JP2000135437A - Hydrogenation catalyst and its production - Google Patents

Hydrogenation catalyst and its production

Info

Publication number
JP2000135437A
JP2000135437A JP10350629A JP35062998A JP2000135437A JP 2000135437 A JP2000135437 A JP 2000135437A JP 10350629 A JP10350629 A JP 10350629A JP 35062998 A JP35062998 A JP 35062998A JP 2000135437 A JP2000135437 A JP 2000135437A
Authority
JP
Japan
Prior art keywords
aqueous solution
silica
aluminum salt
phosphorus
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10350629A
Other languages
Japanese (ja)
Inventor
Koji Nakano
宏二 中野
Takashi Kameoka
隆 亀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP10350629A priority Critical patent/JP2000135437A/en
Publication of JP2000135437A publication Critical patent/JP2000135437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a hydrogenation catalyst supported on a phosphorus-silica- alumina carrier and having improved desulfurization activity and cracking activity when it is used in the hydrogenation of distilled hydrocarbon oil. SOLUTION: At least one metal selected from the groups VIA and VIII metals of the periodic table is supported on a phosphorus-silica-alumina carrier to obtain the objective hydrogenation catalyst having >=200 m2/g specific surface area, >=0.35 ml/g total pore volume and 60-200 Å average pore diameter. In the catalyst, the volume of pores whose diameters are in the range of (the average pore diameter) ±30% accounts for >=70% of the total pore volume.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素油の水素
化処理触媒およびその製造方法に関し、更に詳しくは、
炭化水素油、特に留出炭化水素油の水素化処理に使用し
て高い脱硫活性を示すリンーシリカーアルミナ担体に活
性金属成分を担持した水素化処理触媒およびその製造方
法に関する。
The present invention relates to a catalyst for hydrotreating hydrocarbon oils and a method for producing the same.
The present invention relates to a hydrotreating catalyst in which an active metal component is supported on a phosphorus-silica-alumina carrier having high desulfurization activity and used for hydrotreating hydrocarbon oils, particularly distillate hydrocarbon oils, and a method for producing the same.

【0002】[0002]

【従来技術】従来、炭化水素油の水素化処理触媒として
はアルミナ担体に周期律表第VIA族および第VIII
族から選ばれた活性金属成分を担持した触媒が広く使用
されており、また、前述の触媒成分の外に第3成分とし
てシリカやリンなどを含む水素化処理触媒についても種
々提案されている。
2. Description of the Related Art Heretofore, as catalysts for hydrotreating hydrocarbon oils, groups VIA and VIII of the periodic table have been used on an alumina carrier.
Catalysts supporting an active metal component selected from the group III are widely used, and various hydrotreating catalysts containing silica or phosphorus as a third component in addition to the above-mentioned catalyst components have been proposed.

【0003】例えば、特開平7−204512号公報に
は、炭化水素転化プロセスにおいて使用される触媒とし
て、5−50重量%のAl、10−90重量%の
SiO、および5−40重量%のPを含む燐、
珪素、およびアルミニウム酸化物のアモルファス固溶体
で構成される触媒複合体が記載されており、また、アル
ミナ・ヒドロゾル、シリカ・ヒドロゾルおよび燐化合物
の混合物を作成し、粒子を作成するためにその混合物を
ゲル化し、燐、珪素、およびアルミニウム酸化物をつく
るためにそれらの粒子をか焼するステップで構成される
前記触媒複合体の調製方法が開示されている。
[0003] For example, JP-A-7-204512 discloses that as a catalyst used in a hydrocarbon conversion process, 5 to 50% by weight of Al 2 O 3 , 10 to 90% by weight of SiO 2 , and 5 to 40% by weight are used. Phosphorus containing P 2 O 5 by weight,
A catalyst composite comprising an amorphous solid solution of silicon and aluminum oxide is described.Also, a mixture of an alumina hydrosol, a silica hydrosol and a phosphorus compound is formed, and the mixture is gelled to form particles. A method for preparing the catalyst composite is disclosed which comprises the steps of calcination and calcination of the particles to produce phosphorus, silicon and aluminum oxides.

【0004】また、特開平7−286184号公報に
は、第VIII族非貴金属の酸化物2.5〜6重量%、
第VIB族金属の酸化物13〜24重量%、シリカ0〜
2重量%およびリン酸化物0〜2重量%を担持する、1
70〜220m/gの全表面積、0.6〜0.8cm
/gの全細孔容積、および全細孔容積の約33%未満
が直径約100Å未満の一次ミクロポアとして存在し、
全細孔容積の少なくとも約41%が直径約100〜20
0Åの二次ミクロポアとして存在し、全細孔容積の約1
6〜26%が直径≧200Åのメソポアとして存在する
ような細孔径分布を有する多孔質アルミナ担体の触媒の
存在下に炭化水素供給原料を水素化処理する方法が記載
されている。
Japanese Patent Application Laid-Open No. 7-286184 discloses that an oxide of a non-noble metal of Group VIII has an oxide content of 2.5 to 6% by weight.
Group VIB metal oxide 13 to 24% by weight, silica 0 to 0
Carrying 2% by weight and 0 to 2% by weight of phosphorus oxide, 1
70-220 m 2 / g total surface area, 0.6-0.8 cm
3 / g total pore volume, and less than about 33% of the total pore volume is present as primary micropores less than about 100 ° in diameter;
At least about 41% of the total pore volume is between about 100-20 diameters
Present as 0 ° secondary micropores, about 1% of the total pore volume
A process is described for hydrotreating a hydrocarbon feedstock in the presence of a porous alumina carrier catalyst having a pore size distribution such that 6-26% is present as mesopores with a diameter ≧ 200 °.

【0005】しかし、従来の水素化処理触媒は脱硫活性
などの点で必ずしも満足のいくものではなく、改善の余
地があった。
However, conventional hydrotreating catalysts are not always satisfactory in terms of desulfurization activity and the like, and there is room for improvement.

【0006】[0006]

【発明が解決しようとする課題】本発明は、炭化水素
油、特に減圧軽油、軽油、灯油等の留出炭化水素油の水
素化処理に使用した場合に脱硫活性等の点においてさら
に改善された、リンーシリカーアルミナ担体を使用した
水素化処理触媒およびその製造方法の提供にある。
The present invention has been further improved in terms of desulfurization activity and the like when used in the hydrotreating of hydrocarbon oils, especially distillate hydrocarbon oils such as vacuum gas oils, gas oils and kerosene. Another object of the present invention is to provide a hydrotreating catalyst using a phosphorus-silica-alumina carrier and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは、従来の水
素化処理触媒でリンーシリカーアルミナ系触媒について
鋭意研究した結果、リンーシリカーアルミナ担体に水素
化活性金属成分を担持した特定の細孔構造を有する触媒
が優れた脱硫活性を示すことを見出し本発明を完成する
に至った。
Means for Solving the Problems The present inventors have conducted intensive studies on a phosphorus-silica-alumina catalyst with a conventional hydrogenation catalyst, and as a result, have found that a hydrogenation-active metal component is supported on a phosphorus-silica-alumina carrier. The inventors have found that a catalyst having a specific pore structure exhibits excellent desulfurization activity, and have completed the present invention.

【0008】即ち、本発明の第一に係わる水素化処理触
媒は、リンーシリカーアルミナ担体に周期律表第VIA
族および第VIII族から選ばれた少なくとも1種の金
属成分を担持してなる水素化処理触媒であって、比表面
積(SA)が200m/g以上、全細孔容積(P
)が0.35ml/g以上で、平均細孔直径(P
D)が60〜200Åの範囲にあり、かつ、平均細孔直
径(PD)±30%の細孔直径の細孔容積(PV)の
占める割合が全細孔容積(PV)の70%以上である
ことを特徴とするものである。
[0008] That is, the hydrotreating catalyst according to the first aspect of the present invention comprises a phosphorus-silica-alumina carrier on the periodic table VIA.
A hydrotreating catalyst carrying at least one metal component selected from Group III and Group VIII, having a specific surface area (SA) of at least 200 m 2 / g and a total pore volume (P
V o ) is 0.35 ml / g or more and the average pore diameter (P
D) is in the range of 60 to 200 °, and the ratio of the pore volume (PV p ) of the average pore diameter (PD) ± 30% to 70% of the total pore volume (PV o ) The above is the feature.

【0009】また、本発明の第二に係わる前述の水素化
処理触媒の製造方法は、リン酸イオンを含有するアルミ
ニウム塩水溶液と中和剤とをpHが6.5〜9.5にな
るように混合してリン含有アルミナ水和物を得、該水和
物を洗浄して得られたスラリーとシリカゾルを混合し、
成型、乾燥、焼成して得たリンーシリカーアルミナ担体
に、周期律表第VIA族および第VIII族から選ばれ
た少なくとも1種の金属成分を慣用の手段で担持するこ
とを特徴とするものである。
Further, in the above-mentioned method for producing a hydrotreating catalyst according to the second aspect of the present invention, an aqueous solution of an aluminum salt containing a phosphate ion and a neutralizing agent are adjusted to have a pH of 6.5 to 9.5. To obtain a phosphorus-containing alumina hydrate, and mixing the slurry and silica sol obtained by washing the hydrate,
Characterized in that at least one metal component selected from Groups VIA and VIII of the Periodic Table is supported on a phosphorus-silica-alumina carrier obtained by molding, drying and calcining by a conventional means. It is.

【0010】前述のアルミニウム塩水溶液は、塩基性ア
ルミニウム塩水溶液か、または、酸性アルミニウム塩水
溶液であることが好ましく、また、前述の中和剤は、酸
性アルミニウム塩水溶液か、または、塩基性アルミニウ
ム塩水溶液であることが好ましい。
The above-mentioned aqueous aluminum salt solution is preferably a basic aluminum salt aqueous solution or an acidic aluminum salt aqueous solution, and the above-mentioned neutralizing agent is an acidic aluminum salt aqueous solution or a basic aluminum salt aqueous solution. It is preferably an aqueous solution.

【0011】[0011]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて、詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail.

【0012】本発明でのリンーシリカーアルミナ担体
は、リンをPとして0.5〜10重量%(担体基
準)含有することが好ましい。リン含有量が0.5重量
%より少ない場合には、アルミナ担体やシリカーアルミ
ナ担体の場合と比較してリン成分添加効果が少なく、得
られる触媒は所望の脱硫活性が得られないことがある。
また、リン含有量が10重量%より多い場合には、得ら
れる触媒の全細孔容積(PV)および平均細孔直径
(PD)が小さくなり、所望の脱硫活性が得られないこ
とがある。リンーシリカーアルミナ担体での、より好ま
しいリン含有量はPとして1〜8重量%、さらに
好ましくは1〜5重量%の範囲が望ましい。
The phosphorus-silica-alumina support of the present invention preferably contains 0.5 to 10% by weight of phosphorus as P 2 O 5 (based on the support). When the phosphorus content is less than 0.5% by weight, the effect of adding a phosphorus component is smaller than in the case of an alumina carrier or a silica-alumina carrier, and the resulting catalyst may not have the desired desulfurization activity. .
When the phosphorus content is more than 10% by weight, the total pore volume (PV o ) and the average pore diameter (PD) of the obtained catalyst become small, and a desired desulfurization activity may not be obtained. . Of phosphorus over silica-alumina carrier, more preferably the phosphorus content of 1-8% by weight P 2 O 5, more preferably from 1 to 5% by weight it is desirable.

【0013】また、本発明でのリンーシリカーアルミナ
担体は、シリカをSiOとして3〜25重量%(担体
基準)含有することが好ましい。シリカ含有量が3重量
%より少ない場合には、シリカ成分添加効果が少なく、
得られる触媒は所望の脱硫活性が得られないことがあ
る。また、シリカ含有量が25重量%より多い場合に
は、得られる触媒の全細孔容積(PV)および平均細
孔直径(PD)が小さくなり、所望の脱硫活性が得られ
ないことがある。リンーシリカーアルミナ担体での、よ
り好ましいシリカ含有量はSiOとして5〜20重量
%、さらに好ましくは10〜20重量%の範囲が望まし
い。
The phosphorus-silica-alumina carrier of the present invention preferably contains silica in an amount of 3 to 25% by weight as SiO 2 (based on the carrier). When the silica content is less than 3% by weight, the effect of adding the silica component is small,
The resulting catalyst may not have the desired desulfurization activity. When the silica content is more than 25% by weight, the obtained catalyst has a small total pore volume (PV o ) and a small average pore diameter (PD), so that a desired desulfurization activity may not be obtained. . Of phosphorus over silica-alumina carrier, more preferably a silica content of 5 to 20 wt% as SiO 2, more preferably is preferably in the range of 10 to 20 wt%.

【0014】本発明の水素化処理触媒は、前述のリンー
シリカーアルミナ担体に周期律表第VIA族および第V
III族から選ばれた少なくとも1種の金属成分を担持
してなる。周期律表第VIA族および第VIII族から
選ばれた好ましい金属成分としてはMoO、WO
CoO、NiOなどが例示され、これら金属成分の担持
量は、1〜35wt%の範囲、好ましくはMoOおよ
び/またはWOが10〜30wt%、CoOおよび/
またはNiOが1〜10wt%の範囲にあることが望ま
しい。
[0014] The hydrotreating catalyst of the present invention can be prepared by adding the above-mentioned phosphorus-silica-alumina carrier to the group VIA and V
It carries at least one metal component selected from Group III. Preferred metal components selected from Groups VIA and VIII of the Periodic Table include MoO 3 , WO 3 ,
CoO, NiO, etc. are exemplified, and the loading amount of these metal components is in the range of 1 to 35 wt%, preferably 10 to 30 wt% of MoO 3 and / or WO 3 , CoO and / or
Alternatively, NiO is desirably in the range of 1 to 10 wt%.

【0015】前記水素化処理触媒は、比表面積(SA)
が200m/g以上、全細孔容積(PV)が0.3
5ml/g以上で、平均細孔直径(PD)が60〜20
0Åの範囲にある。触媒のSA、PV、PDが前述の
範囲から外れると所望の脱硫活性が得られないことがあ
るので望ましくない。好ましくは、触媒の比表面積(S
A)は230〜350m/gの範囲にあり、全細孔容
積(PV)は0.40〜1.0ml/gの範囲にあ
り、平均細孔直径(PD)は60〜150Åの範囲にあ
ることが望ましい。なお、本発明での比表面積(SA)
はBET法で測定した値で、全細孔容積(PV)、平
均細孔直径(PD)は水銀圧入法(水銀の接触角:13
5度、表面張力:480dyn/cm)により測定した
値で、全細孔容積(PV)は細孔直径41Å以上の細
孔を表し、平均細孔直径(PD)は全細孔容積(P
)の50%に相当する細孔直径を表す。
The hydrotreating catalyst has a specific surface area (SA)
Is 200 m 2 / g or more, and the total pore volume (PV o ) is 0.3
At 5 ml / g or more, average pore diameter (PD) is 60 to 20
It is in the range of 0 °. If the SA, PV o , and PD of the catalyst are out of the above ranges, a desired desulfurization activity may not be obtained, which is not desirable. Preferably, the specific surface area of the catalyst (S
A) is in the range of 230-350 m 2 / g, the total pore volume (PV o ) is in the range of 0.40-1.0 ml / g, and the average pore diameter (PD) is in the range of 60-150 °. Is desirable. The specific surface area (SA) in the present invention
Is the value measured by the BET method, and the total pore volume (PV o ) and the average pore diameter (PD) are the mercury intrusion method (mercury contact angle: 13).
5 °, surface tension: 480 dyn / cm), the total pore volume (PV o ) represents pores having a pore diameter of 41 ° or more, and the average pore diameter (PD) is the total pore volume (P
Represents the pore diameter corresponding to 50% of V o ).

【0016】さらに、本発明の水素化処理触媒は、シャ
ープな細孔分布を有し、平均細孔直径(PD)−30%
から平均細孔直径(PD)+30%の細孔直径の間の細
孔容積(PV)の全細孔容積(PV)に対して占め
る割合(PV/PV。)が70%以上であることを特
徴とする。PV/PVが70%よりも小さい場合に
は、触媒の細孔分布がブロードになり、所望の脱硫活性
が得られないことがある。PV/PVは好ましくは
75%以上であることが望ましい。
Further, the hydrotreating catalyst of the present invention has a sharp pore distribution and an average pore diameter (PD) of -30%
And the ratio (PV p / PV) of the pore volume (PV p ) between the average pore diameter (PD) and the pore diameter of 30% to the total pore volume (PV o ) is 70% or more. There is a feature. If PV p / PV o is less than 70%, the pore distribution of the catalyst becomes broad, and the desired desulfurization activity may not be obtained. It is desirable that PV p / PV o is preferably at least 75%.

【0017】次に、本発明の第二に関する水素化処理触
媒の製造方法について詳述する。本発明では、リン酸イ
オンを含有するアルミニウム塩水溶液と中和剤とをpH
が6.5〜9.5になるように混合してリン含有アルミ
ナ水和物を得るが、リン酸イオンには亜リン酸イオンを
も包含し、リン酸イオン源としては、水中でリン酸イオ
ンを生じるリン酸化合物が使用可能である。リン酸化合
物としては、HPO、HPO、(NH)H
PO、(NHHPO、KPO、KHP
、KHPO、NaPO、NaHPO
NaHPO、などが例示される。
Next, the method for producing a hydrotreating catalyst according to the second aspect of the present invention will be described in detail. In the present invention, an aqueous solution of an aluminum salt containing phosphate ions and a neutralizing agent are pH adjusted.
To obtain a phosphorus-containing alumina hydrate, but the phosphate ions also include phosphite ions. Phosphate compounds that produce ions can be used. As the phosphoric acid compound, H 3 PO 4 , H 3 PO 3 , (NH 4 ) H 2
PO 4 , (NH 4 ) 2 HPO 4 , K 3 PO 4 , K 2 HP
O 4 , KH 2 PO 4 , Na 3 PO 4 , Na 2 HPO 4 ,
NaH 2 PO 4 and the like.

【0018】また、リン酸イオンを含有するアルミニウ
ム塩水溶液としては、アルミン酸ソーダ、アルミン酸カ
リなどの塩基性アルミニウム塩水溶液または硫酸アルミ
ニウム、硝酸アルミニウム、塩化アルミニウムなどの酸
性アルミニウム塩水溶液が好適に使用される。前述のリ
ン酸化合物がアルカリ性または中性の場合には塩基性ア
ルミニウム塩水溶液と混合し、リン酸化合物が酸性また
は中性の場合には酸性アルミニウム塩水溶液と混合され
る。リン酸イオンは塩基性アルミニウム塩水溶液および
/または酸性アルミニウム塩水溶液に含有させることが
できる。
As the aqueous aluminum salt solution containing phosphate ions, an aqueous solution of a basic aluminum salt such as sodium aluminate or potassium aluminate or an aqueous solution of an acidic aluminum salt such as aluminum sulfate, aluminum nitrate or aluminum chloride is preferably used. Is done. When the above-mentioned phosphate compound is alkaline or neutral, it is mixed with a basic aluminum salt aqueous solution, and when the phosphate compound is acidic or neutral, it is mixed with an acidic aluminum salt aqueous solution. Phosphate ions can be contained in a basic aluminum salt aqueous solution and / or an acidic aluminum salt aqueous solution.

【0019】本発明での中和剤は、アルミニウム塩水溶
液が塩基性アルミニウム塩水溶液の場合には、硫酸、硝
酸、塩酸などの鉱酸、酢酸などの有機酸や酸性アルミニ
ウム塩水溶液などの酸性水溶液が使用され、特に酸性ア
ルミニウム塩水溶液が好適である。また、アルミニウム
塩水溶液が酸性アルミニウム塩水溶液の場合には、苛性
ソーダ、苛性カリ、アンモニアや塩基性アルミニウム塩
水溶液などのアルカリ性水溶液が使用され、特に塩基性
アルミニウム塩水溶液が好適である。
In the present invention, when the aqueous aluminum salt solution is a basic aluminum salt aqueous solution, the neutralizing agent may be a mineral acid such as sulfuric acid, nitric acid or hydrochloric acid, an organic acid such as acetic acid, or an acidic aqueous solution such as an acidic aluminum salt aqueous solution. And an aqueous solution of an acidic aluminum salt is particularly preferred. When the aluminum salt aqueous solution is an acidic aluminum salt aqueous solution, an alkaline aqueous solution such as caustic soda, caustic potassium, ammonia or a basic aluminum salt aqueous solution is used, and a basic aluminum salt aqueous solution is particularly preferable.

【0020】本発明の方法では、例えば、所定量の前述
のリン酸イオンを含有する塩基性アルミニウム塩水溶液
を攪拌機付きタンクに張り込み、40〜90℃に加温し
て保持し、この溶液に40〜90℃に加温した酸性アル
ミニウム塩水溶液をpHが6.5〜9.5になるように
5〜20分間で連続添加してリン含有アルミナ水和物の
沈殿を生成させ、所望により熟成した後、洗浄して副生
塩を除いたリン含有アルミナ水和物スラリーを得る。前
記酸性アルミニウム塩水溶液の添加時間は、長くなると
擬ベーマイトの外にバイヤライトなどの好ましくない結
晶物が生成することがあるので、好ましくは15分間以
下が望ましい。
In the method of the present invention, for example, a predetermined amount of the above-mentioned basic aluminum salt aqueous solution containing phosphate ions is charged into a tank equipped with a stirrer, heated to 40 to 90 ° C. and maintained. An aqueous solution of an acidic aluminum salt heated to ~ 90 ° C was continuously added over a period of 5 to 20 minutes so that the pH became 6.5 to 9.5 to form a precipitate of phosphorus-containing alumina hydrate, which was aged as desired. Then, a phosphorus-containing alumina hydrate slurry from which by-product salts have been removed by washing is obtained. The addition time of the acidic aluminum salt aqueous solution is preferably 15 minutes or less, because if it becomes long, undesired crystals such as bayerite may be formed in addition to pseudo-boehmite.

【0021】次いで、得られたリン含有アルミナ水和物
スラリーは所定量のシリカゾルと混合される。該リン含
有アルミナ水和物スラリーはシリカゾルと混合前あるい
は混合後に所望により熟成することができる。シリカゾ
ルと混合されたリン含有アルミナ水和物スラリーは、加
熱捏和して成型可能な捏和物とし押出成型などにより所
望の形状に成型し、乾燥した後、400〜800℃で
0.5〜10時間焼成してリンーシリカーアルミナ担体
を得る。本発明で使用されるシリカゾルは、特に制限が
なく、通常市販されている水性シリカゾルが使用可能で
ある。特にコロイドシリカ粒子の平均粒子径が10nm
未満のシリカゾルは好適である。
Next, the obtained phosphorus-containing alumina hydrate slurry is mixed with a predetermined amount of silica sol. The phosphorus-containing alumina hydrate slurry can be aged, if desired, before or after mixing with the silica sol. The phosphorus-containing alumina hydrate slurry mixed with the silica sol is heated and kneaded into a moldable kneaded material, molded into a desired shape by extrusion molding and the like, dried, and then dried at a temperature of 400 to 800 ° C. for 0.5 to 0.5 μm. Calcination is performed for 10 hours to obtain a phosphorus-silica-alumina carrier. The silica sol used in the present invention is not particularly limited, and a commercially available aqueous silica sol can be used. In particular, the average particle diameter of the colloidal silica particles is 10 nm.
Less than the silica sol is preferred.

【0022】前述のリンーシリカーアルミナ担体を使用
して、慣用の手段で周期律表第VIA族および第VII
I族から選ばれた少なくとも1種の金属成分を担持して
触媒を製造することができる。例えば、金属成分の原料
としては硝酸ニッケル、炭酸ニッケル、硝酸コバルト、
炭酸コバルト、三酸化モリブデン、モリブデン酸アンモ
ン、パラタングステン酸アンモンなどが使用され、金属
成分は含浸法、浸漬法などの周知の方法により担持され
る。触媒は、通常400〜800℃で0.5〜10時間
焼成される。
Using the above-mentioned phosphor-silica-alumina carrier, a group VIA and group VII of the periodic table can be prepared by conventional means.
A catalyst can be produced by supporting at least one metal component selected from Group I. For example, as a raw material of the metal component, nickel nitrate, nickel carbonate, cobalt nitrate,
Cobalt carbonate, molybdenum trioxide, ammonium molybdate, ammonium paratungstate and the like are used, and the metal component is supported by a known method such as an impregnation method or an immersion method. The catalyst is usually calcined at 400 to 800 ° C for 0.5 to 10 hours.

【0023】本発明の水素化処理触媒は、減圧軽油、軽
油、灯油などの留出炭化水素油の水素化処理に使用して
好適であるばかりでなく、原油、常圧残渣油、減圧残渣
油などの重質油炭化水素油に使用しても好適である。該
触媒を使用した水素化処理は、通常の水素化処理条件が
採用でき、好ましい反応条件としては、反応温度330
〜450℃、水素圧力10〜250kg/cm、液空
間速度0.05〜10hr−1の条件が採用される。
The hydrotreating catalyst of the present invention is not only suitable for use in hydrotreating distillate hydrocarbon oils such as vacuum gas oil, gas oil, kerosene, etc., but also crude oil, normal pressure residue oil, vacuum residue oil. It is also suitable for use in heavy oils such as hydrocarbon oils. The hydrogenation treatment using the catalyst can be performed under ordinary hydrogenation treatment conditions. Preferred reaction conditions include a reaction temperature of 330 ° C.
450450 ° C., hydrogen pressure 1010〜250 kg / cm 2 , liquid space velocity 0.050.0510 hr −1 are employed.

【0024】以下に実施例を示し本発明を更に具体的に
説明するが、本実施例は本発明を限定するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not intended to limit the present invention.

【0025】実施例1 スチームジャケット付100LタンクにAl濃度
換算で22wt%のアルミン酸ナトリウム水溶液8.8
2kgを入れ、イオン交換水42.5kgで希釈し、こ
の希釈溶液の中にリン酸三ナトリウム(NaPO
2HO)を0.49kg加え撹拌しながら60℃に加
温した。一方、50L容器にAl濃度換算で7w
t%の硫酸アルミニウム水溶液13.86kgを入れ、
60℃のイオン交換温水で希釈し40kgとした。次い
で、ロータリーポンプを用いて前述のリン酸イオンを含
むアルミン酸ナトリウム希釈溶液中に前述の硫酸アルミ
ニウム希釈溶液を一定速度で添加し、10分間でpHが
7.2となるようにしてリン含有アルミナ水和物スラリ
ーを調製した。得られたリン含有アルミナ水和物スラリ
ーを攪拌しながら60℃で1時間熟成した後、該スラリ
ーを平板フィルターを用いて脱水し、0.3wt%アン
モニア水溶液150Lで洗浄した。洗浄終了後のケーキ
状スラリーに、SiO濃度20wt%のシリカゾル
(触媒化成工業(株)製:カタロイドー20L)を1.
85kg加えた後イオン交換水で希釈してAl
度で10wt%になるようにし、15wt%アンモニア
水によりスラリーのpHを10.5に調整した。これを
環流機付熟成タンクに移し、攪拌しながら95℃で10
時間熟成した。熟成終了後のスラリーを脱水し、スチー
ムジャケットを備えた双腕式ニーダーにて練りながら所
定の水分量まで濃縮捏和した後、降温し更に30分間捏
和した。得られた捏和物を押し出し成型機にて1.8m
mの円柱状に成型し、110℃で乾燥した。乾燥した成
型品は電気炉で550℃の温度で3時間焼成し、リンー
シリカーアルミナ担体を得た。担体中のP量は
2.67wt%で、SiO量は11wt%であった。
次いで、三酸化モリブデン240.1gおよび塩基性炭
酸ニッケル131.0gをイオン交換水600mlに懸
濁させ、この懸濁液を95℃で5時間溶液量が減少しな
いよう適当な環流措置を施して加熱した後、リンゴ酸を
加えて溶解させた含浸液を、前述のリンーシリカーアル
ミナ担体1000gに噴霧含浸させた。この含浸品を、
乾燥した後、電気炉にて550℃で1時間焼成して触媒
(A)を得た。触媒(A)の金属成分量は、MoO
18.5wt%で、NiOが4.1wt%であった。ま
た、触媒(A)の性状は表1に示す。
Example 1 A 8.8% aqueous solution of sodium aluminate of 22 wt% in terms of Al 2 O 3 concentration was placed in a 100 L tank equipped with a steam jacket.
2 kg, and diluted with 42.5 kg of ion-exchanged water. Trisodium phosphate (Na 3 PO 4 1
2H 2 O) was added and heated to 60 ° C. while stirring. On the other hand, in a 50L container, 7w in terms of Al 2 O 3 concentration
13.86 kg of an aluminum sulfate aqueous solution of t% is added,
It was diluted with ion-exchanged hot water at 60 ° C. to 40 kg. Next, the above-mentioned diluted solution of aluminum sulfate is added at a constant rate to the above-mentioned diluted solution of sodium aluminate containing phosphate ions by using a rotary pump, and the pH is adjusted to 7.2 in 10 minutes. A hydrate slurry was prepared. After the obtained phosphorus-containing alumina hydrate slurry was aged at 60 ° C. for 1 hour while stirring, the slurry was dehydrated using a flat plate filter and washed with 150 L of a 0.3 wt% aqueous ammonia solution. Silica sol (catalyst 20L, manufactured by Catalyst Chemical Industry Co., Ltd.) having a SiO 2 concentration of 20 wt% was added to the cake-like slurry after the completion of the washing.
After adding 85 kg, the mixture was diluted with ion-exchanged water so that the Al 2 O 3 concentration became 10 wt%, and the pH of the slurry was adjusted to 10.5 with 15 wt% ammonia water. This was transferred to an aging tank equipped with a reflux machine, and stirred at 95 ° C for 10 minutes.
Aged for hours. After the ripening, the slurry was dehydrated, concentrated and kneaded to a predetermined water content while kneading with a double-arm kneader equipped with a steam jacket, and then cooled and kneaded for another 30 minutes. The obtained kneaded material is extruded 1.8 m using an extruder.
m, and dried at 110 ° C. The dried molded product was fired in an electric furnace at a temperature of 550 ° C. for 3 hours to obtain a phosphorus-silica-alumina carrier. The amount of P 2 O 5 in the support was 2.67 wt%, and the amount of SiO 2 was 11 wt%.
Next, 240.1 g of molybdenum trioxide and 131.0 g of basic nickel carbonate are suspended in 600 ml of ion-exchanged water, and the suspension is heated at 95 ° C. for 5 hours by performing a suitable reflux treatment so as not to reduce the solution volume. After that, the impregnating solution in which malic acid was added and dissolved was spray-impregnated into 1000 g of the above-mentioned phosphor-silica-alumina carrier. This impregnated product
After drying, the mixture was calcined at 550 ° C. for 1 hour in an electric furnace to obtain a catalyst (A). As for the metal component amounts of the catalyst (A), MoO 3 was 18.5 wt% and NiO was 4.1 wt%. Table 1 shows the properties of the catalyst (A).

【0026】実施例2 実施例1のリンーシリカーアルミナ担体を使用して活性
金属成分量がMoO20.0wt%、NiO5.0w
t%の触媒(B)を実施例1と同様の方法で調製した。
触媒(B)の性状は表1に示す。
Example 2 Using the phosphorus-silica-alumina carrier of Example 1, the active metal component was 20.0 wt% of MoO 3 and 5.0 w of NiO.
t% of catalyst (B) was prepared in the same manner as in Example 1.
Table 1 shows the properties of the catalyst (B).

【0027】比較例1 スチームジャケット付100LタンクにAl濃度
換算で22wt%のアルミン酸ナトリウム水溶液88.
82kgを入れ、イオン交換水40kgで希釈し、この
希釈溶液の中に26wt%グルコン酸ナトリウム水溶液
を0.22kgを加え攪拌しながら60℃に加温した。
一方、50L容器にAl濃度換算で7wt%の硫
酸アルミニウム水溶液13.86kgを入れ、60℃の
イオン交換温水で希釈し40kgとした。次いで、ロー
タリーポンプを用いて前述のアルミン酸ナトリウム希釈
溶液中に前述の硫酸アルミニウム希釈溶液を一定速度で
添加し、10分間でpHが7.2となるようにしてアル
ミナ水和物スラリーを調製した。得られたアルミナ水和
物スラリーを攪拌しながら60℃で1時間熟成した後、
該スラリーを平板フィルターを用いて脱水し、0.3w
t%アンモニア水溶液150Lで洗浄した。洗浄終了後
のケーキ状スラリーに、SiO濃度20wt%のシリ
カゾル(触媒化成工業(株)製:カタロイドー20L)
を1.85kg加えた後をイオン交換水で希釈してAl
濃度で10wt%になるようにし、15wt%ア
ンモニア水によりスラリーのpHを10.5に調整し
た。これを環流機付熟成タンクに移し、攪拌しながら9
5℃で10時間熟成した。熟成終了後のスラリーを脱水
し、スチームジャケットを備えた双腕式ニーダーにて練
りながら所定の水分量まで濃縮捏和した後、降温し更に
30分間捏和した。得られた捏和物を押し出し成型機に
て1.8mmの円柱状に成型し、110℃で乾燥した。
乾燥した成型品は電気炉で550℃の温度で3時間焼成
し、シリカーアルミナ担体を得た。担体中のSiO
は11wt%であった。このシリカーアルミナ担体を使
用して、実施例1と全く同様にして、触媒(C)を得
た。触媒(C)の金属成分量は、MoOが18.5w
t%で、NiOが4.1wt%であった。また、触媒
(C)の性状は表1に示す。
COMPARATIVE EXAMPLE 1 In a 100 L tank equipped with a steam jacket, a 22 wt% aqueous solution of sodium aluminate in terms of Al 2 O 3 concentration 88.
82 kg was added and diluted with 40 kg of ion-exchanged water. 0.22 kg of 26 wt% sodium gluconate aqueous solution was added to the diluted solution, and the mixture was heated to 60 ° C. while stirring.
On the other hand, 13.86 kg of an aluminum sulfate aqueous solution of 7 wt% in terms of Al 2 O 3 concentration was placed in a 50 L container, and diluted with hot ion-exchanged water at 60 ° C. to 40 kg. Next, the above-mentioned diluted solution of aluminum sulfate was added to the above-mentioned diluted solution of sodium aluminate at a constant rate using a rotary pump, and an alumina hydrate slurry was prepared by adjusting the pH to 7.2 in 10 minutes. . The resulting alumina hydrate slurry was aged at 60 ° C. for 1 hour with stirring,
The slurry was dehydrated using a flat filter, and 0.3 w
Washing was performed with 150 L of a t% aqueous ammonia solution. A silica sol having a SiO 2 concentration of 20% by weight (catalyst 20L, manufactured by Catalyst Chemical Industry Co., Ltd.) is added to the cake-like slurry after the washing.
After adding 1.85 kg of Al, diluted with ion exchanged water
The concentration of 2 O 3 was adjusted to 10 wt%, and the pH of the slurry was adjusted to 10.5 with 15 wt% aqueous ammonia. This was transferred to an aging tank with a reflux machine, and stirred for 9 hours.
Aged at 5 ° C. for 10 hours. After the ripening, the slurry was dehydrated, concentrated and kneaded to a predetermined water content while kneading with a double-arm kneader equipped with a steam jacket, and then cooled and kneaded for another 30 minutes. The obtained kneaded product was molded into a 1.8 mm cylindrical shape by an extrusion molding machine, and dried at 110 ° C.
The dried molded product was fired at 550 ° C. for 3 hours in an electric furnace to obtain a silica-alumina carrier. The amount of SiO 2 in the carrier was 11% by weight. Using this silica-alumina carrier, a catalyst (C) was obtained in exactly the same manner as in Example 1. The amount of the metal component of the catalyst (C) was 18.5 w for MoO 3 .
At t%, NiO was 4.1 wt%. Table 1 shows the properties of the catalyst (C).

【0028】実施例3 実施例1〜2及び比較例1の触媒A〜Cを使用して、次
の性状を有する原料油を使用して水素処理化反応を行
い、脱硫活性(HDS)を比較例1の触媒(C)(基準
触媒)と比較した。反応装置には固定床流通式反応装置
を用いて行い、反応条件は以下の条件で行った。 原料油の性状: 原料油 直留軽油(SR−LGO) 密度 0.8500 g/ml 硫黄分 1.327 wt% 窒素分 85 wtppm 反応条件: 反応温度 380℃ 液空間速度 2.0hr−1 水素圧力 50 kg/cm 水素/油 比 250 Nm/kl 水素化処理反応結果は、反応生成油中の硫黄分を測定
し、硫黄の除去率を脱硫率として求め、基準触媒と反応
温度380℃における活性を比較した相対活性値で表1
に示した。本発明の触媒A、Bは、基準触媒C(比較例
1)よりも脱硫活性が優れていることが分かる。
Example 3 Using the catalysts A to C of Examples 1 and 2 and Comparative Example 1, a hydrotreating reaction was carried out using a feedstock oil having the following properties, and the desulfurization activity (HDS) was compared. This was compared with the catalyst (C) of Example 1 (reference catalyst). The reaction was carried out using a fixed bed flow reactor, and the reaction conditions were as follows. Properties of feed oil: Feed oil Straight run gas oil (SR-LGO) Density 0.8500 g / ml Sulfur content 1.327 wt% Nitrogen content 85 wtppm Reaction conditions: Reaction temperature 380 ° C Liquid space velocity 2.0 hr -1 Hydrogen pressure 50 kg / cm 2 hydrogen / oil ratio 250 Nm 2 / kl The hydrogenation reaction results were obtained by measuring the sulfur content in the reaction product oil, obtaining the sulfur removal rate as the desulfurization rate, and using the reference catalyst at a reaction temperature of 380 ° C. Table 1 shows relative activity values comparing the activities.
It was shown to. It can be seen that the catalysts A and B of the present invention have better desulfurization activity than the reference catalyst C (Comparative Example 1).

【0029】[0029]

【発明の効果】本発明の触媒は、炭化水素油、特に留出
炭化水素油の水素化処理に使用して高い脱硫活性を示す
ので、実用上極めて有効である。
The catalyst of the present invention is extremely effective in practical use because it exhibits high desulfurization activity when used for hydrotreating hydrocarbon oils, particularly distillate hydrocarbon oils.

【0030】[0030]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA03 AA08 BA03A BC02B BC16A BC49A BC65A BC68B BC69A BD07A BD07B CB02 EC03X EC04X EC05X EC06X EC07X EC08X EC09X FB09 FC09 4H029 CA00 DA00  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4G069 AA03 AA08 BA03A BC02B BC16A BC49A BC65A BC68B BC69A BD07A BD07B CB02 EC03X EC04X EC05X EC06X EC07X EC08X EC09X FB09 FC09 4H029 CA00 DA00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リンーシリカーアルミナ担体に周期律表
第VIA族および第VIII族から選ばれた少なくとも
1種の金属成分を担持してなる水素化処理触媒であっ
て、比表面積(SA)が200m/g以上、全細孔容
積(PV)が0.35ml/g以上で、平均細孔直径
(PD)が60〜200Åの範囲にあり、かつ、平均細
孔直径(PD)±30%の細孔直径の細孔容積(P
)の占める割合が全細孔容積(PV)の70%以
上であることを特徴とする水素化処理触媒。
1. A hydrotreating catalyst comprising a phosphorus-silica-alumina carrier carrying at least one metal component selected from Groups VIA and VIII of the periodic table, comprising a specific surface area (SA) Is not less than 200 m 2 / g, the total pore volume (PV o ) is not less than 0.35 ml / g, the average pore diameter (PD) is in the range of 60 to 200 °, and the average pore diameter (PD) ± 30% pore diameter pore volume (P
A hydroprocessing catalyst, wherein the proportion of V p ) is at least 70% of the total pore volume (PV o ).
【請求項2】 リン酸イオンを含有するアルミニウム塩
水溶液と中和剤とをpHが6.5〜9.5になるように
混合してリン含有アルミナ水和物を得、該水和物を洗浄
して得られたスラリーとシリカゾルを混合し、成型、乾
燥、焼成して得たリンーシリカーアルミナ担体に、周期
律表第VIA族および第VIII族から選ばれた少なく
とも1種の金属成分を慣用の手段で担持することを特徴
とする請求項1記載の水素化処理触媒の製造方法。
2. A phosphoric acid-containing alumina hydrate is obtained by mixing an aluminum salt aqueous solution containing a phosphate ion and a neutralizing agent so as to have a pH of 6.5 to 9.5. A phosphorus-silica-alumina carrier obtained by mixing a slurry obtained by washing with a silica sol, molding, drying, and calcining is mixed with at least one metal component selected from Groups VIA and VIII of the periodic table. The method for producing a hydrotreating catalyst according to claim 1, wherein is carried by conventional means.
【請求項3】 前述のアルミニウム塩水溶液が、塩基性
アルミニウム塩水溶液か、または、酸性アルミニウム塩
水溶液であることを特徴する請求項2記載の水素化処理
触媒の製造方法。
3. The method for producing a hydrotreating catalyst according to claim 2, wherein the aluminum salt aqueous solution is a basic aluminum salt aqueous solution or an acidic aluminum salt aqueous solution.
【請求項4】 前述の中和剤が、酸性アルミニウム塩水
溶液か、または、塩基性アルミニウム塩水溶液であるこ
とを特徴する請求項2または3記載の水素化処理触媒の
製造方法。
4. The process for producing a hydrotreating catalyst according to claim 2, wherein the neutralizing agent is an aqueous solution of an acidic aluminum salt or an aqueous solution of a basic aluminum salt.
JP10350629A 1998-10-30 1998-10-30 Hydrogenation catalyst and its production Pending JP2000135437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10350629A JP2000135437A (en) 1998-10-30 1998-10-30 Hydrogenation catalyst and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10350629A JP2000135437A (en) 1998-10-30 1998-10-30 Hydrogenation catalyst and its production

Publications (1)

Publication Number Publication Date
JP2000135437A true JP2000135437A (en) 2000-05-16

Family

ID=18411775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10350629A Pending JP2000135437A (en) 1998-10-30 1998-10-30 Hydrogenation catalyst and its production

Country Status (1)

Country Link
JP (1) JP2000135437A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028491A (en) * 2000-07-12 2002-01-29 Catalysts & Chem Ind Co Ltd Formed catalyst for hydrogenation treatment and producing method thereof
JP2006035052A (en) * 2004-07-23 2006-02-09 Nippon Oil Corp Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method
WO2006032782A1 (en) * 2004-09-22 2006-03-30 Institut Francais Du Petrole Doped alumino-silicate catalyst and improved method for treating hydrocarbon feeds
CN103861602A (en) * 2012-12-12 2014-06-18 中国石油化工股份有限公司 Hydrogenation activity protection catalyst, preparation and application thereof
KR20180111815A (en) 2016-02-01 2018-10-11 니끼 쇼꾸바이 카세이 가부시키가이샤 Process for hydrotreating hydrocarbon oil, process for producing same, and hydrotreating process
US10525448B2 (en) 2015-07-22 2020-01-07 Basf Corporation High geometric surface area catalysts for vinyl acetate monomer production
CN112979449A (en) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 Preparation method of succinic acid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028491A (en) * 2000-07-12 2002-01-29 Catalysts & Chem Ind Co Ltd Formed catalyst for hydrogenation treatment and producing method thereof
JP2006035052A (en) * 2004-07-23 2006-02-09 Nippon Oil Corp Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method
WO2006032782A1 (en) * 2004-09-22 2006-03-30 Institut Francais Du Petrole Doped alumino-silicate catalyst and improved method for treating hydrocarbon feeds
JP2008513209A (en) * 2004-09-22 2008-05-01 アンスティテュ フランセ デュ ペトロール An improved method for treating aluminosilicate doped catalysts and hydrocarbon feeds.
US7879224B2 (en) 2004-09-22 2011-02-01 IFP Energies Nouvelles Doped alumino-silicate catalyst and improved process for treatment of hydrocarbon feeds
CN103861602A (en) * 2012-12-12 2014-06-18 中国石油化工股份有限公司 Hydrogenation activity protection catalyst, preparation and application thereof
US10525448B2 (en) 2015-07-22 2020-01-07 Basf Corporation High geometric surface area catalysts for vinyl acetate monomer production
US10864500B2 (en) 2015-07-22 2020-12-15 Basf Corporation High geometric surface area catalysts for vinyl acetate monomer production
KR20180111815A (en) 2016-02-01 2018-10-11 니끼 쇼꾸바이 카세이 가부시키가이샤 Process for hydrotreating hydrocarbon oil, process for producing same, and hydrotreating process
CN112979449A (en) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 Preparation method of succinic acid
CN112979449B (en) * 2019-12-13 2022-03-22 中国科学院大连化学物理研究所 Preparation method of succinic acid

Similar Documents

Publication Publication Date Title
JP4405148B2 (en) Alumina having novel pore structure, method for producing the same, and catalyst prepared from alumina
JP6134334B2 (en) Silica-containing alumina support, catalyst produced therefrom and method of use thereof
US7790652B2 (en) Process and catalyst for the hydroconversion of a heavy hydrocarbon feedstock
US4624938A (en) Process for producing wide-pore catalyst supports
US8962514B2 (en) Hydrotreating catalyst, process for producing same, and process for hydrotreating hydrocarbon oil
JPWO2003006156A1 (en) Hydrorefining catalyst, carrier used therefor and production method
JP2000210565A (en) Catalyst for hydrogenation and hydrogenation method
JP3881162B2 (en) Hydrotreating shaped catalyst and process
AU602795B2 (en) Process for the preparation of hydrotreating catalysts from hydrogels
US4786404A (en) Process for hydrotreating hydrocarbon feeds
JP2000135437A (en) Hydrogenation catalyst and its production
JP2000135438A (en) Hydrogenation catalyst and its production
US4717707A (en) Hydrotreating catalysts prepared from hydrogels
AU602794B2 (en) Process for the preparation of hydrotreating catalysts from hydrogels
JP2000135440A (en) Hydrogenation catalyst and its production
JP3106761B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
JP2000135441A (en) Hydrogenation catalyst and its production
US4810687A (en) Hydrotreating catalysts prepared from hydrogels
US4880525A (en) Process for hydrotreating hydrocarbon feeds
US4880526A (en) Hydrotreating catalysts prepared from hydrogels
US4810684A (en) Hydrotreating catalysts prepared from hydrogels
US4738945A (en) Hydrotreating catalysts prepared from hydrogels
US4880523A (en) Process for hydrotreating hydrocarbon feeds
JPH0446619B2 (en)
CN113559875B (en) Hydrogenation catalyst, preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916