JP3106761B2 - Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same - Google Patents

Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same

Info

Publication number
JP3106761B2
JP3106761B2 JP05023505A JP2350593A JP3106761B2 JP 3106761 B2 JP3106761 B2 JP 3106761B2 JP 05023505 A JP05023505 A JP 05023505A JP 2350593 A JP2350593 A JP 2350593A JP 3106761 B2 JP3106761 B2 JP 3106761B2
Authority
JP
Japan
Prior art keywords
catalyst
denitrification
supported
carrier
hydrodesulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05023505A
Other languages
Japanese (ja)
Other versions
JPH06210182A (en
Inventor
敏男 山口
英治 横塚
英治 山口
吉幸男 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP05023505A priority Critical patent/JP3106761B2/en
Publication of JPH06210182A publication Critical patent/JPH06210182A/en
Application granted granted Critical
Publication of JP3106761B2 publication Critical patent/JP3106761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素油中に含まれ
るイオウ化合物及び窒素化合物の両者を効果的に除去す
るための水素化処理用触媒に関するものであり、とく
に、イオウ化合物、窒素化合物をとくに多量に含有する
炭化水素油を水素加圧下で処理して硫化水素とアンモニ
アに転化させ原料炭化水素油中のイオウ及び窒素の含有
量を同時に減少させることができる炭化水素油の水素化
脱硫脱窒素用触媒及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrotreating catalyst for effectively removing both a sulfur compound and a nitrogen compound contained in a hydrocarbon oil, and particularly to a sulfur compound and a nitrogen compound. Desulfurization of hydrocarbon oils that can reduce the sulfur and nitrogen contents in the raw hydrocarbon oils simultaneously by converting hydrocarbon oils containing large amounts of hydrogen into hydrogen sulfide and ammonia by treating them under hydrogen pressure The present invention relates to a denitrification catalyst and a method for producing the same.

【0002】[0002]

【従来の技術】従来、炭化水素油中に含まれているイオ
ウ化合物及び窒素化合物を除去する方法として、水素存
在下の高温高圧の反応条件で炭化水素油を接触させ水素
化処理する方法が知られている。水素化脱硫法はこの水
素化処理法の1つであり、その水素化処理用触媒は多孔
性アルミナ担体に、周期律表第VIa族金属及び第VIII族
金属を担持させた触媒が一般に使用されている。しかし
ながら、この水素化処理触媒は、水素化脱硫反応には高
活性を示すが水素化脱窒素反応には十分な活性を示さな
い。すなわち、通常用いられている水素化脱硫条件下に
おいては水素化脱硫活性に対して水素化脱窒素活性はき
わめて低いものとなるものである。したがって、水素化
脱硫触媒を用いて水素化脱窒素反応も十分に行うために
は、高い圧力と温度あるいは小さい空間速度で処理する
ことが必要になる。しかしながら、そのような条件下で
実際に炭化水素油を水素化処理した場合には、水素化脱
窒素に関して満足する結果が得られても、一方では脱硫
あるいは水素化さらには軽質化が必要以上に進み、その
結果として水素消費料の増大を招き、経済的に好ましい
ことではなく、実用的でない。したがって、炭化水素油
を水素化処理してイオウ化合物と窒素化合物を同時に除
去するためには、従来知られている水素化脱硫活性に加
えて、C−N結合を開裂させる水素化脱窒素活性をも具
備した触媒が必要である。
2. Description of the Related Art Conventionally, as a method for removing sulfur compounds and nitrogen compounds contained in a hydrocarbon oil, there is known a method in which a hydrocarbon oil is brought into contact with a hydrocarbon oil under high-temperature and high-pressure reaction conditions in the presence of hydrogen to carry out hydrotreatment. Have been. The hydrodesulfurization method is one of the hydrotreating methods. As the hydrotreating catalyst, a catalyst in which a group VIa metal and a group VIII metal of the periodic table are supported on a porous alumina carrier is generally used. ing. However, this hydrotreating catalyst shows high activity for hydrodesulfurization reaction but does not show sufficient activity for hydrodenitrogenation reaction. That is, under the commonly used hydrodesulfurization conditions, the hydrodesulfurization activity is extremely low with respect to the hydrodesulfurization activity. Therefore, in order to sufficiently perform the hydrodenitrogenation reaction using the hydrodesulfurization catalyst, it is necessary to perform the treatment at a high pressure and temperature or at a small space velocity. However, when hydrocarbon oil is actually hydrotreated under such conditions, satisfactory results regarding hydrodenitrogenation can be obtained, but on the other hand, desulfurization or hydrogenation and further lightening are more than necessary. As a result, hydrogen consumption is increased, which is not economically favorable and not practical. Therefore, in order to simultaneously remove sulfur compounds and nitrogen compounds by hydrotreating a hydrocarbon oil, in addition to the conventionally known hydrodesulfurization activity, a hydrodenitrogenation activity that cleaves a C—N bond is required. A catalyst equipped with

【0003】水素化脱硫・脱窒素の両活性を具えた触媒
は種々の提案がなされている。たとえば、米国特許第
3,446,930号には、1.2〜2.6の水和水を
含有する水酸化アルミニウムを焼成して製造されたアル
ミナ担体に、ニッケル、又は、周期律表第VI族金属ある
いはそれら金属の酸化物又は硫化物を担持し、さらに
0.1〜2.0重量%のリン、ケイ素又はバリウムから
なる促進剤を添加した触媒が提案されている。又、米国
特許第3,749,664号には、アルミナ、又は、シ
リカ−アルミナ担体にモリブデンとニッケル又はコバル
トとリンとを特定の割合で担持させた触媒が記載され、
担体は、一般的には0.6〜1.4cc/gの細孔容積
を有するものが好ましいとしている。又、特開昭51−
100,983号公報には、アルミナ−ボリアからなる
酸化物触媒担体に、触媒成分として周期律表第VIa族及
び第VIII族金属を担持させたものが提案されている。
又、特開平4−166,233号公報には、無機酸化物
担体に、活性金属を担持した後、乾燥、焼成した触媒
に、多価アルコールなどを担持し乾燥する触媒の製造方
法が提案されている。
Various catalysts having both hydrodesulfurization and denitrification activities have been proposed. For example, U.S. Pat. No. 3,446,930 discloses that an alumina carrier produced by calcining aluminum hydroxide containing water of hydration of 1.2 to 2.6 contains nickel or nickel in the periodic table. A catalyst has been proposed which supports a Group VI metal or an oxide or sulfide of such a metal and further contains 0.1 to 2.0% by weight of an accelerator composed of phosphorus, silicon or barium. Also, U.S. Pat. No. 3,749,664 describes a catalyst in which molybdenum and nickel or cobalt and phosphorus are supported at a specific ratio on an alumina or silica-alumina carrier.
In general, the carrier preferably has a pore volume of 0.6 to 1.4 cc / g. Also, JP-A-51-
No. 100,983 proposes an oxide catalyst carrier comprising alumina-boria, on which a metal of Group VIa and Group VIII of the periodic table is supported as a catalyst component.
Also, Japanese Patent Application Laid-Open No. 4-166233 proposes a method for producing a catalyst in which an active metal is supported on an inorganic oxide carrier, and then a polyhydric alcohol or the like is supported on a dried and calcined catalyst and dried. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、米国特
許第3,446,730号のものは、担体の特性につい
ては何ら記載されず、しかも、処理油に関しては、残さ
油を含めたいかなる溜分にも適用可能としているが、実
際は溜出油を対象とするものと解されるものである。又
米国特許第3,749,664号のものは、担体の細孔
構造について研究されておらず炭化水素油の水素化処理
には満足する性能を有していないものである。又、特開
昭51−100,983号公報のものは、触媒担体の組
成及び細孔特性について十分検討されていなく、水素化
脱硫触媒としての効果についても記載していないもので
ある。又、特開平4−166,233号公報のものは、
無機酸化物担体としてアルミナを挙げているが、特性に
ついて記載されず、しかもこの触媒の製造方法では活性
金属を担持後、乾燥あるいは焼成し、多価アルコールな
どを担持するので工程が煩雑であり、さらに、水素化脱
窒素触媒としての効果についても何も記載されていない
ものである。本発明は、炭化水素油の水素化脱硫及び脱
窒素の両活性を十分に具備し、かつ、触媒製造工程を簡
略化させた触媒及びその製造方法を提供することを目的
とするものである。
However, U.S. Pat. No. 3,446,730 does not disclose the characteristics of the carrier and further treats the treated oil in any fraction, including residual oil. Is applicable, but it is understood that it is actually intended for distillate oil. Also, US Pat. No. 3,749,664 does not study the pore structure of the carrier and does not have satisfactory performance for hydrotreating hydrocarbon oils. JP-A-51-100,983 does not sufficiently examine the composition and pore characteristics of the catalyst carrier and does not describe the effect as a hydrodesulfurization catalyst. Also, Japanese Unexamined Patent Publication No. 4-166233 discloses
Although alumina is cited as an inorganic oxide carrier, its properties are not described, and furthermore, in this method for producing a catalyst, after carrying an active metal, drying or calcining, and carrying a polyhydric alcohol or the like, the steps are complicated, Furthermore, nothing is described about the effect as a hydrodenitrogenation catalyst. An object of the present invention is to provide a catalyst having both hydrodesulfurization and denitrification activities of a hydrocarbon oil, and having a simplified catalyst production process, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記問題
を解決し、前記目的を達成するために、ボリア−アルミ
ナからなる酸化物触媒担体に活性金属を担持させた触媒
について鋭意研究を重ねた結果、前記触媒担体に、活性
金属と二価アルコールを担持させた後、乾燥物状態の触
媒とすることによって、水素化脱硫・脱窒素の両活性が
向上し目的を達し得ることを見出して本発明を完成する
に至った。すなわち、本発明の第1の実施態様に係る炭
化水素油の水素化脱硫脱窒素用触媒は、ボリアの含有量
がBとして3〜15重量%であるとともに、その
物理性状が水銀圧入法で測定した細孔分布で80〜11
0オングストロームの平均細孔直径を有し、かつ平均細
孔粒径±10オングストロームの範囲の細孔容積が全細
孔容積の60%以上であるボリア−アルミナからなる酸
化物触媒担体に、活性金属成分として周期律表第VIa族
金属及び第VIII族金属のうち少なくとも1種類及び二価
アルコールを担持した乾燥物であることを特徴とし、ま
た前記触媒担体に担持させる二価アルコールがジエチレ
ングリコール又はトリエチレングリコールであり、担持
量が担持する水素化活性金属のモル数の0.2〜3倍量
であり、さらに第2の実施態様に係る炭化水素油の水素
化脱硫脱窒素用触媒の製造方法は、前記ボリアの含有量
がBとして3〜15重量%であるとともに、その
物理性状が水銀圧入法で測定した細孔分布で80〜11
0オングストロームの平均細孔直径を有し、かつ平均細
孔粒径±10オングストロームの範囲の細孔容積が全細
孔容積の60%以上であるボリア−アルミナからなる酸
化物触媒担体に、活性金属成分として周期律表第VIa族
金属及び第VIII族金属のうち少なくとも1種類及び二価
アルコールを添加した含浸液を担持させ、乾燥処理し、
乾燥状態の触媒とすることを特徴とし、そして前記触媒
担体に担持させる二価アルコールがジエチレングリコー
ル又はトリエチレングリコールであり、担持量が担持す
る水素化活性金属のモル数の0.2〜3倍量であること
を特徴とするものである。
Means for Solving the Problems In order to solve the above problems and achieve the above object, the present inventors have made intensive studies on a catalyst in which an active metal is supported on an oxide catalyst carrier comprising boria-alumina. As a result of the superposition, it has been found that both the activities of hydrodesulfurization and denitrification can be improved and the object can be achieved by forming the catalyst in a dry state after the active metal and the dihydric alcohol are supported on the catalyst carrier. Thus, the present invention has been completed. That is, the catalyst for hydrodesulfurization and denitrification of hydrocarbon oil according to the first embodiment of the present invention has a boron content of 3 to 15% by weight as B 2 O 3 and a physical property of mercury intrusion. 80 to 11 in the pore distribution measured by the method
An active metal catalyst is provided on an oxide catalyst carrier comprising boria-alumina having an average pore diameter of 0 angstrom and having a pore volume in a range of an average pore diameter of ± 10 angstroms of 60% or more of the total pore volume. Characterized in that it is a dried product carrying at least one of a Group VIa metal and a Group VIII metal of the periodic table and a dihydric alcohol as a component, and the dihydric alcohol carried on the catalyst carrier is diethylene glycol or triethylene. Glycol, the amount of which is 0.2 to 3 times the number of moles of the hydrogenation-active metal to be supported, and the method for producing a catalyst for hydrodesulfurization and denitrification of hydrocarbon oil according to the second embodiment. The content of the boria is 3 to 15% by weight as B 2 O 3 , and the physical properties thereof are 80 to 11 based on a pore distribution measured by a mercury intrusion method.
An active metal catalyst is provided on an oxide catalyst carrier comprising boria-alumina having an average pore diameter of 0 angstrom and having a pore volume in a range of an average pore diameter of ± 10 angstroms of 60% or more of the total pore volume. Carrying an impregnating liquid to which at least one of Group VIa metals and Group VIII metals of the periodic table and a dihydric alcohol are added as components, and drying treatment;
Characterized in that the catalyst is in a dry state, and the dihydric alcohol supported on the catalyst carrier is diethylene glycol or triethylene glycol, and the supported amount is 0.2 to 3 times the number of moles of the hydrogenation active metal supported. It is characterized by being.

【0006】しかして、本発明における触媒担体は、ボ
リア−アルミナからなる酸化物担体であって、ボリアの
含有量がBとして3〜15重量%の範囲であり、
該担体の物理性状が水銀圧入法で測定した細孔分布で8
0〜110オングストロームの平均細孔直径を有し、か
つ平均細孔粒径±10オングストロームの範囲の細孔容
積が全細孔容積の60%以上であるものを使用すること
が必要である。このような細孔分布が狭く、かつ平均細
孔径が特定の範囲にある担体は、たとえば混合法などの
一般的方法で製造し得るものである。すなわち、硫酸ア
ルミニウム水溶液とアルミン酸ナトリウム水溶液とを混
合し、加水分解し、生成したアルミナ水和物スラリーを
ろ過・洗浄してNaOとして0.05重量%、SO
として0.20重量%含むアルミナ水和物を得、該水和
物に、担体としたときのボリア含有量がBとして
3〜15重量%となるようにホウ酸水溶液を添加し、成
型可能な水分まで捏和し、十分可塑化させた後、円筒
状、球状、三つ葉型、四つ葉型など一般的な触媒担体と
しての形状に所望に応じて成型した後、乾燥し、ついで
焼成する方法によって製造することができる。なお、前
記アルミナ水和物を得る加水分解時にグルコン酸、酒石
酸などの有機酸を添加することによって細孔分布を特定
の範囲に集中した触媒を効果的に得ることができる。
又、前記担体を製造する際に使用するボリア原料として
は、たとえば、ホウ酸、四ホウ酸などの水可溶性塩が挙
げられ、アルミナ原料としては、たとえば、硝酸アルミ
ニウム、硫酸アルミニウム、アルミン酸ナトリウムなど
及びこれらの水可溶性塩類が挙げられる。
The catalyst carrier of the present invention is an oxide carrier composed of boria-alumina, and has a boron content of 3 to 15% by weight as B 2 O 3 ,
The physical properties of the carrier were 8 as determined by the mercury intrusion porosimetry.
It is necessary to use one having an average pore diameter of 0 to 110 angstroms and having a pore volume in the range of an average pore diameter ± 10 angstroms of 60% or more of the total pore volume. Such a carrier having a narrow pore distribution and an average pore diameter in a specific range can be produced by a general method such as a mixing method. That is, an aqueous solution of aluminum sulfate and an aqueous solution of sodium aluminate are mixed and hydrolyzed, and the resulting alumina hydrate slurry is filtered and washed to obtain 0.05% by weight of Na 2 O, SO 4
Alumina hydrate containing 0.20% by weight as an aqueous solution of boric acid was added to the hydrate so that the boria content when used as a carrier was 3 to 15% by weight as B 2 O 3 . After kneading to formable moisture, and after sufficient plasticization, cylindrical, spherical, three-leaf, four-leaf, etc., if necessary, molded into a shape as a catalyst carrier, dried and then It can be manufactured by a firing method. In addition, by adding an organic acid such as gluconic acid or tartaric acid at the time of hydrolysis for obtaining the alumina hydrate, it is possible to effectively obtain a catalyst whose pore distribution is concentrated in a specific range.
Examples of the boria raw material used in producing the carrier include, for example, water-soluble salts such as boric acid and tetraboric acid. Examples of the alumina raw material include aluminum nitrate, aluminum sulfate, and sodium aluminate. And water-soluble salts thereof.

【0007】水素化活性金属成分として用いられる周期
律表第VIa族金属としては、クロム、モリブデン、タン
グステンであって、とくにモリブデンが好ましい。又、
第VIII族金属としては、鉄、コバルト、ニッケルであっ
て、とくにニッケル又は/及びコバルトが好ましく、こ
れらを組合わせて用いるのがもっとも好ましい。活性成
分の担持量は、第VIa族金属については、酸化物換算で
触媒全重量に対して17〜28重量%であり、第VIII族
金属については、酸化物換算で3〜8重量%の範囲が好
ましい。二価アルコールとしては、ジエチレングリコー
ルあるいはトリエチレングリコールを使用することが好
ましく、添加量としては、活性金属成分として担持する
周期律表第VIa族金属と第VIII族金属の合計モル量の
0.2〜3倍量の範囲が好ましい。又、前記担体に活性
金属と二価アルコールを含む含浸液を担持した後の乾燥
温度は、200℃以下であることが好ましい。
The group VIa metal of the periodic table used as the hydrogenation active metal component is chromium, molybdenum or tungsten, with molybdenum being particularly preferred. or,
The Group VIII metal is iron, cobalt or nickel, particularly preferably nickel and / or cobalt, and most preferably a combination of these. The loading amount of the active component is from 17 to 28% by weight, based on the total weight of the catalyst, of the Group VIa metal, and from 3 to 8% by weight of the Group VIII metal, based on the oxide. Is preferred. As the dihydric alcohol, it is preferable to use diethylene glycol or triethylene glycol, and the amount added is 0.2 to the total molar amount of the Group VIa metal and Group VIII metal supported in the periodic table as an active metal component. A range of three times is preferred. The drying temperature after supporting the impregnating liquid containing the active metal and the dihydric alcohol on the carrier is preferably 200 ° C. or lower.

【0008】[0008]

【作用】ボリア−アルミナからなる酸化物触媒担体のボ
リアの含有量を前記範囲としたのは、前記範囲外の組成
であると脱窒素活性について飛躍的な向上が認められ
ず、この向上は、担体の持つ酸特性効果によるものと考
えられるからである。この担体の細孔直径や細孔分布に
ついては、脱硫・脱窒素に有効な細孔直径を有する細孔
をできるだけ多くし、他の有害な反応を抑制するために
は、その細孔分布が狭く、かつ平均細孔直径が特定な値
であることが必要であって、平均細孔直径が前記下限値
未満のときは、反応物質の触媒粒子内での拡散抵抗が大
きく、水素化脱硫・脱窒素の両活性が低下し、他方平均
細孔直径が上限値を超えると、反応物が一度に多量に細
孔内に侵入し、その分解による炭素質の析出が水素化脱
硫・脱窒素の両活性を低下させることになるからであ
る。又、細孔分布が前記のような特定の範囲に集中して
いないときは、たとえ平均細孔直径が前記範囲内に入っ
ていても、炭化水素油の水素化脱硫・脱窒素反応に有効
な細孔が減少するので両活性が低下するものであって、
前記範囲内にあるならば最終的に得られる乾燥触媒の脱
硫・脱窒素の効果がもっとも優れているものである。
The reason why the content of boria in the oxide catalyst carrier composed of boria-alumina is set in the above range is that if the composition is out of the above range, no remarkable improvement in denitrification activity is recognized. This is because it is considered to be due to the acid property effect of the carrier. Regarding the pore diameter and pore distribution of this carrier, the pore distribution should be as narrow as possible in order to increase the number of pores having pore diameters effective for desulfurization and denitrification, and to suppress other harmful reactions. When the average pore diameter is required to be a specific value and the average pore diameter is less than the lower limit, the diffusion resistance of the reactant in the catalyst particles is large, and the hydrodesulfurization / desulfurization is performed. When both activities of nitrogen decrease and the average pore diameter exceeds the upper limit, a large amount of the reactant penetrates into the pores at once, and the carbonaceous precipitate due to its decomposition causes both hydrodesulfurization and denitrification. This is because the activity is reduced. Further, when the pore distribution is not concentrated in the specific range as described above, even if the average pore diameter is within the range, it is effective for hydrodesulfurization and denitrification of hydrocarbon oil. Both activities are reduced because the pores are reduced,
If it is within the above range, the effect of desulfurization and denitrification of the finally obtained dried catalyst is the most excellent.

【0009】活性金属成分の担持量を前記範囲が好まし
いとしたのは、前記範囲の下限は、水素化脱硫・脱窒素
活性の所望値の発生に必要な最低限の量であり、上限
は、これ以上添加量を増加しても、水素化脱硫・脱窒素
活性の増加が見込まれない値であるからである。二価ア
ルコールの前記添加量は、水素化活性金属と反応して錯
化合物を作るための必要量であり、0.2倍量未満の添
加量では十分に錯化合物を作ることができず、3倍量を
超えて添加すると硫化工程で過剰に含まれる二価アルコ
ールが分解せずに炭素分として触媒中に残存し水素化脱
硫・脱窒素活性を低下させるからである。なお、比重
1.1〜1.2程度の多価アルコールでも同様な効果が
認められる。
The reason why the above-mentioned range is preferable for the amount of the active metal component to be loaded is that the lower limit of the above-mentioned range is the minimum amount necessary for generating a desired value of hydrodesulfurization / denitrification activity, and the upper limit is: This is because even if the addition amount is further increased, the hydrodesulfurization / denitrification activity is not expected to increase. The addition amount of the dihydric alcohol is a necessary amount for forming a complex compound by reacting with the hydrogenation active metal, and if the addition amount is less than 0.2 times, the complex compound cannot be sufficiently formed. This is because if added in excess of twice the amount, the dihydric alcohol excessively contained in the sulfurization step will not be decomposed and will remain in the catalyst as carbon and reduce the hydrodesulfurization / denitrification activity. A similar effect can be obtained even with a polyhydric alcohol having a specific gravity of about 1.1 to 1.2.

【0010】本発明の触媒は、前記のような所望の細孔
構造を持ったボリア−アルミナからなる触媒担体に、た
とえば、三酸化モリブデン及び炭酸ニッケル、炭酸コバ
ルトを水に懸濁させたスラリーにクエン酸、酒石酸など
の有機酸を添加して加熱溶解させた水溶液にジエチレン
グリコールを添加して含有液全量が担体に吸着可能な量
として全量を吸着させ、ついで、200℃以下で乾燥す
ることによって製造することができる。本発明の方法で
調製された触媒は、炭化水素油の水素化脱硫・脱窒素反
応において、酸化物担体に活性金属を担持し、乾燥ある
いは乾燥し焼成する従来技術の触媒製造方法で得た触媒
に硫化処理を施した触媒より優れた活性を示す。その理
由は確信はし得ないが、硫化処理工程で活性金属が硫化
物形態に変るが、その際生成する粒子の凝集が防止で
き、該硫化物の粒径が小さく、かつ、高分散状態になっ
ているためではないかと考えられる。
[0010] The catalyst of the present invention is formed on a catalyst carrier composed of boria-alumina having a desired pore structure as described above, for example, a slurry in which molybdenum trioxide, nickel carbonate and cobalt carbonate are suspended in water. Diethylene glycol is added to an aqueous solution prepared by adding an organic acid such as citric acid or tartaric acid and dissolved by heating, and the entire amount of the solution is adsorbed so that the entire amount of the solution can be adsorbed on the carrier. can do. The catalyst prepared by the method of the present invention is a catalyst obtained by a conventional catalyst production method in which an active metal is supported on an oxide carrier and dried or dried and calcined in a hydrodesulfurization and denitrification reaction of a hydrocarbon oil. Shows an activity superior to that of a catalyst which has been subjected to a sulfidation treatment. Although the reason is not certain, the active metal changes to the sulfide form in the sulfidation step, but the aggregation of the particles generated at that time can be prevented, the particle size of the sulfide is small, and the sulfide is in a highly dispersed state. It is thought that it is because it has become.

【0011】[0011]

【実施例】次に、本発明の実施例を述べる。 実施例 1 (1)触媒担体の調製:内容積100リットルのかきま
ぜ機付きステンレス製反応槽に、水49.5リットルと
濃度50%のグルコン酸溶液204g(加水分解で生成
するAl2 3 に対して0.05重量%)を反応槽内に
いれ、70℃まで加温して保持し、かきまぜながらAl
2 3 として774gを含む硫酸アルミニウム水溶液9
540gとAl2 3 として1275gを含むアルミン
酸ナトリウム水溶液をpH8.5〜9.0の範囲で同時
又はほぼ同時に全量を滴下してpH8.8のアルミナ水
和物スラリーを得た。次に、該スラリーを30分間熟成
した後、Na2 Oとして0.1重量%以下、SO4 とし
て0.5重量%以下になるまでろ過−洗浄して得られた
アルミナ水和物ケーキ5000g(Al2 3 として2
0重量%)に、ホウ酸197g(B2 3 として111
g)を加え、加温ジャケット付きニーダ中で加熱捏和
し、B2 3 −Al2 3 濃度として63重量%の可塑
性のある捏和物を得、ついで、この捏和物を直径1.5
mmφのダイスを有する押出成型機で成型し、乾燥後、
電気炉で800℃に2時間焼成して触媒担体Aを得た。
得られた触媒担体について、水銀圧入法で細孔構造を測
定した。測定結果を触媒担体組成とともに表1に示す。
Next, an embodiment of the present invention will be described. Example 1 (1) Preparation of catalyst carrier: In a stainless steel reaction tank having an internal volume of 100 liter and equipped with a stirrer, 49.5 liters of water and 204 g of a 50% gluconic acid solution (to Al 2 O 3 generated by hydrolysis) were added. 0.05% by weight) in a reaction vessel, heated and maintained at 70 ° C., and stirred while stirring.
Aluminum sulfate aqueous solution containing 774 g as 2 O 3 9
An aqueous solution of sodium aluminate containing 540 g and 1275 g of Al 2 O 3 was simultaneously or almost simultaneously dripped in the range of pH 8.5 to 9.0 to obtain a pH 8.8 alumina hydrate slurry. Next, after aging this slurry for 30 minutes, 5000 g of alumina hydrate cake obtained by filtering and washing until 0.1% by weight or less as Na 2 O and 0.5% by weight or less as SO 4 ( 2 as Al 2 O 3
0% by weight), 197 g of boric acid (111 as B 2 O 3 )
The g) was added, and kneaded heated warming a jacketed kneader, B 2 O 3 -Al 2 O 3 concentration to obtain a 63% by weight of a thermoplastic having certain kneaded product as then, diameter 1 The kneaded product .5
Molded with an extrusion molding machine having a mmφ die, dried,
It was calcined at 800 ° C. for 2 hours in an electric furnace to obtain a catalyst carrier A.
The pore structure of the obtained catalyst carrier was measured by a mercury intrusion method. Table 1 shows the measurement results together with the catalyst carrier composition.

【0012】(2)触媒の調製:三酸化モリブデン3
9.7g、炭酸ニッケル13.4gを水50gに懸濁
し、酒石酸2.0gを添加して加熱下で溶解した後、冷
却し、ジエチレングリコール33gを添加し、十分かき
まぜて混合し、触媒担体の吸水量に見合う液量になるよ
うに水で液量を調節した含浸液を、(1)で得たボリア
−アルミナからなる触媒担体A100gに含浸させ、2
時間放置後110℃で16時間乾燥して触媒1を得た。 (3)触媒の性能評価:得られた触媒1について、触媒
充填量15mlの固定床流通反応装置を用い、炭化水素
油の水素化脱硫・脱窒素反応活性を調査した。なお、触
媒の硫化条件は、ジメチルジサルファイドを2.5重量
%添加した軽油で水素/油供給比200Nl/l、LH
SV=2.0hr−1、圧力30kg/cmGの条件
下、100℃から315℃まで7時間かけて昇温し、保
持して16時間予備硫化を行った。ついで、イオウ分
1.15重量%、窒素分68ppmを含むクエート常圧
軽油を用い、反応条件は、圧力30kg/cmG、L
HSV=2.0hr−1、水素/油供給比300Nl/
l、反応温度350℃で行い、反応開始から50時間後
の処理油中のイオウ分及び窒素含有量を分析して脱硫活
性、脱窒素活性を求めた。結果を表2に示す。なお、イ
オウ分の分析は、(株)堀場製作所製SLFA−920
型を用い、窒素分の分析は、三菱化成(株)製TN−0
5型を用いて行った。
(2) Preparation of catalyst: molybdenum trioxide 3
9.7 g and 13.4 g of nickel carbonate are suspended in 50 g of water, and 2.0 g of tartaric acid is added and dissolved under heating. After cooling, 33 g of diethylene glycol is added, and the mixture is sufficiently stirred and mixed. The impregnating solution, the amount of which was adjusted with water so as to be a liquid amount corresponding to the amount, was impregnated into 100 g of the catalyst support A made of boria-alumina obtained in (1), and
After leaving it for 110 hours, it was dried at 110 ° C. for 16 hours to obtain Catalyst 1. (3) Evaluation of catalyst performance: The obtained catalyst 1 was examined for hydrodesulfurization / denitrification reaction activity of hydrocarbon oil using a fixed bed flow reactor with a catalyst loading of 15 ml. The catalyst was sulfurized at a hydrogen / oil supply ratio of 200 Nl / l and LH with light oil to which 2.5% by weight of dimethyl disulfide was added.
The temperature was raised from 100 ° C. to 315 ° C. over 7 hours under the conditions of SV = 2.0 hr −1 and a pressure of 30 kg / cm 2 G, and the pre-sulfurization was performed for 16 hours while maintaining the temperature. Then, a quat normal pressure gas oil containing 1.15% by weight of sulfur and 68 ppm of nitrogen was used, and the reaction conditions were as follows: pressure 30 kg / cm 2 G, L
HSV = 2.0 hr −1 , hydrogen / oil supply ratio 300 Nl /
1, the reaction temperature was 350 ° C., and the sulfur content and nitrogen content in the treated oil 50 hours after the start of the reaction were analyzed to determine the desulfurization activity and the denitrification activity. Table 2 shows the results. The analysis of the sulfur content was performed using SLFA-920 manufactured by Horiba, Ltd.
Using a mold, the analysis of the nitrogen content was performed using TN-0 manufactured by Mitsubishi Kasei Corporation.
This was performed using a type 5 mold.

【0013】表2に示す脱硫活性は、後述する比較例8
で得られた触媒Tを100とした時の反応速度定数の相
対活性値で示したものであって、速度次数は、脱硫反応
速度が原料油のイオウ濃度の1.75乗に比例するもの
として Km=LHSV・(1/n−1)・{(1/Sn-1 )−
(1/Son-1 )} の式を用いて求めた。ここに、n=速度次数1.75、
LHSV=空間速度(hr-1)、S=処理油中のイオウ
濃度(%)、So=原料油中のイオウ濃度(%)であ
る。又、脱窒素活性は、触媒Wを100とした時の反応
速度定数の相対活性値で示すこととし、速度次数は、脱
窒素反応速度が原料油の窒素濃度の1.0乗に比例する
ものとして、Km=LHSV・1n(No/N)の式を
用いて求めた。ここに、LHSV=液空間速度(h
-1)、No=処理油中の窒素濃度(%)、N=原料油
中の窒素濃度(%)である。
The desulfurization activity shown in Table 2 was measured in Comparative Example 8 described later.
The reaction rate constant was expressed as a relative activity value when the catalyst T obtained in the above was taken as 100, and the rate order was such that the desulfurization reaction rate was proportional to the 1.75 power of the sulfur concentration of the feedstock oil. Km = LHSV · (1 / n−1) · {(1 / S n−1 ) −
(1 / So n-1 )}. Where n = speed order 1.75,
LHSV = space velocity (hr −1 ), S = sulfur concentration (%) in the treated oil, and So = sulfur concentration (%) in the feed oil. The denitrification activity is indicated by the relative activity value of the reaction rate constant when the catalyst W is 100, and the rate order is such that the denitrification reaction rate is proportional to the 1.0 power of the nitrogen concentration of the feed oil. Km = LHSV · 1n (No / N). Here, LHSV = liquid space velocity (h
r -1 ), No = nitrogen concentration (%) in the treated oil, N = nitrogen concentration (%) in the feed oil.

【0014】実施例 2 (1)触媒担体の調製:実施例1−(1)で得たアルミ
ナ水和物に添加するホウ酸の添加量を変えた以外は、実
施例1−(1)と同様にして触媒担体Bを調製し、水銀
圧入法による細孔構造を求めた結果を担体組成とともに
表1に示す。 (2)触媒の調製:(1)で得た触媒担体Bを使用した
以外は、実施例1−(2)と同様に処理して触媒2を得
た。 (3)触媒の性能評価:実施例1−(3)と同様にして
性能評価を行い、結果を表2に示す。
Example 2 (1) Preparation of catalyst carrier: Example 1- (1) was prepared in the same manner as in Example 1- (1) except that the amount of boric acid added to the alumina hydrate obtained in Example 1- (1) was changed. In the same manner, catalyst carrier B was prepared, and the pore structure was determined by mercury porosimetry. The results are shown in Table 1 together with the carrier composition. (2) Preparation of catalyst: Catalyst 2 was obtained in the same manner as in Example 1- (2), except that catalyst carrier B obtained in (1) was used. (3) Performance evaluation of catalyst: Performance evaluation was performed in the same manner as in Example 1- (3), and the results are shown in Table 2.

【0015】実施例 3 (1)触媒担体の調製:実施例1−(1)で得たアルミ
ナ水和物に添加するホウ酸の添加量を変えた以外は、実
施例1−(1)と同様にして触媒担体Cを調製し、水銀
圧入法による細孔構造を求めた。その結果を担体組成と
ともに表1に示す。 (2)触媒の調製:(1)で得た触媒担体Cを使用した
以外は、実施例1−(2)と同様に処理して触媒3を得
た。 (3)触媒の性能試験:実施例1−(3)と同様にして
性能試験を行い、結果を表2に示す。 実施例 4 実施例1−(1)で調製した触媒担体Aを使用して、三
酸化モリブデン32.0g、炭酸ニッケル18.2gと
エチレングリコール30.9gを添加した以外は、実施
例1−(2)と同様に処理して触媒4を得、実施例1−
(3)と同様にして性能試験を行った。結果を表2に示
す。
Example 3 (1) Preparation of catalyst carrier: Example 1- (1) was repeated except that the amount of boric acid added to the alumina hydrate obtained in Example 1- (1) was changed. Similarly, catalyst carrier C was prepared, and the pore structure was determined by a mercury intrusion method. The results are shown in Table 1 together with the carrier composition. (2) Preparation of catalyst: Catalyst 3 was obtained in the same manner as in Example 1- (2), except that catalyst carrier C obtained in (1) was used. (3) Performance test of catalyst: A performance test was performed in the same manner as in Example 1- (3), and the results are shown in Table 2. Example 4 Using the catalyst carrier A prepared in Example 1- (1), except that 32.0 g of molybdenum trioxide, 18.2 g of nickel carbonate and 30.9 g of ethylene glycol were added. The catalyst 4 was obtained by treating in the same manner as in 2).
A performance test was performed in the same manner as in (3). Table 2 shows the results.

【0016】実施例 5 実施例1−(1)で調製した触媒担体Aを使用して、三
酸化モリブデン23.1g、炭酸ニッケル9.3gとジ
エチレングリコール30.9gを添加した以外は、実施
例1−(2)と同様に処理して触媒5を得、実施例1−
(3)と同様にして性能試験を行った。結果を表2に示
す。 実施例 6、7 ジエチレングリコールの添加量を16.5g(実施例
6)、99.0g(実施例7)とした以外は、実施例1
と同様に処理して触媒6(実施例6)及び触媒7(実施
例7)を得、実施例1−(3)と同様にして性能試験を
行った。結果を表2に示す。 実施例 8 炭酸ニッケルの代りに炭酸コバルトを使用した以外は、
実施例1と同様に処理して触媒8を得、実施例1−
(3)と同様にして性能試験を行った。結果を表2に示
す。
Example 5 Example 1 was repeated except that 23.1 g of molybdenum trioxide, 9.3 g of nickel carbonate and 30.9 g of diethylene glycol were added to the catalyst carrier A prepared in Example 1- (1). -A catalyst 5 was obtained by treating in the same manner as in (2).
A performance test was performed in the same manner as in (3). Table 2 shows the results. Examples 6 and 7 Example 1 was repeated except that the amount of diethylene glycol added was 16.5 g (Example 6) and 99.0 g (Example 7).
Catalyst 6 (Example 6) and Catalyst 7 (Example 7) were obtained in the same manner as described above, and a performance test was performed in the same manner as in Example 1- (3). Table 2 shows the results. Example 8 Except that cobalt carbonate was used instead of nickel carbonate,
The catalyst 8 was obtained by treating in the same manner as in Example 1.
A performance test was performed in the same manner as in (3). Table 2 shows the results.

【0017】実施例 9 ジエチレングリコールの代りにトリエチレングリコール
を使用した以外は、実施例1と同様に処理して触媒9を
得、実施例1−(3)と同様にして性能試験を行った。
結果を表3に示す。 実施例 10〜16 実施例2〜実施例8におけるジエチレングリコールの代
りにトリエチレングリコールを使用した以外は、実施例
2〜8と同様に処理して触媒10(実施例10)、触媒
11(実施例11)、触媒12(実施例12)、触媒1
3(実施例13)、触媒14(実施例14)、触媒15
(実施例15)、触媒16(実施例16)を得、それぞ
れ実施例1−(3)と同様にして性能試験を行った。そ
れぞれの結果を表3に示す。
Example 9 A catalyst 9 was obtained by treating in the same manner as in Example 1 except that triethylene glycol was used instead of diethylene glycol, and a performance test was conducted in the same manner as in Example 1- (3).
Table 3 shows the results. Examples 10 to 16 Catalysts 10 (Example 10) and 11 (Examples) were treated in the same manner as in Examples 2 to 8 except that triethylene glycol was used instead of diethylene glycol in Examples 2 to 8. 11), catalyst 12 (Example 12), catalyst 1
3 (Example 13), catalyst 14 (Example 14), catalyst 15
(Example 15) and a catalyst 16 (Example 16) were obtained, and a performance test was performed in the same manner as in Example 1- (3). Table 3 shows the results.

【0018】比較例1 (1)触媒担体の調製:実施例1−(1)と同様にして
得たアルミナ水和物スラリーをろ過−洗浄して得られた
アルミナ水和物ケーキ2500gを加温ジャケット付き
ニーダ中で加熱捏和し、Al濃度として60重量
%の可塑性のある捏和物を得、ついで、この捏和物を直
径1.5mmφのダイスを有する押出成型機で成型し、
乾燥後、電気炉で500℃で2時間焼成してアルミナ担
体Dを得た。 (2)触媒の調製:(1)で調製したアルミナ担体Dを
使用した以外は、実施例1−(2)と同様に処理して触
媒Mを得た。 (3)触媒の性能試験:得られた触媒Mについて、実施
例1−(3)と同様にして性能試験を行った。結果を表
2に示す。 比較例2 (1)触媒担体の調製:反応槽内にグルコン酸を添加し
なかった以外は、実施例1−(1)と同様に処理してボ
リア−アルミナ担体Eを調製した。 (2)触媒の調製:(1)で調製したボリアーアルミナ
担体Eを使用した以外は、実施例1−(2)と同様に処
理して触媒Nを得た。 (3)触媒の性能試験:得られた触媒Nについて、実施
例1−(3)と同様にして性能試験を行った。結果を表
2に示す。
Comparative Example 1 (1) Preparation of catalyst carrier: 2500 g of alumina hydrate cake obtained by filtering and washing the alumina hydrate slurry obtained in the same manner as in Example 1- (1) was heated. The mixture was heated and kneaded in a jacketed kneader to obtain a plastic kneaded product having an Al 2 O 3 concentration of 60% by weight, and then the kneaded product was molded using an extruder having a die having a diameter of 1.5 mmφ. ,
After drying, it was calcined at 500 ° C. for 2 hours in an electric furnace to obtain an alumina carrier D. (2) Preparation of catalyst: A catalyst M was obtained in the same manner as in Example 1- (2), except that the alumina carrier D prepared in (1) was used. (3) Performance test of catalyst: The obtained catalyst M was subjected to a performance test in the same manner as in Example 1- (3). Table 2 shows the results. Comparative Example 2 (1) Preparation of catalyst carrier: A boria-alumina carrier E was prepared in the same manner as in Example 1- (1) except that gluconic acid was not added into the reaction vessel. (2) Preparation of catalyst: Catalyst N was obtained by treating in the same manner as in Example 1- (2) except that boria-alumina carrier E prepared in (1) was used. (3) Performance test of catalyst: The obtained catalyst N was subjected to a performance test in the same manner as in Example 1- (3). Table 2 shows the results.

【0019】比較例3 (1)触媒担体の調製:実施例1−(1)で得たボリア
−アルミナ捏和物を成形し、乾燥後電気炉で500℃で
2時間焼成した以外は、実施例1−(1)と同様にして
触媒担体Fを調製し、水銀圧入法による細孔構造を求め
た結果を担体組成とともに表1に示す。 (2)触媒の調製:(1)で得た触媒担体Fを使用した
以外は、実施例1−(2)と同様に処理して触媒Oを得
た。 (3)触媒の性能評価:実施例1−(3)と同様にして
性能評価を行い、結果を表2に示す。 比較例4 (1)触媒担体の調製:実施例1−(1)で得たボリア
−アルミナ捏和物を成形し、乾燥後電気炉で900℃で
2時間焼成した以外は、実施例1−(1)と同様にして
触媒担体Gを調製し、水銀圧入法による細孔構造を求め
た結果を担体組成とともに表1に示す。 (2)触媒の調製:(1)で得た触媒担体Gを使用した
以外は、実施例1−(2)と同様に処理して触媒Pを得
た。 (3)触媒の性能評価:実施例1−(3)と同様にして
性能評価を行い、結果を表2に示す。
Comparative Example 3 (1) Preparation of Catalyst Carrier: The kneaded boria-alumina obtained in Example 1- (1) was molded, dried and calcined in an electric furnace at 500 ° C. for 2 hours. A catalyst carrier F was prepared in the same manner as in Example 1- (1), and the pore structure was determined by mercury porosimetry. The results are shown in Table 1 together with the carrier composition. (2) Preparation of catalyst: Catalyst O was obtained in the same manner as in Example 1- (2), except that catalyst carrier F obtained in (1) was used. (3) Performance evaluation of catalyst: Performance evaluation was performed in the same manner as in Example 1- (3), and the results are shown in Table 2. Comparative Example 4 (1) Preparation of Catalyst Carrier: Example 1 was repeated except that the boria-alumina kneaded product obtained in Example 1- (1) was molded, dried and calcined in an electric furnace at 900 ° C. for 2 hours. A catalyst carrier G was prepared in the same manner as in (1), and the pore structure was determined by mercury porosimetry. The results are shown in Table 1 together with the carrier composition. (2) Preparation of catalyst: A catalyst P was obtained in the same manner as in Example 1- (2), except that the catalyst carrier G obtained in (1) was used. (3) Performance evaluation of catalyst: Performance evaluation was performed in the same manner as in Example 1- (3), and the results are shown in Table 2.

【0020】比較例 5 (1)触媒担体の調製:実施例1−(1)で得たアルミ
ナ水和物に添加するホウ酸の添加量を変えた以外は、実
施例1−(1)と同様にして触媒担体Hを調製し、水銀
圧入法による細孔構造を求めた結果を担体組成とともに
表1に示す。 (2)触媒の調製:(1)で得た触媒担体Hを使用した
以外は実施例1−(2)と同様に処理して触媒Qを得
た。 (3)触媒の性能評価:実施例1−(3)と同様にして
性能評価を行い、結果を表2に示す。 比較例 6 (1)触媒担体の調製:実施例1−(1)で得たアルミ
ナ水和物に添加するホウ酸の添加量を変えた以外は、実
施例1−(1)と同様にして触媒担体Iを調製し、水銀
圧入法による細孔構造を求めた結果を担体組成とともに
表1に示す。 (2)触媒の調製:(1)で得た触媒担体Iを使用した
以外は実施例1−(2)と同様に処理して触媒Rを得
た。 (3)触媒の性能評価:実施例1−(3)と同様にして
性能評価を行い、結果を表2に示す。 比較例 7 三酸化モリブデン18.3g、炭酸ニッケル6.7g、
ジエチレングリコール18.6gを添加した以外は、実
施例1と同様にして触媒Sを得、実施例1−(3)と同
様にして触媒の性能試験を行った。結果を表2に示す。
Comparative Example 5 (1) Preparation of catalyst carrier: Example 1- (1) was prepared in the same manner as in Example 1- (1) except that the amount of boric acid added to the alumina hydrate obtained in Example 1- (1) was changed. Similarly, catalyst carrier H was prepared, and the pore structure was determined by mercury porosimetry. The results are shown in Table 1 together with the carrier composition. (2) Preparation of catalyst: Catalyst Q was obtained by treating in the same manner as in Example 1- (2) except that catalyst carrier H obtained in (1) was used. (3) Performance evaluation of catalyst: Performance evaluation was performed in the same manner as in Example 1- (3), and the results are shown in Table 2. Comparative Example 6 (1) Preparation of Catalyst Carrier: Same as Example 1- (1) except that the amount of boric acid added to the alumina hydrate obtained in Example 1- (1) was changed. Table 1 shows the results of preparing the catalyst carrier I and determining the pore structure by the mercury intrusion method together with the carrier composition. (2) Preparation of catalyst: Catalyst R was obtained by treating in the same manner as in Example 1- (2) except that catalyst carrier I obtained in (1) was used. (3) Performance evaluation of catalyst: Performance evaluation was performed in the same manner as in Example 1- (3), and the results are shown in Table 2. Comparative Example 7 Molybdenum trioxide 18.3 g, nickel carbonate 6.7 g,
A catalyst S was obtained in the same manner as in Example 1 except that 18.6 g of diethylene glycol was added, and a performance test of the catalyst was performed in the same manner as in Example 1- (3). Table 2 shows the results.

【0021】比較例 8 ジエチレングリコールを添加しなかった以外は、実施例
1と同様にして触媒Tを得、実施例1−(3)と同様に
して性能試験を行った。結果を表2に示す。 比較例 9〜15 比較例1〜7におけるジエチレングリコールの代りにト
リエチレングリコールを使用した以外は、比較例1〜8
と同様にして触媒M′(比較例9)、触媒N′(比較例
10)、触媒O′(比較例11)、触媒P′(比較例1
2)、触媒Q′(比較例13)、触媒R′(比較例1
4)、触媒S′(比較例15)を得、実施例1−(3)
と同様にして性能試験を行った。結果を表3に示す。
Comparative Example 8 A catalyst T was obtained in the same manner as in Example 1 except that diethylene glycol was not added, and a performance test was performed in the same manner as in Example 1- (3). Table 2 shows the results. Comparative Examples 9 to 15 Comparative Examples 1 to 8 except that triethylene glycol was used instead of diethylene glycol in Comparative Examples 1 to 7.
Catalyst M '(Comparative Example 9), Catalyst N' (Comparative Example 10), Catalyst O '(Comparative Example 11), Catalyst P' (Comparative Example 1)
2), catalyst Q '(Comparative Example 13), catalyst R' (Comparative Example 1)
4), a catalyst S '(Comparative Example 15) was obtained, and Example 1- (3) was obtained.
A performance test was performed in the same manner as described above. Table 3 shows the results.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】これらの結果から、実施例の触媒1、2、
3、9、10、11は、酸化物に換算したモリブデン、
ニッケルの含有量及びジエチレングリコール又はトリエ
チレングリコール(以下、二価アルコールという)の添
加量が同一であり、触媒担体のボリア−アルミナの組成
比及び平均細孔直径及び細孔分布や活性金属担持量に関
して、いずれも本発明の範囲を満足するものであり、高
い脱硫・脱窒素活性を示すことが認められる。これに対
して、比較例の触媒N及びN′は、活性金属の担持量及
び二価アルコールの添加量、触媒担体のボリア−アルミ
ナ組成比は本発明の範囲に入るが、触媒担体の平均細孔
直径±10オングストロームの細孔容積/全細孔容積
(%)の値が45%しかなく、細孔分布が広いので、こ
の触媒N及びN′の脱硫・脱窒素活性は、細孔分布の狭
い本発明の実施例の触媒1より低い値を示している。ま
た、比較例の触媒O、O′並びにP、P′は、活性金属
の担持量及び二価アルコールの添加量、触媒担体のボリ
ア−アルミナ組成比は本発明の範囲に入るが、触媒担体
の平均細孔直径の値が73オングストローム及び115
オングストロームとなり本発明の範囲外であるため脱硫
・脱窒素活性は本発明の触媒1より低い値を示してい
る。比較例の触媒M、M′は、活性金属の担持量及び二
価アルコールの添加量、平均細孔直径及び細孔分布に関
しては、いずれも本発明の範囲に入るが、担体成分中の
ボリアが含まれていないために、これら触媒の脱硫活性
は高いが、脱窒素活性が低い値を示している。
From these results, the catalysts 1, 2 and
3, 9, 10, and 11 are molybdenum converted to oxides,
The nickel content and the amount of diethylene glycol or triethylene glycol (hereinafter referred to as dihydric alcohol) are the same, and the composition ratio of boria-alumina and the average pore diameter and pore distribution of the catalyst carrier and the amount of active metal carried are , All satisfy the scope of the present invention, and show high desulfurization / denitrification activity. On the other hand, the catalysts N and N 'of Comparative Examples have the amount of active metal carried, the amount of dihydric alcohol added, and the composition ratio of boria-alumina of the catalyst carrier within the scope of the present invention, but the average fineness of the catalyst carrier is small. Since the value of the pore volume of the pore diameter ± 10 angstroms / the total pore volume (%) is only 45% and the pore distribution is wide, the desulfurization / denitrification activity of the catalysts N and N 'is determined by It shows a lower value than Catalyst 1 of the narrow inventive example. The catalysts O, O 'and P, P' of the comparative examples have the amount of the active metal supported, the amount of the dihydric alcohol added, and the composition ratio of boria-alumina of the catalyst carrier within the scope of the present invention. Mean pore diameter values of 73 Å and 115
Angstroms and out of the range of the present invention, the desulfurization / denitrification activity shows a lower value than the catalyst 1 of the present invention. The catalysts M and M 'of the comparative examples all fall within the scope of the present invention with respect to the amount of active metal supported and the amount of dihydric alcohol added, the average pore diameter and the pore distribution. Since they are not contained, the desulfurization activity of these catalysts is high, but the denitrification activity is low.

【0026】実施例の触媒4、5、12、13及び比較
例の触媒S、S′は、触媒担体のボリア−アルミナ組成
比、平均細孔直径及び細孔分布、二価アルコールの添加
量に関しては本発明の範囲を満足するものであるが、酸
化物に換算したモリブデン、ニッケルの含有量を変えた
ものである。触媒4、12は、触媒1に比較してモリブ
デンを減らし、ニッケルを増した触媒であり、触媒5、
13は触媒1に比較してモリブデン、ニッケルを減らし
た触媒であるが、いずれも本発明の範囲内であり、十分
に高い脱硫・脱窒素率を有している。比較例の触媒S、
S′は、本発明の触媒1に比較してモリブデン、ニッケ
ルを減らした触媒であるが、活性金属含有量が本発明の
範囲外であるため脱硫・脱窒素活性がともに低い値を示
している。
The catalysts 4, 5, 12, and 13 of the examples and the catalysts S and S 'of the comparative examples were obtained with respect to the composition ratio of boria-alumina, the average pore diameter and the pore distribution of the catalyst carrier, and the amount of the dihydric alcohol added. Satisfies the range of the present invention, but changes the contents of molybdenum and nickel in terms of oxide. Catalysts 4 and 12 are catalysts in which molybdenum is reduced and nickel is increased as compared with catalyst 1, and catalysts 5 and 12 are used.
Reference numeral 13 denotes a catalyst in which molybdenum and nickel are reduced as compared with the catalyst 1, but both are within the scope of the present invention and have a sufficiently high desulfurization and denitrification ratio. Comparative example catalyst S,
S 'is a catalyst in which molybdenum and nickel are reduced as compared with catalyst 1 of the present invention, but since the active metal content is outside the range of the present invention, both the desulfurization and denitrification activities show low values. .

【0027】実施例の触媒6、7、14、15は、触媒
担体でのボリア−アルミナ組成比、平均細孔直径及び細
孔分布、活性金属担持量、二価アルコールの担持量に関
しては、本発明の範囲に入るもので、二価アルコールの
担持量を変化させたものであるが、この触媒の脱硫・脱
窒素活性は、触媒1と同等の値を示しており、二価アル
コールの担持量が担持活性金属のモル量の0.2〜1.
5倍量の範囲内であれば高い活性を示すことが明かであ
る。これに対して、比較例の触媒Q、Q′並びにR、
R′は、平均細孔直径及び細孔分布、活性金属担持量、
二価アルコールの担持量に関しては本発明の範囲に入る
が、ボリア−アルミナ組成比の値がBとして1重
量%及び20重量%となり、本発明の範囲外であるため
脱硫・脱窒素活性は本発明の触媒1より低い値を示して
いる。
The catalysts 6, 7, 14, and 15 of the examples were prepared according to the following formulas with respect to the composition ratio of boria-alumina, the average pore diameter and the pore distribution, the amount of active metal supported, and the amount of dihydric alcohol supported on the catalyst carrier. The catalysts fall within the scope of the invention, in which the amount of dihydric alcohol supported is changed. The desulfurization and denitrification activity of this catalyst shows a value equivalent to that of catalyst 1, and the amount of dihydric alcohol supported Is 0.2 to 1.
It is clear that high activity is exhibited within the range of 5 times the amount. On the other hand, the catalysts Q, Q 'and R,
R ′ is average pore diameter and pore distribution, active metal loading,
The loading amount of the dihydric alcohol falls within the range of the present invention, but the value of the boron-alumina composition ratio is 1% by weight and 20% by weight as B 2 O 3 , which is out of the range of the present invention. The activity shows a lower value than the catalyst 1 of the present invention.

【0028】実施例の触媒8、16は、触媒担体のボリ
ア−アルミナ組成比、平均細孔直径及び細孔分布、活性
金属担持量、二価アルコールの担持量に関しては本発明
の範囲に入るが、活性金属としてモリブデン、コバルト
を担持したものである。ニッケルの代りにコバルトを担
持しても脱硫・脱窒素活性ともに高いことから明かであ
る。比較例の触媒Tは、担体のボリア−アルミナ組成
比、平均細孔直径及び細孔分布、活性金属担持量に関し
ては、本発明の範囲に入るものであるが、二価アルコー
ルが無添加の触媒であって、この触媒の脱硫・脱窒素活
性を100として他の触媒の活性を相対値として示す。
The catalysts 8 and 16 of the examples fall within the scope of the present invention with respect to the composition ratio of boria-alumina, the average pore diameter and the pore distribution, the amount of active metal carried and the amount of dihydric alcohol carried on the catalyst carrier. And molybdenum and cobalt as active metals. It is clear that the desulfurization and denitrification activities are high even if cobalt is supported instead of nickel. The catalyst T of the comparative example is within the scope of the present invention with respect to the carrier-to-alumina composition ratio, the average pore diameter and the pore distribution, and the amount of active metal carried. Where the desulfurization / denitrification activity of this catalyst is taken as 100 and the activities of other catalysts are shown as relative values.

【0029】[0029]

【発明の効果】以上述べた通り本発明によれば、特定酸
化物触媒担体に、活性金属とともに二価アルコールを担
持し、焼成することなしに乾燥物としたので、従来提案
されている水素化脱硫・脱窒素触媒に比べて効率よく脱
硫・脱窒素を同時に行い得るものであって、本発明の触
媒を使用することによりイオウ含有量、窒素含有量の低
い燃料油を製造することができるなど顕著な効果が認め
られる。
As described above, according to the present invention, a specific oxide catalyst carrier carries a dihydric alcohol together with an active metal, and is dried without firing. It is capable of simultaneously performing desulfurization and denitrification more efficiently than a desulfurization / denitrification catalyst. By using the catalyst of the present invention, it is possible to produce a fuel oil having a low sulfur content and a low nitrogen content. A remarkable effect is observed.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−112049(JP,A) 特開 昭54−96489(JP,A) 特開 平4−166232(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/76 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-58-112049 (JP, A) JP-A-54-96489 (JP, A) JP-A-4-166232 (JP, A) (58) Field (Int.Cl. 7 , DB name) B01J 21/00-38/76

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ボリアの含有量がBとして3〜1
5重量%であるとともに、その物理性状が水銀圧入法で
測定した細孔分布で80〜110オングストロームの平
均細孔直径を有し、かつ平均細孔粒径±10オングスト
ロームの範囲の細孔容積が全細孔容積の60%以上であ
るボリア−アルミナからなる酸化物触媒担体に、活性金
属成分として周期律表第VIa族金属及び第VIII族金属の
うち少なくとも1種類及び二価アルコールを担持した乾
燥物であることを特徴とする炭化水素油の水素化脱硫脱
窒素用触媒。
The content of boria is 3 to 1 as B 2 O 3.
5% by weight, the physical properties of which are an average pore diameter of 80 to 110 angstroms in a pore distribution measured by a mercury intrusion method, and a pore volume in the range of an average pore diameter of ± 10 angstroms. Drying in which at least one of a Group VIa metal and a Group VIII metal of the periodic table and a dihydric alcohol are supported as active metal components on an oxide catalyst carrier composed of boria-alumina having a total pore volume of 60% or more. A catalyst for hydrodesulfurization and denitrification of hydrocarbon oils, which is a product.
【請求項2】 触媒担体に担持させる二価アルコールが
ジエチレングリコール又はトリエチレングリコールであ
り、担持量が担持する水素化活性金属のモル数の0.2
〜3倍量であることを特徴とする請求項1記載の炭化水
素油の水素化脱硫脱窒素用触媒。
2. The dihydric alcohol to be supported on the catalyst carrier is diethylene glycol or triethylene glycol, and the amount of the supported dihydric alcohol is 0.2% of the number of moles of the hydrogenation-active metal supported.
2. The catalyst for hydrodesulfurization and denitrification of hydrocarbon oil according to claim 1, wherein the amount is from 3 to 3 times.
【請求項3】 ボリアの含有量がBとして3〜1
5重量%であるとともに、その物理性状が水銀圧入法で
測定した細孔分布で80〜110オングストロームの平
均細孔直径を有し、かつ平均細孔粒径±10オングスト
ロームの範囲の細孔容積が全細孔容積の60%以上であ
るボリア−アルミナからなる酸化物触媒担体に、活性金
属成分として周期律表第VIa族金属及び第VIII族金属の
うち少なくとも1種類及び二価アルコールを添加した含
浸液を担持させ、乾燥処理し、乾燥状態の触媒とするこ
とを特徴とする炭化水素油の水素化脱硫脱窒素用触媒の
製造方法。
3. The content of boria is 3 to 1 as B 2 O 3.
5% by weight, the physical properties of which are an average pore diameter of 80 to 110 angstroms in a pore distribution measured by a mercury intrusion method, and a pore volume in the range of an average pore diameter of ± 10 angstroms. Impregnation by adding at least one of Group VIa and Group VIII metals and a dihydric alcohol as an active metal component to an oxide catalyst carrier comprising boria-alumina having a total pore volume of 60% or more. A method for producing a catalyst for hydrodesulfurization and denitrification of hydrocarbon oils, comprising supporting a liquid, performing a drying treatment, and forming a dried catalyst.
【請求項4】 触媒担体に担持させる二価アルコールが
ジエチレングリコール又はトリエチレングリコールであ
り、担持量が担持する水素化活性金属のモル数の0.2
〜3倍量であることを特徴とする請求項3記載の炭化水
素油の水素化脱硫脱窒素用触媒の製造方法。
4. The dihydric alcohol supported on the catalyst carrier is diethylene glycol or triethylene glycol, and the supported amount is 0.2 mole of the supported hydrogenation active metal.
4. The method for producing a catalyst for hydrodesulfurization and denitrification of hydrocarbon oil according to claim 3, wherein the amount is from 3 to 3 times.
JP05023505A 1993-01-20 1993-01-20 Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same Expired - Fee Related JP3106761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05023505A JP3106761B2 (en) 1993-01-20 1993-01-20 Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05023505A JP3106761B2 (en) 1993-01-20 1993-01-20 Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06210182A JPH06210182A (en) 1994-08-02
JP3106761B2 true JP3106761B2 (en) 2000-11-06

Family

ID=12112333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05023505A Expired - Fee Related JP3106761B2 (en) 1993-01-20 1993-01-20 Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same

Country Status (1)

Country Link
JP (1) JP3106761B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3802106B2 (en) 1995-06-08 2006-07-26 日本ケッチェン株式会社 Hydrocarbon oil hydrotreating catalyst, production method thereof and activation method thereof
AU5821500A (en) 1999-07-05 2001-01-22 Akzo Nobel N.V. Process for regenerating and rejuvenating additive containing catalysts
JP4974433B2 (en) 2000-04-11 2012-07-11 アルベマーレ ネザーランズ ビー.ブイ. Method for sulfiding additive-containing catalysts
US7638456B2 (en) 2007-12-18 2009-12-29 Chevron Phillips Chemical Company Lp Methods of preparing a polymerization catalyst
JP5635752B2 (en) 2009-09-25 2014-12-03 日本ケッチェン株式会社 Method for producing hydrotreating catalyst, and hydrotreating method for hydrocarbon oil using the catalyst

Also Published As

Publication number Publication date
JPH06210182A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
JP4405148B2 (en) Alumina having novel pore structure, method for producing the same, and catalyst prepared from alumina
JP4210336B2 (en) Method for preparing highly active catalyst and catalyst and method for using the same
CA2360121C (en) Hydroprocessing catalyst and use thereof
CN1854260A (en) Heavy fractional oil hydrogenation catalyst and production thereof
JPH04156949A (en) Production of catalyst for hydrogenation of hydrocarbon oil
JP3106761B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
JP2567260B2 (en) Method for producing hydrotreating catalyst from hydrogel
JP2817598B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
US4716140A (en) Hydrotreating catalysts prepared from hydrogels
JP2817558B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
JPH0661464B2 (en) Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
JP3538887B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
JP2817622B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP2000135437A (en) Hydrogenation catalyst and its production
JPH01164440A (en) Production of hydrogen purifying catalyst from hydrogel
JP2817626B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP2001310133A (en) Catalyst for hydrodesulfurizatin and denitrification of hydrocarbon oil and its production method
JP3303533B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
JP2556343B2 (en) Method for producing hydrogenated catalyst from hydrogel
JP2920186B2 (en) Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil
JP2001300325A (en) Catalyst for hydrogenative desulfurization denitration of hydrocarbon oil and manufacturing method
JP2794320B2 (en) Method for producing hydrotreating catalyst composition for hydrocarbon oil
JP2789489B2 (en) Hydrodesulfurization catalyst composition for hydrocarbon oil, method for producing the same, and hydrodesulfurization method using the same
JPH07299364A (en) Catalyst for hydrodesulfurization and denitrification and its production
JPH06226102A (en) Catalyst for hydrodesulfurization/denitrification and its preparation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees