JP2005193209A - Hydrogenating desulfurization catalyst of petroleum hydrocarbon and hydrogenating desulfurizing method - Google Patents

Hydrogenating desulfurization catalyst of petroleum hydrocarbon and hydrogenating desulfurizing method Download PDF

Info

Publication number
JP2005193209A
JP2005193209A JP2004004768A JP2004004768A JP2005193209A JP 2005193209 A JP2005193209 A JP 2005193209A JP 2004004768 A JP2004004768 A JP 2004004768A JP 2004004768 A JP2004004768 A JP 2004004768A JP 2005193209 A JP2005193209 A JP 2005193209A
Authority
JP
Japan
Prior art keywords
hydrodesulfurization
metal
catalyst
group
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004004768A
Other languages
Japanese (ja)
Other versions
JP4249632B2 (en
Inventor
Suguru Iki
英 壱岐
Kazuaki Hayasaka
和章 早坂
Kazuo Fukazawa
和男 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2004004768A priority Critical patent/JP4249632B2/en
Priority to PCT/JP2005/000435 priority patent/WO2005065823A1/en
Priority to EP05703674A priority patent/EP1702682A4/en
Publication of JP2005193209A publication Critical patent/JP2005193209A/en
Priority to US11/456,160 priority patent/US20060249429A1/en
Priority to KR1020067015820A priority patent/KR101218947B1/en
Application granted granted Critical
Publication of JP4249632B2 publication Critical patent/JP4249632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogenating desulfurization catalyst that is capable of an extremely high degree of desulfurization that sulfur content is 10 ppm or less and has a high denitrification activity also on a nitrogen compound that is an inhibitor to the desulfurization reaction. <P>SOLUTION: The hydrogenating desulfurization catalyst of the petroleum type hydrocarbon, wherein at least one kind of metal selected from group 8 metal in the periodic law as an active metal and at least one kind of metal selected from group 6A in the periodic law as an active metal are contained in the scope of 0.105 to 0.265 in the mole ratio of [group 8 metal oxide]/[group 6A metal oxide] in an inorganic porus carrier containing an alumina, and the content of group 6A metal is 20 to 30 mass% to the weight of the catalyst in oxide conversion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、石油系炭化水素油の水素化脱硫触媒および水素化脱硫方法に関する。詳細には、硫黄分を含有する石油系炭化水素を水素化処理によって脱硫する際に、特定の触媒を使用し、かつ特定の反応条件で石油系炭化水素を脱硫する方法に関する。   The present invention relates to a hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil. Specifically, the present invention relates to a method for desulfurizing petroleum hydrocarbons using a specific catalyst and under specific reaction conditions when desulfurizing petroleum hydrocarbons containing sulfur.

近年、環境問題、大気汚染に対する意識が高くなりつつあり、輸送用燃料油に含まれる硫黄分は特に注目を集めている。例えば、ガソリンエンジンについては、資源保護や経済的な面のみならず、二酸化炭素排出を抑制するという観点からも燃費効率の向上が強く求められている。このためリーンバーンエンジンや直噴エンジンといった新しい燃焼システムの開発・普及が進められている状況にある。しかしながら、このようなエンジンでは排ガスの成分組成が、必ずしも従来の三元系排ガス浄化触媒の機能する組成に当てはまるとは限らず、さらなる改良が要求されている。このような新たな排ガス清浄装置・触媒にとって、ガソリンに含まれる硫黄分が影響することが指摘されている。   In recent years, awareness of environmental problems and air pollution is increasing, and the sulfur content in transportation fuel oil has attracted particular attention. For example, gasoline engines are strongly required to improve fuel efficiency not only from resource protection and economic aspects but also from the viewpoint of suppressing carbon dioxide emissions. For this reason, development and popularization of new combustion systems such as lean burn engines and direct injection engines are underway. However, in such an engine, the component composition of the exhaust gas does not necessarily apply to the composition that functions of the conventional ternary exhaust gas purification catalyst, and further improvement is required. It has been pointed out that the sulfur content in gasoline affects such a new exhaust gas cleaning device / catalyst.

一方、軽油を燃料として用いるディーゼル車から排出される排気ガス中にはSOx、NOxといった化学物質のほかにパティキュレートと呼ばれる微細粒子が含まれており、健康への被害が懸念されている。このため、パティキュレートの除去対策としてエンジン後段にDPFなどのパティキュレート除去フィルターやパティキュレート燃焼除去機能をもつ装置を装着することが提案されており、ディーゼルエンジン車への適用が検討されている。また、NOxについては還元除去触媒などが開発されつつある状況にある。しかしながら、これらの装置や触媒は、燃料油中の硫黄分が変化して生成するSOxなどにより被毒や劣化を引き起こす。ガソリン車に比べ走行距離の多い輸送用トラックなどのディーゼル車では、これらの排ガス清浄装置や触媒の劣化はより深刻な問題である。このような問題を解決するためにも軽油中の硫黄含有量を極力下げることが強く望まれている。
さらに、パティキュレートの原因物質と言われている燃料油中の芳香族化合物についても、低減する必要性が叫ばれつつある状況にある。
On the other hand, exhaust gas discharged from diesel vehicles using light oil as fuel contains fine particles called particulates in addition to chemical substances such as SOx and NOx, and there is concern about damage to health. For this reason, it has been proposed to install a particulate removal filter such as DPF or a device having a particulate combustion removal function at the rear stage of the engine as a measure for removing particulates, and its application to diesel engine vehicles is being studied. Further, for NOx, a reduction removal catalyst or the like is being developed. However, these apparatuses and catalysts cause poisoning and deterioration due to SOx generated by changing the sulfur content in the fuel oil. In diesel vehicles such as transport trucks, which have a longer mileage than gasoline vehicles, the deterioration of these exhaust gas cleaning devices and catalysts is a more serious problem. In order to solve such problems, it is strongly desired to reduce the sulfur content in light oil as much as possible.
Furthermore, there is a need to reduce the aromatic compounds in fuel oil, which is said to be a causative agent of particulates.

原油の蒸留あるいは重油分解反応で得られる軽油留分には1〜3質量%程度の硫黄分が含有されているため、通常、水素化脱硫処理を実施した後に軽油基材として使用される。石油系炭化水素中に存在する硫黄化合物は、大部分がチオフェン、ベンゾチオフェン、ジベンゾチオフェンおよびこれらの誘導体のような芳香族化合物の形態である。特に高沸点を示す硫黄化合物は、発達した複素環構造あるいは芳香環にアルキル基を多く持つ構造をとるものが含まれ、このような化合物は、特に反応性に乏しく、硫黄分10質量ppmといった、極めて低硫黄濃度の領域まで脱硫を進める際の障害となっている。このような硫黄化合物の除去に求められる触媒活性機能は従来の領域におけるものとは異なってくることが充分考えられる。   Since the light oil fraction obtained by distillation of crude oil or heavy oil cracking reaction contains about 1 to 3% by mass of sulfur, it is usually used as a light oil base material after hydrodesulfurization treatment. The sulfur compounds present in petroleum-based hydrocarbons are mostly in the form of aromatic compounds such as thiophene, benzothiophene, dibenzothiophene and their derivatives. In particular, sulfur compounds having a high boiling point include those having a developed heterocyclic structure or a structure having a large number of alkyl groups in the aromatic ring. Such compounds are particularly poor in reactivity, such as a sulfur content of 10 mass ppm, This is an obstacle when desulfurization is advanced to an extremely low sulfur concentration region. It is fully conceivable that the catalytic activity function required for the removal of such sulfur compounds differs from that in the conventional region.

石油系炭化水素の水素化脱硫反応では、硫黄化合物から直接硫黄原子を引き抜く反応機構と、硫黄原子に隣接する芳香環が水素化される反応を経由する反応機構が存在することが知られている。特に脱硫反応性の乏しい化合物を脱硫する際には、後者の芳香環水素化を経由する経路も必要と思われる。さらに、水素化反応のみならず、効率よく硫黄−炭素結合を開裂しうる分解反応も強く要求される。   In the hydrodesulfurization reaction of petroleum hydrocarbons, it is known that there is a reaction mechanism that directly extracts sulfur atoms from sulfur compounds and a reaction mechanism that involves a reaction in which an aromatic ring adjacent to the sulfur atom is hydrogenated. . In particular, when desulfurizing a compound having poor desulfurization reactivity, a route via the latter aromatic ring hydrogenation is considered necessary. Furthermore, not only a hydrogenation reaction but also a decomposition reaction that can efficiently cleave a sulfur-carbon bond is strongly required.

従来、石油精製における水素化脱硫触媒として、従来考えられる範囲で活性金属種およびその金属量と比率が最適化されてきた。このような中で、特にコバルト−モリブデンやニッケル−モリブデンといった活性金属を含む触媒について精力的にその最適化がなされ、これらの金属を活性金属とした水素化脱硫触媒では、コバルト/モリブデンあるいはニッケル/モリブデンのモル比が0.3〜1の範囲に最も脱硫活性が高い最適点があるとされてきた(例えば、非特許文献1、非特許文献2参照。)。しかしながら、発明者らが種々検討を重ねたところ、硫黄分を10質量ppm以下という極めて高い脱硫深度まで到達するためには、このような従来の金属比率を持つ水素化処理触媒では充分な脱硫活性を発揮できないことが判明した。これは、前述のように従来の脱硫レベルで求められていた触媒活性機能とは異なる機能が必要であることを強く示唆するものである。
ヘンリケ トプソ(Henrik Topsoe)ほか,「インダストリアル アンド エンジニアリング ケミストリー ファンダメンタルズ(Industrial & Engineering Chemistry Fundamentals)」,(米国),アメリカ化学会,1986年,第25巻,p.25−36 エマヌエル レクリネイ(Emmanuel Lecrenay)、 坂西欣也、持田勲,「キャタリシス トゥディ(Catalysis Today)」,(オランダ国),エルセビア(Elsevier)社,1997年,第39巻,p.13−20
Conventionally, as a hydrodesulfurization catalyst in petroleum refining, the active metal species and the amount and ratio of the metal have been optimized within the range conceivable in the past. Under such circumstances, the catalyst containing active metals such as cobalt-molybdenum and nickel-molybdenum is vigorously optimized. In hydrodesulfurization catalysts using these metals as active metals, cobalt / molybdenum or nickel / molybdenum are used. It has been said that there is an optimum point with the highest desulfurization activity in the molar ratio of molybdenum in the range of 0.3 to 1 (see, for example, Non-Patent Document 1 and Non-Patent Document 2). However, as a result of various studies by the inventors, in order to reach a very high desulfurization depth of 10 ppm by mass or less, such a conventional hydrotreating catalyst having a metal ratio has sufficient desulfurization activity. It became clear that it was not possible to demonstrate. This strongly suggests that a function different from the catalytic activity function required at the conventional desulfurization level as described above is necessary.
Henrik Topsoe et al., “Industrial & Engineering Chemistry Fundamentals” (USA), American Chemical Society, 1986, Vol. 25, p. 25-36 Emmanuel Lecrenay, Shinya Sakanishi, Isao Mochida, “Catalysis Today” (Netherlands), Elsevier, 1997, Vol. 39, p. 13-20

高い脱硫活性を達成する方法としては、活性金属担持量を増加させて活性点の数を増やす方法が考えられるが、アルミナを主成分とする高表面積な多孔質担体をもってしても活性金属の担持量には限界があり、過度に担持すると活性金属が凝集し、かえって活性が低下してしまう。さらに活性金属を過度に担持することで触媒の細孔が閉塞し、十分な活性を発揮できない、あるいは活性低下が著しくなるといった技術的な限界もあった。   As a method of achieving a high desulfurization activity, a method of increasing the number of active sites by increasing the amount of active metal supported can be considered. However, even when a porous support mainly composed of alumina and having a high surface area is used, active metal is supported. There is a limit to the amount, and if it is excessively supported, the active metal aggregates and the activity is reduced. Furthermore, there is a technical limit that the active metal is excessively supported and the pores of the catalyst are blocked, so that sufficient activity cannot be exhibited, or the decrease in activity becomes significant.

本発明の目的は、極めて高い脱硫活性を有し、特に硫黄分10質量ppm以下という極めて高い脱硫深度を達成し得る触媒および水素化脱硫方法を提供することにある。さらには代表的な脱硫反応の阻害物質である窒素化合物について、高い脱窒素活性を有する触媒を提供することにもある。   An object of the present invention is to provide a catalyst and a hydrodesulfurization method which have a very high desulfurization activity and can achieve a very high desulfurization depth of 10 ppm by mass or less. Furthermore, the present invention also provides a catalyst having a high denitrification activity for a nitrogen compound which is a representative desulfurization reaction inhibitor.

発明者らは、かかる課題について鋭意研究を重ねた結果、本発明を完成するに至った。 すなわち、本発明は、アルミナを含む無機多孔質担体に、活性金属として周期律表第8族金属から選ばれた少なくとも1種類の金属と周期律第6A族金属から選ばれた少なくとも1種類の金属が[第8族金属酸化物]/[第6A族金属酸化物]のモル比で0.105〜0.265の範囲で含まれており、かつ、第6A族金属の含有量が酸化物換算で触媒重量に対して20〜30質量%の範囲であることを特徴とする石油系炭化水素油の水素化脱硫触媒に関する。   As a result of intensive studies on such problems, the inventors have completed the present invention. That is, the present invention relates to an inorganic porous carrier containing alumina, at least one metal selected from Group 8A metals and at least one metal selected from Group 8A metals in the periodic table as an active metal. Is contained in the range of 0.105 to 0.265 in a [Group 8 metal oxide] / [Group 6A metal oxide] molar ratio, and the content of the Group 6A metal is converted to oxide The hydrodesulfurization catalyst for petroleum hydrocarbon oils is characterized by being in the range of 20 to 30% by mass with respect to the catalyst weight.

また本発明は、前記の水素化脱硫触媒を用いて石油系炭化水素油を水素化脱硫処理することを特徴とする石油系炭化水素油の水素化脱硫方法に関する。   The present invention also relates to a hydrodesulfurization method for petroleum hydrocarbon oil, characterized in that petroleum hydrocarbon oil is hydrodesulfurized using the hydrodesulfurization catalyst.

以下に本発明を詳述する。   The present invention is described in detail below.

本発明における触媒はアルミナを含む無機多孔質物質を担体としている。アルミナの含有量としては担体に対して80質量%以上であることが好ましく、より好ましくは85質量%以上、さらにより好ましくは90質量%以上である。アルミナは特に沸点230〜380℃を有する炭化水素分子が拡散するのに好適な細孔容積を与えるのに適した多孔質担体であり、アルミナの含有量が80質量%より少ない場合には、充分な担体細孔容積を得ることが難しくなる。   The catalyst in the present invention uses an inorganic porous material containing alumina as a carrier. The content of alumina is preferably 80% by mass or more based on the carrier, more preferably 85% by mass or more, and still more preferably 90% by mass or more. Alumina is a porous carrier particularly suitable for providing a pore volume suitable for diffusing hydrocarbon molecules having a boiling point of 230 to 380 ° C., and is sufficient when the content of alumina is less than 80% by mass. It is difficult to obtain a large support pore volume.

担体は、アルミナ以外の成分としてSi、Ti、Zr、Mg、CaおよびBから選ばれる少なくとも1種類を、酸化物換算で1〜10質量%の範囲で含有していることが好ましい。含有量は、1.2〜9質量%がより好ましく、1.5〜8質量%がさらにより好ましい。これらの元素としては、Si、Ti、Zrが好ましく、特にSi、Tiが好ましい。また、これらの元素は組み合わせて含有しても良く、特にSiとTiを組み合わせるのが好ましい。これらの元素による効果発現の機構は解明できていないが、アルミナと複合的な酸化物状態を形成し、該モル比で担持した活性金属と相乗的に炭素−硫黄結合の開裂を促進しているものと思われ、脱硫活性の向上が見られている。含有量が1質量%より少ない場合には、脱硫活性が低下してしまい、含有量が10質量%を超える場合には担体の酸性質が強くなり、分解等の望ましくない副反応が起きる懸念がある。   The support preferably contains at least one selected from Si, Ti, Zr, Mg, Ca and B as a component other than alumina in the range of 1 to 10% by mass in terms of oxide. As for content, 1.2-9 mass% is more preferable, and 1.5-8 mass% is still more preferable. As these elements, Si, Ti, and Zr are preferable, and Si and Ti are particularly preferable. These elements may be contained in combination, and it is particularly preferable to combine Si and Ti. Although the mechanism of the effect expression by these elements has not been elucidated, it forms a complex oxide state with alumina, and synergizes with the active metal supported at the molar ratio to promote the cleavage of the carbon-sulfur bond. It seems that the desulfurization activity is improved. When the content is less than 1% by mass, the desulfurization activity decreases, and when the content exceeds 10% by mass, the acidity of the carrier becomes strong, and there is a concern that undesirable side reactions such as decomposition may occur. is there.

担体の主成分であるアルミナの調製法は特に限定されない。例えば、アルミニウム塩とアルミン酸塩を中和または加水分解する方法、あるいはアルミニウムアマルガム、アルミニウムアルコレートを加水分解する方法などから得られるアルミナ中間体を経由することにより得ることができる。また、市販のアルミナ中間体、ベーマイトパウダーを使用しても良い。   The method for preparing alumina as the main component of the carrier is not particularly limited. For example, it can be obtained via an alumina intermediate obtained from a method of neutralizing or hydrolyzing aluminum salt and aluminate, or a method of hydrolyzing aluminum amalgam or aluminum alcoholate. Moreover, you may use a commercially available alumina intermediate body and boehmite powder.

一方、Si、Ti、Zr、Mg、CaおよびBから選ばれる元素の酸化物といったアルミナ以外の任意の担体構成成分についての担体調製方法についても特に限定されない。例えば、アルミナを調合するいずれかの段階で、これらの元素の酸化物、水酸化物、硝酸塩、硫酸塩あるいはその他の塩化合物を、固体あるいは溶液の状態で添加する方法が挙げられる。あるいは、アルミナのみを一旦焼成したのち、溶液の状態で含浸担持してもよい。好ましくはアルミナを焼成する前のいずれかの段階で添加することが好ましい。   On the other hand, there is no particular limitation on the carrier preparation method for any carrier constituent component other than alumina, such as an oxide of an element selected from Si, Ti, Zr, Mg, Ca and B. For example, there is a method of adding oxides, hydroxides, nitrates, sulfates or other salt compounds of these elements in a solid or solution state at any stage of preparing alumina. Alternatively, only alumina may be once fired and then impregnated and supported in a solution state. Preferably, it is added at any stage before firing the alumina.

本発明において、活性金属としては、周期律表第8族金属から選ばれた少なくとも1種類の金属と周期律表第6A族金属から選ばれた少なくとも1種類の金属が用いられる。 第8族金属としてはCo、Niが挙げられ、第6A族金属としてはMo、Wが挙げられる。組み合わせとしてCo−Mo、Ni−Mo、Co−W、Ni−W、Co−Ni−Mo、Co−Ni−Wが好ましく、Co−MoあるいはNi−Moの組み合わせがさらに好ましく、Co−Moが最も好ましい。第6A族金属の含有量は酸化物換算で触媒重量の20〜30質量%の範囲であることが好ましく、より好ましくは21〜26質量%の範囲であり、さらにより好ましくは22〜25質量%の範囲である。20質量%より少ない場合には、活性点が少なく、充分な脱硫活性を発揮できない。30質量%より多い場合には、金属の凝集が生じ、かえって脱硫活性が低下する恐れがある。   In the present invention, as the active metal, at least one metal selected from Group 8 metal of the periodic table and at least one metal selected from Group 6A metal of the periodic table are used. The Group 8 metal includes Co and Ni, and the Group 6A metal includes Mo and W. Co-Mo, Ni-Mo, Co-W, Ni-W, Co-Ni-Mo, and Co-Ni-W are preferable as a combination, and a combination of Co-Mo or Ni-Mo is more preferable, and Co-Mo is most preferable. preferable. The content of the Group 6A metal is preferably in the range of 20 to 30% by mass of the catalyst weight in terms of oxide, more preferably in the range of 21 to 26% by mass, and even more preferably 22 to 25% by mass. Range. When it is less than 20% by mass, there are few active sites and sufficient desulfurization activity cannot be exhibited. When the amount is more than 30% by mass, metal agglomeration occurs, and the desulfurization activity may be lowered.

第8族金属と第6A族金属の担持比率は、[第8族金属酸化物]/[第6A族金属酸化物]のモル比で0.105〜0.265の範囲であることが必要である。好ましくは0.110〜0.260であり、より好ましくは0.115〜0.250、さらにより好ましくは0.120〜0.220である。モル比が0.105より小さい場合には第8族金属の助触媒効果が十分発揮できず脱硫活性が低下してしまう。また、モル比が0.265より大きい場合には充分な水素化活性や炭素−硫黄開裂活性を発揮することができないものと思われ、脱硫活性が低下してしまう。   The supporting ratio of the Group 8 metal to the Group 6A metal needs to be in the range of 0.105 to 0.265 in terms of a [Group 8 metal oxide] / [Group 6A metal oxide] molar ratio. is there. Preferably it is 0.110-0.260, More preferably, it is 0.115-0.250, More preferably, it is 0.120-0.220. When the molar ratio is less than 0.105, the cocatalyst effect of the Group 8 metal cannot be sufficiently exerted and the desulfurization activity is lowered. On the other hand, when the molar ratio is larger than 0.265, it is considered that sufficient hydrogenation activity and carbon-sulfur cleavage activity cannot be exhibited, and the desulfurization activity is lowered.

第8族金属および第6A族金属の合計含有量は、酸化物換算で触媒重量に対して22質量%以上が好ましく、より好ましくは23質量%以上、さらに好ましくは25質量%以上である。22質量%より少ない場合には活性金属が少ないため充分な脱硫活性を発揮できない懸念がある。   The total content of the Group 8 metal and the Group 6A metal is preferably 22% by mass or more, more preferably 23% by mass or more, and further preferably 25% by mass or more based on the catalyst weight in terms of oxide. When the amount is less than 22% by mass, there is a concern that sufficient desulfurization activity cannot be exhibited because there are few active metals.

またリンが担持されていることが好ましい。担体に担持されるリンの担持量は、[五酸化リン]/[第6A族金属酸化物]のモル比で0.105〜0.255の範囲であり、好ましくは0.120〜0.240、より好ましくは0.130〜0.205である。モル比が0.105より小さい場合には、リンの効果が十分発揮できず、0.255より大きい場合には触媒の酸性質が強くなり分解反応が起きてしまう可能性がある。   Moreover, it is preferable that phosphorus is supported. The amount of phosphorus supported on the carrier is in the range of 0.105 to 0.255, preferably 0.120 to 0.240, in a molar ratio of [phosphorus pentoxide] / [Group 6A metal oxide]. More preferably, it is 0.130-0.205. When the molar ratio is less than 0.105, the effect of phosphorus cannot be sufficiently exhibited. When the molar ratio is more than 0.255, the acid property of the catalyst becomes strong and a decomposition reaction may occur.

活性金属成分である第8族金属および第6A族金属を担体に担持させる方法は特に限定されず、通常の水素化脱硫触媒を製造する際に適用される公知の方法を用いることができる。例えば、活性金属の塩を含む溶液を担体に含浸する方法が好ましく採用される。また平衡吸着法、Pore−filling法、Incipient−wetness法なども好ましく採用される。例えば、Pore−filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法であるが、含浸方法は特に限定されるものではなく、金属担持量や担体の物性に応じて適当な方法で含浸することができる。   The method for supporting the group 8 metal and the group 6A metal, which are active metal components, on the carrier is not particularly limited, and a known method applied when producing an ordinary hydrodesulfurization catalyst can be used. For example, a method of impregnating a support with a solution containing a salt of an active metal is preferably employed. Further, an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are also preferably employed. For example, the pore-filling method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of the metal salt solution, but the impregnation method is not particularly limited, and the amount of metal supported Further, it can be impregnated by an appropriate method depending on the physical properties of the carrier.

リンを担体に担持させる方法は特に限定されず、前述の第8族金属および第6A族金属を含む水溶液に共存させて担持してもよく、金属を担持する前、あるいは担持した後に逐次的に担持してもよい。また、担持する手法についても平衡吸着法などの前述の手法が好ましく採用される。   The method for supporting phosphorus on the carrier is not particularly limited, and it may be supported in the aqueous solution containing the Group 8 metal and Group 6A metal described above, or sequentially before or after the metal is supported. You may carry. Further, the method described above such as the equilibrium adsorption method is preferably employed as the method for supporting.

本発明の水素化脱硫触媒は、窒素によるBET法で求められる触媒の平均細孔半径が30〜45Åの範囲であることが好ましく、より好ましくは32〜40Åの範囲である。30Åより小さい場合には反応分子の細孔内拡散が充分でなく活性が低くなってしまうので好ましくない。また、45Åより大きい場合には、触媒の表面積が小さくなり充分な脱硫活性を発揮できないため好ましくない。また、触媒の細孔半径30Å以下の占める細孔容積は全細孔容積の13〜33%の範囲であるのが好ましく、より好ましくは15〜30%の範囲であり、さらにより好ましくは25〜30%の範囲である。細孔半径30Å以下の細孔における反応分子の拡散しやすさは、これより大きい細孔より劣るものの脱硫反応への寄与は無視できず、13%より小さい場合には有効な触媒表面積が減少し、活性が低下してしまう懸念がある。一方、33%より大きい場合には拡散の影響によりかえって活性が低下してしまう懸念がある。また、触媒の細孔半径45Å以上の占める細孔容積は5〜20%の範囲であるのが好ましく、より好ましくは8〜15%の範囲であり、さらにより好ましくは12〜15%の範囲である。この領域の細孔は反応分子の反応活性点への到達度合いを左右する重要な細孔と思われ、5%より少ない場合には反応分子の拡散が充分でなく活性が低下してしまう懸念がある。しかしながら、20%より多い場合には触媒の表面積そのものが減少してしまい活性が低下する懸念がある。   In the hydrodesulfurization catalyst of the present invention, the average pore radius of the catalyst determined by the BET method using nitrogen is preferably in the range of 30 to 45 mm, more preferably in the range of 32 to 40 mm. If it is less than 30 mm, the reaction molecules do not diffuse sufficiently in the pores and the activity becomes low, which is not preferable. On the other hand, if it is larger than 45 mm, the surface area of the catalyst becomes small and sufficient desulfurization activity cannot be exhibited, which is not preferable. The pore volume occupied by the pore radius of 30 mm or less of the catalyst is preferably in the range of 13 to 33% of the total pore volume, more preferably in the range of 15 to 30%, still more preferably 25 to 25%. The range is 30%. The ease of diffusion of reaction molecules in pores having a pore radius of 30 mm or less is inferior to pores larger than this, but the contribution to the desulfurization reaction cannot be ignored. If it is less than 13%, the effective catalyst surface area decreases. There is a concern that the activity will decrease. On the other hand, if it is larger than 33%, there is a concern that the activity may decrease due to the influence of diffusion. The pore volume occupied by the pore radius of 45 mm or more of the catalyst is preferably in the range of 5 to 20%, more preferably in the range of 8 to 15%, and still more preferably in the range of 12 to 15%. is there. The pores in this region are considered to be important pores that influence the degree of arrival of the reactive molecules at the reaction active point, and if it is less than 5%, there is a concern that the diffusion of the reactive molecules is not sufficient and the activity is lowered. is there. However, when the amount is more than 20%, the surface area of the catalyst itself is decreased, and there is a concern that the activity is lowered.

本発明の触媒は、チオフェン類、ベンゾチオフェン類、ジベンゾチオフェン類といった構造を有する硫黄分子からの脱硫に適しており、これらの化合物が含まれる留分としては、沸点230〜380℃の留分を80容量%以上含む石油系炭化水素油を原料油として好適に使用することができる。なお、ここに示す蒸留性状の値は、JIS K 2254「石油製品−蒸発試験方法」に記載の方法に準拠して測定される値である。   The catalyst of the present invention is suitable for desulfurization from sulfur molecules having a structure such as thiophenes, benzothiophenes, dibenzothiophenes, and the fraction containing these compounds is a fraction having a boiling point of 230 to 380 ° C. Petroleum hydrocarbon oil containing 80% by volume or more can be suitably used as a raw material oil. In addition, the value of the distillation property shown here is a value measured according to the method described in JIS K 2254 “Petroleum products—evaporation test method”.

このような留分の石油系炭化水素油の性状としては、一般的には全芳香族分20〜30容量%、硫黄分濃度0.8〜2質量%、窒素分が100〜500質量ppmが含まれている。本発明では、このような石油系炭化水素油を本発明の特定の触媒を用いて水素化脱硫処理することにより、硫黄分濃度を10質量ppm以下、好ましくは7質量ppm以下に低減することができる。   The properties of petroleum hydrocarbon oils of such fractions are generally 20-30% by volume of total aromatics, 0.8-2% by weight of sulfur, and 100-500 ppm by weight of nitrogen. include. In the present invention, such a petroleum hydrocarbon oil can be hydrodesulfurized using the specific catalyst of the present invention to reduce the sulfur concentration to 10 ppm by mass or less, preferably 7 ppm by mass or less. it can.

また、本発明の触媒を用いて水素化脱硫処理することにより、窒素分濃度を3質量ppm以下、好ましくは1質量ppm以下に低減することができる。   Further, by performing hydrodesulfurization treatment using the catalyst of the present invention, the nitrogen concentration can be reduced to 3 mass ppm or less, preferably 1 mass ppm or less.

水素化脱硫において、窒素分は触媒被毒物質であることが知られている。このため、窒素分が水素化脱硫工程において効率よく除去できれば水素化脱硫反応の運転条件をマイルドにし、運転コストの低減にも寄与することができる。本発明では生成油窒素分濃度が3質量ppm以下とすることができるため極めて効果的な脱硫反応が進行していることが言える。換言すれば、3質量ppmより多い場合には、水素化脱硫反応が進行している反応塔内において窒素分による反応阻害が大きく効率的な反応進行が妨げられ、より高い温度、あるいは高い水素分圧や触媒と油との長い接触時間を必要としてしまう。   In hydrodesulfurization, nitrogen is known to be a catalyst poison. For this reason, if the nitrogen content can be efficiently removed in the hydrodesulfurization step, the operating conditions of the hydrodesulfurization reaction can be made mild, and the operation cost can be reduced. In the present invention, it can be said that a highly effective desulfurization reaction proceeds because the nitrogen concentration of the produced oil can be 3 ppm by mass or less. In other words, when the amount is more than 3 ppm by mass, the reaction inhibition by the nitrogen component is greatly hindered in the reaction tower in which the hydrodesulfurization reaction is proceeding, and the efficient reaction progress is hindered. Long contact time between pressure and catalyst and oil is required.

なお、本発明において硫黄分濃度(硫黄分含有量)とは、JIS K 2541「硫黄分試験方法」またはASTM−D5453に記載の方法に準拠して測定される石油系炭化水素全量を基準とした硫黄分の質量含有量を意味する。また窒素分含有量とは、JIS K2609「窒素分試験方法」またはASTM−D4629、D−5762に記載の方法に準拠して測定される石油系炭化水素全量を基準とした窒素分の質量含有量を意味する。   In the present invention, the sulfur content (sulfur content) is based on the total amount of petroleum hydrocarbons measured according to the method described in JIS K2541 “Sulfur Content Test Method” or ASTM-D5453. It means the mass content of sulfur. The nitrogen content is the mass content of nitrogen based on the total amount of petroleum hydrocarbons measured in accordance with JIS K2609 “Method for testing nitrogen content” or ASTM-D4629, D-5762. Means.

また、原料油となる石油系炭化水素油が、沸点230〜380℃の留分を80容量%以上含む場合において、本発明の触媒を用いて水素化脱硫処理をすることにより、生成油に含まれる全芳香族分含有量についても18容量%以下、好ましくは16容量%以下に低減することができる。芳香族分はディーゼルエンジンの排ガスに含まれるパティキュレートの原因の一つと言われており、全芳香族分含有量が18容量%を超える場合には、パティキュレート生成が増加する傾向にある。   In addition, when the petroleum-based hydrocarbon oil serving as the raw material oil contains 80% by volume or more of a fraction having a boiling point of 230 to 380 ° C., it is included in the product oil by hydrodesulfurization treatment using the catalyst of the present invention. The total aromatic content can be reduced to 18% by volume or less, preferably 16% by volume or less. The aromatic content is said to be one of the causes of particulates contained in the exhaust gas of diesel engines. When the total aromatic content exceeds 18% by volume, the generation of particulates tends to increase.

なお、本発明における全芳香族分含有量とは、社団法人石油学会により発行されている石油学会誌JPI−5S−49−97「炭化水素タイプ試験法−高速液体クロマトグラフ法」に記載の方法に準拠して測定される各芳香族分含有量の容量百分率(容量%)の合計を意味する。   The total aromatic content in the present invention is a method described in JPI-5S-49-97 “Hydrocarbon Type Test Method—High Performance Liquid Chromatograph Method” published by the Japan Petroleum Institute. Means the sum of the volume percentage (volume%) of each aromatic content measured according to the above.

さらに、原料油となる石油系炭化水素油が、沸点230〜380℃の留分を80容量%以上含む場合において、本発明の触媒を用いて水素化脱硫処理をすることにより、生成油の色相をASTM色で1.0以下とすることができる。1.0を越える場合には、軽油としての色相が黄色あるいは褐色に近い色合いになってしまい、商品価値が低下してしまう。水素化脱硫処理における着色は、その脱硫反応温度と関係があることが指摘されているが、本発明によれば、このような高い反応温度やその外シビアな運転条件を採用することがないため安定して無色で商品価値の高い軽油を製造することができる。   Furthermore, in the case where the petroleum-based hydrocarbon oil as the raw material oil contains a fraction having a boiling point of 230 to 380 ° C. of 80% by volume or more, by performing hydrodesulfurization treatment using the catalyst of the present invention, the hue of the product oil Can be made 1.0 or less in ASTM color. When it exceeds 1.0, the hue as a light oil becomes a hue close to yellow or brown, and the commercial value is lowered. It has been pointed out that the coloration in the hydrodesulfurization treatment is related to the desulfurization reaction temperature, but according to the present invention, such a high reaction temperature and other severe operating conditions are not employed. Diesel oil that is stable and colorless and has high commercial value can be produced.

なお、本発明においてASTM色は、JIS K2580「色試験方法」に記載の方法に準拠して測定される色相のことを意味する。   In the present invention, the ASTM color means a hue measured in accordance with the method described in JIS K2580 “Color Test Method”.

なお、原料油である石油系炭化水素油としては、原油を常圧蒸留装置によって適当な沸点範囲に分留した、いわゆる直留系のほか、水素化分解装置、流動接触分解装置、コーカーなどの熱分解装置あるいは他の水素化脱硫装置から得られる留分を混合したものも処理することができる。   In addition, as petroleum-based hydrocarbon oil that is a raw material oil, in addition to a so-called direct distillation system in which crude oil is fractionated to an appropriate boiling range by an atmospheric distillation unit, hydrocracking unit, fluid catalytic cracking unit, coker, etc. What mixed the fraction obtained from a thermal cracking apparatus or another hydrodesulfurization apparatus can also be processed.

本発明は、前記した触媒を用いて、石油系炭化水素油の水素化脱硫処理を行う。
本発明における水素化脱硫反応条件として、LHSVは0.3〜2.0h-1が好ましく、より好ましくは0.35〜1.7h-1、さらに好ましくは0.4〜1.2h-1である。LHSVが0.3h-1より低い場合には、ある通油量を得るための反応塔容積が極めて大きくなるため反応塔の設置など莫大な設備投資が必要となる可能性がある。また、LHSVが2.0h-1より大きい場合には、触媒と油との接触時間が短くなるため脱硫反応の進行が充分でなく、脱硫や脱芳香族の効果が発揮できない恐れがある。
In the present invention, hydrodesulfurization treatment of petroleum hydrocarbon oil is performed using the above-described catalyst.
As hydrodesulfurization reaction conditions in the present invention, LHSV is preferably 0.3~2.0h -1, more preferably at 0.35~1.7h -1, more preferably 0.4~1.2H -1 is there. When LHSV is lower than 0.3 h −1 , the volume of the reaction tower for obtaining a certain oil flow rate becomes extremely large, and therefore a huge capital investment such as installation of a reaction tower may be required. On the other hand, when LHSV is larger than 2.0 h −1 , the contact time between the catalyst and the oil is shortened, so that the desulfurization reaction does not proceed sufficiently, and the effects of desulfurization and dearomatization may not be exhibited.

水素分圧は3〜8MPaが好ましく、より好ましくは3.5〜7MPa、さらに好ましくは4〜6.5MPaである。水素分圧が3MPaより低い場合には、脱硫や脱芳香族の効果が発揮できない懸念があり、8MPaより大きい場合には、圧縮機や装置強度の見直しなど、大きな設備投資が必要となる可能性があり好ましくない。   The hydrogen partial pressure is preferably 3 to 8 MPa, more preferably 3.5 to 7 MPa, and still more preferably 4 to 6.5 MPa. If the hydrogen partial pressure is lower than 3 MPa, there is a concern that the effects of desulfurization and dearomatization cannot be exhibited. If the hydrogen partial pressure is higher than 8 MPa, there is a possibility that a large capital investment such as a review of the compressor and equipment strength may be required. Is not preferable.

反応温度は300〜380℃が好ましい。反応温度が300℃より低い場合には、充分な脱硫反応速度、あるいは芳香族水素化反応速度を得ることができない恐れがあり好ましくない。また、380℃より高い場合には、生成油の色相の悪化や分解による目的留分収率の低下を招く可能性があるため好ましくない。   The reaction temperature is preferably 300 to 380 ° C. When the reaction temperature is lower than 300 ° C., a sufficient desulfurization reaction rate or aromatic hydrogenation reaction rate may not be obtained, which is not preferable. Moreover, when higher than 380 degreeC, since there exists a possibility of causing the fall of the target fraction yield by the deterioration of the hue of a product oil, or decomposition | disassembly, it is unpreferable.

水素/油比は100〜500NL/Lが好ましい。水素/油比は原料油流量に対する水素ガス流量の比を示すものであり、多いほど系内への水素供給が充分になるだけでなく、硫化水素などの触媒活性点を被毒する物質をすばやく系外に除去できるため、反応性が向上する傾向がある。しかしながら500NL/Lを超える場合には、反応性は向上するが、効果としては徐々に小さくなる。また圧縮機など大きな設備投資が必要となる恐れがある。一方、100NL/Lより少ない場合には、反応性が低下し、脱硫・脱芳香族反応の進行が充分でない可能性がある。   The hydrogen / oil ratio is preferably 100 to 500 NL / L. The hydrogen / oil ratio indicates the ratio of the hydrogen gas flow rate to the feed oil flow rate. The higher the hydrogen / oil ratio is, the more hydrogen supply into the system becomes, and the faster the substances that poison the catalytic active sites such as hydrogen sulfide. Since it can be removed out of the system, the reactivity tends to be improved. However, when it exceeds 500 NL / L, the reactivity is improved, but the effect is gradually reduced. Moreover, there is a risk that a large capital investment such as a compressor may be required. On the other hand, when it is less than 100 NL / L, the reactivity is lowered, and there is a possibility that the progress of the desulfurization / dearomatic reaction is not sufficient.

本発明の触媒は、極めて高い脱硫活性を有し、硫黄分10質量ppm以下という極めて高い脱硫深度を達成し得る。また、脱硫反応の阻害物質である窒素化合物についても高い脱窒素活性を有する。   The catalyst of the present invention has a very high desulfurization activity and can achieve a very high desulfurization depth of 10 ppm by mass or less. In addition, nitrogen compounds that are desulfurization reaction inhibitors also have high denitrification activity.

本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって制限されるものではない。   EXAMPLES The present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(実施例1)
濃度5質量%のアルミン酸ナトリウム水溶液1kgに水ガラス3号を加え70℃に保温した容器に入れた。濃度2.5質量%の硫酸アルミニウム水溶液1kgに硫酸チタン(IV)水溶液(TiO2含有量として24質量%)を加えた溶液を、70℃に保温した別の容器において調製し、前述のアルミン酸ナトリウムを含む水溶液に15分間で滴下した。水ガラスおよび硫酸チタン水溶液の量は所定のシリカ、チタニアの含有量となるよう調整した。混合溶液のpHが6.9〜7.5になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。ケーキ状スラリーを還流冷却器を取り付けた容器に移し、蒸留水300mlと27%アンモニア水溶液3gを加え、70℃で24時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去ながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。得られた成形担体300gを取り、蒸留水150mlに三酸化モリブデン、硝酸コバルト(II)6水和物、リン酸(濃度85%)を加え、溶解するまでリンゴ酸を加えて調製した含浸溶液をスプレーしながら含浸した。使用する三酸化モリブデン、硝酸コバルト(II)6水和物およびリン酸の量は、所定の担持量となるよう調整した。含浸した試料を110℃で1時間乾燥した後、550℃で焼成し、触媒Aを得た。調製した触媒の物性を表1にまとめた。
(Example 1)
Water glass No. 3 was added to 1 kg of a sodium aluminate aqueous solution having a concentration of 5% by mass, and the mixture was placed in a container kept at 70 ° C. A solution obtained by adding a titanium (IV) sulfate aqueous solution (24 mass% as TiO 2 content) to 1 kg of an aqueous aluminum sulfate solution having a concentration of 2.5 mass% was prepared in another container kept at 70 ° C. The solution was dropped into an aqueous solution containing sodium in 15 minutes. The amounts of the water glass and the titanium sulfate aqueous solution were adjusted to the predetermined silica and titania contents. The time when the pH of the mixed solution reached 6.9 to 7.5 was set as the end point, and the resulting slurry product was filtered through a filter to obtain a cake-like slurry. The cake-like slurry was transferred to a container equipped with a reflux condenser, 300 ml of distilled water and 3 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 70 ° C. for 24 hours. The slurry was put into a kneading apparatus, heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. The obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier. An impregnation solution prepared by taking 300 g of the obtained molded carrier, adding molybdenum trioxide, cobalt nitrate (II) hexahydrate, phosphoric acid (concentration 85%) to 150 ml of distilled water and adding malic acid until dissolved. Impregnation while spraying. The amounts of molybdenum trioxide, cobalt nitrate (II) hexahydrate and phosphoric acid used were adjusted to a predetermined loading amount. The impregnated sample was dried at 110 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst A. The physical properties of the prepared catalyst are summarized in Table 1.

(実施例2)
実施例1において、硝酸コバルト(II)6水和物および三酸化モリブデンの量を所定の値となるよう調整し、実施例1と同様の操作により触媒Bを得た。調製した触媒の物性を表1にまとめた。
(Example 2)
In Example 1, the amounts of cobalt nitrate (II) hexahydrate and molybdenum trioxide were adjusted to predetermined values, and Catalyst B was obtained in the same manner as in Example 1. The physical properties of the prepared catalyst are summarized in Table 1.

(実施例3)
濃度5質量%のアルミン酸ナトリウム水溶液1kgに水ガラス3号を加え70℃に保温した容器に入れた。濃度2.5質量%の硫酸アルミニウム水溶液1kgを70℃に保温した別の容器に入れ、前述のアルミン酸ナトリウムを含む水溶液に15分間で滴下した。水ガラスの量は所定のシリカ含有量となるよう調整した。混合溶液のpHが6.9〜7.5になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。ケーキ状スラリーを還流冷却器を取り付けた容器に移し、蒸留水300mlと27%アンモニア水溶液3gを加え、70℃で24時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去ながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。得られた成形担体300gを取り、蒸留水150mlに三酸化モリブデン、硝酸コバルト(II)6水和物、リン酸(濃度85%)を加え、溶解するまでリンゴ酸を加えて調製した含浸溶液をスプレーしながら含浸した。使用する三酸化モリブデン、硝酸コバルト(II)6水和物およびリン酸の量は、所定の担持量となるよう調整した。含浸した試料を110℃で1時間乾燥した後、550℃で焼成し、触媒Cを得た。調製した触媒の物性を表1にまとめた。
(Example 3)
Water glass No. 3 was added to 1 kg of a sodium aluminate aqueous solution having a concentration of 5% by mass, and the mixture was placed in a container kept at 70 ° C. 1 kg of an aluminum sulfate aqueous solution having a concentration of 2.5% by mass was placed in another container kept at 70 ° C. and dropped into the aqueous solution containing sodium aluminate described above over 15 minutes. The amount of water glass was adjusted to a predetermined silica content. The time when the pH of the mixed solution reached 6.9 to 7.5 was set as the end point, and the resulting slurry product was filtered through a filter to obtain a cake-like slurry. The cake-like slurry was transferred to a container equipped with a reflux condenser, 300 ml of distilled water and 3 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 70 ° C. for 24 hours. The slurry was put into a kneading apparatus, heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. The obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier. An impregnation solution prepared by taking 300 g of the obtained molded carrier, adding molybdenum trioxide, cobalt nitrate (II) hexahydrate, phosphoric acid (concentration 85%) to 150 ml of distilled water and adding malic acid until dissolved. Impregnation while spraying. The amounts of molybdenum trioxide, cobalt nitrate (II) hexahydrate and phosphoric acid used were adjusted to a predetermined loading amount. The impregnated sample was dried at 110 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst C. The physical properties of the prepared catalyst are summarized in Table 1.

(実施例4)
実施例3において使用した硝酸コバルト(II)6水和物の代わりに硝酸ニッケル6水和物を用いて、実施例3と同様の操作により触媒Dを得た。使用する硝酸ニッケル6水和物の量は所定の担持量となるよう調整した。
Example 4
Catalyst D was obtained in the same manner as in Example 3, except that nickel nitrate hexahydrate was used instead of cobalt nitrate (II) hexahydrate used in Example 3. The amount of nickel nitrate hexahydrate used was adjusted to a predetermined loading amount.

(実施例5)
内径25mmの反応管に触媒A〜Dのいずれかを100ml充填し、硫黄分濃度が3質量%となるようにジメチルジサルファィドを加えた直留軽油(硫黄分3質量%)を用いて触媒層平均温度300℃、水素分圧6MPa、LHSV1h-1、水素/油比200NL/Lの条件下で、4時間触媒の予備硫化を行った。予備硫化後、中東系の直留軽油(10%留出点240℃、90%留出点340℃、硫黄分1.28質量%、窒素分210質量ppm)を反応温度350℃、圧力5MPa、LHSV1h-1、水素/油比200NL/Lの条件で通油して水素化脱硫を行った。各触媒の反応試験結果を表2にまとめた。
(Example 5)
Using a straight-run gas oil (sulfur content 3% by mass) filled with 100 ml of any of catalysts A to D in a reaction tube having an inner diameter of 25 mm and added with dimethyl disulfide so that the sulfur concentration is 3% by mass. The catalyst was presulfided for 4 hours under the conditions of an average catalyst layer temperature of 300 ° C., a hydrogen partial pressure of 6 MPa, LHSV 1 h −1 , and a hydrogen / oil ratio of 200 NL / L. After preliminary sulfidation, a Middle East straight oil (10% distillation point 240 ° C., 90% distillation point 340 ° C., sulfur content 1.28 mass%, nitrogen content 210 mass ppm) was reacted at 350 ° C., pressure 5 MPa, Hydrodesulfurization was performed by passing oil under conditions of LHSV1h −1 and a hydrogen / oil ratio of 200 NL / L. The reaction test results of each catalyst are summarized in Table 2.

(比較例1)
実施例3で得られる成形担体300gを取り、蒸留水150mlに三酸化モリブデン、硝酸コバルト(II)6水和物、リン酸(濃度85%)を加え、溶解するまでリンゴ酸を加えて調製した含浸溶液をスプレーしながら含浸した。使用する三酸化モリブデン、硝酸コバルト(II)6水和物およびリン酸の量は、所定の担持量となるよう調整した。含浸した試料を110℃で1時間乾燥した後、550℃で焼成し、触媒Eを得た。調製した触媒の物性を表1にまとめた。
(Comparative Example 1)
300 g of the molded carrier obtained in Example 3 was taken, and 150 ml of distilled water was added with molybdenum trioxide, cobalt (II) nitrate hexahydrate, phosphoric acid (concentration 85%), and malic acid was added until dissolved. The impregnation solution was impregnated while spraying. The amounts of molybdenum trioxide, cobalt nitrate (II) hexahydrate and phosphoric acid used were adjusted to a predetermined loading amount. The impregnated sample was dried at 110 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst E. The physical properties of the prepared catalyst are summarized in Table 1.

(比較例2)
内径25mmの反応管に触媒Eを100ml充填し、実施例5に示す条件で予備硫化した後に、実施例5と同様の条件で水素化脱硫を行った。各触媒の反応試験結果を表2にまとめた。
(Comparative Example 2)
100 ml of catalyst E was filled in a reaction tube having an inner diameter of 25 mm, presulfided under the conditions shown in Example 5, and then hydrodesulfurized under the same conditions as in Example 5. The reaction test results of each catalyst are summarized in Table 2.

Figure 2005193209
Figure 2005193209
Figure 2005193209
Figure 2005193209

Claims (11)

アルミナを含む無機多孔質担体に、活性金属として周期律表第8族金属から選ばれた少なくとも1種類の金属と周期律第6A族金属から選ばれた少なくとも1種類の金属が[第8族金属酸化物]/[第6A族金属酸化物]のモル比で0.105〜0.265の範囲で含まれており、かつ、第6A族金属の含有量が酸化物換算で触媒重量に対して20〜30質量%の範囲であることを特徴とする石油系炭化水素油の水素化脱硫触媒。   The inorganic porous carrier containing alumina has at least one metal selected from Group 8 metal of the periodic table as an active metal and at least one metal selected from Group 6A metal of the periodic table [Group 8 metal. Oxide] / [Group 6A metal oxide] in a molar ratio of 0.105 to 0.265, and the content of Group 6A metal in terms of oxide is based on the catalyst weight. A hydrodesulfurization catalyst for petroleum hydrocarbon oil, characterized by being in the range of 20 to 30% by mass. 無機多孔質担体が、Si、Ti、Zr、Mg、CaおよびBから選ばれる少なくとも1種類を、酸化物換算で1〜10質量%の範囲で含むことを特徴とする請求項1に記載の水素化脱硫触媒。   2. The hydrogen according to claim 1, wherein the inorganic porous carrier contains at least one selected from Si, Ti, Zr, Mg, Ca and B in the range of 1 to 10% by mass in terms of oxide. Hydrodesulfurization catalyst. 無機多孔質担体に、リンが[五酸化リン]/[第6A族金属酸化物]のモル比で0.105〜0.255の範囲で担持されていることを特徴とする請求項1又は2に記載の水素化脱硫触媒。   The phosphorus is supported on the inorganic porous carrier in a range of 0.105 to 0.255 in a molar ratio of [phosphorus pentoxide] / [Group 6A metal oxide]. The hydrodesulfurization catalyst described in 1. 周期律表第8族金属がコバルトおよび/またはニッケルであり、第6A族金属がモリブデンおよび/またはタングステンであり、これらの金属の合計含有量が酸化物換算で、触媒重量に対して22質量%以上であることを特徴とする請求項1〜3のいずれかに記載の水素化脱硫触媒。   The Group 8 metal of the periodic table is cobalt and / or nickel, the Group 6A metal is molybdenum and / or tungsten, and the total content of these metals is 22% by mass with respect to the catalyst weight in terms of oxide. It is the above, The hydrodesulfurization catalyst in any one of Claims 1-3 characterized by the above-mentioned. 窒素によるBET法で求められる触媒の平均細孔半径が30〜45Åの範囲であり、細孔半径30Å以下の占める細孔容積が全細孔容積の13〜33%であり、かつ細孔半径45Å以上の占める細孔容積が5〜20%であることを特徴とする請求項1〜4のいずれかに記載の水素化脱硫触媒。   The average pore radius of the catalyst determined by the BET method using nitrogen is in the range of 30 to 45 mm, the pore volume occupied by the pore radius of 30 mm or less is 13 to 33% of the total pore volume, and the pore radius is 45 mm. The hydrodesulfurization catalyst according to any one of claims 1 to 4, wherein the pore volume occupied is 5 to 20%. 請求項1〜5のいずれかに記載の水素化脱硫触媒を用いて石油系炭化水素油を水素化脱硫処理することを特徴とする石油系炭化水素油の水素化脱硫方法。   A hydrodesulfurization method for petroleum hydrocarbon oil, comprising hydrodesulfurizing a petroleum hydrocarbon oil using the hydrodesulfurization catalyst according to any one of claims 1 to 5. 石油系炭化水素油が、沸点230〜380℃の留分を80容量%以上含む石油系炭化水素油であることを特徴とする請求項6に記載の水素化脱硫触方法。   The hydrodesulfurization catalytic process according to claim 6, wherein the petroleum hydrocarbon oil is a petroleum hydrocarbon oil containing 80% by volume or more of a fraction having a boiling point of 230 to 380 ° C. 水素化脱硫処理によって得られる生成油の硫黄分が10質量ppm以下であり、窒素分が3質量ppm以下であることを特徴とする請求項6又は7に記載の水素化脱硫触方法。   The hydrodesulfurization catalytic method according to claim 6 or 7, wherein the sulfur content of the product oil obtained by the hydrodesulfurization treatment is 10 mass ppm or less and the nitrogen content is 3 mass ppm or less. 水素化脱硫処理によって得られる生成油の全芳香族分が18容量%以下であることを特徴とする請求項6〜8のいずれかに記載の水素化脱硫触方法。   The hydrodesulfurization catalytic method according to any one of claims 6 to 8, wherein the total aromatic content of the product oil obtained by the hydrodesulfurization treatment is 18% by volume or less. 水素化脱硫処理によって得られる生成油の色相がASTM色で1.0以下であることを特徴とする請求項6〜9のいずれかに記載の水素化脱硫触方法。   The hydrodesulfurization catalytic method according to any one of claims 6 to 9, wherein the hue of the product oil obtained by the hydrodesulfurization treatment is 1.0 or less in terms of ASTM color. LHSVが0.3〜2.0hr-1、水素圧力が3〜8MPa、反応温度が300〜380℃、水素/油比が100〜500NL/Lの条件下で石油系炭化水素油を水素化脱硫処理することを特徴とする請求項6〜10のいずれかに記載の水素化脱硫触方法。

Hydrodesulfurization of petroleum hydrocarbon oils under conditions of LHSV 0.3 to 2.0 hr −1 , hydrogen pressure 3 to 8 MPa, reaction temperature 300 to 380 ° C., hydrogen / oil ratio 100 to 500 NL / L The hydrodesulfurization catalytic method according to any one of claims 6 to 10, wherein the hydrodesulfurization catalytic method is performed.

JP2004004768A 2004-01-09 2004-01-09 Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons Expired - Fee Related JP4249632B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004004768A JP4249632B2 (en) 2004-01-09 2004-01-09 Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons
PCT/JP2005/000435 WO2005065823A1 (en) 2004-01-09 2005-01-07 Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
EP05703674A EP1702682A4 (en) 2004-01-09 2005-01-07 Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
US11/456,160 US20060249429A1 (en) 2004-01-09 2006-07-07 Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same
KR1020067015820A KR101218947B1 (en) 2004-01-09 2006-08-04 Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004004768A JP4249632B2 (en) 2004-01-09 2004-01-09 Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons

Publications (2)

Publication Number Publication Date
JP2005193209A true JP2005193209A (en) 2005-07-21
JP4249632B2 JP4249632B2 (en) 2009-04-02

Family

ID=34819287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004004768A Expired - Fee Related JP4249632B2 (en) 2004-01-09 2004-01-09 Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons

Country Status (1)

Country Link
JP (1) JP4249632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525248A (en) * 2006-02-03 2009-07-09 ザッハトレーベン ヒェミー ゲゼルシヤフト ミット ベシュレンクテル ハフツング Oxide mixture
JP2010221158A (en) * 2009-03-24 2010-10-07 Jx Nippon Oil & Energy Corp Method of producing catalyst for hydrogenating/purifying diesel oil, and method of hydrogenating/purifying diesel oil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214745A (en) * 1988-05-10 1990-01-18 Union Oil Co Calif Catalyst composition and manufacture thereof
JPH07194984A (en) * 1993-12-30 1995-08-01 Cosmo Sogo Kenkyusho:Kk Production of hydrogenation-desulfurization catalyst for hydrocarbon oil
JPH08176560A (en) * 1994-12-22 1996-07-09 Sekiyu Sangyo Kasseika Center Hydrodesulfurization of light oil
JPH09150059A (en) * 1995-11-30 1997-06-10 Cosmo Sogo Kenkyusho:Kk Production of hydrodesulfurization catalyst for hydrocarbon oil
JP2002504009A (en) * 1993-09-30 2002-02-05 ユーオーピー Catalysts for hydroprocessing and their use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214745A (en) * 1988-05-10 1990-01-18 Union Oil Co Calif Catalyst composition and manufacture thereof
JP2002504009A (en) * 1993-09-30 2002-02-05 ユーオーピー Catalysts for hydroprocessing and their use
JPH07194984A (en) * 1993-12-30 1995-08-01 Cosmo Sogo Kenkyusho:Kk Production of hydrogenation-desulfurization catalyst for hydrocarbon oil
JPH08176560A (en) * 1994-12-22 1996-07-09 Sekiyu Sangyo Kasseika Center Hydrodesulfurization of light oil
JPH09150059A (en) * 1995-11-30 1997-06-10 Cosmo Sogo Kenkyusho:Kk Production of hydrodesulfurization catalyst for hydrocarbon oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525248A (en) * 2006-02-03 2009-07-09 ザッハトレーベン ヒェミー ゲゼルシヤフト ミット ベシュレンクテル ハフツング Oxide mixture
JP2010221158A (en) * 2009-03-24 2010-10-07 Jx Nippon Oil & Energy Corp Method of producing catalyst for hydrogenating/purifying diesel oil, and method of hydrogenating/purifying diesel oil

Also Published As

Publication number Publication date
JP4249632B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP4313265B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons
KR101218947B1 (en) Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
KR101355722B1 (en) Method for Producing Super-Low Sulfur Gas Oil Base Material or Super-Low Sulfur Gas Oil Composition, and Super-Low Sulfur Gas Oil Compositon
TWI599401B (en) High hdn selectivity hydrotreating catalyst and method for preparing the same
WO2007063874A1 (en) Process for producing environmentally friendly fuel and environmentally friendly fuel
JP2007512132A5 (en)
WO2007063879A1 (en) Hydrorefining process and hydrorefined oil
WO2005120706A1 (en) Catalyst for hydrogenation treatment of hydrocarbon oil and method for hydrogenation treatment using said catalyst
JP5013658B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil
JP4576257B2 (en) Production method of oil fraction
JP4576334B2 (en) Hydrotreating process for diesel oil fraction
JP4658491B2 (en) Production method of environment-friendly diesel oil
KR101514954B1 (en) Process for producing gasoline base and gasoline
JP4249632B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons
JP2006035052A (en) Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method
JP4630014B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons
WO2001074973A1 (en) Process for hydrodesulfurization of light oil fraction
JPH03273092A (en) Catalyst for hydrogenation of residual oil
JP4436608B2 (en) Hydrodesulfurization method for diesel oil fraction
JP4854075B2 (en) Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition comprising the ultra-low sulfur gas oil base
JP4854076B2 (en) Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition
JP5392993B2 (en) Method for producing ultra-low sulfur gas oil base

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4249632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees