JP2920186B2 - Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil - Google Patents
Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oilInfo
- Publication number
- JP2920186B2 JP2920186B2 JP6171762A JP17176294A JP2920186B2 JP 2920186 B2 JP2920186 B2 JP 2920186B2 JP 6171762 A JP6171762 A JP 6171762A JP 17176294 A JP17176294 A JP 17176294A JP 2920186 B2 JP2920186 B2 JP 2920186B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- alumina
- carrier
- weight
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title claims description 99
- 229930195733 hydrocarbon Natural products 0.000 title claims description 17
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 16
- 239000011148 porous material Substances 0.000 claims description 73
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 58
- 229910052751 metal Inorganic materials 0.000 claims description 54
- 239000002184 metal Substances 0.000 claims description 54
- 239000003921 oil Substances 0.000 claims description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 19
- 238000009826 distribution Methods 0.000 claims description 16
- 150000002739 metals Chemical class 0.000 claims description 16
- 230000000737 periodic effect Effects 0.000 claims description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 239000011733 molybdenum Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 7
- 229910052753 mercury Inorganic materials 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 230000000694 effects Effects 0.000 description 18
- 238000006477 desulfuration reaction Methods 0.000 description 16
- 230000023556 desulfurization Effects 0.000 description 16
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 229910052698 phosphorus Inorganic materials 0.000 description 10
- 239000011574 phosphorus Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 7
- 238000001354 calcination Methods 0.000 description 7
- 239000011975 tartaric acid Substances 0.000 description 7
- 235000002906 tartaric acid Nutrition 0.000 description 7
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 6
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000004115 Sodium Silicate Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- -1 nitrogen compounds Chemical class 0.000 description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 4
- 229910052911 sodium silicate Inorganic materials 0.000 description 4
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 3
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 3
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 3
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 239000000174 gluconic acid Substances 0.000 description 3
- 235000012208 gluconic acid Nutrition 0.000 description 3
- 229910017464 nitrogen compound Inorganic materials 0.000 description 3
- 150000002830 nitrogen compounds Chemical class 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910001388 sodium aluminate Inorganic materials 0.000 description 3
- 150000003464 sulfur compounds Chemical class 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- PUAQLLVFLMYYJJ-UHFFFAOYSA-N 2-aminopropiophenone Chemical compound CC(N)C(=O)C1=CC=CC=C1 PUAQLLVFLMYYJJ-UHFFFAOYSA-N 0.000 description 1
- XDVOLDOITVSJGL-UHFFFAOYSA-N 3,7-dihydroxy-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound O1B(O)OB2OB(O)OB1O2 XDVOLDOITVSJGL-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、炭化水素油中に含まれ
る硫黄化合物ならびに窒素化合物の両者を効果的に除去
するための水素化処理用触媒の製造方法に関する。さら
に詳しくは硫黄化合物、特に窒素化合物を多量に含有す
る炭化水素油を水素加圧下で処理し、硫化水素とアンモ
ニアに転換させ、原料炭化水素油中の硫黄および窒素の
含有量を同時に低減させるために使用される水素化処理
触媒の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrotreating catalyst for effectively removing both sulfur compounds and nitrogen compounds contained in a hydrocarbon oil. More specifically, a hydrocarbon oil containing a large amount of sulfur compounds, particularly nitrogen compounds, is treated under hydrogen pressure to convert it into hydrogen sulfide and ammonia, thereby simultaneously reducing the sulfur and nitrogen contents in the raw hydrocarbon oil. The present invention relates to a method for producing a hydrotreating catalyst used in the above.
【0002】[0002]
【従来の技術】従来の水素化脱硫を主体とする水素化処
理用触媒は、多孔性アルミナを基体とする触媒担体に、
周期律表第6a族金属および第8族金属を担持させた触
媒が一般に用いられている。しかしこれらの水素化処理
用の触媒は、水素化脱硫反応が行わせる際の水素消費量
を少なくし、水素化脱硫反応には高活性を示すが、水素
化脱窒素反応には十分な活性を示さない。一方、ガソリ
ン、灯油、軽油(沸点約340℃程度)を得た残りの一
般に残渣油ともいわれる炭化水素油からは水素化脱硫工
程を経て燃料油が製造されるが、近年公害防止の観点か
ら窒素分の少ない燃料油が望まれている。2. Description of the Related Art Conventional hydrotreating catalysts mainly based on hydrodesulfurization include a catalyst support having porous alumina as a base material.
Catalysts supporting a Group 6a metal and a Group 8 metal on the periodic table are generally used. However, these hydrotreating catalysts reduce the amount of hydrogen consumed during the hydrodesulfurization reaction and exhibit high activity for the hydrodesulfurization reaction, but have sufficient activity for the hydrodenitrogenation reaction. Not shown. On the other hand, fuel oil is produced through a hydrodesulfurization step from a hydrocarbon oil generally obtained as a residual oil obtained from gasoline, kerosene, and light oil (boiling point of about 340 ° C.). There is a demand for less fuel oil.
【0003】ところで炭化水素油を処理して硫黄化合物
と窒素化合物とを同時に除去するためには従来から知ら
れている水素化脱硫活性に加えて、C−N結合を開裂さ
せる水素化脱窒素活性を具備した触媒が必要である。[0003] Incidentally, in order to simultaneously remove a sulfur compound and a nitrogen compound by treating a hydrocarbon oil, in addition to a conventionally known hydrodesulfurization activity, a hydrodenitrogenation activity for cleaving a C-N bond is required. Is required.
【0004】水素化脱硫、脱窒素の両活性を備えた触媒
としては種々研究が行われており、例えば米国特許第
3,446,730号には、1.2〜2.6の結晶水を
含有する水酸化アルミニウムを焼成して作られたアルミ
ナ担体にニッケルまたは第6族金属またはそれらの金属
の酸化物または硫化物を担持し、さらに0.1〜2.6
重量%のリン、珪素またはバリウムからなる促進剤を添
加した触媒が提案されているが、担体の特性については
何ら記載されていない。しかも処理油に関しては残留油
を含め如何なる溜分にも適用可能であることが記載され
ているが、実際には溜出油のみを対象とするものである
ことは明らかである。Various studies have been made on catalysts having both hydrodesulfurization and denitrification activities. For example, US Pat. No. 3,446,730 discloses a crystallization water of 1.2 to 2.6. Nickel or a Group 6 metal or an oxide or sulfide of such a metal is supported on an alumina carrier produced by calcining the contained aluminum hydroxide, and 0.1 to 2.6
Catalysts have been proposed to which a promoter consisting of phosphorus, silicon or barium by weight is added, but the properties of the support are not described at all. Moreover, it is described that the treated oil can be applied to any distillate including residual oil, but it is apparent that the distillate is actually applied only to distillate oil.
【0005】また、米国特許3,749,664号には
アルミナまたはシリカ−アルミナ担体にモリフデンとニ
ッケルとリンとを特定の割合で担持させた触媒が記載さ
れており、担体は一般的には0.6〜1.4cc/gの
細孔容積を有するものが好ましいと説明されているが、
細孔構造については全く検討されておらず炭化水素の水
素化処理に対して満足し得る性能を有していない。US Pat. No. 3,749,664 describes a catalyst in which molybdenum, nickel and phosphorus are supported at a specific ratio on an alumina or silica-alumina carrier. It is described that those having a pore volume of 0.6 to 1.4 cc / g are preferred,
The pore structure has not been studied at all and does not have satisfactory performance for hydrotreating hydrocarbons.
【0006】前記の改良として特開昭56−40432
号公報には、酸化チタンを担体として、触媒成分として
同様に周期律表第6族金属並びに第8族金属およびリン
またはホウ素を担持させたものが提案されているが、担
体として用いる酸化チタンは価格が高く、その物理的性
質上アルミナに較べて比表面積を大きくすることが困難
であり、しかも触媒成分担持後の焼成に際して比表面積
が低下し易く、アルミナのようにその細孔分布を所望の
範囲に維持することが困難である。The above-mentioned improvement is disclosed in Japanese Patent Application Laid-Open No. Sho 56-40432.
In the publication, titanium oxide is used as a carrier, and a catalyst in which a group 6 metal and a group 8 metal of the periodic table and phosphorus or boron are similarly supported as a catalyst component is proposed. It is expensive, and it is difficult to increase the specific surface area as compared with alumina due to its physical properties.Moreover, the specific surface area tends to decrease during calcination after supporting the catalyst component, and the pore distribution is desired to be the same as alumina. Difficult to maintain in range.
【0007】このように、何れの触媒も触媒成分として
周期律表第6a族並びに周期律表第8族に属する活性金
属に触媒促進効果のあるリンなどを併せて担持させて触
媒の持つ酸点を高めるように改良したものであるが、例
えばリンを触媒上に均一に担持させたとしても、触媒を
大気中に放置するとリンが吸湿して担持状態が変化して
しまうという欠点がある。[0007] As described above, in any of the catalysts, an active metal belonging to Group 6a and Group 8 of the periodic table is supported as a catalyst component together with phosphorus having a catalyst promoting effect, and the acid point of the catalyst. However, for example, even if phosphorus is uniformly supported on the catalyst, there is a disadvantage that if the catalyst is left in the atmosphere, the phosphorus absorbs moisture and the supported state changes.
【0008】一般に炭化水素油の水素化処理触媒の製造
方法は、無機酸化物担体に活性金属水溶液を含浸し、乾
燥し、次いで焼成するという製造工程を採るが、後述す
るように本発明のような担体に活性金属水溶液を含浸さ
せた後、乾燥し、該乾燥状態のものをそのまま水素化処
理用触媒として適用する試みはなされていない。In general, the method for producing a catalyst for hydrotreating hydrocarbon oils employs a production step in which an inorganic oxide carrier is impregnated with an aqueous active metal solution, dried and then calcined. No attempt has been made to impregnate such a carrier with an aqueous active metal solution and then dry it, and then apply the dried product as it is as a hydrotreating catalyst.
【0009】[0009]
【発明が解決しようとする課題】本発明者らは、先に触
媒の基体となる担体の酸点を高めることを目的として担
体の改良を行った結果としてボリア−シリカ−アルミナ
組成物からなる担体を見出し、該担体に、従来から行わ
れている周期律表第6a族金属および周期律表第8族金
属を担持させた触媒についての性能について検討を行っ
たところ、水素化脱硫、脱窒素の両反応を同時に満足す
るためには、担体であるボリア−シリカ−アルミナ組成
物における組成比および細孔径に好ましい特定範囲が存
在し、また担持金属量についても好適な範囲が存在する
ことを見出し、これについて特許出願を行ったが、更に
水素化脱硫、脱窒素の両活性を向上すべく鋭意研究を進
めた結果本発明に到達したものである。DISCLOSURE OF THE INVENTION The present inventors have made improvements in the support for the purpose of increasing the acid point of the support serving as the base of the catalyst. As a result, the support comprising the boria-silica-alumina composition has been obtained. Was found, and the performance of a catalyst in which a conventional metal having a group 6a metal of the periodic table and a metal of the group VIII of the periodic table were carried on the carrier was examined. To satisfy both reactions at the same time, a preferred specific range exists in the composition ratio and pore diameter of the boria-silica-alumina composition as a carrier, and it has been found that a suitable range also exists in the amount of supported metals. Although a patent application was filed with respect to this, the present inventors arrived at the present invention as a result of further intensive studies to improve both hydrodesulfurization and denitrification activities.
【0010】即ち、本発明は、先に述べたような従来の
炭化水素油の水素化触媒の持つ問題点を解消し、炭化水
素油の水素化脱硫並びに脱窒素の両活性を十分に備え、
且つ工程を簡略化した水素化脱硫脱窒素用触媒の製造方
法を提供することを目的とするものである。That is, the present invention solves the above-mentioned problems of the conventional hydrocarbon oil hydrogenation catalyst, and provides sufficient hydrodesulfurization and denitrification activities of hydrocarbon oil.
Another object of the present invention is to provide a method for producing a catalyst for hydrodesulfurization and denitrification in which the steps are simplified.
【0011】[0011]
【課題を解決するための手段】上記の目的を達成するた
め本発明は、組成がB2O3として3〜10重量%の範
囲であり、SiO2として3〜8重量%の範囲であり、
且つ下記の細孔特性を有するボリア−シリカ−アルミナ
を基体とする酸化物担体に対し活性金属成分として周期
律表第6a族金属から選ばれた少なくとも1種の金属を
酸化物換算で17〜28重量%と、周期律表第8族金属
から選ばれた少なくとも1種の金属を酸化物換算で3〜
8重量%とを含む金属塩水溶液を含浸し、乾燥すること
を特徴とする炭化水素油の水素化脱硫脱窒素用触媒の製
造方法である。According to the present invention, in order to achieve the above object, the composition has a range of 3 to 10% by weight as B 2 O 3 and a range of 3 to 8% by weight as SiO 2 ,
In addition, at least one metal selected from Group 6a metals of the periodic table as an active metal component is used as an active metal component in an oxide carrier of 17 to 28 in terms of oxide on a boria-silica-alumina-based oxide carrier having the following pore characteristics. % By weight and at least one metal selected from Group 8 metals of the periodic table in an amount of from 3 to
A method for producing a catalyst for hydrodesulfurization and denitrification of hydrocarbon oils, comprising impregnating with an aqueous metal salt solution containing 8% by weight and drying.
【0012】そして本発明における前記ボリア−シリカ
−アルミナを基体とする酸化物担体の細孔特性は、水銀
圧入法で測定した細孔分布で60〜90オングストロー
ムの平均細孔直径を有し、かつ平均細孔直径±10オン
グストロームの範囲の細孔容積が全細孔容積の少なくと
も60%を占める範囲であることが必要である。The oxide carrier based on boria-silica-alumina according to the present invention has a pore characteristic having an average pore diameter of 60 to 90 Å in a pore distribution measured by a mercury intrusion method, and It is necessary that the pore volume in the range of average pore diameter ± 10 angstroms occupy at least 60% of the total pore volume.
【0013】また担持させる触媒活性成分としては、周
期律表第6a族金属のうちから選ばれた少なくとも1種
および第8族金属のうちから選ばれた少なくとも1種を
前記した含有範囲で担持させる必要があり、これらの活
性金属の担持させるには、これら活性金属塩水溶液を含
浸し、乾燥する。得られた乾燥状態の触媒は、水素化処
理を行う前に一般的に行われている方法と同様の硫化処
理を行って使用に供することができる。As the catalytically active component to be supported, at least one selected from the group 6a metals of the periodic table and at least one selected from the group VIII metals are supported in the above-mentioned content range. It is necessary to impregnate these active metals with an aqueous solution of these active metals and to dry them. The obtained catalyst in a dry state can be subjected to a sulfidation treatment similar to a generally performed method before the hydrogenation treatment, and then used.
【0014】[0014]
【作用】以下に本発明の詳細およびその作用について説
明する。本発明の担体は、ボリア−シリカ−アルミナ組
成物からなり、その組成がB2O3として3〜10重量
%の範囲であり、SiO2として3〜8重量%で、残部
がAl2O3でないと脱窒素活性について飛躍的な向上
が認められない。この活性向上は担体の持つ上記3成分
の相乗効果によるものと考えられる。The details of the present invention and its operation will be described below. Carrier of the present invention, boria - silica - consists alumina composition is in the range that the composition is from 3 to 10% by weight B 2 O 3, 3 to 8% by weight SiO 2, the balance being Al 2 O 3 Otherwise, no dramatic improvement in denitrification activity is observed. This improvement in activity is considered to be due to the synergistic effect of the above three components of the carrier.
【0015】周期律表第6a族金属として用いられるも
のは、クロム、モリブデン、タングステンであり、これ
らのうちで特に好ましいものはモリブデンである。また
周期律表第8族金属として用いられるものは鉄、コバル
ト、ニッケルであり、これらのうちで特に好ましいもの
は、ニッケルおよび/またはコバルトであり、これら周
期律表第6a族金属と周期律表第8族金属の両者を適宜
組み合わせて用いる。活性金属の含有量は、周期律表第
6a族金属については酸化物換算で触媒全体量に対して
17〜28重量%、周期律表第8族金属については酸化
物換算で3〜8重量%である。そして、これら金属成分
の下限値は水素化脱硫、脱窒素活性の所望の発生に必要
な最低限を示し、上限値以上ではこれ以上の量を添加し
ても、水素化脱硫、脱窒素活性の増加は認められない。The metals used as Group 6a metals of the periodic table are chromium, molybdenum and tungsten, and among these, molybdenum is particularly preferred. The metals used as Group 8 metals in the periodic table are iron, cobalt and nickel, and particularly preferred among these are nickel and / or cobalt. Both of the Group 8 metals are used in appropriate combination. The content of the active metal is 17 to 28% by weight, based on the total amount of the catalyst, of the Group 6a metal of the periodic table, and 3 to 8% by weight of the Group 8 metal of the periodic table, based on the oxide. It is. And the lower limit of these metal components indicates the minimum necessary for the desired generation of hydrodesulfurization and denitrification activity. No increase is observed.
【0016】ボリア−シリカ−アルミナを基体とする触
媒担体の細孔直径や細孔分布については、脱硫および脱
窒素に有効な細孔径を有する細孔をできるだけ多くし、
他の有害な反応を抑制するためには、その細孔分布が狭
く、且つ平均細孔径±10オングストロームの細孔の占
める容積が全細孔容積の少なくとも60%以上であると
きに得られる乾燥触媒の脱硫、脱窒素の効果が最も優れ
ている。With respect to the pore diameter and pore distribution of the catalyst carrier based on boria-silica-alumina, the pores having pore diameters effective for desulfurization and denitrification are increased as much as possible.
In order to suppress other harmful reactions, a dried catalyst obtained when the pore distribution is narrow and the volume occupied by pores having an average pore diameter of ± 10 angstroms is at least 60% or more of the total pore volume. The best effect of desulfurization and denitrification.
【0017】ボリア−シリカ−アルミナ担体の平均細孔
径がこれより小さいときは、反応物質の触媒粒子内での
拡散抵抗が大きく、水素化脱硫、脱窒素の両活性を低下
させることになる。また、ボリア−シリカ−アルミナ担
体の平均細孔径が60〜90オングストロームの範囲内
には入っても平均細径孔±10オングストロームの細孔
の占める容積が全細孔容積の60%未満のときには、炭
化水素油の水素化脱硫、脱窒素反応に有効な細孔が減少
することになり両活性は低下する。When the average pore diameter of the boria-silica-alumina support is smaller than this, the diffusion resistance of the reactants in the catalyst particles is large, and both hydrodesulfurization and denitrification activities are reduced. Further, even if the average pore diameter of the boria-silica-alumina carrier falls within the range of 60 to 90 Å, when the volume occupied by the average fine pores ± 10 Å is less than 60% of the total pore volume, The pores effective for hydrodesulfurization and denitrification of hydrocarbon oils decrease, and both activities decrease.
【0018】前記したような細孔分布が狭く平均細孔径
が所定の範囲内にあるボリア−シリカ−アルミナを基体
とする担体は、例えば混合法などの一般的な触媒担体製
造方法によって製造し得るものであって、硫酸アルミニ
ウム水溶液とアルミン酸ナトリウムを混合し、加水分解
させて生成したアルミナ水和物スラリーに、触媒担体と
したときのシリカ含有量がSiO2として3〜8重量%
となるようにケイ酸ナトリウム水溶液を添加して、濾
過、洗浄を行うことによって、Na2Oとして0.05
重量%、SO4として0.20重量%を含むシリカ−ア
ルミナ触媒を得て、該水和物に担体としたときのボリア
含有量がB2O3として3〜10重量%となるようにホ
ウ酸水溶液を添加し、成型可能な水分になるまで混捏し
て、円筒状、球状、三つ葉型、四つ葉型などの一般的な
触媒担体形状に成型した後、乾燥し、次いで焼成するこ
とによって製造することができる。The carrier based on boria-silica-alumina having a narrow pore distribution and an average pore diameter within a predetermined range as described above can be produced by a general catalyst carrier production method such as a mixing method. A silica hydrate slurry obtained by mixing and hydrolyzing an aqueous solution of aluminum sulfate and sodium aluminate and having a silica content of 3 to 8% by weight as SiO 2 when used as a catalyst carrier.
An aqueous solution of sodium silicate was added to the mixture, followed by filtration and washing, whereby 0.05 as Na 2 O was obtained.
A silica-alumina catalyst containing 0.20% by weight as SO 4 and 0.20% by weight as SO 4 was obtained, and the boron content was 3 to 10% by weight as B 2 O 3 when the hydrate was used as a carrier. Add an aqueous acid solution, knead until it becomes moldable moisture, cylindrical, spherical, three-leaf type, after molding into a general catalyst support shape such as four-leaf type, dried, then by firing Can be manufactured.
【0019】なお、前記アルミナ水和物を得るに際して
の加水分解反応時にグルコン酸、酒石酸等の有機酸を添
加すると、細孔分布を特定の範囲内に集中させた触媒を
得るために効果的である。When an organic acid such as gluconic acid or tartaric acid is added during the hydrolysis reaction to obtain the alumina hydrate, it is effective to obtain a catalyst whose pore distribution is concentrated within a specific range. is there.
【0020】また、前記ボリア−シリカ−アルミナ組成
物を製造するに際して用いられるボリア原料としては、
例えば、ホウ酸、四ホウ酸などの水溶性塩が挙げられ、
シリカ原料としては、例えば、ケイ酸ナトリウム、四塩
化ケイ素などの水溶性塩が挙げられ、またアルミナ原料
としては、例えば、硝酸アルミニウム、硫酸アルミニウ
ム、塩化アルミニウム、アルミン酸ナトリウムなどおよ
びこれらの水溶性塩類が挙げられる。Further, as a boria raw material used for producing the boria-silica-alumina composition,
For example, boric acid, water-soluble salts such as tetraboric acid, and the like,
Examples of the silica raw material include water-soluble salts such as sodium silicate and silicon tetrachloride. Examples of the alumina raw material include aluminum nitrate, aluminum sulfate, aluminum chloride, sodium aluminate and the like, and water-soluble salts thereof. Is mentioned.
【0021】このようにして得られた所望の細孔構造を
有するボリア−シリカ−アルミナを基体とする担体に活
性金属成分を担持させるには、例えば、三酸化モリブデ
ンおよび炭酸ニッケル、炭酸コバルトを水に懸濁させた
スラリーにクエン酸、酒石酸などの有機酸を添加し、加
熱溶解させた水溶液を準備し、この水溶液中にボリア−
シリカ−アルミナ担体を含浸して該液を吸収させて、所
望量の活性金属成分を担持できるように水溶液の濃度を
調整するか、あるいは前記所望の活性金属を溶解させて
おいて水溶液全量を吸着させ、次いで乾燥することによ
り本発明の触媒を得ることができる。In order to carry the active metal component on the thus obtained carrier having a desired pore structure of boria-silica-alumina as a base, for example, molybdenum trioxide, nickel carbonate and cobalt carbonate are mixed with water. An organic acid, such as citric acid or tartaric acid, is added to the slurry suspended in water, and an aqueous solution is prepared by heating and dissolving.
The solution is absorbed by impregnating a silica-alumina carrier, and the concentration of the aqueous solution is adjusted so that a desired amount of the active metal component can be supported, or the entire amount of the aqueous solution is absorbed by dissolving the desired active metal. Then, the catalyst of the present invention can be obtained by drying.
【0022】従来の触媒製造工程においては、担体に活
性金属塩水溶液を含浸させた後、乾燥し、焼成すること
により触媒を得ているが、本発明の製造方法において
は、製造工程中における焼成工程が不要になるために熱
エネルギー的にも有利である。本発明の製造方法により
得られた触媒は、炭化水素油の水素化脱硫、脱窒素反応
において、酸化物担体に活性金属を含浸し、乾燥、焼成
する従来技術の触媒製造方法で得られる触媒に対して硫
化処理を施したものに比べて著しく優れた活性を示す。
その理由については明らかではないが、従来技術におい
て最終的に焼成することにより得られる触媒中に含まれ
る活性金属成分は酸化物状態になっているために硫化処
理の工程で生成する硫化モリブデン等の粒径が本発明に
よるものに比べて小さく、且つ高分散状態になっている
ため本発明によるものに比べて活性が劣るのではないか
と考えられる。In the conventional catalyst production process, a catalyst is obtained by impregnating the carrier with an aqueous solution of an active metal salt, followed by drying and calcining. However, in the production method of the present invention, the catalyst is calcined during the production process. This is advantageous in terms of thermal energy because the step is not required. The catalyst obtained by the production method of the present invention is a catalyst obtained by a conventional catalyst production method of impregnating an oxide carrier with an active metal, drying and calcining in a hydrodesulfurization and denitrification reaction of a hydrocarbon oil. On the other hand, it shows remarkably superior activity as compared with those subjected to the sulfurizing treatment.
Although the reason is not clear, the active metal component contained in the catalyst obtained by final calcination in the prior art is in an oxide state, so that molybdenum sulfide or the like generated in the sulfurization treatment step is used. It is considered that the activity is inferior to that according to the present invention because the particle size is smaller than that according to the present invention and is in a highly dispersed state.
【0023】[0023]
【実施例】次に本発明の実施例について述べる。(1)触媒担体の製造 実施例1 内容積100リットルの攪拌機付きステンレス製反応槽
に、水49.5リットルと濃度50%のグルコン酸溶液
(和光純薬工業(株)製)204g(加水分解により生
成するAl2O3に対して0.05重量%)を反応槽に
入れ、70℃まで加温保持し、攪拌しながらAl2O3
として774gを含む硫酸アルミニウム水溶液((株)
島田商店販売、8%硫酸バンド)9540gと、Al2
O3として1275gを含むアルミン酸ナトリウム水溶
液(住友化学工業(株)製NA−170)6930gを
混合してpHが9.0のアルミナ水和物スラリーを得
た。次に、このスラリーを30分熟成した後、濃度31
%の硝酸25gを加えてpH8.3とし、次いで、Si
O2として130gを含むケイ酸ナトリウム水溶液(光
純薬工業(株)製)929gを全量滴下して、pHが
8.8のシリカ−アルミナ水和物を得た。この水和物を
30分間熟成した後、濾過し、洗浄して得られたシリカ
−アルミナ水和物ケーキ2500g(SiO2−Al2
O3として20重量%を含む)にホウ酸(和光純薬工業
(株)製)47g(B2O3として26.6g)を加
え、加熱ジャケット付きニーダー中で加熱混捏して、B
2O3−SiO2−Al2O3濃度として63重量%の
可塑性のある捏和物を得、次いでこの捏和物を直径1.
5mmφのダイスを有する押出成型機で成型し、乾燥
後、電気炉で700℃で2時間焼成してB2O35重量
%、SiO2として5.7重量%を含むボリア−シリカ
−アルミナ担体Aを得た。 実施例2 実施例1で得られたシリカ−アルミナ水和物に添加する
ホウ酸の添加量を変えたこと以外は実施例1に示す方法
とほぼ同様にして、B2O3として3重量%、SiO2
として5.8重量%を含むボリア−シリカ−アルミナ担
体BとB2O3として10重量%、SiO2として5.
4重量%を含むボリア−シリカ−アルミナ担体Cを得
た。 実施例3 実施例1とほぼ同様にして得られたアルミナ水和物スラ
リーに添加するケイ酸ナトリウム水溶液の添加量をSi
O2として3重量%および8.5重量%とした以外は実
施例1とほぼ同様の方法でB2O3として5重量%を添
加し、それぞれSiO22.9重量%、B2O35重量
%を含むボリア−シリカ−アルミナ担体DおよびSiO
28.1%、B2O35重量%を含むボリア−シリカ−
アルミナ担体Eを得た。Next, an embodiment of the present invention will be described. (1) Manufacture of catalyst carrier Example 1 In a stainless steel reaction tank having an internal volume of 100 liter and equipped with a stirrer, 204 g of a gluconic acid solution (produced by Wako Pure Chemical Industries, Ltd.) with a concentration of 49.5 liters of water (manufactured by Wako Pure Chemical Industries, Ltd.) (0.05% by weight with respect to Al 2 O 3 produced by the above) is put into a reaction vessel, heated and maintained at 70 ° C., and stirred with Al 2 O 3
Aluminum sulfate aqueous solution containing 774 g
9540 g of Shimada Shoten, 8% sulfuric acid band) and Al 2
6930 g of an aqueous sodium aluminate solution (NA-170 manufactured by Sumitomo Chemical Co., Ltd.) containing 1275 g as O 3 was mixed to obtain an alumina hydrate slurry having a pH of 9.0. Next, after aging this slurry for 30 minutes,
% Of nitric acid to pH 8.3,
O sodium silicate aqueous solution containing 130g as 2 (manufactured by Wako Pure Chemical Industries (Ltd.)) 929 g by the total amount of added dropwise, pH silica 8.8 - obtain an alumina hydrate. This hydrate was aged for 30 minutes, then filtered and washed to obtain 2500 g of a silica-alumina hydrate cake (SiO 2 -Al 2
O 3 of 20% by weight of the total composition) boric acid (Wako Pure Chemical Industries, Ltd. and manufactured) 47 g (26.6 g as B 2 O 3) was added and heated kneading in a heating jacketed kneader, B
A plastic kneaded product having a concentration of 63% by weight as a concentration of 2 O 3 —SiO 2 —Al 2 O 3 was obtained.
A boria-silica-alumina carrier containing 5% by weight of B 2 O 3 and 5.7% by weight of SiO 2 by firing at 700 ° C. for 2 hours in an electric furnace after drying and molding with an extruder having a 5 mmφ die. A was obtained. Example 2 The procedure of Example 1 was repeated, except that the amount of boric acid added to the silica-alumina hydrate obtained in Example 1 was changed, to obtain 3% by weight of B 2 O 3. , SiO 2
-Bore-silica-alumina carrier B containing 5.8% by weight as B and 10% by weight as B 2 O 3 , and 5% as SiO 2 .
A boria-silica-alumina support C containing 4% by weight was obtained. Example 3 The amount of the aqueous sodium silicate solution added to the alumina hydrate slurry obtained in substantially the same manner as in Example 1 was changed to Si.
5% by weight of B 2 O 3 was added in substantially the same manner as in Example 1 except that O 2 was changed to 3% by weight and 8.5% by weight, and 2.9% by weight of SiO 2 and B 2 O 3 were respectively added. Boria-silica-alumina support D containing 5% by weight and SiO
2 8.1%, B 2 O 3 5 % by weight of the total composition boria - silica -
An alumina carrier E was obtained.
【0024】実施例1、2および3で得た担体A、B、
C、DおよびEについて水銀圧入法で細孔構造を測定し
たところ、平均細孔径はいずれも65±5オングストロ
ームの範囲であり、平均細孔径±10オングストローム
の範囲の占める容積が全細孔の占める容積の60%以上
を占めていた。 比較例1 実施例1とほぼ同様にして得られたアルミナ水和物スラ
リーを濾過、洗浄して得られたアルミナ水和物ケーキ2
500gを加温ジャケット付きニーダー中で加熱捏和
し、Al2O3濃度として60重量%の可塑性のある捏
和物を得、次いでこの捏和物を直径1.5mmφのダイ
スを有する押出成型機で成型し、乾燥後電気炉で500
℃で2時間焼成してアルミナ担体Fを得た。Carriers A, B obtained in Examples 1, 2 and 3
When the pore structures of C, D and E were measured by the mercury intrusion method, the average pore diameter was in the range of 65 ± 5 angstroms, and the volume occupied by the average pore diameter in the range of ± 10 angstroms was occupied by all the pores. It occupied more than 60% of the volume. Comparative Example 1 Alumina hydrate cake 2 obtained by filtering and washing the alumina hydrate slurry obtained in substantially the same manner as in Example 1.
500 g of the kneaded product was heated and kneaded in a kneader equipped with a heating jacket to obtain a plastic kneaded product having an Al 2 O 3 concentration of 60% by weight, and the kneaded product was extruded with a die having a diameter of 1.5 mmφ. And dried in an electric furnace after drying
Calcination was performed at 2 ° C. for 2 hours to obtain an alumina carrier F.
【0025】得られた担体Fについて水銀圧入法で細孔
構造を測定した結果、平均細孔径は70オングストロー
ムであり、平均細孔径±10オングストロームの範囲の
細孔の占める容積は全細孔の占める容積の61%であっ
た。 比較例2 実施例1とほぼ同様にして得られたシリカ−アルミナ水
和物ケーキ2500gを加温ジャケット付きニーダー中
で加熱捏和し、SiO2−Al2O3濃度として62重
量%の可塑性のある捏和物を得、次いでこの捏和物を直
径1.5mmφのダイスを有する押出成型機で成型し、
乾燥後電気炉で700℃で2時間焼成してSiO2とし
て6重量%を含むシリカ−アルミナ担体Gを得た。As a result of measuring the pore structure of the obtained carrier F by a mercury intrusion method, the average pore diameter was 70 Å, and the volume occupied by pores having an average pore diameter of ± 10 Å was occupied by all pores. 61% of the volume. Comparative Example 2 2500 g of a silica-alumina hydrate cake obtained in substantially the same manner as in Example 1 was heated and kneaded in a kneader equipped with a heating jacket to obtain a SiO 2 —Al 2 O 3 concentration of 62% by weight of plasticity. Obtain a kneaded product, and then mold this kneaded product with an extruder having a die having a diameter of 1.5 mmφ,
After drying, the mixture was calcined at 700 ° C. for 2 hours in an electric furnace to obtain a silica-alumina carrier G containing 6% by weight as SiO 2 .
【0026】得られた担体Gについて水銀圧入法で細孔
構造を測定した結果、平均細孔径は71オングストロー
ムであり、平均細孔径±10オングストロームの範囲の
細孔の占める容積は全細孔の占める容積の63%であっ
た。 比較例3 反応槽にグルコン酸を添加しなかった以外は実施例1に
示す方法と同様の手順でB2O3として5重量%、Si
O2として5.7重量%を含むボリア−シリカ−アルミ
ナ担体Hを得た。As a result of measuring the pore structure of the obtained carrier G by a mercury intrusion method, the average pore diameter was 71 angstroms, and the volume occupied by pores having an average pore diameter of ± 10 angstroms was occupied by all the pores. 63% of the volume. Comparative Example 3 Except that gluconic acid was not added to the reactor, the same procedure as in Example 1 was repeated to obtain 5% by weight of B 2 O 3 and Si.
Boria as O 2 containing 5.7 wt% - Silica - was obtained alumina carrier H.
【0027】得られた担体Hについて水銀圧入法で細孔
構造を測定した結果、平均細孔径は69オングストロー
ムであり、平均細孔径±10オングストロームの範囲の
細孔の占める容積は全細孔の占める容積の48%であっ
た。As a result of measuring the pore structure of the obtained carrier H by a mercury intrusion method, the average pore diameter was 69 Å, and the volume occupied by pores having an average pore diameter of ± 10 Å was occupied by all the pores. 48% of the volume.
【0028】実施例1〜3および比較例1〜3で調製し
た担体について、水銀圧入法により測定された細孔構造
に関する値について表1および表2に示す。(2)触媒の調製 実施例4 三酸化モリブデン23.4g、炭酸ニッケル11.8g
を水50gに懸濁し、酒石酸2.0gを添加して加熱下
で溶解し、担体の吸水量に見合う液量に水で液量調節を
行った含浸液を実施例1、実施例2および実施例3で得
られた本発明の範囲の平均細孔径、平均細孔径±10オ
ングストロームの範囲の細孔の占める容積が全細孔容積
の60%以上であるような細孔構造を有するボリア−シ
リカ−アルミナ担体A、B、C、DおよびEの各100
gに含浸させ、2時間放置後110℃で16時間乾燥
し、次いで500℃で2時間焼成して触媒I、J、K、
LおよびMを得た。 比較例4 比較例1、比較例2および比較例3で得られた担体F
(アルミナ担体)、単体G(シリカ−アルミナ担体)お
よび担体H(本発明の範囲からはずれた細孔構造を有す
るボリア−シリカ−アルミナ担体)を用いた以外は実施
例4と略同様の手順で触媒N、OおよびPを得た。 実施例5 三酸化モリブデン39.7g、炭酸ニッケル13.4g
を水50gに懸濁し、酒石酸2.0gを添加して加熱下
で溶解し、担体の吸水量に見合う液量に水で液量調節を
行った含浸液を実施例1で得たボリア−シリカ−アルミ
ナ担体A100gに含浸させ、2時間放置後110℃で
16時間乾燥して触媒Qを得た。Prepared in Examples 1-3 and Comparative Examples 1-3
Pore structure measured by mercury intrusion method
Tables 1 and 2 show the values of(2) Preparation of catalyst Example 4 Molybdenum trioxide 23.4 g, nickel carbonate 11.8 g
In 50 g of water, add 2.0 g of tartaric acid and heat
And adjust the volume with water to match the volume of water absorbed by the carrier.
The impregnated liquids obtained were obtained in Examples 1, 2 and 3.
Average pore diameter within the range of the present invention, average pore diameter ± 10 mm
The volume occupied by pores in the range of
Having a pore structure such that it is 60% or more of
Rica-alumina carriers A, B, C, D and E each of 100
g, impregnated for 2 hours and dried at 110 ° C for 16 hours
And calcined at 500 ° C. for 2 hours to obtain catalysts I, J, K,
L and M were obtained. Comparative Example 4 Carrier F obtained in Comparative Example 1, Comparative Example 2 and Comparative Example 3
(Alumina carrier), simple substance G (silica-alumina carrier) and
And carrier H (having a pore structure outside the scope of the present invention)
(Except for using boria-silica-alumina carrier)
Catalysts N, O and P were obtained in substantially the same procedure as in Example 4. Example 5 Molybdenum trioxide 39.7 g, nickel carbonate 13.4 g
In 50 g of water, add 2.0 g of tartaric acid and heat
And adjust the volume with water to match the volume of water absorbed by the carrier.
The obtained impregnating solution was obtained using the boria-silica-aluminum obtained in Example 1.
Impregnated in 100 g of carrier A and left at 110 ° C for 2 hours
After drying for 16 hours, catalyst Q was obtained.
【0029】また三酸化モリブデン23.4g、炭酸ニ
ッケル16.5gを水50gに懸濁し、酒石酸2.0g
を添加して加熱下で溶解し、担体の吸水量に見合う液量
に水で液量調節を行った含浸液を、実施例1で得たボリ
ア−シリカ−アルミナ担体A100gに含浸させ、2時
間放置後110℃で16時間乾燥し、次いで500℃で
2時間焼成して触媒Rを得た。 実施例6 三酸化モリブデン39.7g、炭酸コバルト12.2g
を水50gに懸濁し、酒石酸2.0gを添加して加熱下
で溶解し、担体の吸水量に見合う液量に水で液量調節を
行った含浸液を実施例1で得たボリア−シリカ−アルミ
ナ単体A100gに含浸させ、2時間放置後110℃で
16時間乾燥し、次いで500℃で2時間焼成して触媒
Sを得た。Also, 23.4 g of molybdenum trioxide and 16.5 g of nickel carbonate were suspended in 50 g of water, and 2.0 g of tartaric acid was suspended.
And dissolved under heating, and impregnated with 100 g of the boria-silica-alumina carrier A obtained in Example 1 with the impregnating solution whose volume was adjusted with water to a volume corresponding to the water absorption of the carrier, and After standing, it was dried at 110 ° C. for 16 hours, and then calcined at 500 ° C. for 2 hours to obtain a catalyst R. Example 6 Molybdenum trioxide 39.7 g, cobalt carbonate 12.2 g
Was suspended in 50 g of water, 2.0 g of tartaric acid was added and dissolved under heating, and the impregnating liquid obtained by adjusting the liquid amount with water to a liquid amount corresponding to the water absorption amount of the carrier was obtained as the boria-silica obtained in Example 1. -Impregnated into 100 g of alumina simple substance A, left for 2 hours, dried at 110 ° C for 16 hours, and then calcined at 500 ° C for 2 hours to obtain Catalyst S.
【0030】また三酸化モリブデン23.4g、炭酸コ
バルト15.1gを水50gに懸濁し、酒石酸2.0g
を添加して加熱下で溶解し、担体の吸水量に見合う液量
に水で液量調節を行った含浸液を、実施例1で得たボリ
ア−シリカ−アルミナ担体A100gに含浸させ、2時
間放置後110℃で16時間乾燥し、次いで500℃で
2時間焼成して触媒Tを得た。 比較例5 三酸化モリブデン14.0g、炭酸ニッケル4.2gを
水50gに懸濁し、加熱下で溶解し、担体の吸水量に見
合う液量に水で液量調節を行った含浸液を実施例1で得
たボリア−シリカ−アルミナ担体A100gに含浸さ
せ、2時間放置後110℃で16時間乾燥し、次いで5
00℃で2時間焼成して触媒Uを得た。Also, 23.4 g of molybdenum trioxide and 15.1 g of cobalt carbonate were suspended in 50 g of water, and 2.0 g of tartaric acid was suspended.
And dissolved under heating, and impregnated with 100 g of the boria-silica-alumina carrier A obtained in Example 1 with the impregnating solution whose volume was adjusted with water to a volume corresponding to the water absorption of the carrier, and After standing, it was dried at 110 ° C. for 16 hours, and then calcined at 500 ° C. for 2 hours to obtain a catalyst T. Comparative Example 5 14.0 g of molybdenum trioxide and 4.2 g of nickel carbonate were suspended in 50 g of water, dissolved under heating, and the impregnating liquid was adjusted with water to a liquid amount corresponding to the water absorption of the carrier. 100 g of the boria-silica-alumina carrier A obtained in 1 was impregnated, left for 2 hours, dried at 110 ° C. for 16 hours,
It was calcined at 00 ° C. for 2 hours to obtain a catalyst U.
【0031】この触媒Uは、MoO3、NiOに換算し
た担持量が共に本発明の範囲よりも少なかった。 比較例6 三酸化モリブデン24.7g、炭酸ニッケル12.2g
を水50gに懸濁し、正リン酸8.9gを添加して加熱
下で溶解し、担体の吸水量に見合う液量に水で液量調節
を行った含浸液を実施例1で得たボリア−シリカ−アル
ミナ担体A、比較例1で得たアルミナ担体Fおよび比較
例2で得たシリカ−アルミナ担体Gの各100gにそれ
ぞれ含浸させ、2時間放置後110℃で16時間乾燥
し、次いで500℃で2時間焼成して触媒V、触媒Wお
よび触媒Xを得た。これらの触媒はすべてリンを含有し
ており本発明の範囲外のものである。 (3)触媒の性能評価試験 表1および表2に示した各種の触媒について触媒充填量
15mlの固定床流通反応装置を用い、炭化水素油の水
素化脱硫、脱窒素反応の活性を調べた。In the catalyst U, the supported amounts in terms of MoO 3 and NiO were both smaller than the range of the present invention. Comparative Example 6 Molybdenum trioxide 24.7 g, nickel carbonate 12.2 g
Was suspended in 50 g of water, 8.9 g of orthophosphoric acid was added and dissolved under heating, and the impregnation liquid obtained by adjusting the amount of water with water to a liquid amount corresponding to the amount of water absorbed by the carrier was obtained in Example 1. 100 g of each of the silica-alumina carrier A, the alumina carrier F obtained in Comparative Example 1 and the silica-alumina carrier G obtained in Comparative Example 2 were respectively impregnated, left for 2 hours, dried at 110 ° C. for 16 hours, and then 500 Calcination was performed at 2 ° C. for 2 hours to obtain Catalyst V, Catalyst W and Catalyst X. All of these catalysts contain phosphorus and are outside the scope of the present invention. (3) Catalyst performance evaluation test The activity of hydrodesulfurization and denitrification of hydrocarbon oil was examined for various catalysts shown in Tables 1 and 2 using a fixed bed flow reactor with a catalyst loading of 15 ml.
【0032】尚、触媒の硫化条件としてはジメチルジサ
ルファイドを2.5重量%添加したライトガスオイルで
水素/油供給比200Nl/l、LHSV=2.0hr
−1、圧力30kg/cm2Gの条件下で100℃から
315℃まで7時間かけて昇温し、同温度に16時間保
持して予備硫化を行った。The catalyst was sulfurized under a light gas oil containing 2.5% by weight of dimethyl disulfide, a hydrogen / oil supply ratio of 200 Nl / l, and an LHSV of 2.0 hr.
The temperature was raised from 100 ° C. to 315 ° C. over 7 hours under the conditions of −1 and a pressure of 30 kg / cm 2 G, and the temperature was maintained for 16 hours to perform preliminary sulfurization.
【0033】次いで、硫黄分1.15重量%、窒素分6
8ppmを含むクエート常圧軽油を用い、圧力30kg
/cm2G、LHSV=2.0hr−1、水素/油供給
比300Nl/l、温度300℃で反応を行わせ、反応
開始から100時間後の処理油中の硫黄分および窒素含
有量を分析して脱硫率、脱窒素率を求めその結果を表1
に示した。Next, a sulfur content of 1.15% by weight and a nitrogen content of 6%
Using quat ordinary pressure light oil containing 8 ppm, pressure 30 kg
/ Cm 2 G, LHSV = 2.0 hr −1 , hydrogen / oil supply ratio 300 Nl / l, temperature 300 ° C., and analyze the sulfur content and nitrogen content in the treated oil 100 hours after the start of the reaction Table 1 shows the desulfurization rate and denitrification rate.
It was shown to.
【0034】硫黄分の分析は(株)堀場製作所製SLF
A−920型のものを、また窒素分の分析は三菱化成
(株)製TN−05型のものを用いて行った。尚、表1
に示す脱硫率および脱窒素率は表2に示す触媒Wを10
0としたときの相対値である。The sulfur content was analyzed by using SLF manufactured by Horiba, Ltd.
The A-920 type and the nitrogen content were analyzed using Mitsubishi Kasei TN-05 type. Table 1
The desulfurization rate and denitrification rate shown in Table 2 were 10
This is a relative value when 0 is set.
【0035】表2に示す触媒Wの脱硫率および脱窒素率
を100としたのは、該触媒Wは従来の水素化処理用触
媒の製造方法によって調製したもので、一般に水素化脱
硫、脱窒素活性を示す触媒としてアルミナを基体とする
担体に、MoO3、NiOおよびP2O6を担持させた
触媒として市販されているものとほぼ同等の特性を有す
るものであるからである。The desulfurization rate and denitrification rate of the catalyst W shown in Table 2 were set to 100 because the catalyst W was prepared by a conventional method for producing a hydrotreating catalyst. This is because it has almost the same characteristics as those commercially available as a catalyst in which MoO 3 , NiO and P 2 O 6 are supported on a carrier having alumina as a base as an active catalyst.
【0036】[0036]
【表1】 [Table 1]
【表2】 [Table 2]
【0037】各表の結果において、表1の触媒I、触媒
J、触媒K、触媒Lおよび触媒Mは酸化物換算でのモリ
ブデン、ニッケルの含有率が同一であり、担体のボリア
−シリカ−アルミナ組成物の組成比および平均細孔径お
よび細孔分布、活性金属の担持量について、いずれも本
発明で定めた範囲を満足する触媒であって、高い脱硫率
および脱窒素率を示すものであることが明らかである。
一方、触媒Pは活性金属の担持量やボリア−シリカ−ア
ルミナ担体の組成比は本発明において定めた範囲に属す
るが、担体の平均細孔径±10オングストロームの細孔
容積/全細孔容積(%)値が48%に留まり、細孔の分
布が広いので、この触媒Pの脱硫率および脱窒素率は、
これより細孔分布の狭い触媒Iよりも低い値を示す。In the results of each table, the catalyst I, the catalyst J, the catalyst K, the catalyst L, and the catalyst M in Table 1 have the same molybdenum and nickel contents in terms of oxide, and the carrier boria-silica-alumina Regarding the composition ratio of the composition, the average pore diameter and the pore distribution, and the amount of active metal supported, the catalyst must satisfy the range specified in the present invention, and exhibit a high desulfurization rate and a high denitrification rate. Is evident.
On the other hand, in the catalyst P, the amount of the active metal carried and the composition ratio of the boria-silica-alumina carrier belong to the range defined in the present invention. ) Value remains at 48% and the pore distribution is broad, so that the desulfurization and denitrification rates of this catalyst P are
This value is lower than that of Catalyst I having a narrower pore distribution.
【0038】触媒Nおよび触媒Oは、活性金属の担持
量、平均細孔径および細孔分布に関しては本発明で定め
た範囲内に属するが、担体成分中にボリアおよび/また
はシリカが含まれていないために、脱硫率においては満
足し得る値を示すものの脱窒素率は低い値を示してい
る。The catalyst N and the catalyst O belong to the range defined in the present invention with respect to the amount of active metal carried, the average pore diameter and the pore distribution, but the carrier component does not contain boria and / or silica. Therefore, although the desulfurization rate shows a satisfactory value, the denitrification rate shows a low value.
【0039】また表2の触媒Q、触媒Rおよび触媒U
は、ボリア−シリカ−アルミナ担体の組成比、平均細孔
径および細孔分布に関しては本発明の範囲を満足するも
のであるが、酸化物換算でのモリブデンおよびニッケル
の担持量については触媒Iとは変えたものである。即
ち、触媒Qは触媒Iに比してモリブデンを増量し、触媒
Rは触媒Iに比してニッケルを増量したものであるが、
いずれも本発明の範囲内のものであって十分に高い脱硫
率および脱窒素率を示している。しかし、触媒Uは触媒
Iに比しモリブデンおよびニッケルを減量したものであ
り、しかもその含有量は本発明の範囲外であるために脱
硫率および脱窒素率共に低い値を示す。The catalysts Q, R and U in Table 2
Although the composition ratio of boria-silica-alumina support, the average pore diameter and the pore distribution satisfy the scope of the present invention, the amount of molybdenum and nickel in terms of oxide conversion is different from catalyst I. It has changed. That is, the catalyst Q has an increased amount of molybdenum as compared with the catalyst I, and the catalyst R has an increased amount of nickel as compared with the catalyst I.
All are within the scope of the present invention and show sufficiently high desulfurization and denitrification rates. However, catalyst U has a reduced amount of molybdenum and nickel as compared to catalyst I, and since its content is out of the range of the present invention, both the desulfurization rate and the denitrification rate show low values.
【0040】触媒Sおよび触媒Tは、ボリア−シリカ−
アルミナ担体の組成比、平均細孔径および細孔分布に関
しては本発明の範囲に属し、また活性金属としてニッケ
ルの代わりにコバルトを本発明の範囲内の量で担持させ
たものであって、十分に高い脱硫率および脱窒素率を示
している。The catalyst S and the catalyst T are composed of boria-silica
The composition ratio of the alumina carrier, the average pore diameter and the pore distribution belong to the scope of the present invention, and is obtained by supporting cobalt instead of nickel as an active metal in an amount within the scope of the present invention. It shows high desulfurization and denitrification rates.
【0041】触媒Vは、ボリア−シリカ−アルミナ担体
の組成比、平均細孔径および細孔分布については、本発
明の範囲内に属しているが、活性金属としてモリブデ
ン、ニッケルの他にリンを担持させたので、触媒Wに比
して脱硫率および脱窒素率が低い。これは、通常担体の
酸点が低い場合にはリンを助触媒として添加することに
より脱硫および脱窒素活性を改善することが行われる
が、本発明のボリア−シリカ−アルミナを基体とする担
体は、通常用いられるアルミナを基体とする担体よりも
基本的に酸点が高いために、リンを担持させると酸点が
高くなり過ぎて却って脱硫率や脱窒素率が低下してしま
うのである。The catalyst V falls within the scope of the present invention with respect to the composition ratio, average pore diameter and pore distribution of the boria-silica-alumina carrier, but supports phosphorus in addition to molybdenum and nickel as active metals. Therefore, the desulfurization rate and the denitrification rate are lower than those of the catalyst W. This is usually carried out when the acid point of the carrier is low to improve the desulfurization and denitrification activity by adding phosphorus as a co-catalyst, but the carrier based on boria-silica-alumina of the present invention is However, since the acid point is basically higher than that of a commonly used alumina-based carrier, when phosphorus is carried, the acid point becomes too high, and the desulfurization rate and the denitrification rate are rather lowered.
【0042】触媒Xはシリカ−アルミナ単体にそれぞれ
活性金属としてモリブデンおよびニッケルを担持させた
ものであり、平均細孔径および細孔分布に関しては本発
明で定めた範囲に属するが、従来のこの種の触媒に比べ
る時は多少脱硫、脱窒素活性は向上しているものの、本
発明の触媒Iに比べるとその値はいずれも低い。The catalyst X is obtained by supporting molybdenum and nickel as active metals on silica-alumina alone. The average pore diameter and the pore distribution fall within the ranges defined in the present invention. Although the desulfurization and denitrification activities are somewhat improved as compared with the catalyst, the values are all lower than that of the catalyst I of the present invention.
【0043】[0043]
【発明の効果】本発明の製造方法により得られた炭化水
素油の水素化脱硫脱窒素用触媒は、従来から提案されて
いるこの種の触媒に比べて遥かに効率よく脱硫、脱窒素
を行うことができる。従って、本発明の触媒を従来の触
媒に代えて使用すれば硫黄含有量、窒素含有量の少ない
燃料油を得ることが可能となる。The catalyst for hydrodesulfurization and denitrification of hydrocarbon oil obtained by the production method of the present invention performs desulfurization and denitrification much more efficiently than conventionally proposed catalysts of this kind. be able to. Therefore, if the catalyst of the present invention is used in place of the conventional catalyst, it becomes possible to obtain a fuel oil having a low sulfur content and a low nitrogen content.
Claims (2)
範囲であり、SiO2として3〜8重量%の範囲であ
り、且つ細孔特性が水銀圧入法で測定した細孔分布で6
0〜90オングストロームの平均細孔直径を有するとと
もに、平均細孔直径±10オングストロームの範囲の細
孔容積が全細孔容積の60%以上であるボリア−シリカ
−アルミナを基体とする酸化物担体に対し活性金属成分
として周期律表第6a族金属から選ばれた少なくとも1
種の金属を酸化物換算で17〜28重量%と、周期律表
第8族金属から選ばれた少なくとも1種の金属を酸化物
換算で3〜8重量%とを含む金属塩水溶液を含浸し、乾
燥することを特徴とする炭化水素油の水素化脱硫脱窒素
用触媒の製造方法。The composition has a composition of 3 to 10% by weight as B 2 O 3 and a content of 3 to 8% by weight as SiO 2 , and has a pore distribution of a pore distribution measured by a mercury intrusion method. 6
An oxide carrier based on boria-silica-alumina having an average pore diameter of 0 to 90 angstroms and having a pore volume in the range of an average pore diameter ± 10 angstroms of 60% or more of the total pore volume. On the other hand, at least one selected from Group 6a metals of the periodic table as the active metal component
Impregnated with a metal salt aqueous solution containing 17 to 28% by weight of a metal in an oxide equivalent and 3 to 8% by weight of an oxide of at least one metal selected from Group VIII metals of the periodic table. A method for producing a catalyst for hydrodesulfurization and denitrification of hydrocarbon oils, characterized by drying.
族金属がモリブデンであり、周期律表第8族金属がニッ
ケルおよびコバルトのうちの少なくとも1種であること
を特徴とする請求項1記載の炭化水素油の水素化脱硫脱
窒素用触媒の製造方法。2. The active metal component may be a 6a of the periodic table.
2. The method for producing a catalyst for hydrodesulfurization and denitrification of hydrocarbon oil according to claim 1, wherein the group metal is molybdenum, and the group VIII metal of the periodic table is at least one of nickel and cobalt. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6171762A JP2920186B2 (en) | 1993-09-17 | 1994-06-30 | Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25477793 | 1993-09-17 | ||
JP5-254777 | 1993-09-17 | ||
JP6171762A JP2920186B2 (en) | 1993-09-17 | 1994-06-30 | Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07136516A JPH07136516A (en) | 1995-05-30 |
JP2920186B2 true JP2920186B2 (en) | 1999-07-19 |
Family
ID=26494377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6171762A Expired - Lifetime JP2920186B2 (en) | 1993-09-17 | 1994-06-30 | Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2920186B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6218333B1 (en) * | 1999-02-15 | 2001-04-17 | Shell Oil Company | Preparation of a hydrotreating catalyst |
-
1994
- 1994-06-30 JP JP6171762A patent/JP2920186B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07136516A (en) | 1995-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4405148B2 (en) | Alumina having novel pore structure, method for producing the same, and catalyst prepared from alumina | |
KR102041652B1 (en) | Silica containing alumina supports, catalysts made therefrom and processes using the same | |
JP3692207B2 (en) | Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same | |
US4900711A (en) | Hydrotreating catalyst | |
JP3545943B2 (en) | Hydrorefining catalyst | |
JP2920186B2 (en) | Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil | |
JP3106761B2 (en) | Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same | |
JP2817598B2 (en) | Catalyst for hydrodesulfurization and denitrification and production method thereof | |
JP2711871B2 (en) | Method for producing hydrotreating catalyst from hydrogel | |
JP3263940B2 (en) | Catalyst for hydrodesulfurization and denitrification of hydrocarbon oils | |
JP2817622B2 (en) | Catalyst for hydrodesulfurization and denitrification and production method thereof | |
JP3538887B2 (en) | Catalyst for hydrotreating hydrocarbon oil and method for producing the same | |
JP2817558B2 (en) | Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same | |
JP3303533B2 (en) | Catalyst for hydrotreating hydrocarbon oil and method for producing the same | |
JPH08224471A (en) | Fire resisting inorganic oxide catalyst carrier and hydrogenation catalyst using the same | |
JP2817626B2 (en) | Catalyst for hydrodesulfurization and denitrification and production method thereof | |
JPH0446619B2 (en) | ||
JP3376067B2 (en) | Method for producing hydrotreating catalyst | |
WO2023033172A1 (en) | Catalyst for hydrotreatment of heavy hydrocarbon oil and method for producing same, and method for hydrotreatment of heavy hydrocarbon oil | |
JP2001300325A (en) | Catalyst for hydrogenative desulfurization denitration of hydrocarbon oil and manufacturing method | |
JPH06226102A (en) | Catalyst for hydrodesulfurization/denitrification and its preparation | |
JP2001310133A (en) | Catalyst for hydrodesulfurizatin and denitrification of hydrocarbon oil and its production method | |
JP2002085975A (en) | Hydrogenation catalyst for hydrocarbon oil and method of hydrogenating hydrocarbon oil | |
JP2001232202A (en) | Catalyst carrier, catalyst for hydrodesulfurization/ hydrodenitrification using the same and method of manufacturing them | |
JPH07299364A (en) | Catalyst for hydrodesulfurization and denitrification and its production |