction selective hydrogenation catalyst and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4313265B2 (en) | Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons | |
KR101218947B1 (en) | Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same | |
KR101355722B1 (en) | Method for Producing Super-Low Sulfur Gas Oil Base Material or Super-Low Sulfur Gas Oil Composition, and Super-Low Sulfur Gas Oil Compositon | |
TWI599401B (en) | High hdn selectivity hydrotreating catalyst and method for preparing the same | |
RU2313389C1 (en) | Catalyst, method for preparation thereof, method for preparing carrier for this catalyst, and diesel fraction desulfurization process | |
RU2651269C2 (en) | Method for hydrotreatment of vacuum distillate using sequence of catalysts | |
JP2009523596A (en) | Selective catalyst with silica support for naphtha hydrodesulfurization | |
RU2715713C2 (en) | Catalyst for medium distillate hydrocracking, comprising base extrudate having high volume of nanopores | |
WO2005120706A1 (en) | Catalyst for hydrogenation treatment of hydrocarbon oil and method for hydrogenation treatment using said catalyst | |
JP6244094B2 (en) | Method for selective hydrogenation of gasoline | |
JP5013658B2 (en) | Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil | |
JP2002239385A (en) | Method for producing hydrotreatment catalyst for hydrocarbon oil and method for hydrotreating hydrocarbon oil | |
JP4576334B2 (en) | Hydrotreating process for diesel oil fraction | |
JP4576257B2 (en) | Production method of oil fraction | |
JP2006035052A (en) | Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method | |
JP4658491B2 (en) | Production method of environment-friendly diesel oil | |
JP4680520B2 (en) | Low sulfur gas oil production method and environmentally friendly gas oil | |
JPH03273092A (en) | Catalyst for hydrogenation of residual oil | |
JP4249632B2 (en) | Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons | |
WO2001074973A1 (en) | Process for hydrodesulfurization of light oil fraction | |
JP4436608B2 (en) | Hydrodesulfurization method for diesel oil fraction | |
JP4630014B2 (en) | Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons | |
JP4854076B2 (en) | Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition | |
JP2022513952A (en) | Hydrodesulfurization method of sulfur-containing olefinic gasoline fraction using a regeneration catalyst | |
JPH01224049A (en) | Hydrocracking catalyst for residual oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090915 |