JPWO2016194686A1 - Method for producing hydrotreated oil and method for producing catalytic cracking oil - Google Patents

Method for producing hydrotreated oil and method for producing catalytic cracking oil Download PDF

Info

Publication number
JPWO2016194686A1
JPWO2016194686A1 JP2017521827A JP2017521827A JPWO2016194686A1 JP WO2016194686 A1 JPWO2016194686 A1 JP WO2016194686A1 JP 2017521827 A JP2017521827 A JP 2017521827A JP 2017521827 A JP2017521827 A JP 2017521827A JP WO2016194686 A1 JPWO2016194686 A1 JP WO2016194686A1
Authority
JP
Japan
Prior art keywords
oil
content
catalyst
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017521827A
Other languages
Japanese (ja)
Other versions
JP6770953B2 (en
Inventor
康一 松下
康一 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Publication of JPWO2016194686A1 publication Critical patent/JPWO2016194686A1/en
Application granted granted Critical
Publication of JP6770953B2 publication Critical patent/JP6770953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Abstract

重質炭化水素油を水素化処理触媒が充填された反応器に流通させて、水素化処理油を得る工程を備え、水素化処理触媒が、リン、鉄族元素、及び第6族元素を含有し、水素化処理触媒におけるリンの含有量C1に対する鉄族元素の含有量C2の比C2/C1が、モル比で0.60未満であり、水素化処理触媒の平均細孔径が、7.5nmより大きく、9.5nmより小さい、水素化処理油の製造方法。A heavy hydrocarbon oil is passed through a reactor filled with a hydroprocessing catalyst to obtain a hydroprocessing oil, and the hydroprocessing catalyst contains phosphorus, an iron group element, and a group 6 element. The ratio C2 / C1 of the iron group element content C2 to the phosphorus content C1 in the hydroprocessing catalyst is less than 0.60 in terms of molar ratio, and the average pore diameter of the hydroprocessing catalyst is 7.5 nm. A process for producing hydrotreated oil that is larger and smaller than 9.5 nm.

Description

本発明は、重質炭化水素油から水素化処理油を得る製造方法、及び、重質炭化水素油から接触分解油を得る製造方法に関する。   The present invention relates to a production method for obtaining hydrotreated oil from heavy hydrocarbon oil, and a production method for obtaining catalytic cracked oil from heavy hydrocarbon oil.

これまで日本国内の製油所においては、ガソリン需要への対応及び重質炭化水素油の軽質化推進のため、流動接触分解(FCC)装置が、ガソリン製造における中心的な役割を担っている。また、近年では、重質炭化水素油から付加価値の高い軽質炭化水素油を生産するプロセスとしてのFCC装置の関心も高く、より高い経済性を求め、FCC用原料油として、従来の減圧軽油留分の他、常圧残渣留分等の残渣油を混合した原料油も使用されている。   Until now, in the refineries in Japan, fluid catalytic cracking (FCC) equipment has played a central role in gasoline production in order to meet the demand for gasoline and promote the lightening of heavy hydrocarbon oils. In recent years, there has also been a great interest in FCC equipment as a process for producing light hydrocarbon oils with high added value from heavy hydrocarbon oils, and demanded higher economic efficiency. In addition to the above components, raw material oils mixed with residual oils such as atmospheric residue fractions are also used.

常圧残渣油の中には、硫黄分や窒素分の他、バナジウムやニッケルといった重金属が含まれるため、FCC装置の前処理となる重油直接脱硫装置に触媒を設置し、高温高圧条件で反応させて、脱金属、脱硫及び脱窒素処理している。   Since atmospheric pressure residual oil contains heavy metals such as vanadium and nickel in addition to sulfur and nitrogen, a catalyst is installed in the heavy oil direct desulfurization unit that is the pretreatment of the FCC unit, and the reaction is performed under high temperature and high pressure conditions. Demetallization, desulfurization and denitrification.

ところで、FCC装置で使用されるFCC触媒には一般的にゼオライトが使用されており、FCC用原料油においては、ゼオライトを被毒する窒素分、とりわけ塩基性窒素分の低減が望まれていた。すなわち、FCC用原料油中の窒素分を低減することが可能となれば、FCC触媒の性能が十分に発揮され、ガソリン製造の効率が向上すると考えられている。しかし、これまでは、重質炭化水素油の直接脱硫装置において脱硫反応が進行すれば、脱窒素反応も進行すると考えられており、特段、脱窒素活性を向上させる技術は無かった。   By the way, zeolite is generally used for the FCC catalyst used in the FCC apparatus. In the FCC feedstock, reduction of nitrogen content, especially basic nitrogen content, that poisons zeolite has been desired. That is, it is considered that if the nitrogen content in the FCC feedstock can be reduced, the performance of the FCC catalyst will be sufficiently exerted and the efficiency of gasoline production will be improved. However, until now, it is believed that if the desulfurization reaction proceeds in the heavy hydrocarbon oil direct desulfurization apparatus, the denitrogenation reaction also proceeds, and there has been no technique for improving the denitrification activity.

重質炭化水素油に含まれる窒素分については、低減されることは望まれているものの、これまでは主に硫黄分の低減が目的と考えられ、また、硫黄分を除去する脱硫触媒を保護する役割である脱金属触媒の開発に注意が注がれ続けていた。   Although it is hoped that the nitrogen content in heavy hydrocarbon oils will be reduced, it has so far been primarily aimed at reducing the sulfur content, and also protects the desulfurization catalyst that removes the sulfur content. Attention has been focused on the development of demetallization catalysts, which is a role to play.

例えば、非特許文献1では、リンを含浸担持することにより、脱硫活性及び脱窒素活性の向上が見られる一方、触媒細孔容積が低下し、急速な金属被毒を引き起こして触媒寿命が短くなる傾向にあることが記載されている。   For example, in Non-Patent Document 1, by impregnating and supporting phosphorus, desulfurization activity and denitrogenation activity are improved, while catalyst pore volume decreases, causing rapid metal poisoning and shortening catalyst life. It is described that there is a tendency.

これまで、FCC用原料油の水素化処理方法については多数の報告がなされている。例えば、特許文献1及び2には、比較的高い反応温度で脱硫及び脱窒素処理を行なう第一工程と、より低い反応温度で芳香族二環以上の核水添を行なう第二工程により、減圧軽油や常圧残渣油などを水素化処理してFCC用原料油を得る水素化処理方法が提案されている。   Until now, many reports have been made on the hydrotreating method of FCC feedstock. For example, in Patent Documents 1 and 2, the first step of performing desulfurization and denitrogenation treatment at a relatively high reaction temperature, and the second step of performing nuclear hydrogenation of an aromatic bicyclic or higher ring at a lower reaction temperature, There has been proposed a hydrotreating method for obtaining a feedstock for FCC by hydrotreating light oil or atmospheric residue oil.

また、特許文献3には、リンを含有する触媒を用いて、脱硫活性及び脱窒素活性を向上させる方法が提案されている。   Patent Document 3 proposes a method for improving desulfurization activity and denitrogenation activity using a catalyst containing phosphorus.

しかし、実際の直接脱硫装置では、所望の脱硫生成油を得るために生成油の硫黄分を一定とする運転を行っており、脱窒素活性のみを向上させた触媒を使用しない限り、生成油中の窒素分が低減されることは無かった。したがって、上記のような方法で脱硫活性と脱窒素活性が向上した水素化処理触媒を用いても、実運転上、生成油中の窒素分を低減することはできなかった。   However, in an actual direct desulfurization apparatus, in order to obtain a desired desulfurized product oil, an operation is performed in which the sulfur content of the product oil is constant, and unless a catalyst having only improved denitrogenation activity is used, The nitrogen content of was not reduced. Therefore, even if a hydrotreating catalyst having improved desulfurization activity and denitrogenation activity by the method as described above is used, the nitrogen content in the product oil cannot be reduced in actual operation.

特開平8−012978号公報JP-A-8-012978 特開平8−183964号公報JP-A-8-183964 特開2000−351978号公報JP 2000-351978 A

J. Japan Petrol. Inst.,23,(2), 110(1980)J. et al. Japan Petrol. Inst. , 23, (2), 110 (1980)

上記の事情から、脱硫活性に対して脱窒素活性が高い、いわゆる脱窒素選択性の高い触媒及びそれを用いた水素化処理方法が望まれている。   In view of the above circumstances, a catalyst having high denitrification activity relative to desulfurization activity, so-called high denitrification selectivity, and a hydrotreating method using the same are desired.

本発明は、上記従来の状況に鑑み、重質炭化水素油からFCC用原料油として好適に脱硫及び脱窒素された水素化処理油を効率良く得ることのできる、水素化処理油の製造方法を提供することを目的とする。また、本発明は、上記製造方法で得られる水素化処理油をFCC用原料油として用いることで、接触分解油を効率良く得ることのできる、接触分解油の製造方法を提供することを目的とする。   In view of the above-described conventional situation, the present invention provides a method for producing a hydrotreated oil that can efficiently obtain a hydrotreated oil that has been suitably desulfurized and denitrogenated from a heavy hydrocarbon oil as an FCC feedstock. The purpose is to provide. Another object of the present invention is to provide a method for producing a catalytic cracked oil, which can efficiently obtain a catalytic cracked oil by using the hydrotreated oil obtained by the above production method as a feedstock for FCC. To do.

本発明者らは、重質炭化水素油から、高度に脱硫及び脱窒素されたFCC用原料油を効率良く製造する方法を開発すべく鋭意研究した結果、特定の組成及び特定の平均細孔径を有する水素化処理触媒を使用することで、適切な触媒寿命を維持しつつ、FCC用原料油として好適に脱硫及び脱窒素された水素化処理油を製造できることを発見し、本発明を提案するに至った。   As a result of earnest research to develop a method for efficiently producing a highly desulfurized and denitrogenated FCC feedstock from heavy hydrocarbon oil, the present inventors have obtained a specific composition and a specific average pore diameter. In order to propose the present invention, it has been discovered that by using a hydrotreating catalyst having a hydrotreating oil suitably desulfurized and denitrogenated as a feedstock for FCC while maintaining an appropriate catalyst life It came.

すなわち、本発明の一側面は、以下の水素化処理油の製造方法及び接触分解油の製造方法に関するものである。
(1)重質炭化水素油を水素化処理触媒が充填された反応器に流通させて、水素化処理油を得る工程を備え、前記水素化処理触媒が、リン、鉄族元素、及び第6族元素を含有し、前記水素化処理触媒におけるリンの含有量Cに対する鉄族元素の含有量Cの比C/Cが、モル比で0.60未満であり、前記水素化処理触媒の平均細孔径が、7.5nmより大きく、9.5nmより小さい、水素化処理油の製造方法。
(2)前記水素化処理触媒において、第6族元素の含有量Cに対する鉄族元素の含有量Cの比C/Cが、モル比で0.45未満であり、第6族元素の含有量Cに対するリンの含有量Cの比C/Cが、モル比で0.23より多い、上記(1)に記載の製造方法。
(3)上記(1)又は(2)に記載の製造方法によって水素化処理油を得る工程と、前記水素化処理油の流動接触分解によって、接触分解油を得る工程と、を備える、接触分解油の製造方法。
That is, one aspect of the present invention relates to the following method for producing hydrotreated oil and method for producing catalytic cracked oil.
(1) A step of obtaining a hydroprocessing oil by circulating heavy hydrocarbon oil through a reactor filled with a hydroprocessing catalyst, wherein the hydroprocessing catalyst comprises phosphorus, an iron group element, and a sixth element. The ratio C 2 / C 1 of the content C 2 of the iron group element to the content C 1 of phosphorus in the hydroprocessing catalyst containing a group element is less than 0.60 in molar ratio, and the hydroprocessing A method for producing a hydrotreated oil, wherein the average pore diameter of the catalyst is larger than 7.5 nm and smaller than 9.5 nm.
(2) In the hydrotreating catalyst, the ratio C 2 / C 3 of the content C 2 of the iron group element to the content C 3 of the group 6 element is less than 0.45 in molar ratio, and the group 6 The production method according to (1), wherein the ratio C 1 / C 3 of the phosphorus content C 1 to the element content C 3 is more than 0.23 in terms of molar ratio.
(3) Catalytic cracking comprising: a step of obtaining hydrotreated oil by the production method according to (1) or (2) above; and a step of obtaining catalytic cracked oil by fluid catalytic cracking of the hydrotreated oil. Oil production method.

本発明によれば、重質炭化水素油からFCC用原料油として好適に脱硫及び脱窒素された水素化処理油を効率良く得ることのできる、水素化処理油の製造方法が提供される。また、本発明によれば、接触分解油を効率良く得ることのできる、接触分解油の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the hydroprocessing oil which can obtain efficiently the hydroprocessing oil desulfurized and denitrogenated suitably as a FCC feedstock from heavy hydrocarbon oil is provided. Moreover, according to this invention, the manufacturing method of catalytic cracking oil which can obtain catalytic cracking oil efficiently is provided.

本発明の好適な実施形態について以下に説明する。   A preferred embodiment of the present invention will be described below.

本実施形態に係る水素化処理油の製造方法は、重質炭化水素油を水素化処理触媒が充填された反応器に流通させて、水素化処理油を得る工程を備える。   The manufacturing method of the hydroprocessing oil which concerns on this embodiment is equipped with the process of distribute | circulating heavy hydrocarbon oil to the reactor with which the hydroprocessing catalyst was filled, and obtaining hydroprocessing oil.

本実施形態において、水素化処理触媒はリン、鉄族元素及び第6族元素を含有する。本明細書中、鉄族元素は、周期表の第4周期の第8族、第9族及び第10族の元素に属する金属元素を示し、第6族元素は、周期表の第6族元素に属する金属元素を示す。鉄族元素としては、鉄(Fe)、コバルト(Co)、ニッケル(Ni)が挙げられ、第6族元素としては、クロム(Cr)、モリブデン(Mo)、タングステン(W)が挙げられる。   In the present embodiment, the hydrotreating catalyst contains phosphorus, an iron group element, and a group 6 element. In this specification, the iron group element indicates a metal element belonging to the elements of Group 8, 9 and 10 of the fourth period of the periodic table, and the Group 6 element indicates a Group 6 element of the periodic table. The metal element which belongs to is shown. Examples of the iron group element include iron (Fe), cobalt (Co), and nickel (Ni), and examples of the group 6 element include chromium (Cr), molybdenum (Mo), and tungsten (W).

本実施形態において、水素化処理触媒におけるリンの含有量Cに対する鉄族元素の含有量Cの比C/C(モル比)は、0.60未満である。また、水素化処理触媒の平均細孔径は、7.5nmより大きく、9.5nmより小さい。In the present embodiment, the ratio C 2 / C 1 (molar ratio) of the iron group element content C 2 to the phosphorus content C 1 in the hydrotreating catalyst is less than 0.60. Moreover, the average pore diameter of the hydrotreating catalyst is larger than 7.5 nm and smaller than 9.5 nm.

本実施形態に係る製造方法では、重質炭化水素油からFCC用原料油として好適に脱硫及び脱窒素された水素化処理油を効率良く得ることができる。   In the production method according to the present embodiment, a hydrotreated oil that is suitably desulfurized and denitrogenated as a raw material oil for FCC from heavy hydrocarbon oil can be efficiently obtained.

本実施形態では、水素化処理触媒が特定の金属組成及び特定の平均細孔径を有するため、重質炭化水素の水素化処理において、良好な触媒寿命及び優れた脱窒素活性が得られる。このため、本実施形態に係る製造方法によれば、従来のように生成油硫黄分を一定とした運転においても、脱硫に加えて脱窒素が効率良く進行し、窒素分が十分に低減された水素化処理油を得ることができる。すなわち、本実施形態に係る製造方法では、従来の直接脱硫方法と比較して、FCC用原料油として好適に脱窒素された水素化処理油を、効率良く製造することができる。   In this embodiment, since the hydrotreating catalyst has a specific metal composition and a specific average pore diameter, a good catalyst life and excellent denitrification activity can be obtained in the hydrotreating of heavy hydrocarbons. For this reason, according to the production method according to the present embodiment, even in the operation in which the generated oil sulfur content is constant as in the prior art, denitrification proceeds efficiently in addition to desulfurization, and the nitrogen content is sufficiently reduced. A hydrotreated oil can be obtained. That is, in the production method according to the present embodiment, compared with the conventional direct desulfurization method, the hydrotreated oil that is suitably denitrogenated as the FCC feedstock can be efficiently produced.

<原料油>
本実施形態に係る水素化処理油の製造方法で使用される原料油は、重質炭化水素油であればよい。本明細書中、重質炭化水素油とは、常圧下での沸点が380℃以上の留分を含むものをいう。
<Raw oil>
The feedstock oil used in the method for producing hydrotreated oil according to the present embodiment may be a heavy hydrocarbon oil. In the present specification, heavy hydrocarbon oil means a fraction containing a fraction having a boiling point of 380 ° C. or higher under normal pressure.

重質炭化水素油は、例えば、常圧蒸留残渣油、減圧蒸留残渣油、並びにこれらを原料とした溶剤脱れき油及びビスブレーキング油、等であってよい。また、重質炭化水素油は、減圧軽油、流動接触分解装置の残渣油などを含んでいてもよい。   The heavy hydrocarbon oil may be, for example, an atmospheric distillation residue oil, a vacuum distillation residue oil, a solvent de-peeling oil and a visbreaking oil, and the like using these as raw materials. Further, the heavy hydrocarbon oil may contain a vacuum gas oil, a residual oil of a fluid catalytic cracking device, and the like.

溶剤脱れき油は、例えば、沸点が550℃以上である留分の含有率が70質量%以上の重質炭化水素油であってよい。   The solvent-peeling oil may be, for example, a heavy hydrocarbon oil having a boiling point of 550 ° C. or more and a fraction content of 70% by mass or more.

溶剤脱れき油の製造方法は特に制限されないが、例えば、炭素数3〜6の鎖状飽和炭化水素を溶剤として用いた溶剤脱れきにより得ることができる。溶剤の具体例としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン及びノルマルヘキサンが挙げられる。溶剤としてはこれらの一種又は複数種を用いてよい。また、溶剤脱れきにおける溶剤としては、炭素数5又は6の鎖状飽和炭化水素を50容量%以上含む溶剤が好適に用いられ、このような溶剤によれば、60容量%以上、あるいは70容量%以上の高い抽出率で溶剤脱れき油が得られる傾向がある。なお、抽出後の残渣は、ピッチ分として分離される。   The method for producing the solvent removal oil is not particularly limited. For example, the solvent removal oil can be obtained by solvent removal using a chain saturated hydrocarbon having 3 to 6 carbon atoms as a solvent. Specific examples of the solvent include propane, normal butane, isobutane, normal pentane, isopentane, and normal hexane. One or more of these may be used as the solvent. Further, as the solvent in solvent removal, a solvent containing 50% by volume or more of a chain saturated hydrocarbon having 5 or 6 carbon atoms is preferably used. According to such a solvent, 60% by volume or more, or 70% by volume. There is a tendency that a solvent-peeling oil is obtained at a high extraction rate of at least%. In addition, the residue after extraction is isolate | separated as a part for pitch.

原料油として使用される重質炭化水素油は、硫黄分の含有量が5.0質量%以下であることが好ましく、4.0質量%以下であることがより好ましい。硫黄分の含有量がこの範囲であれば、得られる水素化処理油中の硫黄分の含有量が十分に低減されるとともに、その後に得られる接触分解油中の硫黄分の含有量も好適に低減される。なお、重質炭化水素油における硫黄分の含有量の下限値は、特に制限されないが、例えば、0.6質量%以上であってよく、0.8質量%以上であってよい。本実施形態に係る製造方法によれば、このような硫黄分の含有量の重質炭化水素油を原料油として用いた場合でも、水素化処理によって十分に脱硫され、水素化処理油中の硫黄分の含有量が十分に低減される。   The heavy hydrocarbon oil used as the raw material oil preferably has a sulfur content of 5.0% by mass or less, and more preferably 4.0% by mass or less. If the sulfur content is within this range, the content of sulfur in the resulting hydrotreated oil is sufficiently reduced, and the content of sulfur in the catalytic cracked oil obtained thereafter is also suitable. Reduced. In addition, the lower limit of the sulfur content in the heavy hydrocarbon oil is not particularly limited, but may be, for example, 0.6% by mass or more and 0.8% by mass or more. According to the production method according to the present embodiment, even when a heavy hydrocarbon oil having such a sulfur content is used as a raw material oil, the sulfur in the hydrotreated oil is sufficiently desulfurized by hydrotreating. The content of min is sufficiently reduced.

重質炭化水素油における窒素分の含有量は、例えば0.05質量%以上であってよく、0.07質量%以上であってよい。本実施形態に係る製造方法では、水素化処理触媒が優れた脱窒素活性を有するため、このように窒素分を含む重質炭化水素油を原料油として用いた場合でも、水素化処理によって十分に脱窒素され、水素化処理油中の窒素分の含有量が十分に低減される。また、重質炭化水素油における窒素分の含有量は、例えば0.35質量%以下であってよく、0.30質量%以下であってよい。窒素分の含有量がこの範囲であれば、得られる水素化処理油中の窒素分がより顕著に低減される傾向がある。   The content of nitrogen in the heavy hydrocarbon oil may be, for example, 0.05% by mass or more, and may be 0.07% by mass or more. In the production method according to the present embodiment, since the hydrotreating catalyst has an excellent denitrification activity, even when a heavy hydrocarbon oil containing a nitrogen content is used as a raw material oil as described above, the hydrotreating treatment is sufficiently performed. It is denitrified and the nitrogen content in the hydrotreated oil is sufficiently reduced. Moreover, content of the nitrogen content in heavy hydrocarbon oil may be 0.35 mass% or less, for example, and may be 0.30 mass% or less. When the nitrogen content is within this range, the nitrogen content in the resulting hydrotreated oil tends to be more significantly reduced.

重質炭化水素油において、塩基性窒素分の含有量は、例えば0.02質量%以上であってよく、0.03質量%以上であってよい。本実施形態に係る製造方法では、水素化処理触媒が優れた脱窒素活性を有するため、このように塩基性窒素分を含む重質炭化水素油を原料油として用いた場合でも、水素化処理によって十分に脱窒素され、水素化処理油中の塩基性窒素分の含有量が十分に低減される。また、重質炭化水素油における塩基性窒素分の含有量は、例えば0.12質量%以下であってよく、0.10質量%以下であってよい。塩基性窒素分の含有量がこの範囲であれば、得られる水素化処理油中の塩基性窒素分がより顕著に低減される傾向がある。   In heavy hydrocarbon oil, content of basic nitrogen content may be 0.02 mass% or more, for example, and may be 0.03 mass% or more. In the production method according to the present embodiment, since the hydrotreating catalyst has excellent denitrification activity, even when a heavy hydrocarbon oil containing a basic nitrogen content is used as a raw material oil in this way, It is sufficiently denitrified, and the content of basic nitrogen in the hydrotreated oil is sufficiently reduced. Moreover, content of the basic nitrogen content in heavy hydrocarbon oil may be 0.12 mass% or less, for example, and may be 0.10 mass% or less. If content of basic nitrogen content is this range, there exists a tendency for the basic nitrogen content in the hydrotreated oil obtained to be reduced notably.

重質炭化水素油は、ニッケル、バナジウム等の重金属を含んでいてもよい。重質炭化水素油の重金属の含有量は、例えば200質量ppm以下であることが好ましく、100質量ppm以下であることがより好ましい。このような含有量であれば、金属被毒による水素化処理触媒の触媒寿命の低下を十分に抑制することができる。   The heavy hydrocarbon oil may contain heavy metals such as nickel and vanadium. The heavy metal content of the heavy hydrocarbon oil is preferably, for example, 200 ppm by mass or less, and more preferably 100 ppm by mass or less. If it is such content, the fall of the catalyst life of the hydroprocessing catalyst by metal poisoning can fully be suppressed.

また、重質炭化水素油において、重金属の含有量は、3質量ppmより多くてもよく、5質量ppm以上であってもよい。重金属を含有する重質炭化水素油を原料油として用いた場合でも、反応器の上流側に脱金属触媒を充填することで、水素化処理触媒の触媒寿命の低下を十分に抑制することができる。なお、脱金属後の重質炭化水素油中の重金属の含有量は、例えば12質量ppm以下であってよく、15質量ppm以下であってもよい。   Moreover, in heavy hydrocarbon oil, content of heavy metal may be more than 3 mass ppm, and may be 5 mass ppm or more. Even when heavy hydrocarbon oil containing heavy metal is used as a raw material oil, it is possible to sufficiently suppress a decrease in the catalyst life of the hydrotreating catalyst by filling the demetallization catalyst upstream of the reactor. . In addition, content of the heavy metal in the heavy hydrocarbon oil after metal removal may be 12 mass ppm or less, for example, and may be 15 mass ppm or less.

重質炭化水素油は、アスファルテン分を含んでいてもよい。重質炭化水素油におけるアスファルテン分の含有量は、例えば0.05質量%以上であってよく、2.0質量%以上であってよい。また、重質炭化水素油におけるアスファルテン分の含有量は、例えば3.0質量%以下であってよく、4.0質量%以下であってよい。   The heavy hydrocarbon oil may contain asphaltenes. The content of asphaltenes in the heavy hydrocarbon oil may be, for example, 0.05% by mass or more, and may be 2.0% by mass or more. Moreover, content of the asphaltene content in heavy hydrocarbon oil may be 3.0 mass% or less, for example, and may be 4.0 mass% or less.

本明細書中、重質炭化水素油における硫黄分の含有量は、JIS K2541「原油及び石油製品・硫黄分試験方法」に準拠して求めた値を示す。また、重質炭化水素油における窒素分の含有量は、JIS K2541「原油及び石油製品・窒素分試験方法」に準拠して求めた値を示す。また、重質炭化水素油における塩基性窒素分の含有量は、UOP試験法No.269−90に準拠して測定された値を示す。また、重質炭化水素油における重金属の含有量は、蛍光X線分析法で測定された値を示す。また、重質炭化水素油におけるアスファルテン分の含有量は、ヘプタン不溶解分として、IP143に準拠して測定された値を示す。   In the present specification, the content of sulfur in heavy hydrocarbon oil is a value determined in accordance with JIS K2541 “Crude oil and petroleum products / sulfur content test method”. The nitrogen content in the heavy hydrocarbon oil is a value determined in accordance with JIS K2541 “Crude oil and petroleum products / nitrogen content test method”. In addition, the content of basic nitrogen in heavy hydrocarbon oil is determined by UOP test method No. The value measured based on 269-90 is shown. The heavy metal content in the heavy hydrocarbon oil indicates a value measured by fluorescent X-ray analysis. Further, the content of asphaltenes in the heavy hydrocarbon oil indicates a value measured in accordance with IP143 as a heptane-insoluble component.

<水素化処理触媒>
水素化処理触媒は、リン、鉄族元素及び第6族元素を含有し、水素化処理触媒におけるリンの含有量Cに対する鉄族元素の含有量Cの比C/C(モル比)は、0.60未満である。また、水素化処理触媒の平均細孔径は、7.5nmより大きく、9.5nmより小さい。
<Hydroprocessing catalyst>
The hydrotreatment catalyst contains phosphorus, an iron group element, and a group 6 element, and the ratio C 2 / C 1 (molar ratio) of the content C 2 of the iron group element to the content C 1 of phosphorus in the hydrotreatment catalyst ) Is less than 0.60. Moreover, the average pore diameter of the hydrotreating catalyst is larger than 7.5 nm and smaller than 9.5 nm.

水素化処理触媒は、無機酸化物担体と、該無機酸化物担体に担持された活性成分とを含むものであってよい。このとき、活性成分は、リン、鉄族元素及び第6族元素を含む。   The hydrotreating catalyst may include an inorganic oxide support and an active component supported on the inorganic oxide support. At this time, an active ingredient contains phosphorus, an iron group element, and a 6th group element.

無機酸化物担体としては、耐火性無機酸化物担体が好適であり、例えば、アルミナ、シリカ、チタニア、マグネシア、ジルコニア、酸化ホウ素、酸化亜鉛、ゼオライト(例えば、Yゼオライト、ZSM−5ゼオライト等)、及びこれらの混合物等が挙げられる。   As the inorganic oxide carrier, a refractory inorganic oxide carrier is suitable. For example, alumina, silica, titania, magnesia, zirconia, boron oxide, zinc oxide, zeolite (for example, Y zeolite, ZSM-5 zeolite, etc.), And mixtures thereof.

無機酸化物担体に担持される活性成分は、リン、鉄族元素及び第6族元素以外の成分を含んでいてよく、例えば、白金等を含んでいてよい。   The active component carried on the inorganic oxide carrier may contain components other than phosphorus, iron group elements, and Group 6 elements, and may contain, for example, platinum.

水素化処理触媒は、鉄族元素としてコバルト及び/又はニッケルを含有することが好ましく、ニッケルを含有することがより好ましい。   The hydrotreating catalyst preferably contains cobalt and / or nickel as the iron group element, and more preferably contains nickel.

水素化処理触媒は、第6族金属としてモリブデン及び/又はタングステンを含有することが好ましく、モリブデンを含有することがより好ましい。   The hydrotreating catalyst preferably contains molybdenum and / or tungsten as the Group 6 metal, and more preferably contains molybdenum.

水素化処理触媒におけるリンの含有量は、例えば0.1質量%以上であってよく、1.0質量%以上であることが好ましい。また、リンの含有量は、例えば4.0質量%以下であってよく、3.0質量%以下であることが好ましい。   The phosphorus content in the hydrotreating catalyst may be, for example, 0.1% by mass or more, and preferably 1.0% by mass or more. Moreover, phosphorus content may be 4.0 mass% or less, for example, and it is preferable that it is 3.0 mass% or less.

水素化処理触媒における鉄族元素の含有量は、例えば1.0質量%以上であってよく、1.5質量%以上であることが好ましい。また、鉄族元素の含有量は、例えば3.5質量%以下であってよく、3.0質量%以下であることが好ましい。   The content of the iron group element in the hydrotreating catalyst may be, for example, 1.0% by mass or more, and preferably 1.5% by mass or more. Moreover, content of an iron group element may be 3.5 mass% or less, for example, and it is preferable that it is 3.0 mass% or less.

水素化処理触媒における第6族元素の含有量は、例えば5.0質量%以上であってよく、6.0質量%以上であることが好ましい。また、第6族元素の含有量は、例えば12.0質量%以下であってよく、11.0質量%以下であることが好ましい。   The content of the Group 6 element in the hydrotreating catalyst may be, for example, 5.0% by mass or more, and preferably 6.0% by mass or more. In addition, the content of the Group 6 element may be, for example, 12.0% by mass or less, and preferably 11.0% by mass or less.

なお、本明細書中、リン、鉄族元素及び第6族元素の含有量は、ICP発光分光法で測定された値を示す。   In addition, in this specification, content of phosphorus, an iron group element, and a 6th group element shows the value measured by ICP emission spectroscopy.

水素化処理触媒において、リンの含有量Cに対する鉄族元素の含有量Cの比C/C(モル比)は、0.60未満であり、好ましくは0.55未満であり、さらに好ましくは0.53未満である。このような水素化処理触媒は、脱窒素活性が一層向上する傾向がある。また、比C/Cは、好ましくは0.20以上であり、より好ましくは0.25以上である。このような比C/Cを有する水素化処理触媒によれば、脱硫活性が一層向上する傾向がある。In the hydrotreating catalyst, the ratio C 2 / C 1 (molar ratio) of the iron group element content C 2 to the phosphorus content C 1 is less than 0.60, preferably less than 0.55, More preferably, it is less than 0.53. Such a hydrotreating catalyst tends to further improve the denitrification activity. Further, the ratio C 2 / C 1 is preferably 0.20 or more, and more preferably 0.25 or more. According to the hydrotreating catalyst having such a ratio C 2 / C 1 , the desulfurization activity tends to be further improved.

水素化処理触媒において、第6族元素の含有量Cに対するリンの含有量Cの比C/C(モル比)は、0.23より多いことが好ましく、0.40より多いことがより好ましく、0.50より多いことがさらに好ましい。このような水素化処理触媒は、脱窒素活性が一層向上する傾向がある。また、比C/Cは、好ましくは1.5未満であり、より好ましくは1.0未満である。このような水素化処理触媒は、耐金属性が一層向上する傾向がある。In the hydrotreating catalyst, the ratio C 1 / C 3 (molar ratio) of the phosphorus content C 1 to the Group C element content C 3 is preferably more than 0.23 and more than 0.40. Is more preferable, and it is further more preferable that it is more than 0.50. Such a hydrotreating catalyst tends to further improve the denitrification activity. The ratio C 1 / C 3 is preferably less than 1.5, more preferably less than 1.0. Such a hydrotreating catalyst tends to further improve metal resistance.

水素化処理触媒において、第6族元素の含有量Cに対する鉄族元素の含有量Cの比C/C(モル比)は、0.45未満であることが好ましく、0.44未満であることがより好ましく、0.42未満であることがさらに好ましい。このような水素化処理触媒では、脱硫活性に対する脱窒素活性の比率(脱窒素選択性)が一層高くなり、高度に脱窒素された水素化処理油がより得られやすくなる傾向がある。In the hydrotreating catalyst, the ratio C 2 / C 3 (molar ratio) of the content C 2 of the iron group element to the content C 3 of the group 6 element is preferably less than 0.45, 0.44 More preferably, it is more preferably less than 0.42. In such a hydrotreating catalyst, the ratio of denitrification activity to desulfurization activity (denitrogen selectivity) is further increased, and a highly denitrogenated hydrotreated oil tends to be obtained more easily.

水素化処理触媒の平均細孔径は、7.5nmより大きく、7.6nmより大きいことが好ましく、7.8nmより大きいことがより好ましい。このような水素化処理触媒では、耐金属性能の向上によって、触媒寿命が顕著に向上する傾向がある。   The average pore diameter of the hydrotreating catalyst is larger than 7.5 nm, preferably larger than 7.6 nm, and more preferably larger than 7.8 nm. In such a hydrotreating catalyst, the catalyst life tends to be remarkably improved by improving the metal resistance performance.

また、水素化処理触媒の平均細孔径は、9.5nm未満であり、好ましくは9.2nm未満であり、さらに好ましくは9.0nm未満である。このような水素化処理触媒では、脱窒素選択性が一層向上して、高度に脱窒素された水素化処理油がより得られやすくなる傾向がある。   Moreover, the average pore diameter of the hydrotreating catalyst is less than 9.5 nm, preferably less than 9.2 nm, and more preferably less than 9.0 nm. In such a hydrotreating catalyst, the denitrification selectivity is further improved, and a highly denitrogenated hydrotreating oil tends to be obtained more easily.

なお、本明細書中、水素化処理触媒の平均細孔径は、窒素吸着法で測定された値を示す。   In the present specification, the average pore diameter of the hydrotreating catalyst indicates a value measured by a nitrogen adsorption method.

水素化処理触媒の比表面積は、好ましくは150m/g以上、より好ましくは200m/g以上であり、好ましくは350m/g以下、より好ましくは320m/g以下である。このような水素化処理触媒では、十分な脱硫性能と併せて、一層優れた脱窒素活性が得られる傾向にある。The specific surface area of the hydrotreating catalyst is preferably 150 m 2 / g or more, more preferably 200 m 2 / g or more, preferably 350 m 2 / g or less, more preferably 320 m 2 / g or less. Such a hydrotreating catalyst tends to provide a more excellent denitrification activity together with sufficient desulfurization performance.

水素化処理触媒としては、新触媒、再生触媒等を特に制限なく使用できる。   As the hydrotreating catalyst, a new catalyst, a regenerated catalyst or the like can be used without particular limitation.

<脱金属触媒>
本実施形態に係る水素化処理油の製造方法において、反応器には、上記水素化処理触媒以外の触媒がさらに充填されていてもよい。例えば、原料油として使用される重質炭化水素油が重金属を含有する場合、反応器には、水素化処理触媒より上流側に、脱金属触媒が充填されていてよい。すなわち、反応器は、前段に脱金属触媒が充填され、後段に水素化処理触媒が充填されたものであってよい。
<Demetallation catalyst>
In the method for producing hydrotreated oil according to the present embodiment, the reactor may be further filled with a catalyst other than the hydrotreated catalyst. For example, when the heavy hydrocarbon oil used as the raw material oil contains heavy metals, the reactor may be filled with a demetallation catalyst upstream of the hydrotreating catalyst. That is, the reactor may be a reactor in which the demetalization catalyst is filled in the front stage and the hydrotreatment catalyst is filled in the back stage.

脱金属触媒は、重質炭化水素油中の重金属の少なくとも一部を除去できるものであればよく、特に限定されるものではない。   The demetallation catalyst is not particularly limited as long as it can remove at least part of the heavy metal in the heavy hydrocarbon oil.

脱金属触媒の好適な一例としては、無機酸化物担体と、該無機酸化物担体に担持された活性成分とを含むものが挙げられる。無機酸化物担体としては、耐火性無機酸化物担体が好ましく、例えば、アルミナ、シリカ、アルミナ−シリカ、酸化ホウ素、酸化亜鉛及びこれらの混合物が挙げられる。また、活性成分としては、例えば、モリブデン、タングステン等の第6族元素、コバルト、ニッケル等の鉄族元素などが挙げられる。また、無機酸化物担体は、リンを更に含有していてもよい。   A suitable example of the demetallation catalyst includes an inorganic oxide carrier and an active component supported on the inorganic oxide carrier. As the inorganic oxide carrier, a refractory inorganic oxide carrier is preferable, and examples thereof include alumina, silica, alumina-silica, boron oxide, zinc oxide, and a mixture thereof. In addition, examples of the active component include Group 6 elements such as molybdenum and tungsten, and iron group elements such as cobalt and nickel. Further, the inorganic oxide carrier may further contain phosphorus.

脱金属触媒において、窒素吸着法で測定される平均細孔直径は、好ましくは10nm以上、より好ましくは12nm以上である。このような脱金属触媒では、より優れた脱金属活性が得られる傾向がある。また、脱金属触媒の平均細孔直径は、好ましくは25nm以下、より好ましくは23nm以下である。このような脱金属触媒では、より優れた水素化処理活性及び触媒強度が得られる傾向がある。   In the metal removal catalyst, the average pore diameter measured by the nitrogen adsorption method is preferably 10 nm or more, more preferably 12 nm or more. With such a demetallization catalyst, there is a tendency that a superior demetallization activity can be obtained. Further, the average pore diameter of the demetallation catalyst is preferably 25 nm or less, more preferably 23 nm or less. With such a demetallation catalyst, there is a tendency that more excellent hydrotreating activity and catalyst strength can be obtained.

脱金属触媒の細孔容積は、好ましくは0.6mL/g以上、より好ましくは0.65mL/g以上であり、好ましくは1.0mL/g以下、より好ましくは0.9mL/g以下である。このような脱金属触媒では、十分な触媒寿命及び触媒強度が得られ、より安定して運転が可能となる傾向がある。   The pore volume of the demetallation catalyst is preferably 0.6 mL / g or more, more preferably 0.65 mL / g or more, preferably 1.0 mL / g or less, more preferably 0.9 mL / g or less. . With such a demetallation catalyst, sufficient catalyst life and catalyst strength are obtained, and there is a tendency that operation can be performed more stably.

脱金属触媒としては、新触媒、再生触媒等を特に制限なく使用できる。また、反応器における脱金属触媒の充填割合は、その運転条件及び原料油組成に応じて適宜変更することができる。   As the metal removal catalyst, a new catalyst, a regenerated catalyst or the like can be used without particular limitation. Moreover, the filling rate of the demetallization catalyst in the reactor can be appropriately changed according to the operating conditions and the feedstock composition.

反応器には、脱金属触媒及び水素化処理触媒以外の触媒がさらに充填されていてよく、例えば、脱金属活性と脱硫活性とを兼ね備えた中段触媒がさらに充填されていてよい。このような触媒としては公知の種々の触媒を用いることができる。   The reactor may be further filled with a catalyst other than the demetallation catalyst and the hydrotreating catalyst, and may be further filled with, for example, a middle stage catalyst having both demetallation activity and desulfurization activity. As such a catalyst, various known catalysts can be used.

<反応条件>
本実施形態に係る水素化処理油の製造方法では、重質炭化水素油を水素化処理触媒が充填された反応器に流通させて、重質炭化水素油の水素化処理を行うことにより、水素化処理油が得られる。
<Reaction conditions>
In the method for producing hydrotreated oil according to this embodiment, heavy hydrocarbon oil is circulated through a reactor filled with a hydrotreating catalyst, and hydrogenation treatment of the heavy hydrocarbon oil is performed. Chemically treated oil is obtained.

水素化処理の反応条件は、目標とする生成油組成(例えば硫黄分の含有量)と反応器に充填した触媒の触媒活性に応じて適宜調整してよい。   The reaction conditions for the hydrotreatment may be adjusted as appropriate according to the target product oil composition (for example, the sulfur content) and the catalytic activity of the catalyst charged in the reactor.

例えば、水素化処理の反応温度は300℃以上であってよく、350℃以上であってよい。このような反応温度とすることで、反応器に充填された水素化処理触媒の活性がより顕著に発揮される傾向がある。また、水素化処理の反応温度は、例えば500℃以下であってよく、450℃以下であってよい。このような反応温度とすることで、重質炭化水素油の熱分解が進行しすぎることがなく、水素化処理装置の運転を円滑に行うことができ、また水素化処理触媒の活性劣化を抑制できる。   For example, the reaction temperature of the hydrotreatment may be 300 ° C. or higher and may be 350 ° C. or higher. By setting it as such reaction temperature, there exists a tendency for the activity of the hydrotreating catalyst with which the reactor was filled to be exhibited more notably. Moreover, the reaction temperature of the hydrogenation treatment may be, for example, 500 ° C. or lower, and may be 450 ° C. or lower. By setting such a reaction temperature, the thermal decomposition of the heavy hydrocarbon oil does not proceed excessively, the operation of the hydroprocessing apparatus can be performed smoothly, and the deterioration of the activity of the hydroprocessing catalyst is suppressed. it can.

水素化処理における水素分圧は、例えば3MPa以上であってよく、5MPa以上であってよい。このような水素分圧とすることで、水素化反応が十分に進行し、より高度に脱硫及び脱窒素された水素化処理油が得られる傾向がある。また、水素化処理における水素分圧は、例えば25MPa以下であってよく、20Mpa以下であってよい。このような水素分圧では、装置建設費用及び運転費用の増大が避けられ、経済的に有利となる傾向がある。   The hydrogen partial pressure in the hydrogenation treatment may be, for example, 3 MPa or more, or 5 MPa or more. By setting it as such a hydrogen partial pressure, there exists a tendency for hydrogenation reaction to fully advance and to obtain the hydrotreated oil by which desulfurization and denitrogenation were carried out more highly. Moreover, the hydrogen partial pressure in the hydrogenation treatment may be, for example, 25 MPa or less, or 20 Mpa or less. Such a hydrogen partial pressure tends to be economically advantageous because an increase in equipment construction costs and operating costs can be avoided.

水素化処理における水素/油比は、例えば400L/Lであってよく、500L/Lであってよい。このような水素/油比であると、水素化処理触媒の水素化活性がより顕著に発揮される傾向がある。また、水素化処理における水素/油比は、例えば3000L/Lであってよく、1800L/Lであってよい。このような水素/油比とすることで、優れた経済性を確保することができる。   The hydrogen / oil ratio in the hydrotreatment may be, for example, 400 L / L or 500 L / L. With such a hydrogen / oil ratio, the hydrogenation activity of the hydrotreating catalyst tends to be more prominently exhibited. In addition, the hydrogen / oil ratio in the hydrotreatment may be, for example, 3000 L / L or 1800 L / L. By setting such a hydrogen / oil ratio, excellent economic efficiency can be ensured.

水素化処理における液空間速度(LHSV)は、例えば0.1h−1以上であってよく、0.2h−1以上であってよい。このような液空間速度とすることで、優れた経済性を確保することができる。また、水素化処理における液空間速度は、例えば3.0h−1であってよく、2.0h−1であってよい。このような液空間速度とすることで、より高度に脱硫及び脱窒素された水素化処理油が得られる傾向がある。Liquid hourly space velocity in the hydrogenation process (LHSV) may be for example 0.1 h -1 or more, may be at 0.2 h -1 or more. By setting it as such liquid space velocity, the outstanding economical efficiency is securable. The liquid hourly space velocity in the hydrogenation process can be, for example, a 3.0 h -1, may be 2.0 h -1. By setting it as such a liquid space velocity, there exists a tendency to obtain the hydrotreated oil desulfurized and denitrogenated more highly.

<水素化処理油>
本実施形態に係る水素化処理油の製造方法で得られる水素化処理油は、高度に脱硫及び脱窒素されており、FCC用原料油として好適に用いることができる。
<Hydrotreated oil>
The hydrotreated oil obtained by the method for producing hydrotreated oil according to this embodiment is highly desulfurized and denitrogenated, and can be suitably used as a FCC feedstock.

水素化処理油中の硫黄分の含有量は、0.15質量%以下であることが好ましく、0.10質量%以下であることがより好ましく、0.05質量%以下であることがさらに好ましい。   The content of sulfur in the hydrotreated oil is preferably 0.15% by mass or less, more preferably 0.10% by mass or less, and further preferably 0.05% by mass or less. .

水素化処理油中の窒素分の含有量は、0.15質量%以下であることが好ましく、0.13質量%以下であることがより好ましい。また、塩基性窒素分の含有量は、0.05質量%以下であることが好ましく、0.04質量%以下であることがより好ましい。   The nitrogen content in the hydrotreated oil is preferably 0.15% by mass or less, and more preferably 0.13% by mass or less. Moreover, it is preferable that content of basic nitrogen content is 0.05 mass% or less, and it is more preferable that it is 0.04 mass% or less.

水素化処理油中のニッケル及びバナジウムの含有量は、それぞれ10ppm以下であることが好ましく、5ppm以下であることがより好ましい。このような水素化処理油であれば、FCCプロセスで用いられる触媒の金属被毒を十分に抑制することができる。   The contents of nickel and vanadium in the hydrotreated oil are each preferably 10 ppm or less, and more preferably 5 ppm or less. Such hydrotreated oil can sufficiently suppress metal poisoning of the catalyst used in the FCC process.

本実施形態に係る製造方法によれば、FCCプロセスに好適な水素化処理油を、効率良く、経済性に優れた方法で、安定して製造することができる。   According to the manufacturing method which concerns on this embodiment, the hydroprocessing oil suitable for a FCC process can be manufactured stably by the method excellent in economical efficiency.

<FCCプロセス>
本実施形態では、上述の製造方法で得られた水素化処理油をFCC用原料油として用いることで、効率良く接触分解油を得ることができる。すなわち、本実施形態に係る接触分解油の製造方法は、上述の方法で水素化処理油を得る工程と、水素化処理油の流動接触分解によって接触分解油を得る工程と、を備えるものであってよい。
<FCC process>
In the present embodiment, catalytically cracked oil can be obtained efficiently by using the hydrotreated oil obtained by the above-described production method as the FCC feedstock. That is, the method for producing catalytic cracking oil according to the present embodiment includes a step of obtaining hydrotreated oil by the above-described method and a step of obtaining catalytic cracked oil by fluid catalytic cracking of hydrotreated oil. It's okay.

本実施形態に係る接触分解油の製造方法では、上述の製造方法で得られた水素化処理油がFCC用原料油として好適に脱窒素されたものであるため、流動接触分解における触媒劣化が十分に抑制され、効率良く接触分解油を得ることができる。   In the method for producing catalytic cracking oil according to the present embodiment, since the hydrotreated oil obtained by the above-described production method is suitably denitrified as a feedstock for FCC, catalyst deterioration in fluid catalytic cracking is sufficient. Therefore, the catalytic cracking oil can be obtained efficiently.

本実施形態において、流動接触分解の態様は特に制限されず、公知の方法で実施することができる。   In this embodiment, the mode of fluid catalytic cracking is not particularly limited, and can be carried out by a known method.

本実施形態に係る製造方法で得られた接触分解油は、ガソリン留分、軽油留分、コークス原料、プロピレンやブタジエン等の化学品原料の用途などに好適に用いることができる。   The catalytic cracked oil obtained by the production method according to the present embodiment can be suitably used for gasoline fractions, light oil fractions, coke raw materials, chemical raw materials such as propylene and butadiene, and the like.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

次に、本発明について実施例及び比較例により説明するが、本発明はこれらの実施例により限定されるものではない。   Next, although an example and a comparative example explain the present invention, the present invention is not limited by these examples.

<原料油の調製>
以下の実施例及び比較例では、下記組成の常圧残渣油A及び溶剤脱れき油を等容量混合したものを原料油として使用した。
<Preparation of raw oil>
In the following Examples and Comparative Examples, an oil mixed with an equal volume of normal pressure residue oil A and solvent degreasing oil having the following composition was used as a raw material oil.

(常圧残渣油A)
常圧残渣油中の硫黄分の含有率:2.9質量%
常圧残渣油中のバナジウムの含有率:40質量ppm
常圧残渣油中のニッケルの含有率:15質量ppm
常圧残渣油中のアスファルテンの含有率:3.0質量%
15℃における常圧残渣油の密度:0.9619g/cm
100℃における常圧残渣油の動粘度:30.5mm/s
常圧残渣油中の残炭分(carbon residue)の含有率:9.0質量%
常圧残渣油中の窒素分の含有率:0.154質量%
常圧残渣油中の塩基性窒素分の含有率:0.052質量%
(Normal pressure residual oil A)
Sulfur content in atmospheric residue: 2.9% by mass
Vanadium content in the atmospheric residue: 40 ppm by mass
Nickel content in atmospheric residue: 15 ppm by mass
Asphaltene content in atmospheric residue oil: 3.0% by mass
Density of atmospheric residue at 15 ° C .: 0.9619 g / cm 3
Kinematic viscosity of atmospheric residue at 100 ° C .: 30.5 mm 2 / s
Carbon residue content in atmospheric residue oil: 9.0% by mass
Nitrogen content in atmospheric residue: 0.154% by mass
Basic nitrogen content in atmospheric residue oil: 0.052% by mass

(溶剤脱れき油)
溶剤脱れき油としては、下記減圧残渣油に対して、炭素数5及び6の炭化水素を90%以上含む炭化水素溶剤を使用して抽出率70%で溶剤脱れきしたものを用いた。溶剤脱れき油の性状は以下のとおりであった。
減圧残渣油中の硫黄分の含有率:4.4質量%
減圧残渣油中のバナジウムの含有率:98質量ppm
減圧残渣油中のニッケルの含有率:30質量ppm
減圧残渣油中のアスファルテンの含有率:10.4質量%
15℃における減圧残渣油の密度:1.0400g/cm
100℃における減圧残渣油の動粘度:461mm/s
減圧残渣油中の残炭分の含有率:24.7質量%
減圧残渣油中の窒素分の含有率:0.38質量%
減圧残渣油中の塩基性窒素分の含有率:0.13質量%
溶剤脱れき油中の硫黄分の含有率:4.2質量%
溶剤脱れき油中のバナジウムの含有率:29質量ppm
溶剤脱れき油中のニッケルの含有率:9質量ppm
溶剤脱れき油中のアスファルテンの含有率:0.2質量%
15℃における溶剤脱れき油の密度:1.0037g/cm
100℃における溶剤脱れき油の動粘度:419mm/s
溶剤脱れき油中の残炭分の含有率:15.5質量%
溶剤脱れき油中の窒素分の含有率:0.182質量%
溶剤脱れき油中の塩基性窒素分の含有率:0.062質量%
(Solvent removal oil)
As the solvent deasphalted oil, the following depressurized residual oil was used which was desolvated with a 70% extraction rate using a hydrocarbon solvent containing 90% or more of hydrocarbons having 5 and 6 carbon atoms. The properties of the solvent-peeling oil were as follows.
Sulfur content in vacuum residue oil: 4.4% by mass
Vanadium content in vacuum residue oil: 98 ppm by mass
Nickel content in vacuum residue oil: 30 ppm by mass
Content of asphaltene in vacuum residue oil: 10.4% by mass
Density of vacuum residue oil at 15 ° C .: 1.0400 g / cm 3
Kinematic viscosity of vacuum residue oil at 100 ° C .: 461 mm 2 / s
Residual carbon content in vacuum residue oil: 24.7% by mass
Nitrogen content in the vacuum residue oil: 0.38% by mass
Basic nitrogen content in the vacuum residue oil: 0.13% by mass
Content of sulfur in solvent-peeling oil: 4.2% by mass
Vanadium content in solvent-desorbed oil: 29 mass ppm
Content of nickel in solvent-peeling oil: 9 mass ppm
Content of asphaltene in solvent-peeling oil: 0.2% by mass
Density of solvent removal oil at 15 ° C .: 1.0037 g / cm 3
Kinematic viscosity of solvent removal oil at 100 ° C .: 419 mm 2 / s
Residual carbon content in solvent removal oil: 15.5% by mass
Nitrogen content in solvent-peeling oil: 0.182% by mass
Content of basic nitrogen in solvent-peeling oil: 0.062% by mass

<実施例1>
実施例1では、脱金属触媒として、アルミナ担体にモリブデンを2.7質量%(モリブデン元素換算)担持した触媒(脱金属触媒X)(平均細孔直径:18nm、細孔容積:0.87mL/g)を用いた。また、水素化処理触媒として、表1に記載の組成の触媒Aを用いた。なお、表1中、C/Cは、第6族元素の含有量Cに対する鉄族元素の含有量Cの比を示し、C/Cは、第6族元素の含有量Cに対するリンの含有量Cの比を示し、C/Cは、リンの含有量Cに対する鉄族元素の含有量Cの比を示す。
<Example 1>
In Example 1, as a demetallation catalyst, a catalyst (demetallization catalyst X) in which molybdenum is supported on an alumina carrier at 2.7% by mass (in terms of molybdenum element) (average pore diameter: 18 nm, pore volume: 0.87 mL / g) was used. Moreover, the catalyst A having the composition shown in Table 1 was used as the hydrotreating catalyst. In Table 1, C 2 / C 3 indicates the ratio of the content C 2 of the iron group element to the content C 3 of Group 6 elements, C 1 / C 3, the content of the group 6 element shows a phosphorus ratio of content C 1 of for C 3, C 2 / C 1 represents the ratio of the content C 2 of the iron group element to the content C 1 of phosphorus.

水素化処理装置のリアクター入口側に脱金属触媒Xを充填し、その後段側に等容量の触媒Aを充填した。この水素化処理装置を用いて、以下の条件で水素化処理を実施した。
水素分圧:14.4Mpa
水素/油比:1000L/L
LHSV:0.44h−1
The metal removal catalyst X was filled on the reactor inlet side of the hydrotreating apparatus, and an equal volume of catalyst A was filled on the subsequent stage side. Using this hydrotreating apparatus, hydrotreating was performed under the following conditions.
Hydrogen partial pressure: 14.4 Mpa
Hydrogen / oil ratio: 1000L / L
LHSV: 0.44h -1

反応温度を360℃、380℃及び400℃に変化させ、それぞれの条件で得られた水素化処理油について硫黄分、窒素分及び重金属の分析を行い、分析結果に基づいて、脱硫活性(kHDS)、脱窒素活性(kHDN)、及び脱金属活性(kHDM)を求めた。なお、各活性は、反応次数を、脱硫反応は2次、脱窒素反応は1次、脱金属反応は1次として、各反応温度における反応速度定数を算出し、後述の比較例4に対する相対比の平均値として算出した。   The reaction temperature was changed to 360 ° C., 380 ° C. and 400 ° C., and the hydrotreated oil obtained under each condition was analyzed for sulfur content, nitrogen content and heavy metal, and based on the analysis results, desulfurization activity (kHDS) , Denitrification activity (kHDN), and demetallation activity (kHDM) were determined. Each activity is a reaction order, a desulfurization reaction is secondary, a denitrogenation reaction is primary, and a demetallation reaction is primary, and a reaction rate constant at each reaction temperature is calculated. It was calculated as an average value.

また、原料油中の塩基性窒素濃度と、反応温度380℃における水素化処理油中の塩基性窒素濃度とから、塩基性窒素除去率を算出した。また、脱硫活性に対する脱窒素活性の割合(kHDN/kHDS)を、HDN選択性とした。また、水素化処理触媒の触媒寿命の指標として、初期脱硫活性に対して活性が20%に低下するまでの時間を測定し、後述の比較例4に対する相対値を求め、これを相対耐金属性とした。   Further, the basic nitrogen removal rate was calculated from the basic nitrogen concentration in the raw material oil and the basic nitrogen concentration in the hydrotreated oil at a reaction temperature of 380 ° C. The ratio of denitrification activity to desulfurization activity (kHDN / kHDS) was defined as HDN selectivity. Further, as an indicator of the catalyst life of the hydrotreating catalyst, the time until the activity was reduced to 20% with respect to the initial desulfurization activity was measured, and a relative value with respect to Comparative Example 4 described later was obtained, and this was determined as the relative metal resistance. It was.

上記の方法で求めた脱硫活性(kHDS)、脱窒素活性(kHDN)、脱金属活性(kHDM)、塩基性窒素除去率、HDN選択性、及び相対耐金属性を表2に示す。   Table 2 shows the desulfurization activity (kHDS), denitrification activity (kHDN), demetallation activity (kHDM), basic nitrogen removal rate, HDN selectivity, and relative metal resistance determined by the above method.

<実施例2〜4>
水素化処理触媒として触媒Aにかえて表1に記載の触媒B〜Dを用いたこと以外は、実施例1と同様にして、水素化処理及び得られた水素化処理油の分析を行った。分析結果は表2に示すとおりであった。
<Examples 2 to 4>
The hydrotreating and the obtained hydrotreating oil were analyzed in the same manner as in Example 1, except that the catalysts B to D shown in Table 1 were used instead of the catalyst A as the hydrotreating catalyst. . The analysis results were as shown in Table 2.

<比較例1〜4>
水素化処理触媒として触媒Aにかえて表1に記載の触媒E〜Hを用いたこと以外は、実施例1と同様にして、水素化処理及び得られた水素化処理油の分析を行った。分析結果は表2に示すとおりであった。
<Comparative Examples 1-4>
The hydrotreating and the obtained hydrotreating oil were analyzed in the same manner as in Example 1 except that the catalysts E to H shown in Table 1 were used instead of the catalyst A as the hydrotreating catalyst. . The analysis results were as shown in Table 2.

Figure 2016194686
Figure 2016194686

Figure 2016194686
Figure 2016194686

実施例と比較例を比較すると、実施例では触媒寿命(相対耐金属性)の大幅な低下を抑制しながら、高い脱窒素選択性及び塩基性窒素除去率が得られた。   When Examples and Comparative Examples were compared, in the Examples, high denitrification selectivity and basic nitrogen removal rate were obtained while suppressing a significant decrease in catalyst life (relative metal resistance).

<実施例5>
複数の触媒を用いた水素化処理システムを実施して生成油を得た。また、得られた生成油の接触分解反応の反応性を確認するため、生成油についてMAT(Micro Activity Test)試験を実施した。以下に詳細について説明する。
<Example 5>
A hydroprocessing system using a plurality of catalysts was implemented to obtain a product oil. Moreover, in order to confirm the reactivity of the catalytic cracking reaction of the obtained product oil, a MAT (Micro Activity Test) test was performed on the product oil. Details will be described below.

まず、上記脱金属触媒X、アルミナ担体にモリブデン6質量%(モリブデン元素換算)及びニッケル1.5質量%(ニッケル元素換算)を担持した脱金属触媒Y(平均細孔直径18nm、細孔容積:0.80mL/g)、上記脱硫触媒E、上記脱硫触媒H、並びに上記脱硫触媒Aを準備した。また、水素化処理用の原料油として、上記溶剤脱れき油と下記に示す常圧残渣油Bとを54:46(容量比)で混合したものを準備した。   First, the demetallation catalyst X, a demetallation catalyst Y (average pore diameter of 18 nm, pore volume) in which 6 mass% of molybdenum (in terms of molybdenum element) and 1.5 mass% of nickel (in terms of nickel element) are supported on an alumina carrier. 0.80 mL / g), the desulfurization catalyst E, the desulfurization catalyst H, and the desulfurization catalyst A were prepared. Moreover, what mixed the said solvent debris oil and the normal pressure residual oil B shown below by 54:46 (volume ratio) was prepared as raw material oil for hydroprocessing.

(常圧残渣油B)
常圧残渣油中の硫黄分の含有率:0.92質量%
常圧残渣油中のバナジウムの含有率:11質量ppm
常圧残渣油中のニッケルの含有率:11質量ppm
常圧残渣油中のアスファルテンの含有率:0.2質量%
15℃における常圧残渣油の密度:0.9187g/cm
100℃における常圧残渣油の動粘度:25.2mm/s
常圧残渣油中の残炭分(carbon residue)の含有率:5.1質量%
常圧残渣油中の窒素分の含有率:0.170質量%
常圧残渣油中の塩基性窒素分の含有率:0.057質量%
(Normal pressure residual oil B)
Sulfur content in atmospheric residual oil: 0.92% by mass
Vanadium content in atmospheric residue: 11 mass ppm
Nickel content in atmospheric residue: 11 ppm by mass
Asphaltene content in atmospheric residue: 0.2% by mass
Density of atmospheric residue at 15 ° C .: 0.9187 g / cm 3
Kinematic viscosity of atmospheric residual oil at 100 ° C .: 25.2 mm 2 / s
Carbon residue content in atmospheric residual oil: 5.1% by mass
Nitrogen content in atmospheric residue: 0.170% by mass
Basic nitrogen content in atmospheric residue: 0.057% by mass

2塔の反応器を連結した反応装置を準備し、1塔目には入口側から脱金属触媒X及び脱金属触媒Yをこの順に充填し、2塔目には入口側から脱硫触媒E、脱硫触媒H及び脱硫触媒Aをこの順に充填した。触媒の使用量は、X:Y:E:H:A=3:41:11:12:33(容量比)とした。この反応装置を用いて、以下の条件で水素化処理を実施した。なお、反応開始から30日間は、1塔目入口温度は350℃とした。
水素分圧:14.4Mpa
水素/油比:1000L/L
LHSV:0.44h−1
1塔目出口温度=1塔目入口温度+8℃
2塔目入口温度=1塔目入口温度−2℃
2塔目出口温度=2塔目入口温度+20℃
A reactor connected to two reactors is prepared. The first column is filled with the demetallation catalyst X and the demetalization catalyst Y in this order from the inlet side, and the second column is filled with the desulfurization catalyst E and desulfurization from the inlet side. Catalyst H and desulfurization catalyst A were charged in this order. The amount of catalyst used was X: Y: E: H: A = 3: 41: 11: 12: 33 (volume ratio). Using this reactor, the hydrogenation treatment was carried out under the following conditions. The first column inlet temperature was 350 ° C. for 30 days from the start of the reaction.
Hydrogen partial pressure: 14.4 Mpa
Hydrogen / oil ratio: 1000L / L
LHSV: 0.44h -1
1st tower outlet temperature = 1st tower inlet temperature + 8 ° C
Second tower inlet temperature = First tower inlet temperature -2 ° C
2nd tower outlet temperature = 2nd tower inlet temperature + 20 ° C

反応開始から30日後、生成油のボトム分(蒸留分離における残渣分、沸点390℃以上の留分)の硫黄分が0.6質量%となるように反応温度を調整したところ、反応温度の平均は364℃であった。生成油の沸点390℃未満の留分をカットし、脱硫油5Aを得た。脱硫油5Aの組成は、表3に示すとおりであった。この脱硫油5Aを、MAT試験に用いた。   30 days after the start of the reaction, the reaction temperature was adjusted so that the sulfur content in the bottom of the product oil (residue in distillation separation, fraction having a boiling point of 390 ° C. or higher) was 0.6% by mass. Was 364 ° C. The fraction of the product oil having a boiling point of less than 390 ° C. was cut to obtain desulfurized oil 5A. The composition of the desulfurized oil 5A was as shown in Table 3. This desulfurized oil 5A was used for the MAT test.

MAT試験では、表3に組成を示した減圧軽油と上記脱硫油5Aとを、57:43(質量比)で混合したFCC原料油Aを、原料油として用いた。MAT試験は、以下の条件で実施した。なお、触媒には市販のFCC触媒を用いた。試験結果は表4に示した。
反応温度:530℃
触媒/油比:8.5(重量比)
触媒重量:12g
In the MAT test, FCC feedstock A in which the reduced pressure light oil whose composition was shown in Table 3 and the above desulfurized oil 5A were mixed at 57:43 (mass ratio) was used as the feedstock. The MAT test was performed under the following conditions. A commercially available FCC catalyst was used as the catalyst. The test results are shown in Table 4.
Reaction temperature: 530 ° C
Catalyst / oil ratio: 8.5 (weight ratio)
Catalyst weight: 12g

<比較例5>
反応装置の1塔目に入口側から脱金属触媒X及び脱金属触媒Yをこの順に充填し、2塔目に入口側から脱硫触媒E及び脱硫触媒Hをこの順に充填し、触媒の使用量をX:Y:E:H=22:22:23:33(容量比)としたこと以外は、実施例5と同様にして、水素化処理を実施した。
<Comparative Example 5>
The first column of the reactor is filled with the demetalization catalyst X and the demetalization catalyst Y in this order from the inlet side, and the second column is filled with the desulfurization catalyst E and the desulfurization catalyst H in this order from the inlet side. Hydrogenation treatment was performed in the same manner as in Example 5 except that X: Y: E: H = 22: 22: 23: 33 (volume ratio).

反応開始から30日後、生成油のボトム分(蒸留分離における残渣分、沸点390℃以上の留分)の硫黄分が0.6質量%となるように反応温度を調整したところ、反応温度の平均は377℃であった。生成油の沸点390℃未満の留分をカットし、脱硫油5Bを得た。脱硫油5Bの組成は、表3に示すとおりであった。この脱硫油5Bを、MAT試験に用いた。   30 days after the start of the reaction, the reaction temperature was adjusted so that the sulfur content in the bottom of the product oil (residue in distillation separation, fraction having a boiling point of 390 ° C. or higher) was 0.6% by mass. Was 377 ° C. The fraction of the product oil having a boiling point of less than 390 ° C. was cut to obtain desulfurized oil 5B. The composition of the desulfurized oil 5B was as shown in Table 3. This desulfurized oil 5B was used for the MAT test.

MAT試験では、表3に示した減圧軽油と上記脱硫油5Bとを57:43(質量比)で混合したFCC原料油Bを、原料油として用いた。原料油としてFCC原料油Bを用いたこと以外は、実施例5と同様にして、MAT試験を実施した。試験結果は表4に示した。   In the MAT test, FCC feedstock B obtained by mixing the vacuum gas oil shown in Table 3 and the desulfurized oil 5B at 57:43 (mass ratio) was used as the feedstock. A MAT test was performed in the same manner as in Example 5 except that FCC feedstock B was used as the feedstock. The test results are shown in Table 4.

<実施例6>
触媒/油比を9.5(従量比)に変更したこと以外は、実施例5と同様にしてMAT試験を実施した。試験結果は表4に示した。
<Example 6>
The MAT test was conducted in the same manner as in Example 5 except that the catalyst / oil ratio was changed to 9.5 (subsidiary ratio). The test results are shown in Table 4.

Figure 2016194686
Figure 2016194686

なお、表3中、「密度(15℃)」は15℃における密度を示し、「LCO留分」は沸点221℃以上343℃未満の留分の含有率を示し、「VR留分」は沸点538℃以上の留分の含有率を示す。また、「残留炭素分」、「窒素分」、「塩基性窒素」、「硫黄分」、「Ni」及び「V」はそれぞれ、残留炭素分、窒素分、塩基性窒素、硫黄分、ニッケル及びバナジウムの含有率を示す。また、「平均分子量」は、GPC装置により測定される、炭化水素の分子量数平均値を表す。   In Table 3, “Density (15 ° C.)” indicates a density at 15 ° C., “LCO fraction” indicates the content of a fraction having a boiling point of 221 ° C. or more and less than 343 ° C., and “VR fraction” is a boiling point. The content of a fraction at 538 ° C. or higher is shown. Further, “residual carbon”, “nitrogen”, “basic nitrogen”, “sulfur”, “Ni” and “V” respectively represent residual carbon, nitrogen, basic nitrogen, sulfur, nickel and The content of vanadium is shown. The “average molecular weight” represents the average molecular weight number of hydrocarbons measured by a GPC apparatus.

Figure 2016194686
Figure 2016194686

なお、表4中、「ドライガス」、「LPG」、「WCCG」、「LCO」、「CLO」及び「COKE」はそれぞれ、炭素数1又は2の炭化水素、炭素数3又は4の炭化水素、炭素数5以上沸点221℃未満の炭化水素、沸点221℃以上343℃未満の炭化水素、沸点343℃以上の液状炭化水素、及び、固体生成物を示す。また、「分解率」は、全生成物からLCO、CLO及びコーク(COKE)を除いた量の割合を示す。   In Table 4, “dry gas”, “LPG”, “WCCG”, “LCO”, “CLO”, and “CAKE” are hydrocarbons having 1 or 2 carbon atoms and hydrocarbons having 3 or 4 carbon atoms, respectively. , Hydrocarbons having a carbon number of 5 or more and a boiling point of less than 221 ° C., hydrocarbons having a boiling point of 221 ° C. or more and less than 343 ° C., liquid hydrocarbons having a boiling point of 343 ° C. or more, and solid products. The “decomposition rate” indicates the ratio of the amount obtained by removing LCO, CLO and coke from the total product.

表3に示すとおり、実施例5の水素化処理では、硫黄分が0.6質量%となる反応温度(364℃)が比較例5(377℃)より低かったにも関わらず、塩基性窒素の量が比較例5より低減されている。また、表4に示すとおり、実施例5の接触分解反応では、比較例5と比較してコーク生成量が抑制されている。また、表4に示すとおり、コーク生成量が比較例5と同程度となるよう触媒/原料油比を調整した実施例6では、比較例5と比較して高い分解率が得られている。   As shown in Table 3, in the hydrogenation treatment of Example 5, basic nitrogen was used even though the reaction temperature (364 ° C.) at which the sulfur content was 0.6% by mass was lower than that of Comparative Example 5 (377 ° C.). Is less than that of Comparative Example 5. Moreover, as shown in Table 4, in the catalytic cracking reaction of Example 5, the amount of coke produced is suppressed as compared with Comparative Example 5. Further, as shown in Table 4, in Example 6 in which the catalyst / feed oil ratio was adjusted so that the amount of coke produced was comparable to that in Comparative Example 5, a higher decomposition rate was obtained as compared with Comparative Example 5.

Claims (3)

重質炭化水素油を水素化処理触媒が充填された反応器に流通させて、水素化処理油を得る工程を備え、
前記水素化処理触媒が、リン、鉄族元素、及び第6族元素を含有し、
前記水素化処理触媒におけるリンの含有量Cに対する鉄族元素の含有量Cの比C/Cが、モル比で0.60未満であり、
前記水素化処理触媒の平均細孔径が、7.5nmより大きく、9.5nmより小さい、
水素化処理油の製造方法。
The heavy hydrocarbon oil is circulated through a reactor filled with a hydroprocessing catalyst to obtain a hydroprocessing oil,
The hydrotreating catalyst contains phosphorus, an iron group element, and a group 6 element;
The ratio C 2 / C 1 of the iron group element content C 2 to the phosphorus content C 1 in the hydroprocessing catalyst is less than 0.60 in molar ratio,
An average pore diameter of the hydrotreating catalyst is larger than 7.5 nm and smaller than 9.5 nm;
A method for producing hydrotreated oil.
前記水素化処理触媒において、
第6族元素の含有量Cに対する鉄族元素の含有量Cの比C/Cが、モル比で0.45未満であり、
第6族元素の含有量Cに対するリンの含有量Cの比C/Cが、モル比で0.23より多い、
請求項1に記載の製造方法。
In the hydrotreating catalyst,
The ratio C 2 / C 3 of the content C 2 of the iron group element to the content C 3 of the group 6 element is less than 0.45 in molar ratio,
The ratio C 1 / C 3 content C 1 of phosphorus to the content C 3 of group 6 element is greater than 0.23 in molar ratio,
The manufacturing method according to claim 1.
請求項1又は2に記載の製造方法によって水素化処理油を得る工程と、
前記水素化処理油の流動接触分解によって、接触分解油を得る工程と、
を備える、接触分解油の製造方法。
Obtaining a hydrotreated oil by the production method according to claim 1 or 2,
Obtaining hydrocracked oil by fluid catalytic cracking of the hydrotreated oil;
A process for producing catalytic cracking oil.
JP2017521827A 2015-05-29 2016-05-23 Method for producing hydrotreated oil and method for producing catalytically cracked oil Active JP6770953B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015109748 2015-05-29
JP2015109748 2015-05-29
PCT/JP2016/065219 WO2016194686A1 (en) 2015-05-29 2016-05-23 Method for producing hydrotreated oil and method for producing catalytic cracked oil

Publications (2)

Publication Number Publication Date
JPWO2016194686A1 true JPWO2016194686A1 (en) 2018-03-15
JP6770953B2 JP6770953B2 (en) 2020-10-21

Family

ID=57441336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017521827A Active JP6770953B2 (en) 2015-05-29 2016-05-23 Method for producing hydrotreated oil and method for producing catalytically cracked oil

Country Status (6)

Country Link
US (1) US20180016505A1 (en)
EP (1) EP3305874A4 (en)
JP (1) JP6770953B2 (en)
KR (1) KR20180013844A (en)
CA (1) CA2986556A1 (en)
WO (1) WO2016194686A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10655074B2 (en) 2017-02-12 2020-05-19 Mag{hacek over (e)}m{hacek over (a)} Technology LLC Multi-stage process and device for reducing environmental contaminates in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
JP2019099611A (en) * 2017-11-29 2019-06-24 Jxtgエネルギー株式会社 Method of producing hydrocarbon oil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197150A (en) * 1986-02-26 1987-08-31 Sumitomo Metal Mining Co Ltd Catalyst for hydro-desulfurization/hydrodenitrification of heavy hydrocarbon oil
JPH0214745A (en) * 1988-05-10 1990-01-18 Union Oil Co Calif Catalyst composition and manufacture thereof
JP2000042413A (en) * 1998-07-28 2000-02-15 Japan Energy Corp Catalyst for hydrogenation refining
JP2013209529A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Hydrogenation purification method for heavy residual oil

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846961A (en) * 1986-12-05 1989-07-11 Union Oil Company Of California Hydroprocessing catalyst with a Ni-P-Mo
WO2004037408A1 (en) * 2002-10-10 2004-05-06 China Petroleum & Chemical Corporation A silicon-containing alumina support, preparation thereof and a catalyst comprising the alumina support
JP4658491B2 (en) * 2004-02-26 2011-03-23 Jx日鉱日石エネルギー株式会社 Production method of environment-friendly diesel oil
JP4472556B2 (en) * 2004-03-26 2010-06-02 コスモ石油株式会社 Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
FR2904242B1 (en) * 2006-07-28 2012-09-28 Inst Francais Du Petrole PROCESS FOR HYDRODESULFURING CUTS CONTAINING SULFUR COMPOUNDS AND OLEFINS IN THE PRESENCE OF A SUPPORTED CATALYST COMPRISING ELEMENTS OF GROUPS VIII AND VIB
FR2910352B1 (en) * 2006-12-21 2010-10-08 Inst Francais Du Petrole PROCESS FOR HYDROCONVERSION IN THE SLURRY PHASE OF HEAVY HYDROCARBON LOADS AND / OR CHARCOAL USING A SUPPORTED CATALYST
JP5228221B2 (en) * 2007-04-27 2013-07-03 コスモ石油株式会社 Method for producing hydrocarbon oil hydrotreating catalyst
TWI594795B (en) * 2012-05-21 2017-08-11 蜆殼國際研究所 Improved catalyst and process for hydroconversion of a heavy feedstock
JP2014173025A (en) * 2013-03-11 2014-09-22 Jx Nippon Oil & Energy Corp Hydrogenation purification method for vacuum gas oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197150A (en) * 1986-02-26 1987-08-31 Sumitomo Metal Mining Co Ltd Catalyst for hydro-desulfurization/hydrodenitrification of heavy hydrocarbon oil
JPH0214745A (en) * 1988-05-10 1990-01-18 Union Oil Co Calif Catalyst composition and manufacture thereof
JP2000042413A (en) * 1998-07-28 2000-02-15 Japan Energy Corp Catalyst for hydrogenation refining
JP2013209529A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Hydrogenation purification method for heavy residual oil

Also Published As

Publication number Publication date
WO2016194686A1 (en) 2016-12-08
US20180016505A1 (en) 2018-01-18
EP3305874A4 (en) 2019-01-23
JP6770953B2 (en) 2020-10-21
KR20180013844A (en) 2018-02-07
CA2986556A1 (en) 2016-12-08
EP3305874A1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
EP2828358B1 (en) Integrated hydroprocessing and fluid catalytic cracking for processing of a crude oil
KR102517485B1 (en) Systems and methods for converting heavy oil into petrochemical products
CN112143522B (en) Hydrogenation method and system for production chemical material
JP5260059B2 (en) Hydrocracking catalyst for vacuum gas oil and demetallized blends
JPS5850636B2 (en) Desulfurization treatment method for heavy hydrocarbon oil
JP2020514473A (en) Conversion of crude oil to aromatic and olefinic petrochemicals
WO2019106921A1 (en) Method for producing hydrocarbon oil
JP6770953B2 (en) Method for producing hydrotreated oil and method for producing catalytically cracked oil
SA520411072B1 (en) Systems and methods for processing heavy oils by oil upgrading followed by distillation
JP5406629B2 (en) Method for producing highly aromatic hydrocarbon oil
JP2023501181A (en) Method and system for processing aromatic-rich distillates
CN110249033A (en) The method that catalyst for optimizing hydrocracking process loads
JP5419672B2 (en) Hydrorefining method of hydrocarbon oil
JP6548223B2 (en) Method of producing fuel oil base material
JP6812265B2 (en) How to treat pyrolyzed heavy light oil
JP4766940B2 (en) Method for producing hydrocarbon oil
CN112745953B (en) Method and system for hydrotreating deoiled asphalt
RU2723625C1 (en) Method for catalytic hydroforming of gas condensate residue
US20220372385A1 (en) Process and system for hydrotreating deoiled asphalt
JP5314355B2 (en) Method for producing hydrocarbon oil
JP5082138B2 (en) Operation method of direct desulfurization equipment
JP5419671B2 (en) Hydrorefining method of hydrocarbon oil
US20160060548A1 (en) Methods and apparatuses for hydroprocessing hydrocarbons
WO2015029617A1 (en) Hydrocarbon oil production method
JP2010111768A (en) Method for producing purified hydrocarbon oil and purified hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200728

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200728

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200805

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R150 Certificate of patent or registration of utility model

Ref document number: 6770953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250