JP6812265B2 - How to treat pyrolyzed heavy light oil - Google Patents
How to treat pyrolyzed heavy light oil Download PDFInfo
- Publication number
- JP6812265B2 JP6812265B2 JP2017026720A JP2017026720A JP6812265B2 JP 6812265 B2 JP6812265 B2 JP 6812265B2 JP 2017026720 A JP2017026720 A JP 2017026720A JP 2017026720 A JP2017026720 A JP 2017026720A JP 6812265 B2 JP6812265 B2 JP 6812265B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- heavy
- desulfurization
- catalyst
- desulfurized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003921 oil Substances 0.000 claims description 241
- 239000000295 fuel oil Substances 0.000 claims description 87
- 238000006477 desulfuration reaction Methods 0.000 claims description 86
- 230000023556 desulfurization Effects 0.000 claims description 86
- 239000007789 gas Substances 0.000 claims description 58
- 239000002994 raw material Substances 0.000 claims description 48
- 238000000197 pyrolysis Methods 0.000 claims description 47
- 238000004523 catalytic cracking Methods 0.000 claims description 41
- 238000004821 distillation Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 27
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 27
- 238000005336 cracking Methods 0.000 claims description 25
- 239000012530 fluid Substances 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 13
- 239000003054 catalyst Substances 0.000 description 71
- 230000000694 effects Effects 0.000 description 15
- 238000005292 vacuum distillation Methods 0.000 description 14
- 238000004227 thermal cracking Methods 0.000 description 12
- 239000010779 crude oil Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 230000008929 regeneration Effects 0.000 description 7
- 238000011069 regeneration method Methods 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- 238000010998 test method Methods 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000003350 kerosene Substances 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- 229910052809 inorganic oxide Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 239000003209 petroleum derivative Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- -1 asphaltene Chemical compound 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 230000009970 fire resistant effect Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 239000002734 clay mineral Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000003009 desulfurizing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 229910021476 group 6 element Inorganic materials 0.000 description 2
- 239000003915 liquefied petroleum gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005504 petroleum refining Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910003294 NiMo Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、重質油の処理方法に関する。詳しくは、本発明は、減圧蒸留残渣油等を熱分解する重質油熱分解装置から得られる、熱分解重質軽油を効率的に処理する、重質油の処理方法に関する。 The present invention relates to a method for treating heavy oil. More specifically, the present invention relates to a method for treating heavy oil, which efficiently treats thermally decomposed heavy light oil obtained from a heavy oil pyrolysis apparatus that thermally decomposes vacuum distillation residual oil and the like.
近年、石油製品の需要は軽質化する傾向にあり、石油精製においては、ガソリン、灯油、軽油などの軽質油をより多く製造することが求められている。
このため、従来重油やアスファルトの原料として主に用いられていた減圧蒸留残渣油についても、さらに熱分解や接触分解を行って、軽質油の得率を上昇させることが求められている。
In recent years, the demand for petroleum products has tended to be lighter, and in petroleum refining, it is required to produce more light oils such as gasoline, kerosene and light oil.
For this reason, it is required that vacuum distillation residual oil, which has been mainly used as a raw material for heavy oil and asphalt, is further subjected to thermal cracking and catalytic cracking to increase the yield of light oil.
減圧蒸留残渣油から軽質油を製造する方法としては、減圧蒸留残渣油を重質油熱分解装置に導入して熱分解し、得られた分解ナフサ、分解軽油をそれぞれ水添脱硫して、脱硫ナフサ、脱硫灯油、脱硫軽油などを製造し、これらを各軽質油の原料とする方法が挙げられる。減圧蒸留残渣油を熱分解原料油として用いて熱分解し、これをさらに水素化脱硫することについては、たとえば特許文献1に記載されている。 As a method for producing light oil from vacuum distillation residual oil, the vacuum distillation residual oil is introduced into a heavy oil thermal decomposition apparatus and thermally decomposed, and the obtained decomposed naphtha and decomposed gas oil are hydrogenated and desulfurized to desulfurize. Examples thereof include a method of producing naphtha, desulfurized kerosene, desulfurized gas oil and the like, and using these as raw materials for each gas oil. For example, Patent Document 1 describes that a vacuum distillation residual oil is used as a thermal decomposition raw material oil for thermal decomposition and further hydrodesulfurized.
重質油熱分解装置における熱分解では、分解ナフサや分解軽油とともに、熱分解重質軽油が得られる。重質軽油留分は重油の原料として有用であるが、重油の需要は減少しているため、熱分解重質軽油からも軽質油の得率を上昇させることが求められている。このため、重質油熱分解装置から得られた熱分解重質軽油を水添脱硫し、水添脱硫で発生する脱硫灯油および脱硫軽油などの軽質分を、各軽質油の原料とするとともに、水添脱硫で得られる脱硫重質軽油をさらに流動接触分解の原料の一部として用いることが行われている。
このような状況において、更に軽質油の得率を上昇させる経済的な方法の出現が求められていた。
In the thermal decomposition in the heavy oil pyrolysis apparatus, the thermally decomposed heavy light oil can be obtained together with the decomposed naphtha and the decomposed gas oil. Although heavy gas oil fractions are useful as raw materials for heavy oil, since the demand for heavy oil is declining, it is required to increase the yield of light oil from pyrolyzed heavy oil. Therefore, the thermally cracked heavy oil obtained from the heavy oil cracking apparatus is hydrocracked, and light components such as desulfurized kerosene and desulfurized gas oil generated by the hydrodesulfurization are used as raw materials for each gas oil. Desulfurized heavy light oil obtained by hydrogenated desulfurization is further used as a part of a raw material for fluid cracking.
Under these circumstances, the emergence of economical methods to further increase the yield of light oil has been sought.
本発明は、重質油を効率的かつ経済的に処理する方法を提供することを課題としている。具体的には、重質油熱分解装置から得られる熱分解重質軽油を、簡便な方法で処理し、全体として処理効率および軽質油の得率を上昇させる、重質油の処理方法を提供することを課題としている。 An object of the present invention is to provide a method for efficiently and economically treating heavy oil. Specifically, it provides a method for treating heavy oil, which treats thermally decomposed heavy light oil obtained from a heavy oil pyrolysis apparatus by a simple method and increases the treatment efficiency and the yield rate of light oil as a whole. The challenge is to do.
本発明は以下の事項に関する。
〔1〕重質油を重質油熱分解装置(A)に導入して熱分解を行い、熱分解重質軽油を含む留分(a)を得る工程1と、
前記工程1で得られた熱分解重質軽油を含む留分(a)を、熱分解油脱硫装置(B)に導入して水素化脱硫を行い、脱硫重質軽油(b)を得る工程2と、
前記工程2で得られた脱硫重質軽油(b)の少なくとも一部を、流動接触分解装置(C)に導入して接触分解を行い、接触分解重質軽油(c)を得る工程3とを有し、
前記工程3で得られた接触分解重質軽油(c)の少なくとも一部を、前記熱分解重質軽油を含む留分(a)とともに熱分解油脱硫装置(B)に導入して、前記工程2を行うことを特徴とする重質油の処理方法。
〔2〕前記流動接触分解装置(C)に導入する原料油が、前記脱硫重質軽油(b)とともに、脱硫減圧軽油を含むことを特徴とする前記〔1〕に記載の重質油の処理方法。
〔3〕前記熱分解重質軽油を含む留分(a)が、30%留出温度が400〜430℃で、90%留出温度が500〜530℃であることを特徴とする前記〔1〕または〔2〕に記載の重質油の処理方法。
〔4〕熱分解油脱硫装置(B)に導入する前記接触分解重質軽油(c)が、30%留出温度が370〜400℃で、90%留出温度が410〜440℃であることを特徴とする前記〔1〕〜〔3〕のいずれかに記載の重質油の処理方法。
〔5〕前記工程2における水素化脱硫を、反応温度250〜450℃、水素分圧3〜20MPaの条件で行うことを特徴とする前記〔1〕〜〔4〕のいずれかに記載の重質油の処理方法。
The present invention relates to the following matters.
[1] Steps 1 of introducing heavy oil into the heavy oil thermal decomposition apparatus (A) and performing thermal decomposition to obtain a fraction (a) containing thermally decomposed heavy light oil.
Step 2 to obtain desulfurized heavy gas oil (b) by introducing the fraction (a) containing the pyrolysis heavy gas oil obtained in step 1 into the pyrolysis oil desulfurization apparatus (B) and performing hydrodesulfurization. When,
The step 3 of introducing at least a part of the desulfurized heavy light oil (b) obtained in the above step 2 into the fluid cracking apparatus (C) and performing catalytic cracking to obtain the catalytic cracking heavy oil (c). Have and
At least a part of the catalytically cracked heavy gas oil (c) obtained in the step 3 is introduced into the pyrolyzed oil desulfurization apparatus (B) together with the fraction (a) containing the pyrolyzed heavy gas oil, and the step. A method for treating heavy oil, which comprises performing 2.
[2] The treatment of the heavy oil according to the above [1], wherein the raw material oil to be introduced into the fluidized catalytic cracking apparatus (C) contains the desulfurized reduced pressure gas oil together with the desulfurized heavy oil (b). Method.
[3] The fraction (a) containing the thermally decomposed heavy light oil is characterized by having a 30% distillate temperature of 400 to 430 ° C. and a 90% distillate temperature of 500 to 530 ° C. [1]. ] Or [2]. The method for treating heavy oil.
[4] The catalytically cracked heavy light oil (c) introduced into the pyrolysis oil desulfurization apparatus (B) has a 30% distillation temperature of 370 to 400 ° C. and a 90% distillation temperature of 410 to 440 ° C. The method for treating heavy oil according to any one of the above [1] to [3].
[5] The weight according to any one of the above [1] to [4], wherein the hydrodesulfurization in the step 2 is carried out under the conditions of a reaction temperature of 250 to 450 ° C. and a hydrogen partial pressure of 3 to 20 MPa. How to treat oil.
本発明の重質油の処理方法によれば、設備構成の大幅な変更を行うことなく、簡便な方法により重質油を処理し、軽質油の得率の上昇と、経済的かつ効率的な運転を達成することができる。 According to the heavy oil treatment method of the present invention, heavy oil is treated by a simple method without drastically changing the equipment configuration, and the yield of light oil is increased, which is economical and efficient. Driving can be achieved.
以下、本発明について具体的に説明する。
本発明の重質油の処理方法は、
重質油を重質油熱分解装置(A)に導入して熱分解を行い、熱分解重質軽油を得る工程1(熱分解工程)と、
前記工程1で得られた熱分解重質軽油を、熱分解油脱硫装置(B)に導入して水素化脱硫を行い、脱硫重質軽油を得る工程2(脱硫工程)と、
前記工程2で得られた脱硫重質軽油の少なくとも一部を、流動接触分解装置(C)に導入して接触分解を行い、接触分解重質軽油を得る工程3(接触分解工程)とを有する。
Hereinafter, the present invention will be specifically described.
The method for treating heavy oil of the present invention is
Step 1 (pyrolysis step) of introducing heavy oil into the heavy oil thermal decomposition device (A) and performing thermal decomposition to obtain thermal decomposition heavy light oil.
Step 2 (desulfurization step) in which the pyrolysis heavy gas oil obtained in step 1 is introduced into the pyrolysis oil desulfurization apparatus (B) and hydrodesulfurized to obtain desulfurized heavy gas oil.
It has a step 3 (contact cracking step) of introducing at least a part of the desulfurized heavy gas oil obtained in the step 2 into a fluid cracking apparatus (C) and performing catalytic cracking to obtain a catalytic cracking heavy gas oil. ..
工程1(熱分解工程)
本発明に係る工程1は、熱分解原料油である重質油を重質油熱分解装置(A)に導入して熱分解を行い、熱分解重質軽油を含む留分(a)を得る熱分解工程である。
工程1に供する重質油は、重質油熱分解装置(A)で熱分解を行う熱分解原料油であって、特に制限されるものではないが、常圧蒸留残渣油、減圧蒸留残渣油、その他の重質油、及びこれらの2種以上を混合した混合油が挙げられる。常圧蒸留残渣油は、特に制限はなく、原油を常圧蒸留して、蒸発留分を分離した後の残渣分である。減圧蒸留残渣油は、特に制限はなく、常圧蒸留残渣油を減圧蒸留して、蒸発留分を分離した後の残渣分である。その他の重質油としては、常圧蒸留残渣油および減圧蒸留残渣油以外の重質の炭化水素油を特に制限なく用いることができ、たとえば、流動接触分解装置から得られる接触分解重質軽油、流動接触分解装置から得られるスラリーオイル、エチレンクラッカーの残渣油等が挙げられる。
Process 1 (pyrolysis process)
In step 1 according to the present invention, heavy oil, which is a pyrolysis raw material oil, is introduced into a heavy oil pyrolysis apparatus (A) and pyrolyzed to obtain a fraction (a) containing pyrolyzed heavy light oil. It is a pyrolysis process.
The heavy oil used in step 1 is a thermal decomposition raw material oil that is thermally decomposed by the heavy oil thermal decomposition apparatus (A), and is not particularly limited, but is an atmospheric distillation residual oil and a reduced pressure distillation residual oil. , Other heavy oils, and mixed oils in which two or more of these are mixed. The atmospheric distillation residual oil is not particularly limited, and is the residue after atmospheric distillation of crude oil and separation of evaporation fractions. The vacuum distillation residual oil is not particularly limited, and is the residue after atmospheric distillation of the atmospheric distillation residual oil and separating the evaporated fraction. As other heavy oils, heavy hydrocarbon oils other than atmospheric pressure distilled residue oil and vacuum distillation residual oil can be used without particular limitation. For example, catalytic cracking heavy light oil obtained from a fluid cracking apparatus, Examples thereof include slurry oil obtained from a fluidized catalytic cracking apparatus, residual oil of ethylene crackers, and the like.
工程1に供する重質油が、常圧蒸留残渣油、減圧蒸留残渣油およびその他の重質油から選ばれる2種以上の重質油の混合油である場合、これらの混合割合は、特に制限されず、適宜調節される。 When the heavy oil to be subjected to step 1 is a mixed oil of two or more kinds of heavy oils selected from atmospheric distillation residual oil, vacuum distillation residual oil and other heavy oils, the mixing ratio thereof is particularly limited. It is not adjusted as appropriate.
本発明において、工程1に供する重質油の成分として用いられる、常圧蒸留残渣油、減圧蒸留残渣油、およびその他の重質油の原料となる原油は、特に制限されず、いかなる原油を蒸留原料に用いて得られたものであってもよい。原油種は特に制限されないが、例えば、アラビアンヘビー、アラビアンミディアム、アラビアンライト、アラビアンエクストラライト、クウェート、バスラ、オマーン、マーバン、ムバラスブレンド、ザクム、アッパーザクム、カタールランド、カタールマリン、ウムシャイフ、シリー、カフジ、エスポ等が挙げられ、いずれか1種であっても、2種以上の組み合わせであってもよい。 In the present invention, the atmospheric distillation residual oil, the vacuum distillation residual oil, and the crude oil used as the raw material of the other heavy oils used as the components of the heavy oil used in the step 1 are not particularly limited, and any crude oil is distilled. It may be obtained by using it as a raw material. Crude oil species are not particularly limited, but for example, Arabian Heavy, Arabian Medium, Arabian Light, Arabian Extra Light, Kuwait, Basra, Oman, Marvan, Mubaras Blend, Zakum, Upper Zakum, Qatar Land, Qatar Marine, Umshaif, Silly, Examples include Khafji, Espo, etc., and may be any one type or a combination of two or more types.
本発明では、工程1に供する重質油としては、常圧蒸留残渣油及び減圧蒸留残渣油の合計の含有量が、好ましくは40容量%以上、より好ましくは70容量%以上であるが望ましい。より好ましくは、減圧蒸留残渣油を40容量%以上、さらに好ましくは70容量%以上含有する重質油を用いることが好ましい。 In the present invention, as the heavy oil to be used in step 1, the total content of the atmospheric distillation residual oil and the vacuum distillation residual oil is preferably 40% by volume or more, more preferably 70% by volume or more. More preferably, it is preferable to use a heavy oil containing 40% by volume or more, more preferably 70% by volume or more of the vacuum distillation residual oil.
工程1では、熱分解原料油である重質油を、重質油熱分解装置(A)に導入して熱分解を行う。この熱分解処理の条件としては、熱分解温度は、好ましくは490〜510℃、特に好ましくは495〜505℃であり、また、熱分解処理の際の圧力(ゲージ圧)は、好ましくは0.01〜0.6MPaG、特に好ましくは0.05〜0.4MPaGである。また、熱分解処理の雰囲気は、スチームである。また、熱分解処理中に過度の発泡が認められる場合は、消泡剤を投入する事もある。消泡剤としては、一般的にシリコン系の消泡剤などを用いることができる。 In step 1, heavy oil, which is a thermal decomposition raw material oil, is introduced into the heavy oil thermal decomposition apparatus (A) to perform thermal decomposition. As the conditions for this pyrolysis treatment, the thermal decomposition temperature is preferably 490 to 510 ° C., particularly preferably 495 to 505 ° C., and the pressure (gauge pressure) during the thermal decomposition treatment is preferably 0. It is 01 to 0.6 MPaG, particularly preferably 0.05 to 0.4 MPaG. Also, the atmosphere of the pyrolysis treatment is steam. In addition, if excessive foaming is observed during the thermal decomposition treatment, an antifoaming agent may be added. As the defoaming agent, a silicon-based defoaming agent or the like can be generally used.
工程1では、熱分解原料油である重質油を熱分解装置で熱分解すると、熱分解生成物が生成するので、この熱分解生成物から、沸点範囲が通常170〜600℃、好ましくは沸点範囲が200〜570℃の留分を分留して、熱分解装置から留出させて、その留分を熱分解処理油として得る。熱分解処理油の硫黄分含有量は好ましくは2〜6質量%、窒素分含有量は好ましくは0.5〜6質量%、残留炭素は好ましくは0.1〜4質量%である。この熱分解処理油は、熱分解重質軽油を含む留分(a)を含有するものであって、後述する工程2の水素化脱硫に供することができる。熱分解処理油は、全体を一括して工程2の水素化脱硫に供してもよく、沸点により2種以上の留分に分留して、それぞれを水素化脱硫に供してもよい。 In step 1, when heavy oil, which is a pyrolysis raw material oil, is thermally decomposed by a pyrolysis apparatus, a pyrolysis product is produced. Therefore, from this pyrolysis product, the boiling point range is usually 170 to 600 ° C., preferably the boiling point. A fraction having a range of 200 to 570 ° C. is fractionated and distilled from a pyrolysis apparatus, and the fraction is obtained as a pyrolysis treatment oil. The sulfur content of the pyrolysis treatment oil is preferably 2 to 6% by mass, the nitrogen content is preferably 0.5 to 6% by mass, and the residual carbon is preferably 0.1 to 4% by mass. This pyrolysis-treated oil contains a fraction (a) containing a pyrolysis heavy light oil, and can be used for hydrodesulfurization in step 2 described later. The entire pyrolysis-treated oil may be collectively subjected to hydrodesulfurization in step 2, or may be fractionated into two or more fractions depending on the boiling point, and each of them may be subjected to hydrodesulfurization.
本発明では、好ましくは、重質油熱分解装置(A)から得られた熱分解生成物を、熱分解重質軽油を含む留分(a)と、分解ナフサ・分解軽油等の軽質留分とに分割してそれぞれを水素化脱硫に供することが望ましく、たとえば、沸点範囲が200〜560℃程度の分解重質軽油留分のみを、熱分解重質軽油を含む留分(a)として熱分解油脱硫装置(B)に導入して工程2の水素化脱硫に供するとともに、分解ナフサ及び分解軽油の留分をそれぞれ別個の熱分解油脱硫装置に導入して水素化脱硫することができる。 In the present invention, preferably, the thermal decomposition product obtained from the heavy oil thermal decomposition apparatus (A) is used as a fraction (a) containing thermally decomposed heavy light oil and a light fraction such as decomposed naphtha / decomposed gas oil. It is desirable to divide each of them into hydrodesulfurization and subject them to hydrodesulfurization. For example, only the decomposed heavy gas oil fraction having a boiling point range of about 200 to 560 ° C. is heated as the fraction (a) containing the thermally decomposed heavy gas oil. It can be introduced into the cracked oil desulfurization apparatus (B) and subjected to hydrodesulfurization in step 2, and the fractions of the cracked naphtha and the cracked gas oil can be introduced into separate thermally cracked oil desulfurization apparatus for hydrodesulfurization.
本発明において、熱分解油脱硫装置(B)に導入する熱分解重質軽油を含む留分(a)は、好ましくは、30%留出温度が350〜450℃で、90%留出温度が480〜550℃である留分であり、より好ましくは、30%留出温度が400〜430℃で、90%留出温度が500〜530℃である留分である。
なお、熱分解生成物のうち熱分解処理油を除くものは、石油コークス原料等として用いることができる。
In the present invention, the fraction (a) containing the pyrolysis heavy gas oil to be introduced into the pyrolysis oil desulfurization apparatus (B) preferably has a 30% distillation temperature of 350 to 450 ° C. and a 90% distillation temperature. The fraction is 480 to 550 ° C., more preferably the fraction has a 30% distillation temperature of 400 to 430 ° C. and a 90% distillation temperature of 500 to 530 ° C.
Of the pyrolysis products, those excluding the pyrolysis-treated oil can be used as a raw material for petroleum coke.
工程2(脱硫工程)
本発明に係る工程2は、前記工程1で得られた熱分解重質軽油を含む留分(a)を、熱分解油脱硫装置(B)に導入して水素化脱硫を行い、脱硫重質軽油を得る脱硫工程である。
Step 2 (desulfurization step)
In step 2 according to the present invention, the fraction (a) containing the pyrolysis heavy gas oil obtained in the step 1 is introduced into the pyrolysis oil desulfurization apparatus (B) to perform hydrodesulfurization, and the desulfurized heavy material is carried out. This is a desulfurization process for obtaining light oil.
本発明では、後述する工程3で得られる接触分解重質軽油(c)の少なくとも一部を、分解重質軽油を含む留分(a)とともに熱分解油脱硫装置(B)に導入して、水素化脱硫を行う。すなわち、工程2において水素化脱硫される脱硫原料油は、前記工程1で得られた熱分解重質軽油を含む留分(a)と、接触分解重質軽油(c)の少なくとも一部とを含有する。工程3で得られる接触分解重質軽油(c)100容量%のうち、熱分解油脱硫装置(B)に導入する割合は、特に限定されるものではないが、通常40容量%以上、好ましくは60容量%以上、より好ましくは80容量%以上であり、全量を熱分解油脱硫装置(B)に導入してもよい。 In the present invention, at least a part of the catalytically cracked heavy gas oil (c) obtained in step 3 described later is introduced into the pyrolysis oil desulfurization apparatus (B) together with the fraction (a) containing the cracked heavy gas oil. Perform hydrodesulfurization. That is, the desulfurization raw material oil hydrodesulfurized in step 2 is a distillate (a) containing the thermally cracked heavy gas oil obtained in step 1 and at least a part of the catalytically cracked heavy gas oil (c). contains. The ratio of the catalytically cracked heavy light oil (c) obtained in step 3 to be introduced into the pyrolysis oil desulfurization apparatus (B) is not particularly limited, but is usually 40% by volume or more, preferably 40% by volume or more. It is 60% by volume or more, more preferably 80% by volume or more, and the entire amount may be introduced into the pyrolysis oil desulfurization apparatus (B).
工程2では、熱分解重質軽油を含む留分(a)と、接触分解重質軽油(c)の少なくとも一部とを含有する脱硫原料油を、高温加圧下、脱硫触媒の共存下で水素化脱硫する。
工程2で用いられる脱硫触媒は、耐火性無機酸化物担体に水素化活性成分が担持されたものである。脱硫触媒の耐火性無機酸化物担体としては、アルミナ、シリカ、チタニア、マグネシア等の単独物又は混合物が用いられ、あるいは、更にこれらにジルコニア、酸化ホウ素、酸化亜鉛等の各種酸化物やYゼオライト、ZSM−5ゼオライト等の各種ゼオライトが混合されたものが用いられる。脱硫触媒に担持されている水素化活性成分としては、モリブデン、タングステン等の長周期型周期表における第6族元素、コバルト、ニッケル等の長周期型周期表における第9族元素及び第10族元素が用いられ、また、必要に応じてこれらの金属の他、リン、鉄、白金等が用いられる。
In step 2, a desulfurization raw material oil containing a fraction (a) containing a thermally cracked heavy gas oil and at least a part of a catalytically cracked heavy gas oil (c) is hydrogenated under high temperature pressurization and in the coexistence of a desulfurization catalyst. Chemical desulfurization.
The desulfurization catalyst used in step 2 is a refractory inorganic oxide carrier on which a hydrogenation active component is supported. As the fire-resistant inorganic oxide carrier of the desulfurization catalyst, a single substance or a mixture of alumina, silica, titania, magnesia and the like is used, or further, various oxides such as zirconia, boron oxide and zinc oxide and Y zeolite are used. A mixture of various zeolites such as ZSM-5 zeolite is used. The hydroactive components carried on the desulfurization catalyst include group 6 elements in the long periodic table such as molybdenum and tungsten, and group 9 and group 10 elements in the long periodic table such as cobalt and nickel. Is used, and if necessary, phosphorus, iron, platinum, etc. are used in addition to these metals.
脱硫触媒の平均細孔直径は、特に限定されるものではないが、好ましくは5〜15nm、特に好ましくは6〜12nmである。脱硫触媒の平均細孔径が上記範囲であることにより、安定した耐金属性能を有し、十分な脱硫性能を得易くなる。脱硫触媒の比表面積は、好ましくは150〜350m2/g、特に好ましくは200〜320m2/gである。脱硫触媒の比表面積が、上記範囲であることにより、十分な脱硫性能を得易くなる。また、脱硫触媒の平均細孔直径±1.5nmの細孔が占める容積は、好ましくは全細孔容積の50%以上、特に好ましくは60%以上必要である。脱硫触媒の平均細孔直径±1.5nmの細孔が占める容積が上記範囲であることにより、十分な脱硫活性を得易くなる。 The average pore diameter of the desulfurization catalyst is not particularly limited, but is preferably 5 to 15 nm, particularly preferably 6 to 12 nm. When the average pore diameter of the desulfurization catalyst is in the above range, it has stable metal resistance and it is easy to obtain sufficient desulfurization performance. The specific surface area of the desulfurization catalyst is preferably 150 to 350 m 2 / g, particularly preferably 200 to 320 m 2 / g. When the specific surface area of the desulfurization catalyst is in the above range, it becomes easy to obtain sufficient desulfurization performance. Further, the volume occupied by the pores having an average pore diameter of ± 1.5 nm of the desulfurization catalyst is preferably 50% or more, particularly preferably 60% or more of the total pore volume. When the volume occupied by the pores having an average pore diameter of ± 1.5 nm of the desulfurization catalyst is within the above range, it becomes easy to obtain sufficient desulfurization activity.
工程2では、脱硫原料油から金属分を除去するための脱金属触媒を用いて、必要に応じて脱金属を行った後に、水素化脱硫を行うこともできる。例えば、脱硫原料油から金属分を除去するための脱金属触媒を前段に、脱硫触媒をその後段に充填し、原料油をそれぞれの触媒床に順に供給して、脱金属と水素化脱硫を行うことができる。 In step 2, hydrodesulfurization can also be performed after demetallizing, if necessary, using a demetallizing catalyst for removing metal components from the desulfurization raw material oil. For example, a demetallizing catalyst for removing metal from the desulfurization raw material oil is filled in the first stage, a desulfurization catalyst is filled in the subsequent stage, and the raw material oil is sequentially supplied to each catalyst bed to perform demetallization and hydrodesulfurization. be able to.
脱金属触媒は、耐火性無機酸化物担体に水素化活性成分が担持されたものであり、硫黄分、アスファルテン分、ニッケルやバナジウム等の重金属分を含有する原料油から金属分を効果的に除去するために、触媒床前段部分に充填される。脱金属触媒の耐火性無機酸化物担体としては、アルミナ、シリカ、アルミナ−シリカ等の単独物又は混合物が用いられ、あるいは、更にこれらに酸化ホウ素、酸化亜鉛等の各種金属が混合されたものが用いられる。脱金属触媒に担持される水素化活性成分としては、モリブデン、タングステン等長周期型周期表における第6族元素、コバルト、ニッケル等の長周期型周期表における第9族元素及び第10族元素が用いられる。 The demetallization catalyst is a fire-resistant inorganic oxide carrier on which a hydrogenation active component is supported, and effectively removes metals from raw materials oil containing heavy metals such as sulfur, asphaltene, and nickel and vanadium. In order to do so, the front part of the catalyst bed is filled. As the fire-resistant inorganic oxide carrier of the demetallizing catalyst, a single substance or a mixture of alumina, silica, alumina-silica, etc. is used, or a mixture of these with various metals such as boron oxide and zinc oxide is used. Used. Group 6 elements in the long periodic table such as molybdenum and tungsten, group 9 elements and group 10 elements in the long periodic table such as cobalt and nickel are examples of the hydroactive components carried on the demetallization catalyst. Used.
脱金属触媒の平均細孔直径は、好ましくは15〜25nm、特に好ましくは18〜23nmである。脱金属触媒の平均細孔直径が上記範囲であることにより、十分な脱金属活性が得易く、水素化活性及び触媒強度が高くなり易い。脱金属触媒の細孔容積は、好ましくは0.6〜0.8ml/g、特に好ましくは0.65〜0.8ml/gである。脱金属触媒の細孔容積が上記範囲であることにより、十分な触媒寿命と触媒強度を有し、安定した運転をし易くなる。 The average pore diameter of the demetallizing catalyst is preferably 15 to 25 nm, particularly preferably 18 to 23 nm. When the average pore diameter of the demetallizing catalyst is in the above range, sufficient demetallizing activity can be easily obtained, and hydrogenation activity and catalyst strength tend to be high. The pore volume of the demetallizing catalyst is preferably 0.6 to 0.8 ml / g, particularly preferably 0.65 to 0.8 ml / g. When the pore volume of the demetallized catalyst is in the above range, it has a sufficient catalyst life and catalyst strength, and stable operation is facilitated.
脱硫触媒及び脱金属触媒の触媒強度は、SCS(Side Crushing Strength)で、好ましくは9N/mm以上、特に好ましくは13N/mm以上である。SCSは、触媒を横置きにして過重を加え、触媒が破壊される荷質量を求め、触媒長さで割った値であり、触媒単位長さ当たりの破壊強度を示している。脱硫触媒及び脱金属触媒のSCSが上記範囲であることにより、反応装置内での触媒割れが起こり難くなり、継続的な運転をし易くなる。 The catalyst strength of the desulfurization catalyst and the demetallization catalyst is SCS (Side Compressing Strength), preferably 9 N / mm or more, and particularly preferably 13 N / mm or more. The SCS is a value obtained by laying the catalyst horizontally, applying a load, determining the load mass at which the catalyst is destroyed, and dividing by the catalyst length, and indicates the fracture strength per unit length of the catalyst. When the SCS of the desulfurization catalyst and the demetallization catalyst is in the above range, the catalyst cracking in the reactor is less likely to occur, and continuous operation is facilitated.
脱金属触媒及び脱硫触媒は、新触媒であっても再生触媒であってもよい。また、脱硫触媒と脱金属触媒の割合は、その運転条件に合わせて適宜選択され、脱金属触媒の比率が高い程、金属による活性劣化を防ぐ効果が高くなり、また、脱硫触媒の比率が高い程、脱硫活性が高くなる。 The demetallization catalyst and the desulfurization catalyst may be a new catalyst or a regeneration catalyst. The ratio of the desulfurization catalyst to the demetallization catalyst is appropriately selected according to the operating conditions, and the higher the ratio of the demetallization catalyst, the higher the effect of preventing the activity deterioration due to the metal, and the higher the ratio of the desulfurization catalyst. The higher the desulfurization activity, the higher the desulfurization activity.
工程2における水素化脱硫の条件は、工程2により得ようとする脱硫処理油の目標硫黄含有量と脱硫触媒の活性とを考慮して、適宜選択される。
工程2における水素化脱硫の反応温度は、好ましくは250〜450℃、特に好ましくは300〜400℃であり、水素分圧は、好ましくは3〜20MPa、より好ましくは5〜17MPa、特に好ましくは8〜15MPaである。水素/油比は、好ましくは1000〜3000m3(normal)/m3、特に好ましくは1500〜2500m3(normal)/m3であり、液空間速度は、好ましくは0.1〜3.0h-1、特に好ましくは0.15〜2.0h-1である。
The conditions for hydrodesulfurization in step 2 are appropriately selected in consideration of the target sulfur content of the desulfurized oil to be obtained in step 2 and the activity of the desulfurization catalyst.
The reaction temperature of hydrodesulfurization in step 2 is preferably 250 to 450 ° C., particularly preferably 300 to 400 ° C., and the partial pressure of hydrogen is preferably 3 to 20 MPa, more preferably 5 to 17 MPa, particularly preferably 8. It is ~ 15 MPa. Hydrogen / oil ratio is preferably 1000~3000m 3 (normal) / m 3 , particularly preferably 1500~2500m 3 (normal) / m 3 , the liquid space velocity is preferably 0.1~3.0H - 1 , particularly preferably 0.15 to 2.0 h -1 .
水素化脱硫の反応温度が、上記範囲であることにより、脱硫触媒の活性が十分発揮され易く、原料油の熱分解が進行し過ぎないので、水素化脱硫を円滑に行い易くなり、また、脱硫触媒の活性劣化を抑制し易くなる。水素化脱硫の水素分圧が、上記範囲であることにより、水素化反応が十分に進行し易くなり、装置建設費用及び運転費用の増大を避け易くなる。水素化脱硫の水素/油比が、上記範囲であることにより、脱硫触媒の活性が発揮され易くなり、経済性が高くなり易い。水素化脱硫の液空間速度が、上記範囲であることにより、経済性を確保し易く、脱硫触媒の活性が十分に発揮され易くなる。 When the reaction temperature of hydrodesulfurization is within the above range, the activity of the desulfurization catalyst is easily exhibited, and the thermal decomposition of the raw material oil does not proceed too much, so that hydrodesulfurization can be smoothly performed, and desulfurization can be easily performed. It becomes easy to suppress the deterioration of the activity of the catalyst. When the hydrogen partial pressure of hydrodesulfurization is within the above range, the hydrogenation reaction can easily proceed sufficiently, and it becomes easy to avoid an increase in equipment construction cost and operation cost. When the hydrogen / oil ratio of hydrodesulfurization is in the above range, the activity of the desulfurization catalyst is likely to be exhibited, and the economic efficiency is likely to be high. When the liquid space velocity of hydrodesulfurization is in the above range, it is easy to secure economic efficiency and the activity of the desulfurization catalyst is easily exhibited.
工程2を行い得られる脱硫処理油中の硫黄分含有量は、好ましくは0.3質量%以下である。脱硫処理油中の硫黄分含有量が、上記範囲であることにより、後述する工程3における流動接触分解装置(C)の原料として好適に利用できるほか、場合によっては一部をC重油の基材として利用することもできる。 The sulfur content in the desulfurized oil obtained in step 2 is preferably 0.3% by mass or less. When the sulfur content in the desulfurized oil is within the above range, it can be suitably used as a raw material for the fluid cracking apparatus (C) in step 3 described later, and in some cases, a part of it is a base material of heavy oil C. It can also be used as.
工程2では、上述の通り高温高圧条件下で水素化脱硫を行うため、脱硫原料油が、工程1で得られた熱分解重質軽油(a)と工程3で得られた接触分解重質軽油(c)のみからなる場合にも、通常、脱硫処理油は、脱硫重質軽油(b)とともに、脱硫軽油、脱硫灯油、脱硫ナフサ、ガス成分などの軽質成分を含む。 In step 2, hydrodesulfurization is performed under high temperature and high pressure conditions as described above, so that the desulfurization raw material oil is the thermally cracked heavy gas oil (a) obtained in step 1 and the catalytically cracked heavy gas oil obtained in step 3. Even when it is composed of only (c), the hydrodesulfurized oil usually contains hydrodesulfurized gas oil (b) as well as light components such as hydrodesulfurized gas oil, hydrodesulfurized kerosene, hydrodesulfurized naphtha, and gas components.
本発明では、工程2における軽質成分の得率が、工程3で得られた接触分解重質軽油(c)を工程2に導入しない場合と比較して予想外に高いものとなる。
工程2で得られた脱硫処理油のうち、沸点範囲200〜560℃程度の脱硫重質軽油(b)の少なくとも一部は、工程3に供する。
In the present invention, the yield of the light component in step 2 is unexpectedly higher than that in the case where the catalytically cracked heavy light oil (c) obtained in step 3 is not introduced into step 2.
Of the desulfurized oil obtained in step 2, at least a part of the desulfurized heavy light oil (b) having a boiling point range of about 200 to 560 ° C. is subjected to step 3.
工程3(接触分解工程)
本発明の工程3は、前記工程2で得られた脱硫重質軽油(c)の少なくとも一部を、流動接触分解装置(FCC装置)(C)に導入して接触分解を行い、接触分解重質油(c)を含む接触分解処理油を得る、接触分解工程である。
Step 3 (contact cracking step)
In step 3 of the present invention, at least a part of the desulfurized heavy light oil (c) obtained in step 2 is introduced into a fluid cracking apparatus (FCC apparatus) (C) to perform catalytic cracking, and catalytic cracking weight is performed. This is a catalytic cracking step of obtaining a catalytic cracking oil containing the quality oil (c).
工程3では、工程2で得られた脱硫処理油のうち、たとえば沸点範囲が200〜560℃程度である脱硫重質軽油(c)のみを、接触分解原料として流動接触分解装置(C)に導入してもよく、脱硫重質軽油(c)とその他の炭化水素油とを流動接触分解装置(C)に導入してもよい。すなわち工程3においては、脱硫重質軽油(c)とともに、その他の炭化水素油を接触分解原料油として用いてもよい。 In step 3, of the desulfurized oils obtained in step 2, for example, only the desulfurized heavy light oil (c) having a boiling point range of about 200 to 560 ° C. is introduced into the fluid cracking apparatus (C) as a catalytic cracking raw material. Alternatively, the desulfurized heavy light oil (c) and other hydrocarbon oil may be introduced into the fluid cracking apparatus (C). That is, in step 3, other hydrocarbon oil may be used as the catalytic cracking raw material oil together with the desulfurized heavy light oil (c).
その他の炭化水素油としては、あらかじめ水素化脱硫および水素化分解された重質油が好ましく用いられ、たとえば、間接脱硫重油および直接脱硫重油などが挙げられる。間接脱硫重油には、たとえば、原油の常圧蒸留にて得られる重質軽油および減圧軽油などを間接脱硫装置にて脱硫処理して得られる脱硫減圧軽油などが挙げられる。また、間接脱硫重油と溶剤脱れき装置から得られる脱れき油を原料油として併用してもよい。一方、直接脱硫重油には、たとえば、原油の常圧蒸留残油および減圧蒸留残油、重質軽油、接触分解残油、ビスブレーキング油ならびにビチューメンなどの密度の高い石油留分を重油直接脱硫装置において水素化脱硫及び水素化分解して得られた脱硫重油などが挙げられる。その他の炭化水素油としては、これらのうち、減圧蒸留装置から得られた減圧軽油を脱硫した、脱硫減圧軽油を好適に用いることができる。 As the other hydrocarbon oil, a heavy oil that has been hydrodesulfurized and hydrodecomposed in advance is preferably used, and examples thereof include indirect desulfurized heavy oil and direct desulfurized heavy oil. Examples of the indirect desulfurized heavy oil include desulfurized reduced pressure light oil obtained by desulfurizing a heavy light oil and a reduced pressure light oil obtained by atmospheric distillation of crude oil with an indirect desulfurization apparatus. Further, the indirect desulfurized heavy oil and the desulfurized oil obtained from the solvent stripping device may be used in combination as the raw material oil. On the other hand, as direct desulfurization heavy oil, for example, high-density petroleum distillates such as atmospheric distillation residual oil and vacuum distillation residual oil of crude oil, heavy gas oil, catalytic cracking residual oil, bisbraking oil and bitumen are directly desulfurized. Examples thereof include hydrodesulfurized and desulfurized heavy oil obtained by hydrocracking in an apparatus. As the other hydrocarbon oil, among these, desulfurized reduced pressure gas oil obtained by desulfurizing the vacuum light oil obtained from the vacuum distillation apparatus can be preferably used.
本発明では、工程3において流動接触分解装置(C)に導入する接触分解原料油100容量%のうち、好ましくは工程2で得られた脱硫重質軽油(c)が10容量%以上、より好ましくは15〜40容量%程度含まれていることが望ましい。 In the present invention, of the 100% by volume of the catalytic cracking raw material oil introduced into the fluid cracking apparatus (C) in step 3, the desulfurized heavy light oil (c) obtained in step 2 is preferably 10% by volume or more, more preferably. Is preferably contained in an amount of about 15 to 40% by volume.
流動接触分解装置(C)は、触媒に接触分解原料油を接触させて、原料油を分解する反応塔と、触媒を再生する再生塔とを有する装置であり、公知のものを使用することができる。流動接触分解装置(C)では、触媒に原料油を接触させて原料油を分解し、反応塔内で分解生成物と触媒とを分離し、分離した触媒を再生塔へ移送し、再生塔内で触媒上のコークを燃焼させて、触媒を再生し、再生した触媒は、接触分解原料油の分解に再び使用される。 The flow catalytic cracking apparatus (C) is an apparatus having a reaction tower for cracking the raw material oil by contacting the catalyst with the catalytic cracking raw material oil and a regeneration tower for regenerating the catalyst, and known ones can be used. it can. In the fluidized catalytic cracking apparatus (C), the raw material oil is brought into contact with the catalyst to decompose the raw material oil, the decomposition product and the catalyst are separated in the reaction tower, the separated catalyst is transferred to the regeneration tower, and the inside of the regeneration tower is used. The coke on the catalyst is burned in the catalyst to regenerate the catalyst, and the regenerated catalyst is used again for cracking the catalytic cracking feedstock.
流動接触分解装置(C)で使用される触媒としては、粘土鉱物を10〜75質量%、結晶性アルミノ珪酸塩を20〜60質量%、アルミナバインダーを5〜40質量%含有してなり、かつ前記粘土鉱物の平均粒子径が1μm以下で、90質量%の粒子径が2μm以下であることを特徴とする炭化水素油の接触分解触媒が知られている(たとえば、特開2008−173583号公報参照)。このような接触分解触媒を用いることにより、FCCガソリンを高収率で得ることができる。 The catalyst used in the fluid cracking apparatus (C) contains 10 to 75% by mass of clay mineral, 20 to 60% by mass of crystalline aluminosilicate, and 5 to 40% by mass of an alumina binder. A catalytic cracking catalyst of a hydrocarbon oil characterized in that the average particle size of the clay mineral is 1 μm or less and the particle size of 90% by mass is 2 μm or less is known (for example, Japanese Patent Application Laid-Open No. 2008-173583). reference). By using such a catalytic cracking catalyst, FCC gasoline can be obtained in high yield.
流動接触分解装置(C)の運転条件は、原料油の種類および量、触媒の種類および量、目的とする生成物の得率、再生塔に導入される触媒の状態等を鑑みて適宜調整して決定すればよい。したがって、流動接触分解装置(C)の運転条件は、特に限定されるものではないが、たとえば、反応塔20の出口温度が、好ましくは450℃以上550℃以下であり、より好ましくは470℃以上540℃以下であり、さらに好ましくは490℃以上530℃以下である条件を採用することができる。また、再生塔においては、使用済み触媒と空気とが導入され、触媒上のコークを燃焼させて、使用済みの触媒を再生するが、たとえば、再生塔内を640〜800℃の温度として運転することができる。 The operating conditions of the flow catalytic cracking apparatus (C) are appropriately adjusted in consideration of the type and amount of raw material oil, the type and amount of catalyst, the yield of the target product, the state of the catalyst introduced into the regeneration tower, and the like. You can decide. Therefore, the operating conditions of the flow catalytic cracking apparatus (C) are not particularly limited, but for example, the outlet temperature of the reaction tower 20 is preferably 450 ° C. or higher and 550 ° C. or lower, more preferably 470 ° C. or higher. Conditions of 540 ° C. or lower, more preferably 490 ° C. or higher and 530 ° C. or lower can be adopted. Further, in the regeneration tower, the used catalyst and air are introduced to burn the cork on the catalyst to regenerate the used catalyst. For example, the inside of the regeneration tower is operated at a temperature of 640 to 800 ° C. be able to.
接触分解装置(C)の反応塔では、接触分解重質軽油(c)を含む分解生成物が生成する。分解生成物は、通常、併設される蒸留塔により洗浄および精製され、各留分に分離されて排出される。各留分の分離は、所望の製品性状に従って行われ、特に限定されるものではないが、たとえば、燃料ガス、液化石油ガス(LPG)、ナフサ、ガソリン、接触分解軽油(LCO)、接触分解重質軽油(c)、接触分解ボトム油(スラリーオイル)等の各留分に分離される。 In the reaction column of the catalytic cracking apparatus (C), cracking products containing the catalytic cracking heavy light oil (c) are produced. The decomposition products are usually washed and purified by an attached distillation column, separated into each fraction, and discharged. Separation of each fraction is carried out according to desired product properties, and is not particularly limited, for example, fuel gas, liquefied petroleum gas (LPG), naphtha, gasoline, catalytic cracked gas oil (LCO), catalytic cracking weight. It is separated into fractions such as quality light oil (c) and catalytic cracking bottom oil (slurry oil).
本発明では、このうち、接触分解重質軽油(c)の少なくとも一部を、前述の熱分解油脱硫装置(B)に導入して工程2を行う。
熱分解油脱硫装置(B)に導入する接触分解重質軽油(c)は、好ましくは、30%留出温度が330〜430℃で、90%留出温度が400〜460℃である留分であり、より好ましくは、30%留出温度が370〜400℃で、90%留出温度が410〜440℃である留分である。
In the present invention, at least a part of the catalytically cracked heavy light oil (c) is introduced into the above-mentioned pyrolysis oil desulfurization apparatus (B) to perform step 2.
The catalytically cracked heavy light oil (c) introduced into the pyrolysis oil desulfurization apparatus (B) preferably has a 30% distillate temperature of 330 to 430 ° C. and a 90% distillate temperature of 400 to 460 ° C. More preferably, the fraction has a 30% distillation temperature of 370 to 400 ° C. and a 90% distillation temperature of 410 to 440 ° C.
本発明では、上述した工程1(熱分解工程)、工程2(脱硫工程)および工程3(接触分解工程)により重質油を処理するに当たり、工程3で得た接触分解重質軽油(c)の少なくとも一部を、工程1で得た熱分解重質軽油を含む留分(a)とともに熱分解油脱硫装置(B)に導入して工程2を行う。接触分解重質軽油(c)は、通常少なくとも一度脱硫工程を経た接触分解原料油を用いて得られたものであるが、高温高圧条件で反応が行われる工程2に導入することにより、さらに分解が生じ、軽質油分の得率の変化を生じると考えられる。 In the present invention, in treating heavy oil by the above-mentioned steps 1 (thermal cracking step), step 2 (desulfurization step) and step 3 (contact cracking step), the catalytic cracking heavy oil (c) obtained in step 3 At least a part of the above is introduced into the thermally cracked oil desulfurization apparatus (B) together with the distillate (a) containing the thermally cracked heavy gas oil obtained in the step 1 to perform the step 2. The catalytic cracking heavy light oil (c) is usually obtained by using catalytic cracking raw material oil that has undergone a desulfurization step at least once, but is further cracked by introducing it into step 2 in which the reaction is carried out under high temperature and high pressure conditions. Is considered to occur, resulting in a change in the yield of light oil.
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
以下の実施例及び比較例において、密度は、JIS K 2249−1「原油及び石油製品−密度試験方法及び密度・質量・容量換算表(振動式密度試験方法)」、硫黄分は、JIS K 2541−4「原油及び石油製品−硫黄分試験方法 第4部:放射線式励起法」、窒素分は、JIS K 2609「原油及び石油製品−窒素分試験方法」、蒸留性状はJIS K 2254「石油製品−蒸留試験方法(ガスクロマトグラフ法蒸留試験方法)」に準拠して求めた。
Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.
In the following examples and comparative examples, the density is JIS K 2249-1 "Crude oil and petroleum products-Density test method and density / mass / capacity conversion table (vibration type density test method)", and the sulfur content is JIS K 2541. -4 "Crude oil and petroleum products-Sulfur content test method Part 4: Radial excitation method", Nitrogen content is JIS K 2609 "Crude oil and petroleum products-Nitrogen content test method", Distillation properties are JIS K 2254 "Petroleum products" -Distillation test method (gas chromatograph method distillation test method) ".
ニッケル及びバナジウムの含有量は、石油学会規格 JPI−5S−62−2000「石油製品金属分析試験法(ICP発光分析法)」に準拠した。
組成の芳香族、ナフテン、飽和の割合は、それぞれASTM D 3238−85に準拠した方法(n−d−M環分析)により求められる%CA、%CN、%CPを意味する。
The contents of nickel and vanadium conformed to the Petroleum Society Standard JPI-5S-62-2000 "Petroleum Product Metal Analysis Test Method (ICP Emission Analysis Method)".
Aromatic composition, naphthenic, the percentage of saturation is meant a method in accordance with ASTM D 3238-85, respectively (n-d-M ring analysis) by sought% C A,% C N, the% C P.
[実施例1]
図1のフローに従い、重質油熱分解装置(A)、熱分解油脱硫装置(B)、流動接触分解装置(C)を備えた装置構成により重質油の処理を行った。
[Example 1]
According to the flow of FIG. 1, heavy oil was treated by an apparatus configuration including a heavy oil pyrolysis apparatus (A), a thermal cracking oil desulfurization apparatus (B), and a fluidized catalytic cracking apparatus (C).
(工程1)
中東産原油由来の減圧蒸留残渣油1および後述する流動接触分解装置(C)から排出されるスラリーオイルを、熱分解原料油1として重質油熱分解装置(A)に導入して、500℃、0.1MPaG(ゲージ圧)で熱分解処理を行い、熱分解重質軽油a−1およびその他の留分を得た。熱分解重質軽油a−1の性状を表1に示す。
(Step 1)
The vacuum distillation residual oil 1 derived from crude oil produced in the Middle East and the slurry oil discharged from the fluidized catalytic cracking apparatus (C) described later are introduced into the heavy oil thermal cracking apparatus (A) as the thermal cracking raw material oil 1 at 500 ° C. , 0.1 MPaG (gauge pressure) was subjected to a pyrolysis treatment to obtain a pyrolyzed heavy light oil a-1 and other distillates. Table 1 shows the properties of the pyrolyzed heavy light oil a-1.
(工程2)
工程1で得た熱分解重質軽油a−1(導入流量:1157KL/D)と、後述する工程3で得た接触分解重質軽油c−1(導入流量:78KL/D)とを合流し、脱硫原料油1として熱分解油脱硫装置(B)に導入し、反応温度が350℃、水素分圧が13.0MPa 、水素/油比が1,200m3(normal)/m3、液空間速度が0.25h-1の条件で水素化脱硫処理を行い、脱硫重質軽油b−1およびその他の留分を得た。脱硫重質軽油b−1の性状を表2に示す。
(Step 2)
The thermally cracked heavy gas oil a-1 (introduced flow rate: 1157 KL / D) obtained in step 1 and the catalytically cracked heavy oil c-1 (introduced flow rate: 78 KL / D) obtained in step 3 described later are merged. , Introduced into a thermally cracked oil desulfurization apparatus (B) as desulfurization raw material oil 1, reaction temperature is 350 ° C, hydrogen partial pressure is 13.0 MPa, hydrogen / oil ratio is 1,200 m 3 (normal) / m 3 , liquid space. Hydrodesulfurization treatment was carried out under the condition of a rate of 0.25 h -1 to obtain desulfurized heavy gas oil b-1 and other distillates. Table 2 shows the properties of desulfurized heavy gas oil b-1.
熱分解油脱硫装置(B)としては、第一床:NiMo・CoMo脱金属触媒、第二床:CoMo脱金属触媒、第三床:NiCoMo脱硫触媒A、第四床:NiCoMo脱硫触媒Bの4床構成の触媒層を備えた脱硫装置を用いた。 The thermal decomposition oil desulfurization apparatus (B) includes a first bed: NiMo / CoMo desulfurization catalyst, a second bed: CoMo desulfurization catalyst, a third bed: NiCoMo desulfurization catalyst A, and a fourth bed: NiCoMo desulfurization catalyst B. A desulfurization apparatus equipped with a catalyst layer having a floor structure was used.
脱硫原料油1の密度、脱硫原料油1中の接触分解重質軽油c−1の比率(容量%)、脱硫原料油1に対する脱硫重質軽油b−1の得率(容量%)、熱分解油脱硫装置(B)から得られた軽質油分(Wild Product)の脱硫原料油1に対する得率(容量%)、熱分解油脱硫装置(B)での水素消費量(kNm3/日)、熱分解油脱硫装置(B)で使用した燃料(FOE−L/日)および電気量(KW/日)を表3に示す。 Density of desulfurization raw material oil 1, ratio of catalytically decomposed heavy light oil c-1 in desulfurization raw material oil 1 (volume%), yield of desulfurized heavy light oil b-1 to desulfurization raw material oil 1 (volume%), thermal decomposition The yield (volume%) of the light oil content (Wild Product) obtained from the oil desulfurization apparatus (B) with respect to the desulfurization raw material oil 1, the hydrogen consumption (kNm 3 / day) in the thermal decomposition oil desulfurization apparatus (B), and heat. Table 3 shows the fuel (FOE-L / day) and the amount of electricity (KW / day) used in the cracked oil desulfurization apparatus (B).
(工程3)
工程2で得た脱硫重質軽油b−1と、直接脱硫重油留分1と、脱硫減圧軽油留分1とを、脱硫重質軽油b−1:直接脱硫重油留分1:脱硫減圧軽油留分1=約30:約20:約50(容量比)となる割合で、接触分解原料油として流動接触分解装置(C)に導入し、反応温度515℃で流動接触分解を行い、接触分解重質軽油c−1およびその他の留分を得た。得られた接触分解重質軽油c−1は、前述した熱分解油脱硫装置(B)に導入して工程2に供した。接触分解重質軽油c−1の特性を表1に併せて示す。
(Step 3)
The desulfurized heavy oil distillate b-1 obtained in step 2, the direct desulfurized heavy oil distillate 1, and the desulfurized reduced pressure gas oil distillate 1 are combined with each other. Minute 1 = Approximately 30: Approximately 20: Approximately 50 (volume ratio), it is introduced into the fluid cracking apparatus (C) as a catalytic cracking raw material oil, and fluid cracking is performed at a reaction temperature of 515 ° C. Quality light oil c-1 and other distillates were obtained. The obtained catalytically cracked heavy gas oil c-1 was introduced into the above-mentioned pyrolysis oil desulfurization apparatus (B) and used in step 2. The characteristics of catalytically cracked heavy gas oil c-1 are also shown in Table 1.
[比較例1]
実施例1において、接触分解重質軽油(c)を、熱分解脱硫装置(B)に導入せず、重質油熱分解装置(A)に導入したことの他は、実施例1と同様にして重質油の処理を行った。すなわち、次の各工程により重質油の処理を行った。
[Comparative Example 1]
In Example 1, the catalytic cracking heavy oil (c) was not introduced into the thermal cracking desulfurization apparatus (B), but was introduced into the heavy oil thermal cracking apparatus (A) in the same manner as in Example 1. The heavy oil was treated. That is, the heavy oil was treated by each of the following steps.
(工程1)
中東産原油由来の減圧蒸留残渣油1および流動接触分解装置(C)から排出されるスラリーオイルを、後述する工程3で得た接触分解重質軽油c−2と合流して、熱分解原料油2として重質油熱分解装置(A)に導入し、500℃、0.1MPaG(ゲージ圧)で熱分解処理を行い、分解重質軽油a−2およびその他の留分を得た。熱分解重質軽油a−2の性状を表1に示す。
(Step 1)
The vacuum distilled residue oil 1 derived from crude oil from the Middle East and the slurry oil discharged from the fluid cracking apparatus (C) are combined with the catalytically cracked heavy gas oil c-2 obtained in step 3 described later to be a pyrolyzed raw material oil. As No. 2, it was introduced into the heavy oil thermal cracking apparatus (A) and subjected to thermal cracking treatment at 500 ° C. and 0.1 MPaG (gauge pressure) to obtain cracked heavy oil crackers a-2 and other distillates. Table 1 shows the properties of the pyrolyzed heavy light oil a-2.
(工程2)
工程1で得た熱分解重質軽油a−2を、脱硫原料油2として熱分解油脱硫装置(B)に導入し、反応温度が350℃、水素分圧が13.0MPa、水素/油比が1,200m3(normal)/m3、液空間速度が0.25h-1の条件で水素化脱硫処理を行い、脱硫重質軽油b−2およびその他の留分を得た。脱硫重質軽油b−2の性状を表2に示す。
(Step 2)
The pyrolysis heavy gas oil a-2 obtained in step 1 is introduced into the pyrolysis oil desulfurization apparatus (B) as the desulfurization raw material oil 2, the reaction temperature is 350 ° C., the hydrogen partial pressure is 13.0 MPa, and the hydrogen / oil ratio. Hydrodesulfurization treatment was carried out under the conditions of 1,200 m 3 (normal) / m 3 and a liquid space velocity of 0.25 h -1 to obtain desulfurized heavy gas oil b-2 and other fractions. Table 2 shows the properties of desulfurized heavy gas oil b-2.
脱硫原料油2の密度、脱硫原料油2中の接触分解重質軽油c−1の比率(容量%)、脱硫原料油2に対する脱硫重質軽油b−2の得率(容量%)、熱分解油脱硫装置(B)から得られた軽質油分(Wild Product)の脱硫原料油2に対する得率(容量%)、熱分解油脱硫装置(B)での水素消費量(kNm3/日)、熱分解油脱硫装置(B)で使用した燃料(FOE−L/日)および電気量(KW/日)を表3に示す。 Density of desulfurization raw material oil 2, ratio of catalytically decomposed heavy light oil c-1 in desulfurization raw material oil 2 (volume%), yield of desulfurized heavy light oil b-2 to desulfurization raw material oil 2 (volume%), thermal decomposition The yield (volume%) of the light oil content (Wild Product) obtained from the oil desulfurization apparatus (B) with respect to the desulfurization raw material oil 2, the hydrogen consumption (kNm 3 / day) in the thermal decomposition oil desulfurization apparatus (B), and heat. Table 3 shows the fuel (FOE-L / day) and the amount of electricity (KW / day) used in the cracked oil desulfurization apparatus (B).
(工程3)
工程2で得た脱硫重質軽油b−2と、直接脱硫重油留分1と脱硫減圧軽油留分1を、脱硫重質軽油b−2:直接脱硫重油留分1:脱硫減圧軽油留分1=約30:約20:約50(容量比)となる割合で、接触分解原料油2として流動接触分解装置(C)に導入し、接触分解重質軽油c−2およびその他の留分を得た。流動接触分解装置(C)においては、運転条件(触媒量および反応温度)を調整して、軽質油の得率は実施例1と同程度に維持した。得られた接触分解重質軽油c−2は、前述した重質油熱分解装置(A)に導入して工程1に供した。
(Step 3)
The desulfurized heavy oil b-2 obtained in step 2, the direct desulfurized heavy oil distillate 1 and the desulfurized reduced pressure gas oil distillate 1 are combined with the desulfurized heavy oil b-2: direct desulfurized heavy oil distillate 1: desulfurized reduced pressure gas oil distillate 1. = Approximately 30: Approximately 20: Approximately 50 (volume ratio), introduced into the fluid cracking apparatus (C) as catalytic cracking raw material oil 2 to obtain catalytic cracking heavy gas oil c-2 and other distillates. It was. In the fluid cracking apparatus (C), the operating conditions (catalyst amount and reaction temperature) were adjusted to maintain the yield of light oil at the same level as in Example 1. The obtained catalytic cracking heavy gas oil c-2 was introduced into the above-mentioned heavy oil thermal cracking apparatus (A) and used in step 1.
<経済的効果>
実施例1および比較例1より、軽質油の得率の変動による製品販売予定価格の変動と、使用燃料、電気量および水素消費量の変動による処理経費の変動とを鑑みて算出した、比較例1を基準とした実施例1での重質油処理メリットは、表3に示す通り2,167(千円/日)であった。この結果より、実施例1では比較例1よりも重質油処理による生産性が向上し、高い経済的効果が得られることがわかった。
<Economic effect>
Comparative Examples calculated from Example 1 and Comparative Example 1 in consideration of fluctuations in the planned sales price of products due to fluctuations in the yield of light oil and fluctuations in processing costs due to fluctuations in fuel consumption, electricity consumption and hydrogen consumption. The merit of heavy oil treatment in Example 1 based on 1 was 2,167 (thousand yen / day) as shown in Table 3. From this result, it was found that the productivity of the heavy oil treatment was improved in Example 1 as compared with Comparative Example 1, and a high economic effect was obtained.
表3より、実施例1では、比較例1よりも重質油分から移行した軽質油分の得率が上昇し、熱分解油脱硫装置(B)の生成物として得られる灯軽油留分が増加していることが示された。また上述の通り、実施例1での重質油処理では、比較例1と比較して、2,167(千円/日)の経済的効果(処理メリット)があった。 From Table 3, in Example 1, the yield rate of the gas oil transferred from the heavy oil was higher than that in Comparative Example 1, and the kerosene distillate obtained as a product of the pyrolysis oil desulfurization apparatus (B) was increased. Was shown to be. Further, as described above, the heavy oil treatment in Example 1 had an economic effect (treatment merit) of 2,167 (thousand yen / day) as compared with Comparative Example 1.
よってこれらの工程全体としてみた場合には、既存の設備を用いての運転でありながら、運転コストを大きく増加することなく、経済的に熱分解重質軽油からの軽質分の得率を上昇させることができ、生産性が向上することがわかった。 Therefore, when looking at these processes as a whole, it is possible to economically increase the yield of light components from pyrolysis heavy diesel fuel without significantly increasing the operating cost, even though the operation is performed using existing equipment. It was found that it was possible and productivity was improved.
本発明の重質油の処理方法は、石油精製の分野において有効に利用することができる。 The method for treating heavy oil of the present invention can be effectively used in the field of petroleum refining.
A:重質油熱分解装置
B:熱分解油脱硫装置
C:流動接触分解装置
a:熱分解重質軽油
b:脱硫重質軽油
c:接触分解重質軽油
A: Heavy oil pyrolysis device B: Thermal cracking oil desulfurization device C: Flow contact cracking device a: Thermal cracking heavy light oil b: Desulfurized heavy light oil c: Contact decomposition heavy light oil
Claims (5)
前記工程1で得られた熱分解重質軽油を含む留分(a)を、熱分解油脱硫装置(B)に導入して水素化脱硫を行い、脱硫重質軽油(b)を得る工程2と、
前記工程2で得られた脱硫重質軽油(b)の少なくとも一部を、流動接触分解装置(C)に導入して接触分解を行い、接触分解重質軽油(c)を得る工程3とを有し、
前記工程3で得られた接触分解重質軽油(c)の少なくとも一部を、前記熱分解重質軽油を含む留分(a)とともに熱分解油脱硫装置(B)に導入して、前記工程2を行うことを特徴とする重質油の処理方法。 Step 1 of introducing heavy oil into the heavy oil thermal decomposition apparatus (A) and performing thermal decomposition to obtain a fraction (a) containing thermally decomposed heavy light oil.
Step 2 to obtain desulfurized heavy gas oil (b) by introducing the fraction (a) containing the pyrolysis heavy gas oil obtained in step 1 into the pyrolysis oil desulfurization apparatus (B) and performing hydrodesulfurization. When,
The step 3 of introducing at least a part of the desulfurized heavy light oil (b) obtained in the above step 2 into the fluid cracking apparatus (C) and performing catalytic cracking to obtain the catalytic cracking heavy oil (c). Have and
At least a part of the catalytically cracked heavy gas oil (c) obtained in the step 3 is introduced into the pyrolyzed oil desulfurization apparatus (B) together with the fraction (a) containing the pyrolyzed heavy gas oil, and the step. A method for treating heavy oil, which comprises performing 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017026720A JP6812265B2 (en) | 2017-02-16 | 2017-02-16 | How to treat pyrolyzed heavy light oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017026720A JP6812265B2 (en) | 2017-02-16 | 2017-02-16 | How to treat pyrolyzed heavy light oil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018131550A JP2018131550A (en) | 2018-08-23 |
JP6812265B2 true JP6812265B2 (en) | 2021-01-13 |
Family
ID=63248889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017026720A Active JP6812265B2 (en) | 2017-02-16 | 2017-02-16 | How to treat pyrolyzed heavy light oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6812265B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112022011757A2 (en) * | 2019-12-23 | 2022-08-30 | Chevron Usa Inc | CIRCULAR ECONOMY FOR PLASTIC WASTE FOR POLYPROPYLENE VIA FCC REFINERY AND ALKYLATION UNITS |
-
2017
- 2017-02-16 JP JP2017026720A patent/JP6812265B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018131550A (en) | 2018-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102457860B1 (en) | Systems and methods for converting feedstock hydrocarbons into petrochemicals | |
JP6636034B2 (en) | Processes and equipment for hydroconversion of hydrocarbons | |
JP2015059220A (en) | Method of producing ship fuel of low sulfur content from hco produced by catalytic decomposition or slurry-type hydrocarbon-containing fraction using hydrogenation treatment stage | |
US9868915B2 (en) | Slurry hydroconversion and coking of heavy oils | |
WO2014205171A1 (en) | Staged solvent assisted hydroprocessing and resid hydroconversion | |
KR20210060606A (en) | How to upgrade heavy oil for steam cracking process | |
KR20120075368A (en) | Method for hydro-cracking heavy hydrocarbon fractions using supercritical solvents | |
JPWO2016194686A1 (en) | Method for producing hydrotreated oil and method for producing catalytic cracking oil | |
JP5460224B2 (en) | Method for producing highly aromatic hydrocarbon oil | |
JP3098030B2 (en) | How to improve the quality of residual oil | |
Robinson | Hydroconversion processes and technology for clean fuel and chemical production | |
JP5406629B2 (en) | Method for producing highly aromatic hydrocarbon oil | |
JP6812265B2 (en) | How to treat pyrolyzed heavy light oil | |
TWI418619B (en) | A combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils | |
CN104593062B (en) | A kind of residual hydrocracking and catalytic cracking combined processing method | |
JP2013249385A (en) | Hydrotreatment method of heavy oil | |
JP6426027B2 (en) | Fluid catalytic cracking device and catalytic cracking method of feedstock using the device | |
JP2011190306A (en) | Method for producing kerosine-gas oil base material and alkylbenzenes | |
CA2853924A1 (en) | Pretreatment of fcc naphthas and selective hydrotreating | |
CN1261545C (en) | Combined process for heavy oil upgrading | |
WO2016089691A1 (en) | Alternating production of distillate fuels and lube basestocks | |
JP5314355B2 (en) | Method for producing hydrocarbon oil | |
JP6561648B2 (en) | Method for catalytic cracking of feedstock | |
CN110776953A (en) | Process for treating heavy hydrocarbon feedstocks comprising fixed bed hydroprocessing, two deasphalting operations and hydrocracking of the bitumen | |
JP5082138B2 (en) | Operation method of direct desulfurization equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6812265 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |