JP6770953B2 - Method for producing hydrotreated oil and method for producing catalytically cracked oil - Google Patents

Method for producing hydrotreated oil and method for producing catalytically cracked oil Download PDF

Info

Publication number
JP6770953B2
JP6770953B2 JP2017521827A JP2017521827A JP6770953B2 JP 6770953 B2 JP6770953 B2 JP 6770953B2 JP 2017521827 A JP2017521827 A JP 2017521827A JP 2017521827 A JP2017521827 A JP 2017521827A JP 6770953 B2 JP6770953 B2 JP 6770953B2
Authority
JP
Japan
Prior art keywords
oil
content
catalyst
ratio
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017521827A
Other languages
Japanese (ja)
Other versions
JPWO2016194686A1 (en
Inventor
康一 松下
康一 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Eneos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos Corp filed Critical Eneos Corp
Publication of JPWO2016194686A1 publication Critical patent/JPWO2016194686A1/en
Application granted granted Critical
Publication of JP6770953B2 publication Critical patent/JP6770953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Description

本発明は、重質炭化水素油から水素化処理油を得る製造方法、及び、重質炭化水素油から接触分解油を得る製造方法に関する。 The present invention relates to a production method for obtaining a hydrotreated oil from a heavy hydrocarbon oil and a production method for obtaining a catalytically cracked oil from a heavy hydrocarbon oil.

これまで日本国内の製油所においては、ガソリン需要への対応及び重質炭化水素油の軽質化推進のため、流動接触分解(FCC)装置が、ガソリン製造における中心的な役割を担っている。また、近年では、重質炭化水素油から付加価値の高い軽質炭化水素油を生産するプロセスとしてのFCC装置の関心も高く、より高い経済性を求め、FCC用原料油として、従来の減圧軽油留分の他、常圧残渣留分等の残渣油を混合した原料油も使用されている。 Until now, at refineries in Japan, fluid cracking (FCC) equipment has played a central role in gasoline production in order to meet gasoline demand and promote the weight reduction of heavy hydrocarbon oils. Further, in recent years, there has been a great deal of interest in FCC equipment as a process for producing high-value-added light hydrocarbon oil from heavy hydrocarbon oil, and in pursuit of higher economic efficiency, conventional reduced-pressure light oil distiller as a raw material oil for FCC. In addition to the oil, raw material oil mixed with residual oil such as atmospheric residue residue is also used.

常圧残渣油の中には、硫黄分や窒素分の他、バナジウムやニッケルといった重金属が含まれるため、FCC装置の前処理となる重油直接脱硫装置に触媒を設置し、高温高圧条件で反応させて、脱金属、脱硫及び脱窒素処理している。 Since the atmospheric residual oil contains heavy metals such as vanadium and nickel in addition to sulfur and nitrogen, a catalyst is installed in the heavy oil direct desulfurization device, which is the pretreatment of the FCC device, and the reaction is carried out under high temperature and high pressure conditions. It is demetallized, desulfurized and denitrified.

ところで、FCC装置で使用されるFCC触媒には一般的にゼオライトが使用されており、FCC用原料油においては、ゼオライトを被毒する窒素分、とりわけ塩基性窒素分の低減が望まれていた。すなわち、FCC用原料油中の窒素分を低減することが可能となれば、FCC触媒の性能が十分に発揮され、ガソリン製造の効率が向上すると考えられている。しかし、これまでは、重質炭化水素油の直接脱硫装置において脱硫反応が進行すれば、脱窒素反応も進行すると考えられており、特段、脱窒素活性を向上させる技術は無かった。 By the way, zeolite is generally used as the FCC catalyst used in the FCC apparatus, and it has been desired to reduce the nitrogen content that poisons zeolite, particularly the basic nitrogen content, in the raw material oil for FCC. That is, it is considered that if the nitrogen content in the raw material oil for FCC can be reduced, the performance of the FCC catalyst will be sufficiently exhibited and the efficiency of gasoline production will be improved. However, until now, it has been considered that if the desulfurization reaction proceeds in the direct desulfurization apparatus for heavy hydrocarbon oil, the denitrification reaction also proceeds, and there has been no particular technique for improving the denitrification activity.

重質炭化水素油に含まれる窒素分については、低減されることは望まれているものの、これまでは主に硫黄分の低減が目的と考えられ、また、硫黄分を除去する脱硫触媒を保護する役割である脱金属触媒の開発に注意が注がれ続けていた。 Although it is desired to reduce the nitrogen content of heavy hydrocarbon oils, it has been considered that the main purpose has been to reduce the sulfur content, and the desulfurization catalyst that removes the sulfur content is protected. Attention has continued to be paid to the development of demetallization catalysts, which play a role.

例えば、非特許文献1では、リンを含浸担持することにより、脱硫活性及び脱窒素活性の向上が見られる一方、触媒細孔容積が低下し、急速な金属被毒を引き起こして触媒寿命が短くなる傾向にあることが記載されている。 For example, in Non-Patent Document 1, by impregnating and supporting phosphorus, desulfurization activity and denitrification activity are improved, but the catalyst pore volume is reduced, causing rapid metal poisoning and shortening the catalyst life. It is stated that there is a tendency.

これまで、FCC用原料油の水素化処理方法については多数の報告がなされている。例えば、特許文献1及び2には、比較的高い反応温度で脱硫及び脱窒素処理を行なう第一工程と、より低い反応温度で芳香族二環以上の核水添を行なう第二工程により、減圧軽油や常圧残渣油などを水素化処理してFCC用原料油を得る水素化処理方法が提案されている。 So far, many reports have been made on hydrogenation treatment methods for FCC raw material oils. For example, Patent Documents 1 and 2 describe decompression by a first step of performing desulfurization and denitrification treatment at a relatively high reaction temperature and a second step of performing nuclear hydrogenation of two or more aromatic rings at a lower reaction temperature. A hydrogenation treatment method has been proposed in which light oil, atmospheric residual oil, or the like is hydrogenated to obtain a raw material oil for FCC.

また、特許文献3には、リンを含有する触媒を用いて、脱硫活性及び脱窒素活性を向上させる方法が提案されている。 Further, Patent Document 3 proposes a method for improving desulfurization activity and denitrification activity by using a catalyst containing phosphorus.

しかし、実際の直接脱硫装置では、所望の脱硫生成油を得るために生成油の硫黄分を一定とする運転を行っており、脱窒素活性のみを向上させた触媒を使用しない限り、生成油中の窒素分が低減されることは無かった。したがって、上記のような方法で脱硫活性と脱窒素活性が向上した水素化処理触媒を用いても、実運転上、生成油中の窒素分を低減することはできなかった。 However, in an actual direct desulfurization apparatus, in order to obtain a desired desulfurization product oil, the sulfur content of the product oil is kept constant, and unless a catalyst having only improved denitrification activity is used, the product oil is contained. Nitrogen content was not reduced. Therefore, even if a hydrogenation catalyst having improved desulfurization activity and denitrification activity was used by the above method, the nitrogen content in the produced oil could not be reduced in actual operation.

特開平8−012978号公報Japanese Unexamined Patent Publication No. 8-012978 特開平8−183964号公報Japanese Unexamined Patent Publication No. 8-183964 特開2000−351978号公報Japanese Unexamined Patent Publication No. 2000-351978

J. Japan Petrol. Inst.,23,(2), 110(1980)J. Japan Peterl. Inst. , 23, (2), 110 (1980)

上記の事情から、脱硫活性に対して脱窒素活性が高い、いわゆる脱窒素選択性の高い触媒及びそれを用いた水素化処理方法が望まれている。 From the above circumstances, a catalyst having high denitrification activity with respect to desulfurization activity, that is, a catalyst having high denitrification selectivity, and a hydrogenation treatment method using the same are desired.

本発明は、上記従来の状況に鑑み、重質炭化水素油からFCC用原料油として好適に脱硫及び脱窒素された水素化処理油を効率良く得ることのできる、水素化処理油の製造方法を提供することを目的とする。また、本発明は、上記製造方法で得られる水素化処理油をFCC用原料油として用いることで、接触分解油を効率良く得ることのできる、接触分解油の製造方法を提供することを目的とする。 In view of the above-mentioned conventional situation, the present invention provides a method for producing a hydrogenated oil, which can efficiently obtain a desulfurized and denitrified hydrogenated oil as a raw material oil for FCC from a heavy hydrocarbon oil. The purpose is to provide. Another object of the present invention is to provide a method for producing a catalytic cracking oil, which can efficiently obtain a catalytic cracking oil by using the hydrotreated oil obtained by the above production method as a raw material oil for FCC. To do.

本発明者らは、重質炭化水素油から、高度に脱硫及び脱窒素されたFCC用原料油を効率良く製造する方法を開発すべく鋭意研究した結果、特定の組成及び特定の平均細孔径を有する水素化処理触媒を使用することで、適切な触媒寿命を維持しつつ、FCC用原料油として好適に脱硫及び脱窒素された水素化処理油を製造できることを発見し、本発明を提案するに至った。 As a result of diligent research to develop a method for efficiently producing a highly desulfurized and denitrified feedstock oil for FCC from heavy hydrocarbon oil, the present inventors have obtained a specific composition and a specific average pore size. We have discovered that by using a hydrogenated catalyst having a hydrogenated catalyst, it is possible to produce a hydrotreated oil suitably desulfurized and denitrified as a raw material oil for FCC while maintaining an appropriate catalyst life, and propose the present invention. I arrived.

すなわち、本発明の一側面は、以下の水素化処理油の製造方法及び接触分解油の製造方法に関するものである。
(1)重質炭化水素油を水素化処理触媒が充填された反応器に流通させて、水素化処理油を得る工程を備え、前記水素化処理触媒が、リン、鉄族元素、及び第6族元素を含有し、前記水素化処理触媒におけるリンの含有量Cに対する鉄族元素の含有量Cの比C/Cが、モル比で0.60未満であり、前記水素化処理触媒の平均細孔径が、7.5nmより大きく、9.5nmより小さい、水素化処理油の製造方法。
(2)前記水素化処理触媒において、第6族元素の含有量Cに対する鉄族元素の含有量Cの比C/Cが、モル比で0.45未満であり、第6族元素の含有量Cに対するリンの含有量Cの比C/Cが、モル比で0.23より多い、上記(1)に記載の製造方法。
(3)上記(1)又は(2)に記載の製造方法によって水素化処理油を得る工程と、前記水素化処理油の流動接触分解によって、接触分解油を得る工程と、を備える、接触分解油の製造方法。
That is, one aspect of the present invention relates to the following method for producing hydrotreated oil and the method for producing catalytically cracked oil.
(1) A step of passing a heavy hydrocarbon oil through a reactor filled with a hydrogenation treatment catalyst to obtain a hydrogenation treatment oil is provided, and the hydrogenation treatment catalyst is phosphorus, an iron group element, and a sixth. The ratio C 2 / C 1 of the iron group element content C 2 to the phosphorus content C 1 in the hydrogenation catalyst containing a group element is less than 0.60 in terms of molar ratio, and the hydrogenation treatment. A method for producing a hydrotreated oil, wherein the average pore diameter of the catalyst is larger than 7.5 nm and smaller than 9.5 nm.
(2) In the hydrogenation treatment catalyst, the ratio C 2 / C 3 of the content C 2 of the iron group element to the content C 3 of the group 6 element is less than 0.45 in terms of molar ratio, and the group 6 element. The production method according to (1) above, wherein the ratio C 1 / C 3 of the phosphorus content C 1 to the element content C 3 is more than 0.23 in terms of molar ratio.
(3) Contact cracking comprising a step of obtaining a hydrocracked oil by the production method according to the above (1) or (2) and a step of obtaining a catalytic cracking oil by fluid cracking of the hydrocracked oil. How to make oil.

本発明によれば、重質炭化水素油からFCC用原料油として好適に脱硫及び脱窒素された水素化処理油を効率良く得ることのできる、水素化処理油の製造方法が提供される。また、本発明によれば、接触分解油を効率良く得ることのできる、接触分解油の製造方法が提供される。 According to the present invention, there is provided a method for producing a hydrotreated oil, which can efficiently obtain a desulfurized and denitrified hydrotreated oil from a heavy hydrocarbon oil as a raw material oil for FCC. Further, according to the present invention, there is provided a method for producing a catalytic cracking oil, which can efficiently obtain a catalytic cracking oil.

本発明の好適な実施形態について以下に説明する。 Suitable embodiments of the present invention will be described below.

本実施形態に係る水素化処理油の製造方法は、重質炭化水素油を水素化処理触媒が充填された反応器に流通させて、水素化処理油を得る工程を備える。 The method for producing a hydrotreated oil according to the present embodiment includes a step of circulating a heavy hydrocarbon oil through a reactor filled with a hydrotreated catalyst to obtain a hydrotreated oil.

本実施形態において、水素化処理触媒はリン、鉄族元素及び第6族元素を含有する。本明細書中、鉄族元素は、周期表の第4周期の第8族、第9族及び第10族の元素に属する金属元素を示し、第6族元素は、周期表の第6族元素に属する金属元素を示す。鉄族元素としては、鉄(Fe)、コバルト(Co)、ニッケル(Ni)が挙げられ、第6族元素としては、クロム(Cr)、モリブデン(Mo)、タングステン(W)が挙げられる。 In the present embodiment, the hydrogenation catalyst contains phosphorus, an iron group element and a group 6 element. In the present specification, the iron group element indicates a metal element belonging to the elements of groups 8, 9 and 10 of the 4th cycle of the periodic table, and the group 6 element is a group 6 element of the periodic table. Indicates a metal element belonging to. Examples of the group 6 element include iron (Fe), cobalt (Co), and nickel (Ni), and examples of the group 6 element include chromium (Cr), molybdenum (Mo), and tungsten (W).

本実施形態において、水素化処理触媒におけるリンの含有量Cに対する鉄族元素の含有量Cの比C/C(モル比)は、0.60未満である。また、水素化処理触媒の平均細孔径は、7.5nmより大きく、9.5nmより小さい。In the present embodiment, the ratio C 2 / C 1 (molar ratio) of the iron group element content C 2 to the phosphorus content C 1 in the hydrogenation catalyst is less than 0.60. The average pore size of the hydrogenation catalyst is larger than 7.5 nm and smaller than 9.5 nm.

本実施形態に係る製造方法では、重質炭化水素油からFCC用原料油として好適に脱硫及び脱窒素された水素化処理油を効率良く得ることができる。 In the production method according to the present embodiment, a hydrotreated oil suitably desulfurized and denitrified as a raw material oil for FCC can be efficiently obtained from a heavy hydrocarbon oil.

本実施形態では、水素化処理触媒が特定の金属組成及び特定の平均細孔径を有するため、重質炭化水素の水素化処理において、良好な触媒寿命及び優れた脱窒素活性が得られる。このため、本実施形態に係る製造方法によれば、従来のように生成油硫黄分を一定とした運転においても、脱硫に加えて脱窒素が効率良く進行し、窒素分が十分に低減された水素化処理油を得ることができる。すなわち、本実施形態に係る製造方法では、従来の直接脱硫方法と比較して、FCC用原料油として好適に脱窒素された水素化処理油を、効率良く製造することができる。 In the present embodiment, since the hydrogenation catalyst has a specific metal composition and a specific average pore size, good catalyst life and excellent denitrification activity can be obtained in the hydrogenation treatment of heavy hydrocarbons. Therefore, according to the production method according to the present embodiment, denitrification proceeds efficiently in addition to desulfurization even in the conventional operation in which the produced oil sulfur content is constant, and the nitrogen content is sufficiently reduced. Hydrotreated oil can be obtained. That is, in the production method according to the present embodiment, a hydrotreated oil preferably denitrified as a raw material oil for FCC can be efficiently produced as compared with the conventional direct desulfurization method.

<原料油>
本実施形態に係る水素化処理油の製造方法で使用される原料油は、重質炭化水素油であればよい。本明細書中、重質炭化水素油とは、常圧下での沸点が380℃以上の留分を含むものをいう。
<Raw material oil>
The raw material oil used in the method for producing a hydrotreated oil according to the present embodiment may be a heavy hydrocarbon oil. In the present specification, the heavy hydrocarbon oil refers to an oil containing a fraction having a boiling point of 380 ° C. or higher under normal pressure.

重質炭化水素油は、例えば、常圧蒸留残渣油、減圧蒸留残渣油、並びにこれらを原料とした溶剤脱れき油及びビスブレーキング油、等であってよい。また、重質炭化水素油は、減圧軽油、流動接触分解装置の残渣油などを含んでいてもよい。 The heavy hydrocarbon oil may be, for example, atmospheric distillation residual oil, vacuum distillation residual oil, solvent-removing oil and bisbraking oil made from these as raw materials. Further, the heavy hydrocarbon oil may contain reduced pressure light oil, residual oil of a fluid cracking apparatus, and the like.

溶剤脱れき油は、例えば、沸点が550℃以上である留分の含有率が70質量%以上の重質炭化水素油であってよい。 The solvent-removing oil may be, for example, a heavy hydrocarbon oil having a boiling point of 550 ° C. or higher and a distillate content of 70% by mass or higher.

溶剤脱れき油の製造方法は特に制限されないが、例えば、炭素数3〜6の鎖状飽和炭化水素を溶剤として用いた溶剤脱れきにより得ることができる。溶剤の具体例としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン及びノルマルヘキサンが挙げられる。溶剤としてはこれらの一種又は複数種を用いてよい。また、溶剤脱れきにおける溶剤としては、炭素数5又は6の鎖状飽和炭化水素を50容量%以上含む溶剤が好適に用いられ、このような溶剤によれば、60容量%以上、あるいは70容量%以上の高い抽出率で溶剤脱れき油が得られる傾向がある。なお、抽出後の残渣は、ピッチ分として分離される。 The method for producing the solvent-removing oil is not particularly limited, and for example, it can be obtained by solvent-removing using a chain saturated hydrocarbon having 3 to 6 carbon atoms as a solvent. Specific examples of the solvent include propane, normal butane, isobutane, normal pentane, isopentane and normal hexane. As the solvent, one or more of these may be used. Further, as the solvent for removing the solvent, a solvent containing 50% by volume or more of chain saturated hydrocarbon having 5 or 6 carbon atoms is preferably used, and according to such a solvent, 60% by volume or more or 70% by volume is used. Solvent-free oil tends to be obtained with a high extraction rate of% or more. The residue after extraction is separated as a pitch component.

原料油として使用される重質炭化水素油は、硫黄分の含有量が5.0質量%以下であることが好ましく、4.0質量%以下であることがより好ましい。硫黄分の含有量がこの範囲であれば、得られる水素化処理油中の硫黄分の含有量が十分に低減されるとともに、その後に得られる接触分解油中の硫黄分の含有量も好適に低減される。なお、重質炭化水素油における硫黄分の含有量の下限値は、特に制限されないが、例えば、0.6質量%以上であってよく、0.8質量%以上であってよい。本実施形態に係る製造方法によれば、このような硫黄分の含有量の重質炭化水素油を原料油として用いた場合でも、水素化処理によって十分に脱硫され、水素化処理油中の硫黄分の含有量が十分に低減される。 The heavy hydrocarbon oil used as the raw material oil preferably has a sulfur content of 5.0% by mass or less, and more preferably 4.0% by mass or less. When the sulfur content is within this range, the sulfur content in the obtained hydrotreated oil is sufficiently reduced, and the sulfur content in the subsequently obtained catalytic cracking oil is also preferably. It will be reduced. The lower limit of the sulfur content in the heavy hydrocarbon oil is not particularly limited, but may be, for example, 0.6% by mass or more, or 0.8% by mass or more. According to the production method according to the present embodiment, even when such a heavy hydrocarbon oil having a sulfur content is used as a raw material oil, it is sufficiently desulfurized by the hydrogenation treatment and the sulfur in the hydrotreated oil is sufficiently desulfurized. The content of the component is sufficiently reduced.

重質炭化水素油における窒素分の含有量は、例えば0.05質量%以上であってよく、0.07質量%以上であってよい。本実施形態に係る製造方法では、水素化処理触媒が優れた脱窒素活性を有するため、このように窒素分を含む重質炭化水素油を原料油として用いた場合でも、水素化処理によって十分に脱窒素され、水素化処理油中の窒素分の含有量が十分に低減される。また、重質炭化水素油における窒素分の含有量は、例えば0.35質量%以下であってよく、0.30質量%以下であってよい。窒素分の含有量がこの範囲であれば、得られる水素化処理油中の窒素分がより顕著に低減される傾向がある。 The nitrogen content in the heavy hydrocarbon oil may be, for example, 0.05% by mass or more, and may be 0.07% by mass or more. In the production method according to the present embodiment, since the hydrogenation treatment catalyst has excellent denitrification activity, even when a heavy hydrocarbon oil containing nitrogen is used as a raw material oil in this way, the hydrogenation treatment is sufficient. It is denitrified and the nitrogen content in the hydrotreated oil is sufficiently reduced. The nitrogen content of the heavy hydrocarbon oil may be, for example, 0.35% by mass or less, and may be 0.30% by mass or less. When the nitrogen content is in this range, the nitrogen content in the obtained hydrotreated oil tends to be reduced more remarkably.

重質炭化水素油において、塩基性窒素分の含有量は、例えば0.02質量%以上であってよく、0.03質量%以上であってよい。本実施形態に係る製造方法では、水素化処理触媒が優れた脱窒素活性を有するため、このように塩基性窒素分を含む重質炭化水素油を原料油として用いた場合でも、水素化処理によって十分に脱窒素され、水素化処理油中の塩基性窒素分の含有量が十分に低減される。また、重質炭化水素油における塩基性窒素分の含有量は、例えば0.12質量%以下であってよく、0.10質量%以下であってよい。塩基性窒素分の含有量がこの範囲であれば、得られる水素化処理油中の塩基性窒素分がより顕著に低減される傾向がある。 In the heavy hydrocarbon oil, the content of the basic nitrogen content may be, for example, 0.02% by mass or more, and may be 0.03% by mass or more. In the production method according to the present embodiment, since the hydrogenation treatment catalyst has excellent denitrification activity, even when a heavy hydrocarbon oil containing basic nitrogen is used as a raw material oil in this way, the hydrogenation treatment is performed. It is sufficiently denitrified and the content of basic nitrogen in the hydrocarbonated oil is sufficiently reduced. Further, the content of the basic nitrogen content in the heavy hydrocarbon oil may be, for example, 0.12% by mass or less, and may be 0.10% by mass or less. When the content of the basic nitrogen content is within this range, the basic nitrogen content in the obtained hydrotreated oil tends to be reduced more remarkably.

重質炭化水素油は、ニッケル、バナジウム等の重金属を含んでいてもよい。重質炭化水素油の重金属の含有量は、例えば200質量ppm以下であることが好ましく、100質量ppm以下であることがより好ましい。このような含有量であれば、金属被毒による水素化処理触媒の触媒寿命の低下を十分に抑制することができる。 The heavy hydrocarbon oil may contain heavy metals such as nickel and vanadium. The heavy metal content of the heavy hydrocarbon oil is, for example, preferably 200 mass ppm or less, and more preferably 100 mass ppm or less. With such a content, it is possible to sufficiently suppress a decrease in the catalyst life of the hydrogenation treatment catalyst due to metal poisoning.

また、重質炭化水素油において、重金属の含有量は、3質量ppmより多くてもよく、5質量ppm以上であってもよい。重金属を含有する重質炭化水素油を原料油として用いた場合でも、反応器の上流側に脱金属触媒を充填することで、水素化処理触媒の触媒寿命の低下を十分に抑制することができる。なお、脱金属後の重質炭化水素油中の重金属の含有量は、例えば12質量ppm以下であってよく、15質量ppm以下であってもよい。 Further, in the heavy hydrocarbon oil, the content of heavy metal may be more than 3 mass ppm or 5 mass ppm or more. Even when a heavy hydrocarbon oil containing a heavy metal is used as a raw material oil, it is possible to sufficiently suppress a decrease in the catalyst life of the hydrogenation treatment catalyst by filling the upstream side of the reactor with a demetallizing catalyst. .. The content of heavy metals in the heavy hydrocarbon oil after demetallization may be, for example, 12 mass ppm or less, or 15 mass ppm or less.

重質炭化水素油は、アスファルテン分を含んでいてもよい。重質炭化水素油におけるアスファルテン分の含有量は、例えば0.05質量%以上であってよく、2.0質量%以上であってよい。また、重質炭化水素油におけるアスファルテン分の含有量は、例えば3.0質量%以下であってよく、4.0質量%以下であってよい。 The heavy hydrocarbon oil may contain an asphaltene component. The content of asphaltene in the heavy hydrocarbon oil may be, for example, 0.05% by mass or more, and may be 2.0% by mass or more. The content of asphaltene in the heavy hydrocarbon oil may be, for example, 3.0% by mass or less, and may be 4.0% by mass or less.

本明細書中、重質炭化水素油における硫黄分の含有量は、JIS K2541「原油及び石油製品・硫黄分試験方法」に準拠して求めた値を示す。また、重質炭化水素油における窒素分の含有量は、JIS K2541「原油及び石油製品・窒素分試験方法」に準拠して求めた値を示す。また、重質炭化水素油における塩基性窒素分の含有量は、UOP試験法No.269−90に準拠して測定された値を示す。また、重質炭化水素油における重金属の含有量は、蛍光X線分析法で測定された値を示す。また、重質炭化水素油におけるアスファルテン分の含有量は、ヘプタン不溶解分として、IP143に準拠して測定された値を示す。 In the present specification, the sulfur content in the heavy hydrocarbon oil indicates a value obtained in accordance with JIS K2541 “Crude oil and petroleum products / sulfur content test method”. The nitrogen content of the heavy hydrocarbon oil indicates a value obtained in accordance with JIS K2541 "Crude oil and petroleum products / nitrogen content test method". The content of basic nitrogen in the heavy hydrocarbon oil was determined by UOP Test Method No. The values measured according to 269-90 are shown. The heavy metal content in the heavy hydrocarbon oil shows the value measured by the fluorescent X-ray analysis method. Moreover, the content of asphaltene content in heavy hydrocarbon oil shows the value measured in accordance with IP143 as the insoluble content of heptane.

<水素化処理触媒>
水素化処理触媒は、リン、鉄族元素及び第6族元素を含有し、水素化処理触媒におけるリンの含有量Cに対する鉄族元素の含有量Cの比C/C(モル比)は、0.60未満である。また、水素化処理触媒の平均細孔径は、7.5nmより大きく、9.5nmより小さい。
<Hydrogenation catalyst>
The hydrogenation catalyst contains phosphorus, an iron group element and a group 6 element, and the ratio of the iron group element content C 2 to the phosphorus content C 1 in the hydrogenation catalyst C 2 / C 1 (molar ratio). ) Is less than 0.60. The average pore size of the hydrogenation catalyst is larger than 7.5 nm and smaller than 9.5 nm.

水素化処理触媒は、無機酸化物担体と、該無機酸化物担体に担持された活性成分とを含むものであってよい。このとき、活性成分は、リン、鉄族元素及び第6族元素を含む。 The hydrogenation treatment catalyst may contain an inorganic oxide carrier and an active ingredient supported on the inorganic oxide carrier. At this time, the active ingredient contains phosphorus, an iron group element and a group 6 element.

無機酸化物担体としては、耐火性無機酸化物担体が好適であり、例えば、アルミナ、シリカ、チタニア、マグネシア、ジルコニア、酸化ホウ素、酸化亜鉛、ゼオライト(例えば、Yゼオライト、ZSM−5ゼオライト等)、及びこれらの混合物等が挙げられる。 As the inorganic oxide carrier, a fire-resistant inorganic oxide carrier is preferable, and for example, alumina, silica, titania, magnesia, zirconia, boron oxide, zinc oxide, zeolite (for example, Y zeolite, ZSM-5 zeolite, etc.), And a mixture thereof and the like.

無機酸化物担体に担持される活性成分は、リン、鉄族元素及び第6族元素以外の成分を含んでいてよく、例えば、白金等を含んでいてよい。 The active component supported on the inorganic oxide carrier may contain components other than phosphorus, iron group elements and group 6 elements, and may contain, for example, platinum and the like.

水素化処理触媒は、鉄族元素としてコバルト及び/又はニッケルを含有することが好ましく、ニッケルを含有することがより好ましい。 The hydrogenation catalyst preferably contains cobalt and / or nickel as an iron group element, and more preferably nickel.

水素化処理触媒は、第6族金属としてモリブデン及び/又はタングステンを含有することが好ましく、モリブデンを含有することがより好ましい。 The hydrogenation catalyst preferably contains molybdenum and / or tungsten as a Group 6 metal, and more preferably molybdenum.

水素化処理触媒におけるリンの含有量は、例えば0.1質量%以上であってよく、1.0質量%以上であることが好ましい。また、リンの含有量は、例えば4.0質量%以下であってよく、3.0質量%以下であることが好ましい。 The phosphorus content in the hydrogenation catalyst may be, for example, 0.1% by mass or more, preferably 1.0% by mass or more. The phosphorus content may be, for example, 4.0% by mass or less, preferably 3.0% by mass or less.

水素化処理触媒における鉄族元素の含有量は、例えば1.0質量%以上であってよく、1.5質量%以上であることが好ましい。また、鉄族元素の含有量は、例えば3.5質量%以下であってよく、3.0質量%以下であることが好ましい。 The content of the iron group element in the hydrogenation treatment catalyst may be, for example, 1.0% by mass or more, and preferably 1.5% by mass or more. Further, the content of the iron group element may be, for example, 3.5% by mass or less, and preferably 3.0% by mass or less.

水素化処理触媒における第6族元素の含有量は、例えば5.0質量%以上であってよく、6.0質量%以上であることが好ましい。また、第6族元素の含有量は、例えば12.0質量%以下であってよく、11.0質量%以下であることが好ましい。 The content of the Group 6 element in the hydrogenation catalyst may be, for example, 5.0% by mass or more, and preferably 6.0% by mass or more. The content of the Group 6 element may be, for example, 12.0% by mass or less, and preferably 11.0% by mass or less.

なお、本明細書中、リン、鉄族元素及び第6族元素の含有量は、ICP発光分光法で測定された値を示す。 In addition, in this specification, the content of phosphorus, iron group element and group 6 element shows the value measured by ICP emission spectroscopy.

水素化処理触媒において、リンの含有量Cに対する鉄族元素の含有量Cの比C/C(モル比)は、0.60未満であり、好ましくは0.55未満であり、さらに好ましくは0.53未満である。このような水素化処理触媒は、脱窒素活性が一層向上する傾向がある。また、比C/Cは、好ましくは0.20以上であり、より好ましくは0.25以上である。このような比C/Cを有する水素化処理触媒によれば、脱硫活性が一層向上する傾向がある。In the hydrogenation catalyst, the ratio C 2 / C 1 (molar ratio) of the iron group element content C 2 to the phosphorus content C 1 is less than 0.60, preferably less than 0.55. More preferably, it is less than 0.53. Such a hydrogenation treatment catalyst tends to further improve the denitrification activity. The ratio C 2 / C 1 is preferably 0.20 or more, and more preferably 0.25 or more. A hydrogenation catalyst having such a ratio of C 2 / C 1 tends to further improve the desulfurization activity.

水素化処理触媒において、第6族元素の含有量Cに対するリンの含有量Cの比C/C(モル比)は、0.23より多いことが好ましく、0.40より多いことがより好ましく、0.50より多いことがさらに好ましい。このような水素化処理触媒は、脱窒素活性が一層向上する傾向がある。また、比C/Cは、好ましくは1.5未満であり、より好ましくは1.0未満である。このような水素化処理触媒は、耐金属性が一層向上する傾向がある。In the hydrogenation catalyst, the ratio C 1 / C 3 (molar ratio) of the phosphorus content C 1 to the Group 6 element content C 3 is preferably more than 0.23 and more than 0.40. Is more preferable, and more than 0.50 is further preferable. Such a hydrogenation treatment catalyst tends to further improve the denitrification activity. Also, the ratio C 1 / C 3 is preferably less than 1.5, more preferably less than 1.0. Such a hydrogenation treatment catalyst tends to further improve the metal resistance.

水素化処理触媒において、第6族元素の含有量Cに対する鉄族元素の含有量Cの比C/C(モル比)は、0.45未満であることが好ましく、0.44未満であることがより好ましく、0.42未満であることがさらに好ましい。このような水素化処理触媒では、脱硫活性に対する脱窒素活性の比率(脱窒素選択性)が一層高くなり、高度に脱窒素された水素化処理油がより得られやすくなる傾向がある。In the hydrogenation treatment catalyst, the ratio C 2 / C 3 (molar ratio) of the content C 2 of the iron group element to the content C 3 of the group 6 element is preferably less than 0.45, preferably 0.44. It is more preferably less than, and even more preferably less than 0.42. In such a hydrogenation treatment catalyst, the ratio of the denitrification activity to the desulfurization activity (denitrification selectivity) becomes higher, and a highly denitrified hydrotreated oil tends to be more easily obtained.

水素化処理触媒の平均細孔径は、7.5nmより大きく、7.6nmより大きいことが好ましく、7.8nmより大きいことがより好ましい。このような水素化処理触媒では、耐金属性能の向上によって、触媒寿命が顕著に向上する傾向がある。 The average pore size of the hydrogenation catalyst is larger than 7.5 nm, preferably larger than 7.6 nm, and more preferably larger than 7.8 nm. In such a hydrogenation-treated catalyst, the catalyst life tends to be remarkably improved by improving the metal resistance performance.

また、水素化処理触媒の平均細孔径は、9.5nm未満であり、好ましくは9.2nm未満であり、さらに好ましくは9.0nm未満である。このような水素化処理触媒では、脱窒素選択性が一層向上して、高度に脱窒素された水素化処理油がより得られやすくなる傾向がある。 The average pore size of the hydrogenation catalyst is less than 9.5 nm, preferably less than 9.2 nm, and more preferably less than 9.0 nm. With such a hydrogenation-treated catalyst, the denitrification selectivity is further improved, and a highly denitrified hydrotreated oil tends to be more easily obtained.

なお、本明細書中、水素化処理触媒の平均細孔径は、窒素吸着法で測定された値を示す。 In addition, in this specification, the average pore diameter of a hydrogenation treatment catalyst shows the value measured by the nitrogen adsorption method.

水素化処理触媒の比表面積は、好ましくは150m/g以上、より好ましくは200m/g以上であり、好ましくは350m/g以下、より好ましくは320m/g以下である。このような水素化処理触媒では、十分な脱硫性能と併せて、一層優れた脱窒素活性が得られる傾向にある。The specific surface area of the hydrogenation catalyst is preferably 150 m 2 / g or more, more preferably 200 m 2 / g or more, preferably 350 m 2 / g or less, and more preferably 320 m 2 / g or less. With such a hydrogenation treatment catalyst, there is a tendency that more excellent desulfurization activity can be obtained in addition to sufficient desulfurization performance.

水素化処理触媒としては、新触媒、再生触媒等を特に制限なく使用できる。 As the hydrogenation treatment catalyst, a new catalyst, a regeneration catalyst, or the like can be used without particular limitation.

<脱金属触媒>
本実施形態に係る水素化処理油の製造方法において、反応器には、上記水素化処理触媒以外の触媒がさらに充填されていてもよい。例えば、原料油として使用される重質炭化水素油が重金属を含有する場合、反応器には、水素化処理触媒より上流側に、脱金属触媒が充填されていてよい。すなわち、反応器は、前段に脱金属触媒が充填され、後段に水素化処理触媒が充填されたものであってよい。
<Demetallizing catalyst>
In the method for producing a hydrotreated oil according to the present embodiment, the reactor may be further filled with a catalyst other than the hydrotreated catalyst. For example, when the heavy hydrocarbon oil used as the raw material oil contains a heavy metal, the reactor may be filled with a demetallizing catalyst on the upstream side of the hydrogenation treatment catalyst. That is, the reactor may be one in which the demetallizing catalyst is filled in the front stage and the hydrogenation treatment catalyst is filled in the rear stage.

脱金属触媒は、重質炭化水素油中の重金属の少なくとも一部を除去できるものであればよく、特に限定されるものではない。 The demetallizing catalyst is not particularly limited as long as it can remove at least a part of heavy metals in the heavy hydrocarbon oil.

脱金属触媒の好適な一例としては、無機酸化物担体と、該無機酸化物担体に担持された活性成分とを含むものが挙げられる。無機酸化物担体としては、耐火性無機酸化物担体が好ましく、例えば、アルミナ、シリカ、アルミナ−シリカ、酸化ホウ素、酸化亜鉛及びこれらの混合物が挙げられる。また、活性成分としては、例えば、モリブデン、タングステン等の第6族元素、コバルト、ニッケル等の鉄族元素などが挙げられる。また、無機酸化物担体は、リンを更に含有していてもよい。 A preferred example of the demetallization catalyst is one containing an inorganic oxide carrier and an active ingredient supported on the inorganic oxide carrier. As the inorganic oxide carrier, a fire-resistant inorganic oxide carrier is preferable, and examples thereof include alumina, silica, alumina-silica, boron oxide, zinc oxide, and a mixture thereof. Examples of the active ingredient include Group 6 elements such as molybdenum and tungsten, and iron group elements such as cobalt and nickel. In addition, the inorganic oxide carrier may further contain phosphorus.

脱金属触媒において、窒素吸着法で測定される平均細孔直径は、好ましくは10nm以上、より好ましくは12nm以上である。このような脱金属触媒では、より優れた脱金属活性が得られる傾向がある。また、脱金属触媒の平均細孔直径は、好ましくは25nm以下、より好ましくは23nm以下である。このような脱金属触媒では、より優れた水素化処理活性及び触媒強度が得られる傾向がある。 In the demetallization catalyst, the average pore diameter measured by the nitrogen adsorption method is preferably 10 nm or more, more preferably 12 nm or more. Such demetallization catalysts tend to provide better demetallization activity. The average pore diameter of the demetallizing catalyst is preferably 25 nm or less, more preferably 23 nm or less. Such demetallization catalysts tend to provide better hydrogenation activity and catalyst strength.

脱金属触媒の細孔容積は、好ましくは0.6mL/g以上、より好ましくは0.65mL/g以上であり、好ましくは1.0mL/g以下、より好ましくは0.9mL/g以下である。このような脱金属触媒では、十分な触媒寿命及び触媒強度が得られ、より安定して運転が可能となる傾向がある。 The pore volume of the demetallizing catalyst is preferably 0.6 mL / g or more, more preferably 0.65 mL / g or more, preferably 1.0 mL / g or less, and more preferably 0.9 mL / g or less. .. With such a demetallized catalyst, a sufficient catalyst life and catalyst strength tend to be obtained, and more stable operation tends to be possible.

脱金属触媒としては、新触媒、再生触媒等を特に制限なく使用できる。また、反応器における脱金属触媒の充填割合は、その運転条件及び原料油組成に応じて適宜変更することができる。 As the demetallizing catalyst, a new catalyst, a regenerated catalyst, or the like can be used without particular limitation. Further, the filling ratio of the demetallizing catalyst in the reactor can be appropriately changed according to the operating conditions and the raw material oil composition.

反応器には、脱金属触媒及び水素化処理触媒以外の触媒がさらに充填されていてよく、例えば、脱金属活性と脱硫活性とを兼ね備えた中段触媒がさらに充填されていてよい。このような触媒としては公知の種々の触媒を用いることができる。 The reactor may be further filled with a catalyst other than the demetallization catalyst and the hydrogenation treatment catalyst, and for example, a middle stage catalyst having both demetallization activity and desulfurization activity may be further filled. As such a catalyst, various known catalysts can be used.

<反応条件>
本実施形態に係る水素化処理油の製造方法では、重質炭化水素油を水素化処理触媒が充填された反応器に流通させて、重質炭化水素油の水素化処理を行うことにより、水素化処理油が得られる。
<Reaction conditions>
In the method for producing a hydrogenated oil according to the present embodiment, hydrogen is produced by circulating the heavy hydrocarbon oil through a reactor filled with a hydrogenation catalyst and performing the hydrogenation treatment of the heavy hydrocarbon oil. Hydrocarbonated oil is obtained.

水素化処理の反応条件は、目標とする生成油組成(例えば硫黄分の含有量)と反応器に充填した触媒の触媒活性に応じて適宜調整してよい。 The reaction conditions for the hydrogenation treatment may be appropriately adjusted according to the target product oil composition (for example, the content of sulfur content) and the catalytic activity of the catalyst charged in the reactor.

例えば、水素化処理の反応温度は300℃以上であってよく、350℃以上であってよい。このような反応温度とすることで、反応器に充填された水素化処理触媒の活性がより顕著に発揮される傾向がある。また、水素化処理の反応温度は、例えば500℃以下であってよく、450℃以下であってよい。このような反応温度とすることで、重質炭化水素油の熱分解が進行しすぎることがなく、水素化処理装置の運転を円滑に行うことができ、また水素化処理触媒の活性劣化を抑制できる。 For example, the reaction temperature of the hydrogenation treatment may be 300 ° C. or higher, and may be 350 ° C. or higher. By setting such a reaction temperature, the activity of the hydrogenation treatment catalyst filled in the reactor tends to be exhibited more remarkably. The reaction temperature of the hydrogenation treatment may be, for example, 500 ° C. or lower, or 450 ° C. or lower. By setting such a reaction temperature, the thermal decomposition of the heavy hydrocarbon oil does not proceed too much, the hydrogenation treatment apparatus can be operated smoothly, and the activity deterioration of the hydrogenation treatment catalyst is suppressed. it can.

水素化処理における水素分圧は、例えば3MPa以上であってよく、5MPa以上であってよい。このような水素分圧とすることで、水素化反応が十分に進行し、より高度に脱硫及び脱窒素された水素化処理油が得られる傾向がある。また、水素化処理における水素分圧は、例えば25MPa以下であってよく、20Mpa以下であってよい。このような水素分圧では、装置建設費用及び運転費用の増大が避けられ、経済的に有利となる傾向がある。 The hydrogen partial pressure in the hydrogenation treatment may be, for example, 3 MPa or more, and may be 5 MPa or more. With such a hydrogen partial pressure, the hydrogenation reaction proceeds sufficiently, and there is a tendency that a more highly desulfurized and denitrified hydrotreated oil can be obtained. Further, the hydrogen partial pressure in the hydrogenation treatment may be, for example, 25 MPa or less, and may be 20 MPa or less. Such hydrogen partial pressure tends to be economically advantageous because it avoids an increase in equipment construction cost and operating cost.

水素化処理における水素/油比は、例えば400L/Lであってよく、500L/Lであってよい。このような水素/油比であると、水素化処理触媒の水素化活性がより顕著に発揮される傾向がある。また、水素化処理における水素/油比は、例えば3000L/Lであってよく、1800L/Lであってよい。このような水素/油比とすることで、優れた経済性を確保することができる。 The hydrogen / oil ratio in the hydrogenation treatment may be, for example, 400 L / L or 500 L / L. With such a hydrogen / oil ratio, the hydrogenation activity of the hydrogenation treatment catalyst tends to be exhibited more remarkably. Further, the hydrogen / oil ratio in the hydrogenation treatment may be, for example, 3000 L / L and may be 1800 L / L. By setting such a hydrogen / oil ratio, excellent economic efficiency can be ensured.

水素化処理における液空間速度(LHSV)は、例えば0.1h−1以上であってよく、0.2h−1以上であってよい。このような液空間速度とすることで、優れた経済性を確保することができる。また、水素化処理における液空間速度は、例えば3.0h−1であってよく、2.0h−1であってよい。このような液空間速度とすることで、より高度に脱硫及び脱窒素された水素化処理油が得られる傾向がある。Liquid hourly space velocity in the hydrogenation process (LHSV) may be for example 0.1 h -1 or more, may be at 0.2 h -1 or more. By setting such a liquid space velocity, excellent economic efficiency can be ensured. The liquid hourly space velocity in the hydrogenation process can be, for example, a 3.0 h -1, may be 2.0 h -1. With such a liquid space velocity, a more highly desulfurized and denitrified hydrotreated oil tends to be obtained.

<水素化処理油>
本実施形態に係る水素化処理油の製造方法で得られる水素化処理油は、高度に脱硫及び脱窒素されており、FCC用原料油として好適に用いることができる。
<Hydrogenated oil>
The hydrogenated oil obtained by the method for producing a hydrogenated oil according to the present embodiment is highly desulfurized and denitrified, and can be suitably used as a raw material oil for FCC.

水素化処理油中の硫黄分の含有量は、0.15質量%以下であることが好ましく、0.10質量%以下であることがより好ましく、0.05質量%以下であることがさらに好ましい。 The sulfur content in the hydrotreated oil is preferably 0.15% by mass or less, more preferably 0.10% by mass or less, and further preferably 0.05% by mass or less. ..

水素化処理油中の窒素分の含有量は、0.15質量%以下であることが好ましく、0.13質量%以下であることがより好ましい。また、塩基性窒素分の含有量は、0.05質量%以下であることが好ましく、0.04質量%以下であることがより好ましい。 The nitrogen content in the hydrotreated oil is preferably 0.15% by mass or less, and more preferably 0.13% by mass or less. The content of the basic nitrogen content is preferably 0.05% by mass or less, and more preferably 0.04% by mass or less.

水素化処理油中のニッケル及びバナジウムの含有量は、それぞれ10ppm以下であることが好ましく、5ppm以下であることがより好ましい。このような水素化処理油であれば、FCCプロセスで用いられる触媒の金属被毒を十分に抑制することができる。 The contents of nickel and vanadium in the hydrotreated oil are preferably 10 ppm or less, and more preferably 5 ppm or less. With such a hydrogenated oil, metal poisoning of the catalyst used in the FCC process can be sufficiently suppressed.

本実施形態に係る製造方法によれば、FCCプロセスに好適な水素化処理油を、効率良く、経済性に優れた方法で、安定して製造することができる。 According to the production method according to the present embodiment, a hydrotreated oil suitable for the FCC process can be stably produced by an efficient and economical method.

<FCCプロセス>
本実施形態では、上述の製造方法で得られた水素化処理油をFCC用原料油として用いることで、効率良く接触分解油を得ることができる。すなわち、本実施形態に係る接触分解油の製造方法は、上述の方法で水素化処理油を得る工程と、水素化処理油の流動接触分解によって接触分解油を得る工程と、を備えるものであってよい。
<FCC process>
In the present embodiment, by using the hydrotreated oil obtained by the above-mentioned production method as a raw material oil for FCC, a catalytic cracking oil can be efficiently obtained. That is, the method for producing a catalytic cracking oil according to the present embodiment includes a step of obtaining a hydrocracked oil by the above-mentioned method and a step of obtaining a catalytic cracking oil by fluid cracking of the hydrocracked oil. You can.

本実施形態に係る接触分解油の製造方法では、上述の製造方法で得られた水素化処理油がFCC用原料油として好適に脱窒素されたものであるため、流動接触分解における触媒劣化が十分に抑制され、効率良く接触分解油を得ることができる。 In the method for producing catalytic cracking oil according to the present embodiment, the hydrotreated oil obtained by the above-mentioned production method is suitably denitrified as a raw material oil for FCC, so that catalyst deterioration in fluid cracking is sufficient. It is possible to efficiently obtain catalytic cracking oil.

本実施形態において、流動接触分解の態様は特に制限されず、公知の方法で実施することができる。 In the present embodiment, the mode of fluid catalytic cracking is not particularly limited, and it can be carried out by a known method.

本実施形態に係る製造方法で得られた接触分解油は、ガソリン留分、軽油留分、コークス原料、プロピレンやブタジエン等の化学品原料の用途などに好適に用いることができる。 The catalytic cracking oil obtained by the production method according to the present embodiment can be suitably used for applications such as gasoline fractions, light oil fractions, coke raw materials, and chemical raw materials such as propylene and butadiene.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.

次に、本発明について実施例及び比較例により説明するが、本発明はこれらの実施例により限定されるものではない。 Next, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

<原料油の調製>
以下の実施例及び比較例では、下記組成の常圧残渣油A及び溶剤脱れき油を等容量混合したものを原料油として使用した。
<Preparation of raw material oil>
In the following Examples and Comparative Examples, a mixture of atmospheric residual oil A having the following composition and solvent-removing oil in equal volumes was used as the raw material oil.

(常圧残渣油A)
常圧残渣油中の硫黄分の含有率:2.9質量%
常圧残渣油中のバナジウムの含有率:40質量ppm
常圧残渣油中のニッケルの含有率:15質量ppm
常圧残渣油中のアスファルテンの含有率:3.0質量%
15℃における常圧残渣油の密度:0.9619g/cm
100℃における常圧残渣油の動粘度:30.5mm/s
常圧残渣油中の残炭分(carbon residue)の含有率:9.0質量%
常圧残渣油中の窒素分の含有率:0.154質量%
常圧残渣油中の塩基性窒素分の含有率:0.052質量%
(Atmospheric pressure residual oil A)
Sulfur content in atmospheric residual oil: 2.9% by mass
Vanadium content in atmospheric residual oil: 40 ppm by mass
Nickel content in atmospheric residual oil: 15 ppm by mass
Content of asphaltene in atmospheric pressure residual oil: 3.0% by mass
Density of atmospheric residual oil at 15 ° C: 0.9619 g / cm 3
Kinematic viscosity of atmospheric residual oil at 100 ° C: 30.5 mm 2 / s
Content of residual carbon content (carbon reserve) in atmospheric pressure residual oil: 9.0% by mass
Nitrogen content in atmospheric residual oil: 0.154% by mass
Content of basic nitrogen in atmospheric residual oil: 0.052% by mass

(溶剤脱れき油)
溶剤脱れき油としては、下記減圧残渣油に対して、炭素数5及び6の炭化水素を90%以上含む炭化水素溶剤を使用して抽出率70%で溶剤脱れきしたものを用いた。溶剤脱れき油の性状は以下のとおりであった。
減圧残渣油中の硫黄分の含有率:4.4質量%
減圧残渣油中のバナジウムの含有率:98質量ppm
減圧残渣油中のニッケルの含有率:30質量ppm
減圧残渣油中のアスファルテンの含有率:10.4質量%
15℃における減圧残渣油の密度:1.0400g/cm
100℃における減圧残渣油の動粘度:461mm/s
減圧残渣油中の残炭分の含有率:24.7質量%
減圧残渣油中の窒素分の含有率:0.38質量%
減圧残渣油中の塩基性窒素分の含有率:0.13質量%
溶剤脱れき油中の硫黄分の含有率:4.2質量%
溶剤脱れき油中のバナジウムの含有率:29質量ppm
溶剤脱れき油中のニッケルの含有率:9質量ppm
溶剤脱れき油中のアスファルテンの含有率:0.2質量%
15℃における溶剤脱れき油の密度:1.0037g/cm
100℃における溶剤脱れき油の動粘度:419mm/s
溶剤脱れき油中の残炭分の含有率:15.5質量%
溶剤脱れき油中の窒素分の含有率:0.182質量%
溶剤脱れき油中の塩基性窒素分の含有率:0.062質量%
(Solvent removal oil)
As the solvent-removing oil, a hydrocarbon solvent containing 90% or more of hydrocarbons having 5 and 6 carbon atoms was used with respect to the following vacuum residue oil, and the solvent was removed at an extraction rate of 70%. The properties of the solvent-removing oil were as follows.
Sulfur content in decompression residual oil: 4.4% by mass
Vanadium content in vacuum residue oil: 98 ppm by mass
Nickel content in vacuum residual oil: 30 mass ppm
Content of asphaltene in decompression residual oil: 10.4% by mass
Density of decompressed residual oil at 15 ° C: 1.0400 g / cm 3
Kinematic viscosity of vacuum residue oil at 100 ° C: 461 mm 2 / s
Content of residual coal in decompression residual oil: 24.7% by mass
Nitrogen content in vacuum residual oil: 0.38% by mass
Content of basic nitrogen in vacuum residual oil: 0.13% by mass
Sulfur content in solvent-free oil: 4.2% by mass
Vanadium content in solvent-free oil: 29 ppm by mass
Nickel content in solvent-free oil: 9 ppm by mass
Content of asphaltene in solvent-free oil: 0.2% by mass
Density of solvent-removing oil at 15 ° C: 1.0037 g / cm 3
Kinematic viscosity of solvent-removing oil at 100 ° C: 419 mm 2 / s
Content of residual coal in solvent-free oil: 15.5% by mass
Nitrogen content in solvent-free oil: 0.182% by mass
Content of basic nitrogen in solvent-free oil: 0.062% by mass

<実施例1>
実施例1では、脱金属触媒として、アルミナ担体にモリブデンを2.7質量%(モリブデン元素換算)担持した触媒(脱金属触媒X)(平均細孔直径:18nm、細孔容積:0.87mL/g)を用いた。また、水素化処理触媒として、表1に記載の組成の触媒Aを用いた。なお、表1中、C/Cは、第6族元素の含有量Cに対する鉄族元素の含有量Cの比を示し、C/Cは、第6族元素の含有量Cに対するリンの含有量Cの比を示し、C/Cは、リンの含有量Cに対する鉄族元素の含有量Cの比を示す。
<Example 1>
In Example 1, as the demetallizing catalyst, a catalyst (demetallizing catalyst X) in which molybdenum is supported on an alumina carrier in an amount of 2.7% by mass (molybdenum element equivalent) (average pore diameter: 18 nm, pore volume: 0.87 mL / g) was used. Further, as the hydrogenation treatment catalyst, the catalyst A having the composition shown in Table 1 was used. In Table 1, C 2 / C 3 indicates the ratio of the content C 2 of the iron group element to the content C 3 of Group 6 elements, C 1 / C 3, the content of the group 6 element The ratio of the phosphorus content C 1 to C 3 is shown, and C 2 / C 1 shows the ratio of the iron group element content C 2 to the phosphorus content C 1 .

水素化処理装置のリアクター入口側に脱金属触媒Xを充填し、その後段側に等容量の触媒Aを充填した。この水素化処理装置を用いて、以下の条件で水素化処理を実施した。
水素分圧:14.4Mpa
水素/油比:1000L/L
LHSV:0.44h−1
The demetallizing catalyst X was filled on the reactor inlet side of the hydrogenation treatment apparatus, and the catalyst A having the same capacity was filled on the subsequent stage side. Using this hydrogenation treatment apparatus, hydrogenation treatment was carried out under the following conditions.
Hydrogen partial pressure: 14.4Mpa
Hydrogen / oil ratio: 1000L / L
LHSV: 0.44h -1

反応温度を360℃、380℃及び400℃に変化させ、それぞれの条件で得られた水素化処理油について硫黄分、窒素分及び重金属の分析を行い、分析結果に基づいて、脱硫活性(kHDS)、脱窒素活性(kHDN)、及び脱金属活性(kHDM)を求めた。なお、各活性は、反応次数を、脱硫反応は2次、脱窒素反応は1次、脱金属反応は1次として、各反応温度における反応速度定数を算出し、後述の比較例4に対する相対比の平均値として算出した。 The reaction temperature was changed to 360 ° C, 380 ° C and 400 ° C, and the sulfur content, nitrogen content and heavy metals of the hydrotreated oil obtained under each condition were analyzed, and the desulfurization activity (kHDS) was determined based on the analysis results. , Denitrogen activity (kHDN), and demetallization activity (kHDM) were determined. The reaction rate constants at each reaction temperature were calculated assuming that each activity had a reaction order, a desulfurization reaction was a secondary reaction, a denitrification reaction was a primary reaction, and a metal removal reaction was a primary reaction, and the relative ratio to Comparative Example 4 described later was calculated. It was calculated as the average value of.

また、原料油中の塩基性窒素濃度と、反応温度380℃における水素化処理油中の塩基性窒素濃度とから、塩基性窒素除去率を算出した。また、脱硫活性に対する脱窒素活性の割合(kHDN/kHDS)を、HDN選択性とした。また、水素化処理触媒の触媒寿命の指標として、初期脱硫活性に対して活性が20%に低下するまでの時間を測定し、後述の比較例4に対する相対値を求め、これを相対耐金属性とした。 Further, the basic nitrogen removal rate was calculated from the basic nitrogen concentration in the raw material oil and the basic nitrogen concentration in the hydrogenated oil at the reaction temperature of 380 ° C. The ratio of denitrification activity to desulfurization activity (kHDN / kHDS) was defined as HDN selectivity. Further, as an index of the catalyst life of the hydrogenation treatment catalyst, the time until the activity decreases to 20% with respect to the initial desulfurization activity is measured, and the relative value with respect to Comparative Example 4 described later is obtained, and this is used as the relative metal resistance. And said.

上記の方法で求めた脱硫活性(kHDS)、脱窒素活性(kHDN)、脱金属活性(kHDM)、塩基性窒素除去率、HDN選択性、及び相対耐金属性を表2に示す。 Table 2 shows the desulfurization activity (kHDS), denitrification activity (kHDN), demetallization activity (kHDM), basic nitrogen removal rate, HDN selectivity, and relative metal resistance obtained by the above method.

<実施例2〜4>
水素化処理触媒として触媒Aにかえて表1に記載の触媒B〜Dを用いたこと以外は、実施例1と同様にして、水素化処理及び得られた水素化処理油の分析を行った。分析結果は表2に示すとおりであった。
<Examples 2 to 4>
The hydrogenation treatment and the obtained hydrogenation treatment oil were analyzed in the same manner as in Example 1 except that the catalysts B to D shown in Table 1 were used instead of the catalyst A as the hydrogenation treatment catalyst. .. The analysis results are shown in Table 2.

<比較例1〜4>
水素化処理触媒として触媒Aにかえて表1に記載の触媒E〜Hを用いたこと以外は、実施例1と同様にして、水素化処理及び得られた水素化処理油の分析を行った。分析結果は表2に示すとおりであった。
<Comparative Examples 1 to 4>
The hydrogenation treatment and the obtained hydrogenation treatment oil were analyzed in the same manner as in Example 1 except that the catalysts E to H shown in Table 1 were used instead of the catalyst A as the hydrogenation treatment catalyst. .. The analysis results are shown in Table 2.

Figure 0006770953
Figure 0006770953

Figure 0006770953
Figure 0006770953

実施例と比較例を比較すると、実施例では触媒寿命(相対耐金属性)の大幅な低下を抑制しながら、高い脱窒素選択性及び塩基性窒素除去率が得られた。 Comparing the examples and the comparative examples, high denitrification selectivity and basic nitrogen removal rate were obtained in the examples while suppressing a significant decrease in catalyst life (relative metal resistance).

<実施例5>
複数の触媒を用いた水素化処理システムを実施して生成油を得た。また、得られた生成油の接触分解反応の反応性を確認するため、生成油についてMAT(Micro Activity Test)試験を実施した。以下に詳細について説明する。
<Example 5>
A hydrogenation treatment system using a plurality of catalysts was carried out to obtain a product oil. Further, in order to confirm the reactivity of the catalytic cracking reaction of the obtained produced oil, a MAT (Micro Activity Test) test was carried out on the produced oil. Details will be described below.

まず、上記脱金属触媒X、アルミナ担体にモリブデン6質量%(モリブデン元素換算)及びニッケル1.5質量%(ニッケル元素換算)を担持した脱金属触媒Y(平均細孔直径18nm、細孔容積:0.80mL/g)、上記脱硫触媒E、上記脱硫触媒H、並びに上記脱硫触媒Aを準備した。また、水素化処理用の原料油として、上記溶剤脱れき油と下記に示す常圧残渣油Bとを54:46(容量比)で混合したものを準備した。 First, the demetallizing catalyst X and the demetallizing catalyst Y (average pore diameter 18 nm, pore volume: equivalent) carrying 6% by mass of molybdenum (equivalent to molybdenum element) and 1.5% by mass of nickel (equivalent to nickel element) on an alumina carrier: 0.80 mL / g), the desulfurization catalyst E, the desulfurization catalyst H, and the desulfurization catalyst A were prepared. Further, as a raw material oil for hydrogenation treatment, a mixture of the solvent-removing oil and the atmospheric residual oil B shown below at a ratio of 54:46 (volume ratio) was prepared.

(常圧残渣油B)
常圧残渣油中の硫黄分の含有率:0.92質量%
常圧残渣油中のバナジウムの含有率:11質量ppm
常圧残渣油中のニッケルの含有率:11質量ppm
常圧残渣油中のアスファルテンの含有率:0.2質量%
15℃における常圧残渣油の密度:0.9187g/cm
100℃における常圧残渣油の動粘度:25.2mm/s
常圧残渣油中の残炭分(carbon residue)の含有率:5.1質量%
常圧残渣油中の窒素分の含有率:0.170質量%
常圧残渣油中の塩基性窒素分の含有率:0.057質量%
(Atmospheric pressure residual oil B)
Sulfur content in atmospheric residual oil: 0.92% by mass
Vanadium content in atmospheric residual oil: 11 parts by mass ppm
Nickel content in atmospheric residual oil: 11% by mass ppm
Content of asphaltene in atmospheric pressure residual oil: 0.2% by mass
Density of atmospheric residual oil at 15 ° C: 0.9187 g / cm 3
Kinematic viscosity of atmospheric residual oil at 100 ° C: 25.2 mm 2 / s
Content of residual carbon content (carbon reserve) in atmospheric pressure residual oil: 5.1% by mass
Nitrogen content in atmospheric residual oil: 0.170% by mass
Content of basic nitrogen in atmospheric residual oil: 0.057% by mass

2塔の反応器を連結した反応装置を準備し、1塔目には入口側から脱金属触媒X及び脱金属触媒Yをこの順に充填し、2塔目には入口側から脱硫触媒E、脱硫触媒H及び脱硫触媒Aをこの順に充填した。触媒の使用量は、X:Y:E:H:A=3:41:11:12:33(容量比)とした。この反応装置を用いて、以下の条件で水素化処理を実施した。なお、反応開始から30日間は、1塔目入口温度は350℃とした。
水素分圧:14.4Mpa
水素/油比:1000L/L
LHSV:0.44h−1
1塔目出口温度=1塔目入口温度+8℃
2塔目入口温度=1塔目入口温度−2℃
2塔目出口温度=2塔目入口温度+20℃
A reactor in which two reactors are connected is prepared, the first column is filled with the demetallizing catalyst X and the demetallizing catalyst Y from the inlet side in this order, and the second column is filled with the desulfurization catalyst E and desulfurization from the inlet side. The catalyst H and the desulfurization catalyst A were filled in this order. The amount of the catalyst used was X: Y: E: H: A = 3: 41: 11: 12: 33 (volume ratio). Using this reactor, hydrogenation treatment was carried out under the following conditions. The temperature at the inlet of the first column was 350 ° C. for 30 days from the start of the reaction.
Hydrogen partial pressure: 14.4Mpa
Hydrogen / oil ratio: 1000L / L
LHSV: 0.44h -1
1st tower outlet temperature = 1st tower inlet temperature + 8 ℃
2nd tower inlet temperature = 1st tower inlet temperature -2 ° C
2nd tower outlet temperature = 2nd tower inlet temperature + 20 ℃

反応開始から30日後、生成油のボトム分(蒸留分離における残渣分、沸点390℃以上の留分)の硫黄分が0.6質量%となるように反応温度を調整したところ、反応温度の平均は364℃であった。生成油の沸点390℃未満の留分をカットし、脱硫油5Aを得た。脱硫油5Aの組成は、表3に示すとおりであった。この脱硫油5Aを、MAT試験に用いた。 Thirty days after the start of the reaction, the reaction temperature was adjusted so that the sulfur content of the bottom component of the produced oil (residue in distillation separation, fraction having a boiling point of 390 ° C. or higher) was 0.6% by mass, and the average reaction temperature was adjusted. Was 364 ° C. Fractions having a boiling point of less than 390 ° C. of the produced oil were cut to obtain desulfurized oil 5A. The composition of the desulfurization oil 5A was as shown in Table 3. This desulfurization oil 5A was used for the MAT test.

MAT試験では、表3に組成を示した減圧軽油と上記脱硫油5Aとを、57:43(質量比)で混合したFCC原料油Aを、原料油として用いた。MAT試験は、以下の条件で実施した。なお、触媒には市販のFCC触媒を用いた。試験結果は表4に示した。
反応温度:530℃
触媒/油比:8.5(重量比)
触媒重量:12g
In the MAT test, FCC raw material oil A, which was a mixture of the reduced pressure light oil shown in Table 3 and the desulfurized oil 5A at a ratio of 57:43 (mass ratio), was used as the raw material oil. The MAT test was conducted under the following conditions. A commercially available FCC catalyst was used as the catalyst. The test results are shown in Table 4.
Reaction temperature: 530 ° C
Catalyst / oil ratio: 8.5 (weight ratio)
Catalyst weight: 12g

<比較例5>
反応装置の1塔目に入口側から脱金属触媒X及び脱金属触媒Yをこの順に充填し、2塔目に入口側から脱硫触媒E及び脱硫触媒Hをこの順に充填し、触媒の使用量をX:Y:E:H=22:22:23:33(容量比)としたこと以外は、実施例5と同様にして、水素化処理を実施した。
<Comparative example 5>
The first column of the reactor is filled with the demetallizing catalyst X and the demetallizing catalyst Y in this order from the inlet side, and the second column is filled with the desulfurization catalyst E and the desulfurization catalyst H from the inlet side in this order, and the amount of the catalyst used is adjusted. The hydrogenation treatment was carried out in the same manner as in Example 5 except that X: Y: E: H = 22: 22: 23: 33 (volume ratio).

反応開始から30日後、生成油のボトム分(蒸留分離における残渣分、沸点390℃以上の留分)の硫黄分が0.6質量%となるように反応温度を調整したところ、反応温度の平均は377℃であった。生成油の沸点390℃未満の留分をカットし、脱硫油5Bを得た。脱硫油5Bの組成は、表3に示すとおりであった。この脱硫油5Bを、MAT試験に用いた。 Thirty days after the start of the reaction, the reaction temperature was adjusted so that the sulfur content of the bottom component of the produced oil (residue in distillation separation, fraction having a boiling point of 390 ° C. or higher) was 0.6% by mass, and the average reaction temperature was adjusted. Was 377 ° C. Fractions having a boiling point of less than 390 ° C. of the produced oil were cut to obtain desulfurized oil 5B. The composition of the desulfurized oil 5B was as shown in Table 3. This desulfurized oil 5B was used for the MAT test.

MAT試験では、表3に示した減圧軽油と上記脱硫油5Bとを57:43(質量比)で混合したFCC原料油Bを、原料油として用いた。原料油としてFCC原料油Bを用いたこと以外は、実施例5と同様にして、MAT試験を実施した。試験結果は表4に示した。 In the MAT test, FCC raw material oil B, which was a mixture of the reduced pressure gas oil shown in Table 3 and the desulfurized oil 5B at a ratio of 57:43 (mass ratio), was used as the raw material oil. The MAT test was carried out in the same manner as in Example 5 except that FCC raw material oil B was used as the raw material oil. The test results are shown in Table 4.

<実施例6>
触媒/油比を9.5(従量比)に変更したこと以外は、実施例5と同様にしてMAT試験を実施した。試験結果は表4に示した。
<Example 6>
The MAT test was carried out in the same manner as in Example 5 except that the catalyst / oil ratio was changed to 9.5 (metered ratio). The test results are shown in Table 4.

Figure 0006770953
Figure 0006770953

なお、表3中、「密度(15℃)」は15℃における密度を示し、「LCO留分」は沸点221℃以上343℃未満の留分の含有率を示し、「VR留分」は沸点538℃以上の留分の含有率を示す。また、「残留炭素分」、「窒素分」、「塩基性窒素」、「硫黄分」、「Ni」及び「V」はそれぞれ、残留炭素分、窒素分、塩基性窒素、硫黄分、ニッケル及びバナジウムの含有率を示す。また、「平均分子量」は、GPC装置により測定される、炭化水素の分子量数平均値を表す。 In Table 3, "density (15 ° C.)" indicates the density at 15 ° C., "LCO fraction" indicates the content of the fraction having a boiling point of 221 ° C. or higher and lower than 343 ° C., and "VR fraction" indicates the boiling point. It shows the content of fractions above 538 ° C. In addition, "residual carbon content", "nitrogen content", "basic nitrogen", "sulfur content", "Ni" and "V" are residual carbon content, nitrogen content, basic nitrogen, sulfur content, nickel and, respectively. Shows the vanadium content. Further, the "average molecular weight" represents the average value of the number of molecular weights of hydrocarbons measured by the GPC apparatus.

Figure 0006770953
Figure 0006770953

なお、表4中、「ドライガス」、「LPG」、「WCCG」、「LCO」、「CLO」及び「COKE」はそれぞれ、炭素数1又は2の炭化水素、炭素数3又は4の炭化水素、炭素数5以上沸点221℃未満の炭化水素、沸点221℃以上343℃未満の炭化水素、沸点343℃以上の液状炭化水素、及び、固体生成物を示す。また、「分解率」は、全生成物からLCO、CLO及びコーク(COKE)を除いた量の割合を示す。 In Table 4, "dry gas", "LPG", "WCCG", "LCO", "CLO" and "COKE" are hydrocarbons having 1 or 2 carbon atoms and hydrocarbons having 3 or 4 carbon atoms, respectively. , A hydrocarbon having 5 or more carbon atoms and a boiling point of less than 221 ° C., a hydrocarbon having a boiling point of 221 ° C. or higher and lower than 343 ° C., a liquid hydrocarbon having a boiling point of 343 ° C. or higher, and a solid product. In addition, "decomposition rate" indicates the ratio of the amount obtained by excluding LCO, CLO and coke from all products.

表3に示すとおり、実施例5の水素化処理では、硫黄分が0.6質量%となる反応温度(364℃)が比較例5(377℃)より低かったにも関わらず、塩基性窒素の量が比較例5より低減されている。また、表4に示すとおり、実施例5の接触分解反応では、比較例5と比較してコーク生成量が抑制されている。また、表4に示すとおり、コーク生成量が比較例5と同程度となるよう触媒/原料油比を調整した実施例6では、比較例5と比較して高い分解率が得られている。 As shown in Table 3, in the hydrogenation treatment of Example 5, although the reaction temperature (364 ° C.) at which the sulfur content was 0.6% by mass was lower than that of Comparative Example 5 (377 ° C.), basic nitrogen. The amount of is reduced as compared with Comparative Example 5. Further, as shown in Table 4, in the catalytic cracking reaction of Example 5, the amount of coke produced was suppressed as compared with Comparative Example 5. Further, as shown in Table 4, in Example 6 in which the catalyst / raw material oil ratio was adjusted so that the amount of coke produced was about the same as in Comparative Example 5, a higher decomposition rate was obtained as compared with Comparative Example 5.

Claims (6)

常圧蒸留残渣油、減圧蒸留残渣油、並びにこれらを原料とした溶剤脱れき油及びビスブレーキング油からなる群より選択される少なくとも一種を含む重質炭化水素油を水素化処理触媒が充填された反応器に流通させて、水素化処理油を得る工程を備え、
前記水素化処理触媒が、リン、鉄族元素、及び第6族元素を含有し、
前記水素化処理触媒において、
リンの含有量Cに対する鉄族元素の含有量Cの比C/Cが、モル比で0.60未満であり、
第6族元素の含有量Cに対する鉄族元素の含有量Cの比C/Cが、モル比で0.45未満であり、
第6族元素の含有量Cに対するリンの含有量Cの比C/Cが、モル比で0.78以上であり、
前記水素化処理触媒の平均細孔径が、7.5nmより大きく、9.5nmより小さい、
水素化処理油の製造方法。
Atmospheric residue, vacuum distillation residual oil, and the heavy hydrocarbon oil containing at least one selected from the group consisting of raw material to solvent deasphalted oil and visbreaking oil them, hydrotreating catalyst packed It is equipped with a process to obtain hydrocarbonated oil by distributing it to the prepared reactor.
The hydrogenation catalyst contains phosphorus, a group 6 element, and a group 6 element.
In the hydrogenation catalyst,
The ratio C 2 / C 1 of the iron group element content C 2 to the phosphorus content C 1 is less than 0.60 in terms of molar ratio.
The ratio C 2 / C 3 of the content C 2 of the iron group element to the content C 3 of the group 6 element is less than 0.45 in terms of molar ratio.
The ratio C 1 / C 3 of the phosphorus content C 1 to the content C 3 of the Group 6 element is 0.78 or more in terms of molar ratio.
The average pore size of the hydrogenation catalyst is larger than 7.5 nm and smaller than 9.5 nm.
Method for producing hydrotreated oil.
前記比C/Cが、モル比で1.5未満である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the ratio C 1 / C 3 is less than 1.5 in terms of molar ratio. 前記比C/Cが、モル比で0.20以上である、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the ratio C 2 / C 1 is 0.20 or more in terms of molar ratio. 前記比C/Cが、モル比で0.53未満である、請求項1〜3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the ratio C 2 / C 1 is less than 0.53 in terms of molar ratio. 重質炭化水素油を水素化処理触媒が充填された反応器に流通させて、水素化処理油を得る工程を備え、
前記重質炭化水素油における重金属の含有量が、3質量ppmより多く、200質量ppm以下であり、
前記水素化処理触媒が、リン、鉄族元素、及び第6族元素を含有し、
前記水素化処理触媒において、
リンの含有量C に対する鉄族元素の含有量C の比C /C が、モル比で0.60未満であり、
第6族元素の含有量C に対する鉄族元素の含有量C の比C /C が、モル比で0.45未満であり、
第6族元素の含有量C に対するリンの含有量C の比C /C が、モル比で0.78以上であり、
前記水素化処理触媒の平均細孔径が、7.5nmより大きく、9.5nmより小さい、
水素化処理油の製造方法。
It is provided with a step of distributing heavy hydrocarbon oil to a reactor filled with a hydrogenation treatment catalyst to obtain hydrogenation treatment oil.
The content of heavy metals in the heavy hydrocarbon oil, more than 3 mass ppm, Ri der than 200 mass ppm,
The hydrogenation treatment catalyst contains phosphorus, an iron group element, and a group 6 element.
In the hydrogenation catalyst,
The ratio C 2 / C 1 of the iron group element content C 2 to the phosphorus content C 1 is less than 0.60 in terms of molar ratio.
The ratio C 2 / C 3 of the content C 2 of the iron group element to the content C 3 of the group 6 element is less than 0.45 in terms of molar ratio.
The ratio C 1 / C 3 of the phosphorus content C 1 to the content C 3 of the Group 6 element is 0.78 or more in terms of molar ratio.
The average pore size of the hydrogenation catalyst is larger than 7.5 nm and smaller than 9.5 nm.
Method for producing hydrotreated oil .
請求項1〜のいずれか一項に記載の製造方法によって水素化処理油を得る工程と、
前記水素化処理油の流動接触分解によって、接触分解油を得る工程と、
を備える、接触分解油の製造方法。
A step of obtaining a hydrotreated oil by the production method according to any one of claims 1 to 5 .
The step of obtaining catalytically cracked oil by fluid cracking of the hydrotreated oil, and
A method for producing a cracked oil.
JP2017521827A 2015-05-29 2016-05-23 Method for producing hydrotreated oil and method for producing catalytically cracked oil Active JP6770953B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015109748 2015-05-29
JP2015109748 2015-05-29
PCT/JP2016/065219 WO2016194686A1 (en) 2015-05-29 2016-05-23 Method for producing hydrotreated oil and method for producing catalytic cracked oil

Publications (2)

Publication Number Publication Date
JPWO2016194686A1 JPWO2016194686A1 (en) 2018-03-15
JP6770953B2 true JP6770953B2 (en) 2020-10-21

Family

ID=57441336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017521827A Active JP6770953B2 (en) 2015-05-29 2016-05-23 Method for producing hydrotreated oil and method for producing catalytically cracked oil

Country Status (6)

Country Link
US (1) US20180016505A1 (en)
EP (1) EP3305874A4 (en)
JP (1) JP6770953B2 (en)
KR (1) KR20180013844A (en)
CA (1) CA2986556A1 (en)
WO (1) WO2016194686A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US20180230389A1 (en) 2017-02-12 2018-08-16 Mag&#275;m&#257; Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
JP2019099611A (en) * 2017-11-29 2019-06-24 Jxtgエネルギー株式会社 Method of producing hydrocarbon oil

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879265A (en) * 1982-08-19 1989-11-07 Union Oil Company Of California Hydroprocessing catalyst and phosphorous and citric acid containing impregnating solution
JPH0661464B2 (en) * 1986-02-26 1994-08-17 住友金属鉱山株式会社 Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
US4846961A (en) * 1986-12-05 1989-07-11 Union Oil Company Of California Hydroprocessing catalyst with a Ni-P-Mo
JP3545943B2 (en) * 1998-07-28 2004-07-21 株式会社ジャパンエナジー Hydrorefining catalyst
JP5006516B2 (en) * 2002-10-10 2012-08-22 中国石油化工股▲分▼有限公司 Silicon-containing alumina support, method for preparing the same, and catalyst containing the alumina support
JP4658491B2 (en) * 2004-02-26 2011-03-23 Jx日鉱日石エネルギー株式会社 Production method of environment-friendly diesel oil
JP4472556B2 (en) * 2004-03-26 2010-06-02 コスモ石油株式会社 Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
FR2904242B1 (en) * 2006-07-28 2012-09-28 Inst Francais Du Petrole PROCESS FOR HYDRODESULFURING CUTS CONTAINING SULFUR COMPOUNDS AND OLEFINS IN THE PRESENCE OF A SUPPORTED CATALYST COMPRISING ELEMENTS OF GROUPS VIII AND VIB
FR2910352B1 (en) * 2006-12-21 2010-10-08 Inst Francais Du Petrole PROCESS FOR HYDROCONVERSION IN THE SLURRY PHASE OF HEAVY HYDROCARBON LOADS AND / OR CHARCOAL USING A SUPPORTED CATALYST
JP5228221B2 (en) * 2007-04-27 2013-07-03 コスモ石油株式会社 Method for producing hydrocarbon oil hydrotreating catalyst
JP5841481B2 (en) * 2012-03-30 2016-01-13 Jx日鉱日石エネルギー株式会社 Method for hydrotreating heavy residual oil
TWI594795B (en) * 2012-05-21 2017-08-11 蜆殼國際研究所 Improved catalyst and process for hydroconversion of a heavy feedstock
JP2014173025A (en) * 2013-03-11 2014-09-22 Jx Nippon Oil & Energy Corp Hydrogenation purification method for vacuum gas oil

Also Published As

Publication number Publication date
US20180016505A1 (en) 2018-01-18
WO2016194686A1 (en) 2016-12-08
JPWO2016194686A1 (en) 2018-03-15
EP3305874A4 (en) 2019-01-23
CA2986556A1 (en) 2016-12-08
KR20180013844A (en) 2018-02-07
EP3305874A1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
KR102061187B1 (en) Integrated hydroprocessing and fluid catalytic cracking for processing of a crude oil
KR102517485B1 (en) Systems and methods for converting heavy oil into petrochemical products
JP6770953B2 (en) Method for producing hydrotreated oil and method for producing catalytically cracked oil
JPS5850636B2 (en) Desulfurization treatment method for heavy hydrocarbon oil
WO2019106921A1 (en) Method for producing hydrocarbon oil
JP2020514473A (en) Conversion of crude oil to aromatic and olefinic petrochemicals
SA520411072B1 (en) Systems and methods for processing heavy oils by oil upgrading followed by distillation
CN105820840A (en) Method for processing heavy oil and residual oil and material containing heavy hydrocarbon
WO2020123374A1 (en) Upgrading polynucleararomatic hydrocarbon-rich feeds
JP5406629B2 (en) Method for producing highly aromatic hydrocarbon oil
JP6104762B2 (en) Method for producing hydrocarbon oil
CN112342058B (en) Method and system for treating catalytic cracking slurry oil
JP6548223B2 (en) Method of producing fuel oil base material
JP6812265B2 (en) How to treat pyrolyzed heavy light oil
KR20210044226A (en) Heavy base oil and manufacturing method without haze at 0℃
JP4766940B2 (en) Method for producing hydrocarbon oil
RU2723625C1 (en) Method for catalytic hydroforming of gas condensate residue
JP2011122122A (en) Hydrorefining method of hydrocarbon oil
JP5082138B2 (en) Operation method of direct desulfurization equipment
JP2012197350A (en) Hydrorefining method of heavy oil
JP5314355B2 (en) Method for producing hydrocarbon oil
US20220372385A1 (en) Process and system for hydrotreating deoiled asphalt
JP2008074998A (en) Manufacturing method of gasoline base material having high octane number
JP6568490B2 (en) Production method of light oil
JP5419671B2 (en) Hydrorefining method of hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200728

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200728

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200805

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R150 Certificate of patent or registration of utility model

Ref document number: 6770953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250