JPH08176560A - Hydrodesulfurization of light oil - Google Patents

Hydrodesulfurization of light oil

Info

Publication number
JPH08176560A
JPH08176560A JP6336044A JP33604494A JPH08176560A JP H08176560 A JPH08176560 A JP H08176560A JP 6336044 A JP6336044 A JP 6336044A JP 33604494 A JP33604494 A JP 33604494A JP H08176560 A JPH08176560 A JP H08176560A
Authority
JP
Japan
Prior art keywords
oil
light oil
gas oil
weight
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6336044A
Other languages
Japanese (ja)
Other versions
JP2996435B2 (en
Inventor
Osamu Chiyoda
修 千代田
Ichiji Usui
一司 薄井
Mitsugi Yumoto
貢 湯本
Kazuo Idei
一夫 出井
Etsuo Suzuki
悦夫 鈴木
Katsumi Oki
勝美 大木
Takashi Fujikawa
貴志 藤川
Hatsutaro Yamazaki
初太郎 山崎
Shunji Kitada
俊二 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP6336044A priority Critical patent/JP2996435B2/en
Publication of JPH08176560A publication Critical patent/JPH08176560A/en
Application granted granted Critical
Publication of JP2996435B2 publication Critical patent/JP2996435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE: To efficiently carry out the hydrodesulfurization of a light oil, enable sufficient response to desulfurization of a hardly desulfurizing substance and obtain an ultralow sulfur light oil at a low cost by reacting a stock oil such as a catalytically cracked light oil under specific conditions. CONSTITUTION: One or more of a catalytically cracked light oil, a thermally cracked light oil, a straight run light oil, a coker gas oil, a hydrotreated light oil and a desulfurization treated light oil are used as a stock oil and catalytically reacted at 320-380 deg.C temperature under 30-80kg/cm<2> pressure at 1.0-5.0hr<-2> liquid space velocity and 100-400l/l hydrogen/oil ratio in the presence of a catalyst prepared by including a group VI metallic component of the periodic table in an amount of 10-30wt.% expressed in terms of an oxide, a group VIII metal of the periodic table in an amount of 1-10wt.% expressed in terms of an oxide and a phosphorus component in an amount of 1-7wt.% expressed in terms of an oxide in a carrier containing 80-99wt.% inorganic oxide and 1-20wt.% zeolite. Thereby, the hydrodesulfurization of the light oil is carried out. Furthermore, the catalytic reaction is preferably performed so as to provide 0.001-0.10wt.% sulfur content in the produced oil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軽油の水素化脱硫方法
に関し、特に、特定の触媒を用い、特定の条件下で、軽
油を深度脱硫する方法に関する。
TECHNICAL FIELD The present invention relates to a method for hydrodesulfurizing light oil, and more particularly to a method for deeply desulfurizing light oil under a specific condition using a specific catalyst.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】原油
の蒸留や分解によって得られる軽油留分は、一般に、硫
黄化合物を含み、それらの油を燃料として使用した場合
には、硫黄化合物中に存在する硫黄が酸化物などの硫黄
化合物に転化して大気中に放出される。また、ディーゼ
ルエンジンにおいて使用される場合には、NOxなどの
除去装置に対する悪影響もあるため、上記の留分は、硫
黄含有量ができるだけ少ないことが望ましい。硫黄含有
量の少ない軽油留分は、軽油留分を接触水素化脱硫する
ことによって得ることができる。
The gas oil fraction obtained by distillation or cracking of crude oil generally contains sulfur compounds, and when these oils are used as fuel, they are present in the sulfur compounds. Sulfur is converted into sulfur compounds such as oxides and released into the atmosphere. Further, when used in a diesel engine, there is also an adverse effect on a device for removing NOx and the like, so it is desirable that the above-mentioned fraction has as low a sulfur content as possible. A gas oil fraction having a low sulfur content can be obtained by catalytic hydrodesulfurization of a gas oil fraction.

【0003】ところで、従来から炭化水素油の水素化脱
硫に用いられている触媒は、通常、周期律表第VI族金
属(以下、単に「第VI族金属」と記す)と周期律表第
VIII族金属(以下、単に「第VIII族金属」と記
す)とを活性金属として、アルミナ、マグネシア、シリ
カなどの酸化物担体上に担持したものである。このと
き、一般に、第VI族金属としては、MoやWが用いら
れ、第VIII族金属としては、CoやNiが用いられ
ている。
By the way, catalysts conventionally used for hydrodesulfurization of hydrocarbon oils are usually metals of Group VI of the periodic table (hereinafter, simply referred to as "Group VI metal") and Group VIII of the periodic table. A group metal (hereinafter, simply referred to as "Group VIII metal") is supported as an active metal on an oxide carrier such as alumina, magnesia or silica. At this time, generally, Mo or W is used as the Group VI metal, and Co or Ni is used as the Group VIII metal.

【0004】また、この触媒の活性向上のために、燐、
ホウ素などを添加する技術が報告されている(特開昭5
2−13503号公報参照)。さらに、担体として用い
る無機酸化物中に、ゼオライトを混入するという技術も
報告されている(特開昭56−20087号公報参
照)。しかも、これらを両方用いた技術も報告されてい
る(特開昭61−126196、特開平2−21454
4号公報参照)。
In order to improve the activity of this catalyst, phosphorus,
A technique of adding boron or the like has been reported (Japanese Patent Laid-Open No. Sho 5)
No. 2-1503). Further, a technique of mixing zeolite into an inorganic oxide used as a carrier has also been reported (see JP-A-56-20087). Moreover, techniques using both of them have been reported (Japanese Patent Laid-Open No. 61-126196, Japanese Laid-Open Patent Publication No. 2-21454).
No. 4).

【0005】しかしながら、これらの先提案技術は、主
に炭化水素油の重質油留分の水素化脱硫あるいは水素化
分解を目的としたものであって、軽油留分の水素化深度
脱硫を中心にした技術ではない。
However, these prior proposed techniques are mainly aimed at hydrodesulfurization or hydrocracking of heavy oil fractions of hydrocarbon oils, and mainly focus on deep hydrodesulfurization of light oil fractions. It's not the technology I used.

【0006】また、近年、環境問題から商品軽油中に含
まれる硫黄分に対する規制がより厳しくなるにつれて
(0.5wt%→0.05wt%)、一層の深度脱硫が
要求されるようになったため、4メチルジベンゾチオフ
ェン(以下、「4M−DBT」と記す)や4,6ジメチ
ルジベンゾチオフェン(以下、「4,6DM−DBT」
と記す)と言った難脱硫性物質の処理が必要となって来
ている。
[0006] Further, in recent years, as the regulation of sulfur content in commercial gas oil has become stricter due to environmental problems (0.5 wt% → 0.05 wt%), further deep desulfurization is required, 4-methyldibenzothiophene (hereinafter referred to as "4M-DBT") and 4,6 dimethyldibenzothiophene (hereinafter referred to as "4,6DM-DBT")
It has become necessary to treat difficult-to-desulfurize substances such as

【0007】本発明は、このような従来技術の情況を考
慮してなされたものであり、深度脱硫領域において優れ
た脱硫活性を示し、難脱硫性物質にも十分に対応し得る
触媒を用いて、軽油を水素化脱硫する方法を提供するこ
とを目的とする。
The present invention has been made in view of such circumstances of the prior art, and uses a catalyst that exhibits excellent desulfurization activity in the deep desulfurization region and can sufficiently cope with difficult desulfurization substances. An object of the present invention is to provide a method for hydrodesulfurizing light oil.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために検討を重ねた結果、(1)無機酸化物
からなる担体にゼオライトを含有させるとともに、第V
I族金属成分と第VIII族金属成分とからなる活性成
分に燐を含有させた触媒を使用し、しかも特定の条件下
で接触反応を行わせたところ、この触媒が、軽油中に含
まれる硫黄分を0.1wt%以下、さらには0.05w
t%以下まで脱硫する水素化脱硫反応において優れた性
能を示し、難脱硫性物質と言われている物質にも十分対
応できること、(2)特に、上記ゼオライトが24.4
5〜24.55Åの格子定数を有し、しかも上記触媒が
特定の平均細孔径および細孔径分布を有する場合におい
て、硫黄分0.03wt%以下にまで、高い脱硫率で、
しかも良好な再現性にて、確実に深度脱硫を行うことが
できること、を見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of repeated studies to achieve the above object, the present inventors have found that (1) a zeolite made of an inorganic oxide is contained in a carrier, and
When a catalyst containing phosphorus as an active ingredient consisting of a Group I metal component and a Group VIII metal component was used and a catalytic reaction was carried out under specific conditions, the catalyst contained sulfur contained in gas oil. 0.1 wt% or less, and even 0.05 w
It exhibits excellent performance in a hydrodesulfurization reaction of desulfurizing up to t% or less and can sufficiently cope with a substance which is said to be a difficult desulfurization substance. (2) In particular, the above zeolite is 24.4.
When the catalyst has a lattice constant of 5 to 24.55Å and the catalyst has a specific average pore diameter and specific pore diameter distribution, the sulfur content is 0.03 wt% or less and the desulfurization rate is high,
Moreover, they have found that deep desulfurization can be reliably performed with good reproducibility, and completed the present invention.

【0009】すなわち、本発明の軽油の水素化脱硫方法
は、接触分解軽油、熱分解軽油、直留軽油、コーカーガ
スオイル、水素化処理軽油、脱硫処理軽油のうちの少な
くとも1種を原料油とし、無機酸化物80〜99重量%
とゼオライト1〜20重量%とを含む担体に、周期律表
第VI族金属成分を酸化物換算で10〜30重量%と周
期律表第VIII族金属を酸化物換算で1〜10重量%
と燐成分を酸化物換算で1〜7重量%含有させた触媒を
用い、圧力(水素分圧)を30〜80kg/cm、温
度を320〜380℃、液空間速度を1.0〜5.0h
−1、水素/オイル比を100〜400リットル/リ
ットル(以下、リットルを「L」と記す)として、接触
反応を行うことを特徴とする。
That is, the gas oil hydrodesulfurization method of the present invention uses at least one of catalytically cracked gas oil, thermally cracked gas oil, straight-run gas oil, coker gas oil, hydrotreated gas oil, and desulfurized gas oil as a feedstock oil. , 80 to 99% by weight of inorganic oxide
And a zeolite containing 1 to 20 wt% of the periodic table group VI metal component in terms of oxide of 10 to 30 wt% and the periodic table group VIII metal in terms of oxide of 1 to 10 wt%.
And a phosphorus component in an amount of 1 to 7 wt% in terms of oxide are used, the pressure (hydrogen partial pressure) is 30 to 80 kg / cm 2 , the temperature is 320 to 380 ° C., and the liquid hourly space velocity is 1.0 to 5 0.0h
It is characterized in that the catalytic reaction is carried out with r −1 and hydrogen / oil ratio of 100 to 400 liters / liter (hereinafter, liter is referred to as “L”).

【0010】また、本発明の軽油の水素化脱硫方法は、
上記の担体に含ませるゼオライトが24.45〜24.
55Åの格子定数を有し、上記の使用触媒が平均細孔径
70〜80Åで、かつ平均細孔径±15Åの細孔径を有
する細孔の割合が70%以上であることをも特徴とす
る。
Further, the gas oil hydrodesulfurization method of the present invention comprises:
The zeolite contained in the above carrier is 24.45 to 24.
It is also characterized in that it has a lattice constant of 55Å, the catalyst used has an average pore diameter of 70 to 80Å, and the proportion of pores having an average pore diameter of ± 15Å is 70% or more.

【0011】さらに、本発明の軽油の水素化脱硫方法
は、生成油の硫黄分が0.001〜0.10重量%とな
るように接触反応を行うことをも特徴とする。
Further, the method for hydrodesulfurizing light oil of the present invention is also characterized in that the catalytic reaction is carried out so that the sulfur content of the produced oil becomes 0.001 to 0.10% by weight.

【0012】本発明において使用される触媒の担体は、
無機酸化物とゼオライトとを含むものである。このうち
無機酸化物としては、種々のものが使用でき、例えば、
シリカ、アルミナ、ボリア、マグネシア、チタニア、シ
リカ−アルミナ、シリカ−マグネシア、シリカ−ジルコ
ニア、シリカ−トリア、シリカ−ベリリア、シリカ−チ
タニア、シリカ−ボリア、アルミナ−ジルコニア、アル
ミナ−チタニア、アルミナ−ボリア、アルミナ−クロミ
ア、チタニア−ジルコニア、シリカ−アルミナ−トリ
ア、シリカ−アルミナ−ジルコニア、シリカ−アルミナ
−マグネシア、シリカ−マグネシア−ジルコニアなどが
挙げられ、なかでも、アルミナ、シリカ−アルミナ、ア
ルミナ−ボリア、アルミナ−チタニア、アルミナ−ジル
コニアが好ましく、特にアルミナのうちのγ−アルミナ
が好ましい。これら無機酸化物は、単独で、あるいは2
種以上を組み合わせて用いることができる。
The catalyst carrier used in the present invention is
It contains an inorganic oxide and zeolite. Of these, various types can be used as the inorganic oxide, for example,
Silica, alumina, boria, magnesia, titania, silica-alumina, silica-magnesia, silica-zirconia, silica-tria, silica-berrillia, silica-titania, silica-boria, alumina-zirconia, alumina-titania, alumina-boria, Alumina-chromia, titania-zirconia, silica-alumina-tria, silica-alumina-zirconia, silica-alumina-magnesia, silica-magnesia-zirconia, and the like, among them, alumina, silica-alumina, alumina-boria, alumina. -Titania and alumina-zirconia are preferable, and γ-alumina among alumina is particularly preferable. These inorganic oxides may be used alone or
A combination of two or more species can be used.

【0013】一方、ゼオライトとしても、種々のものが
使用でき、例えば、A型ゼオライト、X型ゼオライト、
Y型ゼオライト、安定化Y型ゼオライト、超安定型Y型
ゼオライト、L型ゼオライト、ZSM型ゼオライトなど
が挙げられ、好ましくはHY型ゼオライト、安定化Y型
ゼオライトである。これらの結晶性ゼオライトは、単独
で、あるいは2種以上を組み合わせて用いることができ
る。
On the other hand, various kinds of zeolite can be used, for example, A-type zeolite, X-type zeolite,
Examples thereof include Y-type zeolite, stabilized Y-type zeolite, ultra-stable Y-type zeolite, L-type zeolite, and ZSM-type zeolite, with HY-type zeolite and stabilized Y-type zeolite being preferred. These crystalline zeolites can be used alone or in combination of two or more kinds.

【0014】上記の結晶ゼオライトにおいて、特に、格
子定数が24.45〜24.55Åのものを用いること
が好ましい。格子定数が24.45Å未満のゼオライト
では、全酸量が少なく、全体的な脱硫活性が低下するこ
とがある。逆に、24.55Åを超えたゼオライトで
は、全酸量は多いものの、酸強度が弱く、そのため現状
の脱硫反応温度において難脱硫性物質の除去が困難とな
ることがある。
Among the above crystalline zeolites, it is particularly preferable to use one having a lattice constant of 24.45 to 24.55Å. Zeolites having a lattice constant of less than 24.45Å may have a low total acid content, resulting in a decrease in overall desulfurization activity. On the other hand, in the case of zeolite having a content of more than 24.55Å, the total acid amount is large, but the acid strength is weak, so that it may be difficult to remove the hardly desulfurizable substance at the present desulfurization reaction temperature.

【0015】担体中における無機酸化物の含有割合は、
80〜99重量%、好ましくは85〜98重量%であ
り、ゼオライトの含有割合は、1〜20重量%、好まし
くは2〜15重量%である。
The content ratio of the inorganic oxide in the carrier is
It is 80 to 99% by weight, preferably 85 to 98% by weight, and the content ratio of the zeolite is 1 to 20% by weight, preferably 2 to 15% by weight.

【0016】無機酸化物が80重量%未満であると、触
媒全体の表面積が相対的にが小さくなるなど、担体とし
て好ましくなく、99重量%を超えると、相対的にゼオ
ライトの含有割合が1重量%未満となって、ゼオライト
を含有させる技術的意義が発現せず、ゼオライトが20
重量%を超えると、活性金属の分散性が悪くなる。
When the content of the inorganic oxide is less than 80% by weight, the surface area of the whole catalyst becomes relatively small, which is not preferable as a carrier. When it exceeds 99% by weight, the content of the zeolite is relatively 1% by weight. %, The technical significance of containing zeolite does not appear, and the zeolite content is 20%.
If it exceeds 5% by weight, the dispersibility of the active metal deteriorates.

【0017】上記の無機酸化物およびゼオライトを含む
担体には、モンモリロナイト、カオリン、ハロサイト、
ベントナイト、アダバルガイド、ボーキサイト、カオリ
ナイト、ナクライト、アノーキサイトなどの粘土鉱物
を、単独で、あるいは2種以上を組み合わせて含ませる
ことができる。
The carrier containing the above-mentioned inorganic oxide and zeolite includes montmorillonite, kaolin, halosite,
Clay minerals such as bentonite, adaval guide, bauxite, kaolinite, nacrite and anoxite may be contained alone or in combination of two or more.

【0018】本発明で用いる担体の比表面積、細孔容
積、平均細孔径は、いずれも特に限定されるものではな
いが、難脱硫性物質までをも除去する触媒とするために
は、比表面積は250m/g以上が好ましく、細孔容
積は0.3〜1.2cc/gが好ましく、平均細孔径5
0〜130Åが好ましい。
The specific surface area, pore volume, and average pore diameter of the carrier used in the present invention are not particularly limited, but in order to make it a catalyst for removing even difficult-to-desulfurize substances, the specific surface area is not limited. Is preferably 250 m 2 / g or more, the pore volume is preferably 0.3 to 1.2 cc / g, and the average pore diameter is 5
0 to 130Å is preferable.

【0019】以上の担体に含有させる第VI族金属成分
としては、種々のものが使用できるが、クロム、モリブ
デン、タングステンの化合物が好ましく、特にモリブデ
ン、タングステンの化合物が好ましい。これらの化合物
の具体例としては、(NHMo24・4H
Oで表されるモリブデン酸アンモニウム、(NH
101241・5HOで表されるタングステン酸
アンモニウム、MoOで表される酸化モリブデン、H
(PMo1240)・30HOで表されるモリブ
ドリン酸、H(PW1240)・30HOで表さ
れるタングストリン酸などが挙げられる。これらの化合
物は、単独で、あるいは2種以上を組み合わせて使用す
ることができる。
As the Group VI metal component contained in the above carrier, various compounds can be used, but compounds of chromium, molybdenum and tungsten are preferable, and compounds of molybdenum and tungsten are particularly preferable. Specific examples of these compounds include (NH 4 ) 6 Mo 7 O 24 · 4H 2
Ammonium molybdate represented by O, (NH 4)
10 W ammonium tungstate represented by 12 O 41 · 5H 2 O, molybdenum oxide represented by MoO 3, H
3 (PMo 12 O 40) · 30H molybdophosphoric acid represented by 2 O, etc. tungstophosphoric acid represented by H 3 (PW 12 O 40) · 30H 2 O and the like. These compounds can be used alone or in combination of two or more kinds.

【0020】上記の第VI族金属成分とともに含有させ
る第VIII族金属成分としても、種々のものが使用で
きるが、鉄、コバルト、ニッケル、ロジウム、パラジウ
ム、オスミウム、イリジウム、白金などの化合物が好ま
しく、特にコバルト、ニッケルの炭酸塩、酢酸塩、燐酸
塩が好ましい。これらの化合物は、単独で、あるいは2
種以上を組み合わせて使用することができる。
As the Group VIII metal component to be contained together with the Group VI metal component, various compounds can be used, but compounds such as iron, cobalt, nickel, rhodium, palladium, osmium, iridium and platinum are preferable, Particularly, carbonates, acetates and phosphates of cobalt and nickel are preferable. These compounds may be used alone or
Combinations of more than one species can be used.

【0021】さらに、上記の第VI族金属および第VI
II族金属とともに含有させる燐成分としては、種々の
燐酸が挙げられ、具体的には、オルト燐酸、メタ燐酸、
ピロ燐酸、三燐酸、四燐酸、ポリ燐酸などが挙げられ、
特にオルト燐酸が好ましく使用できる。
Further, the above Group VI metal and Group VI
Examples of the phosphorus component contained together with the Group II metal include various phosphoric acids, and specifically, orthophosphoric acid, metaphosphoric acid,
Examples include pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, polyphosphoric acid,
In particular, orthophosphoric acid can be preferably used.

【0022】これら第VI、第VIII族金属成分およ
び燐成分の含有割合は、酸化物換算で、触媒の重量を基
準として、第VI族金属成分が、10〜30重量%、好
ましくは15〜23重量%であり、第VIII族金属成
分が、1〜10重量%、好ましくは3〜7重量%であ
り、燐成分が、1〜7重量%、好ましくは2〜5重量%
である。
The content ratio of the Group VI, Group VIII metal component and phosphorus component is 10 to 30% by weight, preferably 15 to 23% by weight of the Group VI metal component in terms of oxide, based on the weight of the catalyst. % By weight, the Group VIII metal component is 1-10% by weight, preferably 3-7% by weight, and the phosphorus component is 1-7% by weight, preferably 2-5% by weight.
Is.

【0023】第VI族金属成分が10重量%未満である
と、難脱硫性物質までをも効率的に除去することができ
なくなり、30重量%を超えると、活性金属の分散性が
悪くなるのみならず、この効果は飽和してしまい不経済
となる。第VIII族金属成分が1重量%未満である
と、第VIII族金属成分を含有させる技術的意義が発
現せず、したがって難脱硫性物質までをも効率的に除去
することができなくなり、10重量%を超えても、この
効果は飽和してしまい不経済となる。燐成分が1重量%
未満であると、燐成分を含有させる技術的意義が発現せ
ず、したがって難脱硫性物質までをも効率的に除去する
ことができなくなり、7重量%を超えても、この効果は
飽和してしまい不経済となる。
When the content of the Group VI metal component is less than 10% by weight, even the hardly desulfurizable substance cannot be efficiently removed, and when it exceeds 30% by weight, the dispersibility of the active metal is deteriorated. However, this effect is saturated and uneconomical. When the content of the Group VIII metal component is less than 1% by weight, the technical significance of containing the Group VIII metal component does not appear, and thus even the hardly desulfurizable substance cannot be efficiently removed. Even if it exceeds%, this effect is saturated and becomes uneconomical. Phosphorus component is 1% by weight
When the amount is less than the above, the technical significance of containing the phosphorus component is not expressed, and thus even the hardly desulfurizable substance cannot be efficiently removed. Even when it exceeds 7% by weight, this effect is saturated. It becomes uneconomical.

【0024】上記の担体に、上記の第VI、第VIII
族金属成分および燐成分を含有させる方法、すなわち本
発明で使用する触媒の調製方法は、幾つかの公知の技術
を用いて行うことができる。その1つの方法としては、
上記の担体に、上記の第VI、第VIII族金属化合物
と燐酸とを、水、アルコール類、エーテル類、ケトン類
などの溶媒に溶解させた溶液を、1段以上の含浸処理に
よって担持させる含浸法が挙げられる。なお、この含浸
法において、含浸処理回数が複数にわたる場合、各含浸
処理の間で、乾燥・焼成を行ってもよい。
On the above carrier, the above-mentioned VI, VIII
The method of incorporating the group metal component and the phosphorus component, that is, the method of preparing the catalyst used in the present invention can be carried out by using several known techniques. One way is
Impregnation in which the above-mentioned carrier is dissolved in a solvent such as water, alcohols, ethers, ketones, etc., the group VI or VIII metal compound and phosphoric acid by one or more impregnation treatments There is a law. In this impregnation method, when the number of impregnation treatments is plural, drying / firing may be performed between each impregnation treatment.

【0025】他の方法としては、上記の担体に、上記の
第VI、第VIII族金属化合物と燐酸とを溶解させた
溶液を噴霧する噴霧法、あるいは第VI、第VIII族
金属成分と燐成分とを化学的に蒸着させる化学蒸着法を
挙げることができる。
As another method, a spraying method in which a solution in which the above-mentioned Group VI or Group VIII metal compound and phosphoric acid are dissolved is sprayed on the above carrier, or a Group VI or Group VIII metal component and phosphorus component is sprayed. There may be mentioned a chemical vapor deposition method in which and are chemically vapor-deposited.

【0026】さらに別の方法としては、成型前の上記の
担体成分に、上記の第VI、第VIII族金属成分と燐
成分との一部あるいは全部を含有させて成型する混練
法、共沈法、アルコキシド法を挙げることができる。
As still another method, a kneading method or a coprecipitation method in which the above-mentioned carrier component before molding is made to contain a part or all of the above-mentioned Group VI or VIII metal component and phosphorus component, and molding is carried out. The alkoxide method can be mentioned.

【0027】以上の種々の製法によって調製される本発
明における触媒の比表面積、細孔容積は、触媒として機
能することができれば特に限定されるものではないが、
前述の担体の場合と同様に、難脱硫性物質までをも効率
的に除去するためには、比表面積が200m/g以
上、細孔容積が0.3〜1.2cc/gが好ましい。
The specific surface area and pore volume of the catalyst of the present invention prepared by the above various production methods are not particularly limited as long as they can function as a catalyst.
As in the case of the above-mentioned carrier, in order to efficiently remove even the hardly desulfurizable substance, the specific surface area is preferably 200 m 2 / g or more and the pore volume is preferably 0.3 to 1.2 cc / g.

【0028】また、触媒の平均細孔径は、60〜120
Å程度でよいが、特に、70〜80Å、好ましくは73
〜77Åとすることが適している。平均細孔径が大きす
ぎると、細孔内への反応物質の拡散性はよいものの、触
媒の有効表面積が小さくなるので、難脱硫性物質の除去
が困難となる。深度脱硫反応を行う場合は、生成軽油の
色相を悪化させずに、硫黄分を所定レベル以下まで減少
させることが重要であるため、液空間速度を低くした運
転を行うことが多い。この場合には、接触時間が長くな
るので、平均細孔径が大きい触媒を使用して反応物質の
拡散性を良くする必要は無くなるばかりか、逆に平均細
孔径が大きい触媒を使用すると、その結果として活性の
向上が認められなくなる。一方、平均細孔径が小さすぎ
ると、触媒として機能させるのに必要な物性(比表面
積、細孔容積)を得ようとすると、機械的強度が不足す
るなど、製造上困難な問題が発生する。
The average pore size of the catalyst is 60 to 120.
It may be about Å, but especially 70 to 80Å, preferably 73
It is suitable to set it to ~ 77Å. If the average pore size is too large, the diffusibility of the reaction material into the pores is good, but the effective surface area of the catalyst becomes small, so that it becomes difficult to remove the hardly desulfurizable material. When performing a deep desulfurization reaction, it is important to reduce the sulfur content to a predetermined level or less without deteriorating the hue of the produced gas oil, and thus operation is often performed at a low liquid hourly space velocity. In this case, since the contact time becomes long, it is not necessary to use a catalyst with a large average pore size to improve the diffusivity of the reactants. As a result, no improvement in activity is observed. On the other hand, if the average pore diameter is too small, problems such as insufficient mechanical strength will occur when trying to obtain the physical properties (specific surface area, pore volume) required to function as a catalyst, such as difficulty in production.

【0029】さらに、触媒の細孔径分布(すなわち、平
均細孔径±15Åの細孔径を有する細孔の割合)は、7
0%以上、好ましくは80%以上が望ましい。細孔径分
布の値が小さく、分布曲線がブロードであると、平均細
孔径が理想的な値であっても、反応に有効な細孔の数が
相対的に少なくなってしまい、高活性な触媒が期待でき
ない。
Furthermore, the pore size distribution of the catalyst (that is, the proportion of pores having an average pore size of ± 15Å) is 7
0% or more, preferably 80% or more is desirable. If the value of the pore size distribution is small and the distribution curve is broad, the number of effective pores for the reaction will be relatively small even if the average pore size is ideal, and a highly active catalyst will be obtained. Can not be expected.

【0030】触媒形状も、特に限定されたものではな
く、通常、この種の触媒に用いられている種々の形状、
例えば、円柱状、四葉型などを採用することができる。
大きさは、通常、径が1/10〜1/22インチ、長さ
が3.2〜3.6インチが好ましい。
The shape of the catalyst is not particularly limited, and various shapes usually used for this type of catalyst,
For example, a columnar shape, a four-leaf type, or the like can be adopted.
As for the size, usually, the diameter is preferably 1/10 to 1/22 inch and the length is preferably 3.2 to 3.6 inch.

【0031】上記の触媒は、本発明を適用した実際のプ
ロセスに用いる場合は、単独で使用してもよいが、公知
の触媒あるいは公知の無機質酸化物担体と混合して使用
することもできる。また、上記の触媒には、モンモリロ
ナイト、カオリン、ハロサイト、ベントナイト、アダバ
ルガイド、ボーキサイト、カオリナイト、ナクライト、
アノーキサイトなどの粘土鉱物を、単独で、あるいは2
種以上を組み合わせて含ませることもできる。
When the above catalyst is used in the actual process to which the present invention is applied, it may be used alone, or may be used as a mixture with a known catalyst or a known inorganic oxide carrier. Further, the above catalyst, montmorillonite, kaolin, halosite, bentonite, adaval guide, bauxite, kaolinite, nacrite,
Clay minerals such as anoxite, alone or 2
It is also possible to include a combination of two or more species.

【0032】上記の触媒を使用する本発明において、原
料油としては、接触分解軽油、熱分解軽油、直留軽油、
コーカーガスオイル、水素化処理軽油、脱硫処理軽油が
挙げられ、これらは単独で、あるいは2種以上を組み合
わせて使用することができる。なお、これらの原料油
は、沸点範囲が150〜400℃、好ましくは200〜
380℃、さらに好ましくは220〜340℃であり、
硫黄分量が3重量%以下、好ましくは2.5重量%以
下、さらに好ましくは2.0重量%以下のものであるこ
とが好適である。
In the present invention using the above-mentioned catalyst, as the feedstock oil, catalytically cracked gas oil, thermally cracked gas oil, straight run gas oil,
Examples thereof include coker gas oil, hydrotreated gas oil, and desulfurized gas oil, which can be used alone or in combination of two or more kinds. In addition, these raw material oils have a boiling point range of 150 to 400 ° C., preferably 200 to 400 ° C.
380 ° C., more preferably 220 to 340 ° C.,
It is suitable that the sulfur content is 3% by weight or less, preferably 2.5% by weight or less, and more preferably 2.0% by weight or less.

【0033】また、本発明において、上記原料油の水素
化脱硫反応条件としては、圧力(水素分圧)が30〜8
0kg/cm、好ましくは50〜60kg/cm
温度が320〜380℃、好ましくは320〜360
℃、さらに好ましくは330〜360℃、液空間速度が
1.0〜5.0hr−1、好ましくは1.0〜3.0h
−1、さらに好ましくは1.0〜2.0hr−1、水
素/オイル比が100〜400L/L、好ましくは20
0〜300L/Lが挙げられる。
Further, in the present invention, the hydrodesulfurization reaction conditions of the above feed oil include a pressure (hydrogen partial pressure) of 30 to 8
0 kg / cm 2 , preferably 50-60 kg / cm 2 ,
The temperature is 320 to 380 ° C., preferably 320 to 360
C., more preferably 330 to 360.degree. C., liquid hourly space velocity of 1.0 to 5.0 hr.sup.- 1 , preferably 1.0 to 3.0 h.
r −1 , more preferably 1.0 to 2.0 hr −1 , hydrogen / oil ratio 100 to 400 L / L, preferably 20.
0-300 L / L is mentioned.

【0034】圧力(水素分圧)が30kg/cm未満
であると、難脱硫性物質までをも除去することができ
ず、80kg/cmを超えても、難脱硫性物質の除去
効率が飽和するのみならず、これだけの高圧に耐え得る
高コストの設備を要し、不経済となる。温度が320℃
未満であると、難脱硫性物質までをも除去することがで
きず、380℃を超えても、難脱硫性物質の除去効率が
飽和し、不経済となる。液空間速度が5.0hr−1
超えると、触媒と原料油との接触時間が短くなりすぎて
難脱硫性物質までをも除去することができず、1.0h
−1未満であると、必要以上に接触時間が長くなりす
ぎ、処理効率が低下してしまう。
If the pressure (hydrogen partial pressure) is less than 30 kg / cm 2 , even the hardly desulfurizable substance cannot be removed, and even if it exceeds 80 kg / cm 2 , the removal efficiency of the hardly desulfurized substance is high. Not only is it saturated, but expensive equipment that can withstand such high pressures is required, which is uneconomical. Temperature is 320 ℃
If it is less than this, even the hardly desulfurizable substance cannot be removed, and even if it exceeds 380 ° C., the removal efficiency of the hardly desulfurizable substance is saturated, which is uneconomical. If the liquid hourly space velocity exceeds 5.0 hr -1 , the contact time between the catalyst and the feedstock becomes too short, and even the hardly desulfurizable substance cannot be removed.
When it is less than r -1 , the contact time becomes unnecessarily long and the treatment efficiency is lowered.

【0035】また、反応条件は、生成油中の硫黄分量が
0.001〜0.10重量%、好ましくは0.001〜
0.05重量%、より好ましくは0.005〜0.04
重量%、さらに好ましくは0.01〜0.03重量%と
なるような条件を選定することが好適である。このよう
な条件であれば、上記の触媒の寿命が従来の典型的な触
媒の寿命と同等あるいはそれ以上となり、実装置におい
て上記触媒を1年以上使用することが可能となる。
The reaction conditions are such that the sulfur content in the produced oil is 0.001 to 0.10% by weight, preferably 0.001 to
0.05% by weight, more preferably 0.005-0.04
It is preferable to select the conditions such that the weight%, and more preferably 0.01 to 0.03% by weight. Under such conditions, the life of the above catalyst becomes equal to or longer than the life of a typical conventional catalyst, and it becomes possible to use the above catalyst for one year or more in an actual apparatus.

【0036】以上の原料油を以上の条件で水素化脱硫す
る本発明を商業規模で行う場合には、上記の触媒を、適
当な反応器において、固定床、移動床または流動床とし
て使用し、該反応器に上記の原料油を導入し、所定の条
件下において処理すればよい。
In carrying out the present invention in which the above feed oil is hydrodesulfurized under the above conditions on a commercial scale, the above catalyst is used in a suitable reactor as a fixed bed, moving bed or fluidized bed, The feedstock oil may be introduced into the reactor and treated under predetermined conditions.

【0037】最も一般的には、上記の触媒を固定床とし
て維持し、原料油が該固定床を下方に通過するようにす
る。触媒は、単独の反応器あるいは連続した幾つかの反
応器内で使用することができる。
Most commonly, the catalyst described above is maintained as a fixed bed, with the feedstock passing downwardly through the fixed bed. The catalyst can be used in a single reactor or in several reactors in series.

【0038】[0038]

【実施例】【Example】

実施例1 担体として、比表面積372m/g、細孔容積0.6
5cc/g、平均細孔径62Åで、HY型ゼオライト
〔SiO/Alのモル比が6であり、Na
含有量が0.3重量%以下であり、比表面積が970
(Langmuir、m/g)および620(BE
T、m/g)であり、結晶サイズが0.7〜1.0μ
m〕5重量%入りγ−アルミナを使用し、第VI族金属
としてMoを20重量%(酸化物)、第VIII族金属
としてCoを5重量%(酸化物)、燐を3重量%(酸化
物)含有する触媒を用いて、表1の条件で脱硫反応を行
った。この結果を、表4に示す。
Example 1 A carrier having a specific surface area of 372 m 2 / g and a pore volume of 0.6
5 cc / g, average pore size 62Å, HY-type zeolite [SiO 2 / Al 2 O 3 molar ratio 6 and Na 2 O
Content is 0.3 wt% or less, specific surface area is 970
(Langmuir, m 2 / g) and 620 (BE
T, m 2 / g) and the crystal size is 0.7 to 1.0 μ.
m] 5 wt% γ-alumina was used, 20 wt% Mo as a Group VI metal (oxide), 5 wt% Co as a Group VIII metal (oxide), 3 wt% phosphorus (oxidation). The desulfurization reaction was carried out under the conditions shown in Table 1 using the catalyst contained therein. The results are shown in Table 4.

【0039】[0039]

【表1】 [Table 1]

【0040】実施例2 担体として、比表面積387m/g、細孔容積0.6
5cc/g、平均細孔径61Åで、HY型ゼオライト
(実施例1と同じHY型ゼオライト)10重量%入りγ
−アルミナを使用する以外は、実施例1と同様の方法で
脱硫反応を行った。この結果を、表4に併せて示す。
Example 2 As a carrier, a specific surface area of 387 m 2 / g and a pore volume of 0.6
5 cc / g, average pore diameter 61Å, 10% by weight of HY-type zeolite (the same HY-type zeolite as in Example 1) γ
-The desulfurization reaction was performed in the same manner as in Example 1 except that alumina was used. The results are also shown in Table 4.

【0041】実施例3 担体として、比表面積405m/g、細孔容積0.6
5cc/g、平均細孔径67Åで、HY型ゼオライト
(実施例1と同じHY型ゼオライト)20重量%入りγ
−アルミナを使用する以外は、実施例1と同様の方法で
脱硫反応を行った。この結果を、表4に併せて示す。
Example 3 A carrier having a specific surface area of 405 m 2 / g and a pore volume of 0.6
5 cc / g, average pore diameter 67Å, and 20% by weight of HY-type zeolite (HY-type zeolite same as in Example 1) γ
-The desulfurization reaction was performed in the same manner as in Example 1 except that alumina was used. The results are also shown in Table 4.

【0042】実施例4 燐を1重量%とする以外は、実施例1と同様の方法で脱
硫反応を行った。この結果を、表4に併せて示す。
Example 4 The desulfurization reaction was carried out in the same manner as in Example 1 except that phosphorus was 1% by weight. The results are also shown in Table 4.

【0043】実施例5 燐を5重量%とする以外は、実施例1と同様の方法で脱
硫反応を行った。この結果を、表4に併せて示す。
Example 5 A desulfurization reaction was carried out in the same manner as in Example 1 except that phosphorus was 5% by weight. The results are also shown in Table 4.

【0044】実施例6 燐を7重量%とする以外は、実施例2と同様の方法で脱
硫反応を行った。この結果を、表4に併せて示す。
Example 6 A desulfurization reaction was carried out in the same manner as in Example 2 except that phosphorus was 7% by weight. The results are also shown in Table 4.

【0045】実施例7 Moを25重量%、Coを3重量%とする以外は、実施
例1と同様の方法で脱硫反応を行った。この結果を、表
4に併せて示す。
Example 7 A desulfurization reaction was carried out in the same manner as in Example 1 except that Mo was 25% by weight and Co was 3% by weight. The results are also shown in Table 4.

【0046】実施例8 Moを25重量%、Coを8重量%とする以外は、実施
例1と同様の方法で脱硫反応を行った。この結果を、表
4に併せて示す。
Example 8 A desulfurization reaction was carried out in the same manner as in Example 1 except that Mo was 25% by weight and Co was 8% by weight. The results are also shown in Table 4.

【0047】実施例9 Mo20重量%に代えてWを15重量%、Co5重量%
に代えてNiを3重量%とする以外は、実施例1と同様
の方法で脱硫反応を行った。この結果を、表4に併せて
示す。
Example 9 15 wt% W and 5 wt% Co instead of 20 wt% Mo
The desulfurization reaction was performed in the same manner as in Example 1 except that Ni was changed to 3% by weight. The results are also shown in Table 4.

【0048】実施例10 Moを15重量%、Coを8重量%とする以外は、実施
例1と同様の方法で脱硫反応を行った。この結果を、表
4に併せて示す。
Example 10 The desulfurization reaction was performed in the same manner as in Example 1 except that Mo was 15% by weight and Co was 8% by weight. The results are also shown in Table 4.

【0049】比較例1 担体として、比表面積336m/g、細孔容積0.7
1cc/g、平均細孔径68Åのγ−アルミナを使用
し、燐を含有させない以外は、実施例1と同様の方法で
脱硫反応を行った。この結果を、表5に示す。
Comparative Example 1 A carrier having a specific surface area of 336 m 2 / g and a pore volume of 0.7
The desulfurization reaction was carried out in the same manner as in Example 1 except that γ-alumina having 1 cc / g and an average pore diameter of 68 Å was used and phosphorus was not contained. The results are shown in Table 5.

【0050】比較例2 燐を3重量%とする以外は、比較例1と同様の方法で脱
硫反応を行った。この結果を、表5に併せて示す。
Comparative Example 2 The desulfurization reaction was carried out in the same manner as in Comparative Example 1 except that phosphorus was 3% by weight. The results are also shown in Table 5.

【0051】比較例3 燐を含有させない以外は、実施例1と同様の方法で脱硫
反応を行った。この結果を、表5に併せて示す。
Comparative Example 3 The desulfurization reaction was carried out in the same manner as in Example 1 except that phosphorus was not added. The results are also shown in Table 5.

【0052】比較例4 燐を10重量%とする以外は、実施例1と同様の方法で
脱硫反応を行った。この結果を、表5に併せて示す。
Comparative Example 4 The desulfurization reaction was carried out in the same manner as in Example 1 except that phosphorus was changed to 10% by weight. The results are also shown in Table 5.

【0053】比較例5 担体として、比表面積412m/g、細孔容積0.6
5cc/g、平均細孔径70Åで、HY型ゼオライト
(実施例1と同じHY型ゼオライト)30重量%入りγ
−アルミナを使用する以外は、実施例1と同様の方法で
脱硫反応を行った。この結果を、表5に併せて示す。
Comparative Example 5 A carrier having a specific surface area of 412 m 2 / g and a pore volume of 0.6
5 cc / g, average pore diameter 70Å, and 30% by weight of HY-type zeolite (the same HY-type zeolite as in Example 1) γ
-The desulfurization reaction was performed in the same manner as in Example 1 except that alumina was used. The results are also shown in Table 5.

【0054】比較例6 Coを担持せず、燐を5重量%とする以外は、実施例1
と同様の方法で脱硫反応を行った。この結果を、表5に
併せて示す。
Comparative Example 6 Example 1 was repeated except that Co was not supported and phosphorus was 5% by weight.
The desulfurization reaction was carried out in the same manner as in. The results are also shown in Table 5.

【0055】比較例7 Coを15重量%とする以外は、実施例1と同様の方法
で脱硫反応を行った。この結果を、表5に併せて示す。
Comparative Example 7 The desulfurization reaction was carried out in the same manner as in Example 1 except that Co was changed to 15% by weight. The results are also shown in Table 5.

【0056】比較例8 HY型ゼオライト(実施例1と同じHY型ゼオライト)
10重量%入りγ−アルミナを使用し、Moを8重量%
とする以外は、実施例1と同様の方法で脱硫反応を行っ
た。この結果を、表5に併せて示す。
Comparative Example 8 HY-type zeolite (the same HY-type zeolite as in Example 1)
Using 10% by weight of γ-alumina, 8% by weight of Mo
The desulfurization reaction was performed in the same manner as in Example 1 except that The results are also shown in Table 5.

【0057】比較例9 HY型ゼオライト(実施例1と同じHY型ゼオライト)
10重量%入りγ−アルミナを使用し、Moを35重量
%とする以外は、実施例1と同様の方法で脱硫反応を行
った。この結果を、表5に併せて示す。
Comparative Example 9 HY-type zeolite (the same HY-type zeolite as in Example 1)
The desulfurization reaction was performed in the same manner as in Example 1 except that 10 wt% γ-alumina was used and Mo was 35 wt%. The results are also shown in Table 5.

【0058】以上の実施例および比較例で使用した触媒
の組成および物性をそれぞれ表2および表3に示す。
The compositions and physical properties of the catalysts used in the above Examples and Comparative Examples are shown in Tables 2 and 3, respectively.

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【表3】 [Table 3]

【0061】[0061]

【表4】 [Table 4]

【0062】[0062]

【表5】 [Table 5]

【0063】また、上記の実施例1〜10および比較例
1〜9で得られた生成油をGC−AED分析器にかけ
て、残存硫黄分の分析を行った。その結果を表6に示
す。
The produced oils obtained in Examples 1 to 10 and Comparative Examples 1 to 9 were applied to a GC-AED analyzer to analyze the residual sulfur content. Table 6 shows the results.

【0064】[0064]

【表6】 [Table 6]

【0065】実施例11 担体として、比表面積372m/g、細孔容積0.6
5cc/gで、HY型ゼオライト〔SiO/Al
のモル比が6、NaO含有量が0.3重量%以下、
比表面積が970(Langmuir、m/g)およ
び620(BET、m/g)、結晶サイズが0.7〜
1.0μm、格子定数が24.45Å〕5重量%入りγ
−アルミナを使用し、活性金属担持量がCo:Mo:P
=5:20:3(酸化物、重量%)で、表9に示す平均
細孔径および細孔径分布(平均細孔径±15Åの細孔径
を有する細孔の割合)の触媒を用いて、表7の条件にお
いて脱硫反応を行った。この結果を、表10に示す。
Example 11 A carrier having a specific surface area of 372 m 2 / g and a pore volume of 0.6
HY type zeolite [SiO 2 / Al 2 O at 5 cc / g
The molar ratio of 3 is 6, the Na 2 O content is 0.3 wt% or less,
Specific surface area of 970 (Langmuir, m 2 / g) and 620 (BET, m 2 / g), crystal size of 0.7-.
1.0 μm, lattice constant is 24.45Å] 5 wt% γ
-Alumina is used and the active metal loading is Co: Mo: P
= 5: 20: 3 (oxide,% by weight), using a catalyst having an average pore size and a pore size distribution (proportion of pores having an average pore size of ± 15Å) shown in Table 9, Table 7 The desulfurization reaction was performed under the conditions of. The results are shown in Table 10.

【0066】[0066]

【表7】 [Table 7]

【0067】実施例12 燐の担持比率を7重量%とし、表9に示す平均細孔径お
よび細孔径分布(平均細孔径±15Åの細孔径を有する
細孔の割合)の触媒を用いる以外は、実施例11と同様
の方法で脱硫反応を行った。この結果を、表10に併せ
て示す。
Example 12 Except that the loading ratio of phosphorus was set to 7% by weight and the catalyst having the average pore size and the pore size distribution (the ratio of the pores having the average pore size ± 15Å) shown in Table 9 was used. The desulfurization reaction was performed in the same manner as in Example 11. The results are also shown in Table 10.

【0068】実施例13 担体を、比表面積387m/g、細孔容積0.65c
c/gで、HY型ゼオライト10重量%入りガンマ−ア
ルミナとし、表9に示す平均細孔径および細孔径分布
(平均細孔径±15Åの細孔径を有する細孔の割合)の
触媒を用いる以外は、実施例11と同様の方法で脱硫反
応を行った。この結果を、表10に併せて示す。
Example 13 A carrier having a specific surface area of 387 m 2 / g and a pore volume of 0.65 c
c / g, gamma-alumina containing 10% by weight of HY-type zeolite, and using a catalyst having an average pore size and a pore size distribution (ratio of pores having an average pore size of ± 15Å) shown in Table 9 A desulfurization reaction was performed in the same manner as in Example 11. The results are also shown in Table 10.

【0069】実施例14 担体を、比表面積403m/g、細孔容積0.65c
c/gで、HY型ゼオライト20重量%入りガンマ−ア
ルミナとし、表9に示す平均細孔径および細孔径分布
(平均細孔径±15Åの細孔径を有する細孔の割合)の
触媒を用いる以外は、実施例11と同様の方法で脱硫反
応を行った。この結果を、表10に併せて示す。
Example 14 A carrier having a specific surface area of 403 m 2 / g and a pore volume of 0.65 c
c-g, gamma-alumina containing 20% by weight of HY-type zeolite, and using a catalyst having an average pore diameter and a pore diameter distribution (ratio of pores having an average pore diameter of ± 15Å) shown in Table 9 A desulfurization reaction was performed in the same manner as in Example 11. The results are also shown in Table 10.

【0070】実施例15 担体を、比表面積386m/g、細孔容積0.67c
c/gで、使用したゼオライトがSiO/Al
のモル比5.5、NaO含有量0.3重量%以下、比
表面積730(Langmuir、m/g)および5
30(BET、m/g)、結晶サイズ0.6〜0.9
μm、格子定数24.55Åのものとし、表9に示す平
均細孔径および細孔径分布(平均細孔径±15Åの細孔
径を有する細孔の割合)の触媒を用いる以外は、実施例
11と同様の方法で脱硫反応を行った。この結果を、表
10に併せて示す。
Example 15 A carrier having a specific surface area of 386 m 2 / g and a pore volume of 0.67 c
c / g, the zeolite used is SiO 2 / Al 2 O 3
Molar ratio of 5.5, Na 2 O content of 0.3 wt% or less, specific surface area 730 (Langmuir, m 2 / g) and 5
30 (BET, m 2 / g), crystal size 0.6 to 0.9
The same as Example 11 except that the catalyst having the average pore size and pore size distribution (the ratio of the pores having the average pore size ± 15 Å) shown in Table 9 is used with μm and a lattice constant of 24.55Å. The desulfurization reaction was carried out by the above method. The results are also shown in Table 10.

【0071】比較例10 担体を、比表面積336m/g、細孔容積0.71c
c/gのガンマ−アルミナのみからなり、活性成分とし
て燐を担持させないものとし、表9に示す平均細孔径お
よび細孔径分布(平均細孔径±15Åの細孔径を有する
細孔の割合)の触媒を用いる以外は、実施例11と同様
の方法で脱硫反応を行った。この結果を、表10に示
す。
COMPARATIVE EXAMPLE 10 A carrier having a specific surface area of 336 m 2 / g and a pore volume of 0.71 c
A catalyst consisting of only c / g of gamma-alumina, not supporting phosphorus as an active ingredient, and having an average pore diameter and a pore diameter distribution (a proportion of pores having an average pore diameter of ± 15Å) shown in Table 9. The desulfurization reaction was performed in the same manner as in Example 11 except that The results are shown in Table 10.

【0072】比較例11 燐の担持比率を3重量%とする以外は、比較例10と同
様の方法で脱硫反応を行った。この結果を、表10に併
せて示す。
Comparative Example 11 A desulfurization reaction was carried out in the same manner as in Comparative Example 10 except that the loading ratio of phosphorus was 3% by weight. The results are also shown in Table 10.

【0073】比較例12 燐を担持させず、表9に示す平均細孔径および細孔径分
布(平均細孔径±15Åの細孔径を有する細孔の割合)
の触媒を用いる以外は、実施例11と同様の方法で脱硫
反応を行った。この結果を、表10に併せて示す。
Comparative Example 12 The average pore diameter and the pore diameter distribution shown in Table 9 (the proportion of pores having an average pore diameter of ± 15Å) without supporting phosphorus.
A desulfurization reaction was carried out in the same manner as in Example 11 except that the catalyst of 1 was used. The results are also shown in Table 10.

【0074】比較例13 担体を、比表面積374m/g、細孔容積0.69c
c/gで、使用したゼオライトがSiO/Al
モル比10、NaO含有量0.3重量%以下、比表面
積950(Langmuir、m/g)および610
(BET、m/g)、結晶サイズ0.6〜0.9μ
m、格子定数24.38Åのものとし、表9に示す平均
細孔径および細孔径分布(平均細孔径±15Åの細孔径
を有する細孔の割合)の触媒を用いる以外は、実施例1
1と同様の方法で脱硫反応を行った。この結果を、表1
0に併せて示す。
COMPARATIVE EXAMPLE 13 A carrier having a specific surface area of 374 m 2 / g and a pore volume of 0.69 c
c / g, the zeolite used is SiO 2 / Al 2 O 3
Molar ratio 10, Na 2 O content 0.3 wt% or less, specific surface area 950 (Langmuir, m 2 / g) and 610
(BET, m 2 / g), crystal size 0.6 to 0.9 μ
m and a lattice constant of 24.38Å, and using a catalyst having an average pore diameter and a pore diameter distribution (ratio of pores having an average pore diameter of ± 15Å) shown in Table 9, Example 1
The desulfurization reaction was performed in the same manner as in 1. The results are shown in Table 1.
Shown together with 0.

【0075】比較例14 物性値(平均細孔径)のみが異なる触媒を使用する以外
は、実施例11と同様の方法で脱硫反応を行った。この
結果を、表10に併せて示す。
Comparative Example 14 A desulfurization reaction was carried out in the same manner as in Example 11 except that catalysts having different physical properties (average pore diameter) were used. The results are also shown in Table 10.

【0076】比較例15 物性値(細孔径分布)のみが異なる触媒を使用する以外
は、実施例11と同様の方法で脱硫反応を行った。この
結果を、表10に併せて示す。
Comparative Example 15 A desulfurization reaction was carried out in the same manner as in Example 11 except that catalysts differing only in the physical properties (pore size distribution) were used. The results are also shown in Table 10.

【0077】以上の実施例11〜15および比較例10
〜15で使用した触媒の組成を表8に示し、物性を表9
に示す。
The above Examples 11 to 15 and Comparative Example 10
Table 8 shows the compositions of the catalysts used in Examples 15 to 15, and Table 9 shows the physical properties.
Shown in

【0078】[0078]

【表8】 [Table 8]

【0079】[0079]

【表9】 [Table 9]

【0080】[0080]

【表10】 [Table 10]

【0081】また、実施例11と比較例10において得
られた生成油を対象にしてGC−AED分析を行い、残
存硫黄分の分析を行った。その結果を表11に示す
Further, the produced oils obtained in Example 11 and Comparative Example 10 were subjected to GC-AED analysis to analyze the residual sulfur content. The results are shown in Table 11.

【0082】[0082]

【表11】 [Table 11]

【0083】[0083]

【発明の効果】以上詳述したように、本発明によれば、
深度脱硫領域において優れた活性を示す触媒を使用し、
かつ該触媒が該領域においてその性能を最大限に発揮し
得る特定の反応条件にて軽油の水素化脱硫反応を行うた
め、硫黄分0.05重量%以下の軽油を製造する際にお
いて問題となる4M−DBTあるいは4,6DM−DB
T等の難脱硫性物質の脱硫にも十分対応することがで
き、超低硫黄軽油を、低コストで提供することができ
る。
As described in detail above, according to the present invention,
Using a catalyst showing excellent activity in the deep desulfurization region,
Moreover, since the catalyst carries out the hydrodesulfurization reaction of light oil under specific reaction conditions capable of maximizing its performance in this region, it becomes a problem when producing light oil having a sulfur content of 0.05% by weight or less. 4M-DBT or 4,6DM-DB
It is possible to sufficiently deal with desulfurization of a hardly desulfurizable substance such as T, and it is possible to provide ultra-low sulfur gas oil at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 出井 一夫 栃木県下都賀郡大平町上高島294 (72)発明者 鈴木 悦夫 群馬県邑楽郡明和村大字新里689−8 (72)発明者 大木 勝美 埼玉県幸手市神明内1368 (72)発明者 藤川 貴志 アメリカ合衆国カリフォルニア州アルバニ ー・コーネル街980番地 (72)発明者 山崎 初太郎 埼玉県蓮田市西新宿4−72−8 (72)発明者 北田 俊二 埼玉県草加市花栗4−20 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Idei 294 Kamitatakashima, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture (72) Inventor Etsuo Suzuki Meiwa-mura, Era-gun, Gunma Prefecture 689-8 (72) Inventor Katsumi Oki Saitama 1368 Shinmeiuchi, Satte-shi, prefecture (72) Inventor Takashi Fujikawa 980, Albany Cornell Street, California, United States (72) Inventor Hattataro Yamazaki 4-72-8 Nishi-Shinjuku, Hasuda-shi, Saitama (72) Inventor Shunji Kitada Saitama 4-20 Hanaguri, Soka City

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 接触分解軽油、熱分解軽油、直留軽油、
コーカーガスオイル、水素化処理軽油、脱硫処理軽油の
うちの少なくとも1種を原料油とし、 無機酸化物80〜99重量%とゼオライト1〜20重量
%とを含む担体に、周期律表第VI族金属成分を酸化物
換算で10〜30重量%と周期律表第VIII族金属を
酸化物換算で1〜10重量%と燐成分を酸化物換算で1
〜7重量%含有させた触媒を用い、 圧力を30〜80kg/cm、温度を320〜380
℃、液空間速度を1.0〜5.0hr−1、水素/オイ
ル比を100〜400リットル/リットルとして、接触
反応を行うことを特徴とする軽油の水素化脱硫方法。
1. A catalytically cracked gas oil, a thermally cracked gas oil, a straight-run gas oil,
At least one of coker gas oil, hydrotreated gas oil, and desulfurized gas oil was used as a feed oil, and a carrier containing 80 to 99% by weight of inorganic oxide and 1 to 20% by weight of zeolite was added to a carrier of Group VI of the periodic table. The metal component is 10 to 30 wt% in terms of oxide, the Group VIII metal of the periodic table is 1 to 10 wt% in terms of oxide, and the phosphorus component is 1 in terms of oxide.
With 7 wt% content is allowed catalyst, 30~80kg / cm 2 pressure, temperature 320-380
A hydrodesulfurization method of gas oil, which comprises carrying out a catalytic reaction at a temperature of 1.0 ° C., a liquid hourly space velocity of 1.0 to 5.0 hr −1 and a hydrogen / oil ratio of 100 to 400 liters / liter.
【請求項2】 担体に含ませるゼオライトが24.45
〜24.55Åの格子定数を有し、使用する触媒が平均
細孔径70〜80Åで、かつ平均細孔径±15Åの細孔
径を有する細孔の割合が70%以上であることを特徴と
する請求項1記載の軽油の水素化脱硫方法。
2. The zeolite contained in the carrier is 24.45.
It has a lattice constant of ˜24.55Å, the catalyst used has an average pore diameter of 70-80 Å, and the proportion of pores having an average pore diameter of ± 15 Å is 70% or more. Item 1. A method for hydrodesulfurizing gas oil according to Item 1.
【請求項3】 生成油の硫黄分が0.001〜0.10
重量%となるように接触反応を行うことを特徴とする請
求項1または2記載の軽油の水素化脱硫方法。
3. The sulfur content of the produced oil is 0.001 to 0.10.
The hydrodesulfurization method of gas oil according to claim 1 or 2, wherein the catalytic reaction is carried out so that the amount of the catalyst is in a weight percentage.
JP6336044A 1994-12-22 1994-12-22 Hydrodesulfurization of gas oil Expired - Fee Related JP2996435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6336044A JP2996435B2 (en) 1994-12-22 1994-12-22 Hydrodesulfurization of gas oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6336044A JP2996435B2 (en) 1994-12-22 1994-12-22 Hydrodesulfurization of gas oil

Publications (2)

Publication Number Publication Date
JPH08176560A true JPH08176560A (en) 1996-07-09
JP2996435B2 JP2996435B2 (en) 1999-12-27

Family

ID=18295127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6336044A Expired - Fee Related JP2996435B2 (en) 1994-12-22 1994-12-22 Hydrodesulfurization of gas oil

Country Status (1)

Country Link
JP (1) JP2996435B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193209A (en) * 2004-01-09 2005-07-21 Nippon Oil Corp Hydrogenating desulfurization catalyst of petroleum hydrocarbon and hydrogenating desulfurizing method
WO2005065823A1 (en) * 2004-01-09 2005-07-21 Nippon Oil Corporation Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
JP2006035052A (en) * 2004-07-23 2006-02-09 Nippon Oil Corp Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193209A (en) * 2004-01-09 2005-07-21 Nippon Oil Corp Hydrogenating desulfurization catalyst of petroleum hydrocarbon and hydrogenating desulfurizing method
WO2005065823A1 (en) * 2004-01-09 2005-07-21 Nippon Oil Corporation Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
JP2006035052A (en) * 2004-07-23 2006-02-09 Nippon Oil Corp Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method

Also Published As

Publication number Publication date
JP2996435B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US6063265A (en) Process for producing hydrodesulfurization catalyst and hydrodesulfurizing gas oil therewith
JP2832033B2 (en) Method for catalytic hydroprocessing of hydrocarbon oils containing nitrogen or sulfur
US4431527A (en) Process for hydrogen treating high nitrogen content hydrocarbon feeds
JP2547115B2 (en) Hydrotreating catalyst composition for hydrocarbon oil and hydrotreating method using the same
US4431526A (en) Multiple-stage hydroprocessing of hydrocarbon oil
US4456699A (en) Catalyst and support, and their methods of preparation
RU2313389C1 (en) Catalyst, method for preparation thereof, method for preparing carrier for this catalyst, and diesel fraction desulfurization process
WO2003000410A1 (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
WO1998026866A1 (en) Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same
JPH05329375A (en) New zeolite and its preparation
US4844792A (en) Hydroprocessing with a specific pore sized catalyst containing non-hydrolyzable halogen
JP2000024508A (en) Silicon-containing y-type zeolite base catalyst useful for hydrocracking
US4399057A (en) Catalyst and support, their methods of preparation, and processes employing same
US4392985A (en) Hydrocarbon conversion catalyst and method of preparation
US4495062A (en) Catalyst and support, their methods of preparation, and processes employing same
EP0068708B1 (en) Improved catalyst and support, their methods of preparation, and processes employing same
JP2996435B2 (en) Hydrodesulfurization of gas oil
JP2921379B2 (en) Hydrodesulfurization of gas oil
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
US4627910A (en) Hydrocarbon conversion process
GB2055602A (en) Hydrotreating catalyst preparation and process
US4425221A (en) Hydrocarbon desulfurization process with a catalyst of Co-Mo-P
EP2723494B1 (en) Method of making a hydroprocessing catalyst
EP0079779A2 (en) Hydrocarbon conversion catalysts, methods of making them and their uses in hydrocarbon conversion
JP2875148B2 (en) Method for producing hydrodesulfurization catalyst for hydrocarbon oil

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees