JP5228221B2 - Method for producing hydrocarbon oil hydrotreating catalyst - Google Patents

Method for producing hydrocarbon oil hydrotreating catalyst Download PDF

Info

Publication number
JP5228221B2
JP5228221B2 JP2008116450A JP2008116450A JP5228221B2 JP 5228221 B2 JP5228221 B2 JP 5228221B2 JP 2008116450 A JP2008116450 A JP 2008116450A JP 2008116450 A JP2008116450 A JP 2008116450A JP 5228221 B2 JP5228221 B2 JP 5228221B2
Authority
JP
Japan
Prior art keywords
catalyst
metal
group
acid
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008116450A
Other languages
Japanese (ja)
Other versions
JP2008290071A5 (en
JP2008290071A (en
Inventor
和幸 桐山
洋 木村
芳範 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Japan Petroleum Energy Center JPEC filed Critical Cosmo Oil Co Ltd
Priority to JP2008116450A priority Critical patent/JP5228221B2/en
Publication of JP2008290071A publication Critical patent/JP2008290071A/en
Publication of JP2008290071A5 publication Critical patent/JP2008290071A5/ja
Application granted granted Critical
Publication of JP5228221B2 publication Critical patent/JP5228221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

本発明は、炭化水素油の水素化処理触媒(以下、単に「水素化処理触媒」ともいう)の製造方法に関する。より詳しくは、炭化水素油を水素化処理する際に、炭化水素油中の硫黄化合物を従来のこの種の水素化処理触媒よりも一層低減し得る優れた脱硫活性を有し、熱耐性を向上することにより長寿命な炭化水素油の水素化処理触媒を得ることができる製造方法に関する。 The present invention, hydrogenation of hydrocarbon oil processing catalyst (hereinafter, simply referred to as "hydrotreating catalyst") relates to the production how the. More specifically, when hydrotreating hydrocarbon oils, it has superior desulfurization activity that can reduce sulfur compounds in hydrocarbon oils more than conventional hydrotreating catalysts of this type, and improves heat resistance. It relates to the production how you can get hydrotreating catalyst of long life hydrocarbon oil by.

近年、大気環境改善のために、石油製品(炭化水素油)の品質規制値が世界的に厳しくなる傾向にある。例えば、軽油中の硫黄化合物は、排ガス対策として期待されている酸化触媒、窒素酸化物(NOx)還元触媒、連続再生式ディーゼル排気微粒子除去フィルター等の後処理装置の耐久性に影響を及ぼす懸念があるため、軽油中の硫黄化合物の低減が要請されている。   In recent years, quality control values for petroleum products (hydrocarbon oils) tend to be stricter worldwide in order to improve the air environment. For example, sulfur compounds in light oil may affect the durability of post-treatment devices such as oxidation catalysts, nitrogen oxide (NOx) reduction catalysts, and continuously regenerating diesel exhaust particulate removal filters that are expected as countermeasures for exhaust gases. Therefore, there is a demand for reduction of sulfur compounds in light oil.

このような状況下で、炭化水素油中の硫黄化合物を大幅に低減する超深度脱硫技術の開発が重要視されている。炭化水素油中の硫黄化合物の低減化技術として通常、水素化脱硫の運転条件、例えば、反応温度、液空間速度等を過酷にすることが考えられる。しかし、反応温度を上げると、触媒上に炭素質が析出し触媒劣化が起こり、触媒活性が急速に低下する。また、液空間速度を低下させると、脱硫能は向上するものの精製処理能力が低下するため、設備規模を拡張する必要が生じる。   Under such circumstances, development of ultra-deep desulfurization technology that greatly reduces sulfur compounds in hydrocarbon oils is regarded as important. As a technique for reducing sulfur compounds in hydrocarbon oils, it is usually considered that the operating conditions for hydrodesulfurization, for example, reaction temperature, liquid space velocity, etc., are severe. However, when the reaction temperature is increased, carbonaceous matter is deposited on the catalyst, catalyst deterioration occurs, and the catalyst activity rapidly decreases. Further, when the liquid space velocity is lowered, the desulfurization ability is improved, but the purification treatment ability is lowered, so that the equipment scale needs to be expanded.

従って、運転条件を過酷にすることなしに炭化水素油の超深度脱硫を達成し得る良い方法は、優れた脱硫活性を有する水素化処理触媒を開発することである。更には、開発された優れた脱硫活性を有する水素化処理触媒を炭化水素油の水素化処理に使用してその活性が低下した際の、該使用済み水素化処理触媒を、その優れた脱硫活性が十分復活するように再生し得る、使用済み水素化処理触媒の再生方法を開発することである。   Thus, a good way to achieve ultra-deep desulfurization of hydrocarbon oils without harsh operating conditions is to develop a hydrotreating catalyst with excellent desulfurization activity. Furthermore, when the developed hydrotreating catalyst having excellent desulfurization activity is used for hydrotreating hydrocarbon oils, the used hydrotreating catalyst is reduced in its superior desulfurization activity. Is to develop a method for regenerating spent hydroprocessing catalyst that can be regenerated so that it fully recovers.

近年、活性金属の種類、活性金属の含浸方法、触媒担体の改良、触媒細孔構造制御、活性化法等について多くの検討が多方面において進められているが、優れた脱硫活性の水素化処理触媒の製造方法として、例えば、触媒担体に周期律表第6族金属及び第8族金属のいずれか1種以上と有機酸、及びリンを含有させた溶液を用いて上記金属とリンを担持させた後、200〜400℃で焼成し、次いで、これに上記担持金属に対して0.1〜2.0倍モル量の有機酸または多価アルコールを含浸させ、担持した活性金属の再分散化を行い、200℃以下で乾燥するか、或いはさらに400℃以上で焼成する水素化処理触媒の製造方法が提案されている(特許文献1参照)。   In recent years, many studies on active metal types, active metal impregnation methods, catalyst support improvements, catalyst pore structure control, activation methods, etc. have been conducted in various fields. As a method for producing the catalyst, for example, the above metal and phosphorus are supported on a catalyst carrier using a solution containing at least one of Group 6 metal and Group 8 metal of the periodic table, an organic acid, and phosphorus. After that, it is fired at 200 to 400 ° C., and then impregnated with an organic acid or polyhydric alcohol in an amount of 0.1 to 2.0 times the amount of the supported metal to redisperse the supported active metal And a method for producing a hydrotreating catalyst that is dried at 200 ° C. or lower or calcined at 400 ° C. or higher has been proposed (see Patent Document 1).

また、炭化水素油の水素化処理に使用して脱硫活性の低下した使用済みの水素化処理触媒の、その活性を復活させるための再生方法として、例えば、500℃の上限温度で使用済み水素化処理触媒を酸素含有ガスと接触させることにより該触媒を再生し、次いで該触媒を有機添加剤と接触させて該有機添加剤を触媒中に保持させて乾燥する使用済み水素化処理触媒の再生方法が提案されている(特許文献2参照)。   In addition, as a regeneration method for restoring the activity of a spent hydrotreating catalyst having a reduced desulfurization activity used for hydrotreating hydrocarbon oil, for example, spent hydrogenation at an upper limit temperature of 500 ° C. A method for regenerating a spent hydrotreating catalyst, wherein the catalyst is regenerated by contacting the treated catalyst with an oxygen-containing gas, and then dried by contacting the catalyst with an organic additive to retain the organic additive in the catalyst. Has been proposed (see Patent Document 2).

特開平7−136523号公報JP-A-7-136523 特表2003−503194号公報Special table 2003-503194 gazette

しかし、上記の従来の水素化処理触媒の製造方法では、まだ満足できるような高活性の水素化処理触媒が得られず、また、上記の従来の使用済み水素化処理触媒の再生方法では、再生工程が複雑となるため設備の拡張を要する。したがって、経済性が低く、簡単かつ安価で使用済み水素化処理触媒の活性を復活させることが困難である。
本発明の目的は、上記従来の状況に鑑み、満足できるように一層脱硫活性に優れ、熱耐性を向上することによる長寿命な炭化水素油の水素化処理触媒を提供することであって、一層脱硫活性に優れ、長寿命な炭化水素油の水素化処理触媒を製造し得る触媒の製造方法を提供することにあ
However, the above-described conventional hydroprocessing catalyst production method does not provide a highly active hydroprocessing catalyst that is still satisfactory, and the above-described conventional spent hydroprocessing catalyst regeneration method does not regenerate. Since the process becomes complicated, the equipment needs to be expanded. Therefore, it is difficult to restore the activity of the spent hydrotreating catalyst with low cost, simple and inexpensive.
An object of the present invention, comprising: providing the light of the conventional situations, more excellent in desulfurization activity as satisfactory, long life due to improved heat resistance hydrotreating catalyst for hydrocarbon oil, one excellent layer desulfurization activity, Ru near to provide a process for preparing a catalyst capable of producing a hydrotreating catalyst lifetime hydrocarbon oils.

本発明者らは、上記の目的を達成すべく鋭意研究した結果、無機酸化物担体に、一定量の周期律表第6族金属、周期律表第8族金属、及びリンを含有する触媒を、一定の手順に従って製造すると、一層脱硫活性に優れ、長寿命な炭化水素油の水素化処理触媒を得ることができることを見出して、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have found a catalyst containing a certain amount of a periodic table group 6 metal, a periodic table group 8 metal, and phosphorus in an inorganic oxide support. , when prepared according to certain procedures, more excellent in desulfurization activity, it has found that you can obtain a hydrotreating catalyst lifetime hydrocarbon oils, and have completed the present invention.

即ち、本発明は、上記目的を達成するために、次の炭化水素油の水素化処理触媒の製造方法を提供する。
(1)無機酸化物担体に、触媒基準、酸化物換算で、周期律表第6族金属から選ばれた少なくとも1種を10〜40質量%、周期律表第8族金属から選ばれた少なくとも1種を1〜15質量%、リンを0.5〜8質量%となるように含有させる工程、
上記工程後の無機酸化物を400〜550℃で焼成する工程、
その焼成物に、有機を、〔有機〕/〔周期律表第8族金属〕のモル比率が0.2〜1.2となるように、前記有機の溶液を用いて、担持させる工程、
及び担持後の焼成物を200℃以下で乾燥させる工程を含むことを特徴とする炭化水素油の水素化処理触媒の製造方法。
That is, the present invention is, in order to achieve the above object, to provide a manufacturing how hydrotreating catalyst of the following hydrocarbon oil.
(1) At least one selected from 10 to 40% by mass of Group 6 metal of periodic table and at least one selected from Group 6 metal of periodic table on the basis of catalyst and oxide conversion, at least selected from Group 8 metal of Periodic Table A step of containing one kind in an amount of 1 to 15 mass% and phosphorus in an amount of 0.5 to 8 mass%,
A step of firing the inorganic oxide after the above step at 400 to 550 ° C .;
An organic acid is supported on the fired product using the organic acid solution so that the molar ratio of [organic acid ] / [group 8 metal of the periodic table] is 0.2 to 1.2. Process,
And manufacturing how hydrotreating catalyst for hydrocarbon oil, which comprises the step of the fired product after carrying dried at 200 ° C. or less.

本発明の製造方法によれば、一層脱硫活性に優れ、長寿命な炭化水素油の水素化処理触媒を製造することができ、一層脱硫活性に優れた炭化水素油の水素化処理触媒を提供することができる。また、本発明方法で製造された水素化処理触媒を用いれば、過酷な運転条件を必要とせずに、炭化水素油中の硫黄化合物を高度に脱硫することができる。 According to the production method of the present invention, more excellent in desulfurization activity, it can be produced hydrotreating catalyst lifetime hydrocarbon oils, provide a hydrotreating catalyst superior hydrocarbon oil to one layer desulfurization activity can do. Further, by using the water hydrogenation treatment catalyst produced by the method of the present invention, without requiring severe operating conditions, it is possible to highly desulfurize sulfur compounds in hydrocarbon oil.

<触媒の製造方法>
まず、本発明の触媒の製造方法について詳細に説明する。
<Method for producing catalyst>
First, the manufacturing method of the catalyst of this invention is demonstrated in detail.

本発明では、無機酸化物担体として、各種無機酸化物を用いることができるが、主成分がアルミナである無機酸化物が好ましい。
担体に用いるアルミナは、α−アルミナ、γ−アルミナ、δ−アルミナ、アルミナ水和物等の種々のアルミナを使用することができるが、多孔質で高比表面積であるアルミナが好ましく、中でもγ−アルミナが適している。アルミナの純度は、約98質量%以上、好ましくは約99質量%以上のものが適している。アルミナ中の不純物としては、SO 2-、Cl-、Fe、NaO等が挙げられるが、これらの不純物はできるだけ少ないことが望ましく、不純物全量で2質量%以下、好ましくは1質量%以下で、成分毎では、SO 2-<1.5質量%、Cl-、Fe、NaO<0.1質量%であることが好ましい。
In the present invention, various inorganic oxides can be used as the inorganic oxide carrier, but an inorganic oxide whose main component is alumina is preferable.
As the alumina used for the carrier, various aluminas such as α-alumina, γ-alumina, δ-alumina, and alumina hydrate can be used, and porous and high specific surface area alumina is preferable. Alumina is suitable. The purity of alumina is about 98% by mass or more, preferably about 99% by mass or more. Examples of the impurities in alumina include SO 4 2− , Cl , Fe 2 O 3 , Na 2 O and the like. These impurities are desirably as small as possible, and the total amount of impurities is 2% by mass or less, preferably 1 It is preferable that SO 4 2 − <1.5% by mass, Cl , Fe 2 O 3 , and Na 2 O <0.1% by mass for each component.

担体に用いるアルミナには、他の酸化物成分を添加することが好ましく、他の酸化物成分としては、ゼオライト、ボリア、シリカ及びジルコニアから選ばれる一種以上が好ましい。これらを複合化させることにより、脱硫活性点を形成する二硫化モリブデンの積層化が有利になる。このうちゼオライトは、好ましくは、コールカウンター法(1質量%NaCl水溶液、アパーチャ−30μm、超音波処理3分)での測定による平均粒子径が2.5〜6μm、更に好ましくは3〜4μmのものである。また、このゼオライトは、粒子径6μm以下のものがゼオライト全粒子に対して占める割合が、約70〜98%、好ましくは約75〜98%、より好ましくは約80〜98%のものが望ましい。   It is preferable to add another oxide component to the alumina used for the carrier, and the other oxide component is preferably one or more selected from zeolite, boria, silica and zirconia. By compounding these, it is advantageous to laminate molybdenum disulfide that forms desulfurization active sites. Among these, the zeolite preferably has an average particle diameter of 2.5 to 6 μm, more preferably 3 to 4 μm, as measured by a coal counter method (1 mass% NaCl aqueous solution, aperture 30 μm, ultrasonic treatment 3 minutes). It is. In addition, it is desirable that the zeolite has a particle size of 6 μm or less with respect to all the zeolite particles, about 70 to 98%, preferably about 75 to 98%, more preferably about 80 to 98%.

このような特性のゼオライトは、担体の細孔直径を精密に制御する上で好ましい。担体の細孔直径を精密に制御することで、難脱硫性物質の細孔内拡散を容易にする。ゼオライトの平均粒子径や、粒子径6μm以下のものが占める割合が上記範囲であれば、無機酸化物担体を調製する過程でアルミナ水和物(アルミナ前駆体)とゼオライトの吸着水量や結晶性の違いから、強度を増すために無機酸化物担体を焼成する場合、アルミナ水和物とゼオライトの収縮率が異なり、無機酸化物担体の細孔として比較的大きなメゾあるいはマクロポアーが生じる傾向を抑制できる。また、大きな細孔のものが少なければ、比表面積の低下を抑制でき、残油を処理するような場合には触媒毒となるメタル成分の内部拡散を抑制でき、延いては脱硫、脱窒素及び分解活性の低下を抑制できる。   Zeolite having such characteristics is preferable for precisely controlling the pore diameter of the support. By precisely controlling the pore diameter of the carrier, diffusion of the hardly desulfurizable substance into the pores is facilitated. If the average particle size of zeolite and the proportion of particles having a particle size of 6 μm or less occupy the above range, the amount of adsorbed water and crystallinity of alumina hydrate (alumina precursor) and zeolite in the process of preparing the inorganic oxide support From the difference, when the inorganic oxide support is calcined to increase the strength, the shrinkage rate of the alumina hydrate and the zeolite is different, and the tendency to generate relatively large meso or macropores as the pores of the inorganic oxide support can be suppressed. Further, if there are few large pores, the decrease in specific surface area can be suppressed, and in the case of processing residual oil, the internal diffusion of the metal component that becomes a catalyst poison can be suppressed. Decrease in degradation activity can be suppressed.

本発明では、アルミナに添加する好ましいゼオライトとしては、フォージャサイトX型ゼオライト、フォージャサイトY型ゼオライト、βゼオライト、モルデナイト型ゼオライト、ZSM系ゼオライト(ZSM−4、5、8、11、12、20、21、23、34、35、38、46等がある)、MCM−41、MCM-22、MCM−48、SSZ−33、UTD−1、CIT−5、VPI−6、TS−1、TS−2等が使用でき、特にY型ゼオライト、安定化Yゼオライト、βゼオライト、ZSM系ゼオライトが好ましい。また、ゼオライトは、プロトン型が好ましい。
上記のボリア、シリカ、ジルコニアは、一般に、この種の触媒担体成分として使用されるものを使用することができる。
また、上記のゼオライト、ボリア、シリカ、及びジルコニアは、それぞれ単独で、あるいは2種以上を組合せて使用できる。
In the present invention, preferred zeolites added to alumina include faujasite X zeolite, faujasite Y zeolite, β zeolite, mordenite zeolite, ZSM zeolite (ZSM-4, 5, 8, 11, 12, 20, 21, 23, 34, 35, 38, 46, etc.), MCM-41, MCM-22, MCM-48, SSZ-33, UTD-1, CIT-5, VPI-6, TS-1, TS-2 or the like can be used, and Y type zeolite, stabilized Y zeolite, β zeolite, and ZSM type zeolite are particularly preferable. Further, the zeolite is preferably a proton type.
As the above-mentioned boria, silica, and zirconia, those generally used as this kind of catalyst support component can be used.
Moreover, said zeolite, a boria, a silica, and a zirconia can be used individually or in combination of 2 or more types, respectively.

これら他の酸化物成分の添加量は、一般に、無機酸化物担体中に、アルミナが65質量%より多く99.4質量%以下あるのに対し、他の酸化物成分が0.5質量%から25質量%未満であり、好ましくは、アルミナが70〜99質量%であるのに対し、他の酸化物成分が0.5〜20質量%であり、より好ましくは、アルミナが80〜98.5質量%であるのに対して、他の酸化物成分が0.5〜15質量%である。
これら他の酸化物成分の添加量が上記の範囲であれば、細孔直径の制御を好適に行うことができ、またブレンステッド酸点やルイス酸点を十分に付与でき、周期律表第6族金属、特にモリブデンを高分散できる。
The addition amount of these other oxide components is generally from more than 65% by mass to 99.4% by mass or less of alumina in the inorganic oxide support, whereas from 0.5% by mass of other oxide components. Less than 25% by mass, preferably 70 to 99% by mass of alumina, while other oxide components are 0.5 to 20% by mass, and more preferably 80 to 98.5% of alumina. The other oxide component is 0.5 to 15% by mass with respect to mass%.
If the amount of addition of these other oxide components is in the above range, the pore diameter can be suitably controlled, and the Bronsted acid point and Lewis acid point can be sufficiently imparted. Group metals, especially molybdenum, can be highly dispersed.

本発明では、脱硫活性を向上させるためなどリン原子が触媒ペレット内で均一に分散していることが好ましく、必要に応じて無機酸化物担体にリン酸化物を含有させることができる。無機酸化物担体にリン酸化物を含有させる方法は、特に限定されるものではなく、平衡吸着法、共沈法、混練法等により行うことができるが、脱硫活性の高い触媒が得られる点で、担体の原料のアルミナ水和物中にリン酸化物の原料を混練する混練法によることが好ましい。通常のアルミナ担体は、アルミナ水和物を熟成、洗浄、脱水乾燥、成型、乾燥、焼成等の一般的な工程により製造することができるが、リン酸化物の混練工程は、上記成型工程の前に行うことができる。具体的には、15〜90℃に加熱したアルミナ水和物に、15〜90℃に加熱したリン化合物水溶液をpH4〜10になるように調整しながら、混練、攪拌する。こうして得られたリン含有アルミナ水和物を沈殿させ、所望により、熟成させた後、洗浄する。得られた洗浄品を必要に応じて熟成した後、所望の形状に成型する。これを乾燥・焼成してリン含有アルミナ担体を得る。   In the present invention, it is preferable that phosphorus atoms are uniformly dispersed in the catalyst pellet, for example, in order to improve the desulfurization activity. If necessary, a phosphorus oxide can be contained in the inorganic oxide support. The method of incorporating the phosphorus oxide into the inorganic oxide support is not particularly limited and can be performed by an equilibrium adsorption method, a coprecipitation method, a kneading method, or the like, but a catalyst having a high desulfurization activity can be obtained. It is preferable to use a kneading method in which a raw material of phosphorous oxide is kneaded in alumina hydrate as a raw material of the carrier. A normal alumina carrier can be manufactured by a general process such as aging, washing, dehydration drying, molding, drying, and firing of alumina hydrate. Can be done. Specifically, the alumina hydrate heated to 15 to 90 ° C. is kneaded and stirred while adjusting the phosphorus compound aqueous solution heated to 15 to 90 ° C. to have a pH of 4 to 10. The phosphorus-containing alumina hydrate thus obtained is precipitated and, if desired, aged and then washed. The obtained washed product is aged as necessary and then molded into a desired shape. This is dried and fired to obtain a phosphorus-containing alumina support.

上記のように、無機酸化物担体中に予めリン酸化物を含有させる場合のリン酸化物の量は、後記する無機酸化物担体に後から担持させるリン酸化物との合計量が、触媒基準で0.5〜8質量%の範囲とすることが好ましい。また、リン含有無機酸化物担体中のリン酸化物の量は、触媒基準で0.1〜6質量%の範囲とすることが好ましい。リン酸化物の含有量が上記範囲であれば、脱硫活性向上効果が期待でき、また、例えば後述する活性金属の二硫化モリブデンが配置すべきアルミナ表面上の場所が狭くなることなく、その結果、二硫化モリブデンのシンタリング(凝集)が起こらず、二硫化モリブデン結晶のエッジ部の面積は減少せず、脱硫活性点であるCoMoS相、NiMoS相の絶対数が減少せず、触媒が高い脱硫活性を保有することができる。
また、無機酸化物担体中に含有させるリン酸化物の原料としては、種々の化合物を用いることができる。例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸が挙げられるが、中でもオルトリン酸が好ましい。
As described above, the amount of the phosphorus oxide in the case where the inorganic oxide carrier is previously incorporated with the phosphorous oxide is such that the total amount of the phosphoric oxide supported later on the inorganic oxide carrier described later is based on the catalyst. It is preferable to set it as the range of 0.5-8 mass%. Moreover, it is preferable that the quantity of the phosphorus oxide in a phosphorus containing inorganic oxide support | carrier is made into the range of 0.1-6 mass% on a catalyst basis. If the content of the phosphorus oxide is in the above range, the desulfurization activity improvement effect can be expected, and for example, the place on the alumina surface where the active metal molybdenum disulfide to be described later should be arranged is narrowed. Sintering (aggregation) of molybdenum disulfide does not occur, the area of the edge of the molybdenum disulfide crystal does not decrease, the absolute number of CoMoS phases and NiMoS phases that are desulfurization active points does not decrease, and the catalyst has high desulfurization activity Can be held.
Moreover, various compounds can be used as a raw material for the phosphorus oxide to be contained in the inorganic oxide carrier. For example, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid can be mentioned, among which orthophosphoric acid is preferable.

本発明で用いる無機酸化物担体は、400〜700℃で0.5〜10時間焼成して調製されたものが好ましい。400℃未満で0.5時間未満の焼成では十分な機械強度を得ることができず、700℃を超える高温度下で10時間を超える長時間の焼成を行っても、この効果が飽和するばかりでなく、焼き締めにより、無機酸化物担体の比表面積、細孔容積、平均細孔直径と言った特性を却って低下してしまう。   The inorganic oxide carrier used in the present invention is preferably prepared by baking at 400 to 700 ° C. for 0.5 to 10 hours. When firing at less than 400 ° C. for less than 0.5 hours, sufficient mechanical strength cannot be obtained, and this effect is saturated even when firing for a long time exceeding 10 hours at a high temperature exceeding 700 ° C. In addition, the characteristics such as the specific surface area, pore volume, and average pore diameter of the inorganic oxide support are lowered by baking.

無機酸化物担体の比表面積、細孔容積、平均細孔直径は、炭化水素油に対する水素化脱硫活性の高い触媒を得るために、比表面積230〜500m/g、好ましくは270〜500m/g、細孔容積0.5〜1ml/g、好ましくは0.55〜0.9ml/g、平均細孔直径40〜180Åであることが望ましい。その理由は次のとおりである。 The specific surface area of the inorganic oxide support, pore volume, average pore diameter, in order to obtain a catalyst of high hydrodesulfurization activity for hydrocarbon oil, a specific surface area 230~500m 2 / g, preferably 270~500m 2 / g, pore volume of 0.5 to 1 ml / g, preferably 0.55 to 0.9 ml / g and an average pore diameter of 40 to 180 mm. The reason is as follows.

含浸溶液中で活性金属の周期律表第6族金属と周期律表第8族金属は錯体を形成していると考えられるため、無機酸化物担体の比表面積が230m/g以上であれば、含浸の際、錯体の嵩高さのために金属の高分散化が困難となり、その結果、得られる触媒を硫化処理しても、脱硫活性点であるCoMoS相、NiMoS相等の形成の精密な制御が困難になることを回避できると推測される。また、比表面積が500m/g以下であれば、細孔直径が極端に小さくならないため、触媒の細孔直径も小さくならず、好ましい。細孔直径が小さいと、硫黄化合物の触媒細孔内拡散が不十分となり、脱硫活性が低下する。 Since it is considered that the group 6 metal and the group 8 metal of the periodic table of the active metal in the impregnating solution form a complex, if the specific surface area of the inorganic oxide support is 230 m 2 / g or more, In the impregnation, it is difficult to highly disperse the metal due to the bulk of the complex. As a result, even if the resulting catalyst is subjected to sulfiding treatment, precise control of the formation of CoMoS phase, NiMoS phase, etc., which are desulfurization active sites It is estimated that it can be avoided. Moreover, if the specific surface area is 500 m 2 / g or less, the pore diameter does not become extremely small, so the pore diameter of the catalyst does not become small, which is preferable. When the pore diameter is small, the diffusion of the sulfur compound into the catalyst pores becomes insufficient, and the desulfurization activity decreases.

細孔容積が0.5ml/g以上であれば、通常の含浸法で触媒を調製する場合、細孔容積内に入り込む溶媒が少量とならないため、好ましい。溶媒が少量であると、活性金属化合物の溶解性が悪くなり、金属の分散性が低下し低活性な触媒となる。活性金属化合物の溶解性を上げるためには、硝酸等の酸を多量に加える方法があるが、余り加えすぎると担体の低表面積化が起こり、脱硫性能低下の主原因となる。また、細孔容積が1ml/g以下であれば、比表面積が小さくならず、活性金属の分散性が良くなり、脱硫活性の高い触媒となるため、好ましい。   A pore volume of 0.5 ml / g or more is preferable because a small amount of solvent does not enter the pore volume when a catalyst is prepared by a normal impregnation method. When the amount of the solvent is small, the solubility of the active metal compound is deteriorated, the dispersibility of the metal is lowered, and a low activity catalyst is obtained. In order to increase the solubility of the active metal compound, there is a method in which a large amount of acid such as nitric acid is added. However, if too much is added, the support has a low surface area, which is a major cause of desulfurization performance degradation. A pore volume of 1 ml / g or less is preferable because the specific surface area is not reduced, the dispersibility of the active metal is improved, and the catalyst has a high desulfurization activity.

平均細孔直径が40Å以上であれば、活性金属を担持した触媒の細孔直径も小さくならず、好ましい。触媒の細孔直径が小さいと、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。平均細孔直径が180Å以下であれば、触媒の比表面積が小さくならず、好ましい。触媒の比表面積が小さいと、活性金属の分散性が悪くなり、脱硫活性の低い触媒となる。また、上記の平均細孔直径の条件を満たす細孔の有効数を多くするために、触媒の細孔分布、即ち平均細孔直径±15Åの細孔を有する細孔の割合は、20〜90%、好ましくは35〜85%とすることが望ましい。90%以下であれば、脱硫される化合物が特定の硫黄化合物に限定されず、満遍なく脱硫することができるため好ましい。一方、20%以上では、炭化水素油の脱硫に寄与しない細孔が増加せず、その結果、脱硫活性が大幅に低下することがないため好ましい。   An average pore diameter of 40 mm or more is preferable because the pore diameter of the catalyst supporting the active metal is not reduced. When the pore diameter of the catalyst is small, the diffusion of sulfur compounds into the catalyst pores becomes insufficient, and the desulfurization activity is lowered. An average pore diameter of 180 mm or less is preferable because the specific surface area of the catalyst is not reduced. When the specific surface area of the catalyst is small, the dispersibility of the active metal is deteriorated and the catalyst has a low desulfurization activity. In order to increase the effective number of pores satisfying the condition of the above average pore diameter, the pore distribution of the catalyst, that is, the proportion of pores having an average pore diameter of ± 15 mm is 20 to 90. %, Preferably 35 to 85%. If it is 90% or less, the compound to be desulfurized is not limited to a specific sulfur compound, and can be uniformly desulfurized, which is preferable. On the other hand, if it is 20% or more, pores that do not contribute to desulfurization of hydrocarbon oil do not increase, and as a result, desulfurization activity does not decrease significantly, which is preferable.

本発明では、まず、上記のような無機酸化物担体に、触媒基準、酸化物換算で、周期律表第6族金属(以下「6族金属」という)から選ばれた少なくとも1種を10〜40質量%、周期律表第8族金属(以下「8族金属」という)から選ばれた少なくとも1種を1〜15質量%、リンを0.5〜8質量%となるように担持させる。なお、本発明において、「周期律表第6族金属」とは、長周期型周期表における第6A族金属を意味し、「周期律表第8族金属」とは、長周期型周期表における第8族金属を意味する(「化学大辞典」,第1版,第3刷,株式会社東京化学同人,1994年4月1日,p.1079−1081)。   In the present invention, first, at least one selected from Group 6 metal of the periodic table (hereinafter referred to as “Group 6 metal”) is added to the inorganic oxide support as described above in terms of catalyst and oxide. 40% by mass, at least one selected from Group 8 metal of the periodic table (hereinafter referred to as “Group 8 metal”) is supported in an amount of 1 to 15% by mass and phosphorus to 0.5 to 8% by mass. In the present invention, “Group 6 metal of the periodic table” means a Group 6A metal in the long periodic table, and “Group 8 metal of the periodic table” means in the long periodic table. It means a Group 8 metal (“Chemical Dictionary”, 1st edition, 3rd edition, Tokyo Chemical Co., Ltd., April 1, 1994, p. 1079-1081).

担持させる6族金属は、モリブデン、タングステンが好ましく、より好ましくは、モリブデンである。6族金属の担持量は、触媒基準、酸化物換算で、10〜40質量%、好ましくは10〜30質量%である。10質量%以上であれば、6族金属に起因する効果を発現させるのに十分であり、好ましい。また、40質量%以下であれば、6族金属の含浸(担持)工程で6族金属化合物の凝集が生じず、6族金属の分散性が良くなり、また、効率的に分散する6族金属担持量の限度を超えず、触媒表面積が大幅に低下しない等により、触媒活性の向上がみられ、好ましい。   The group 6 metal to be supported is preferably molybdenum or tungsten, and more preferably molybdenum. The amount of the Group 6 metal supported is 10 to 40% by mass, preferably 10 to 30% by mass in terms of catalyst and oxide. If it is 10 mass% or more, it is sufficient for expressing the effects attributable to the Group 6 metal, and it is preferable. Moreover, if it is 40 mass% or less, the group 6 metal compound does not aggregate in the impregnation (support) step of the group 6 metal, the dispersibility of the group 6 metal is improved, and the group 6 metal that is dispersed efficiently The catalyst activity is improved because it does not exceed the supported amount limit and the surface area of the catalyst is not significantly reduced.

担持させる8族金属は、コバルト、ニッケルが好ましい。8族金属の担持量は、触媒基準、酸化物換算で、1〜15質量%、好ましくは、3〜8質量%である。1質量%以上であれば、8族金属に帰属する活性点が十分に得られ、好ましい。また、15質量%以下であれば、8族金属の含有(担持)工程で8族金属化合物の凝集が生じず、8族金属の分散性が良くなることに加え、不活性なコバルト、ニッケル種等の8族金属種であるCo種、Ni種等の前駆体であるCoO種、NiO種等や担体の格子内に取り込まれたCoスピネル種、Niスピネル種等が生成しないと考えられるため、触媒能の向上が見られ、好ましい。また、8族金属としてコバルトとニッケルを使用するときは、〔Co〕/〔Ni+Co〕のモル比が0.6〜1の範囲、より好ましくは、0.7〜1の範囲になるように使用することが望ましい。この比が0.6以上では、Ni上でコーク前駆体が生成せず、触媒活性点がコークで被覆されず、その結果活性が低下しないため、好ましい。 The group 8 metal to be supported is preferably cobalt or nickel. The supported amount of the group 8 metal is 1 to 15% by mass, preferably 3 to 8% by mass in terms of catalyst and oxide. If it is 1 mass% or more, the active point which belongs to a group 8 metal is fully obtained, and it is preferable. Further, if it is 15% by mass or less, the group 8 metal compound is not aggregated in the step of containing (supporting) the group 8 metal, the dispersibility of the group 8 metal is improved, and inactive cobalt and nickel species Co 8 S species such as Co 9 S, which is a group 8 metal species such as Ni 3 S 2 species, CoO species, NiO species, etc., Co spinel species incorporated into the support lattice, Ni spinel species, etc. are generated. Therefore, it is preferable that the catalytic ability is improved. When cobalt and nickel are used as the group 8 metal, the molar ratio of [Co] / [Ni + Co] is in the range of 0.6 to 1, more preferably in the range of 0.7 to 1. It is desirable to do. When this ratio is 0.6 or more, a coke precursor is not formed on Ni, and the catalytic active sites are not covered with coke, and as a result, the activity does not decrease.

8族金属と6族金属の上記した含有量において、8族金属と6族金属の最適質量比は、好ましくは、酸化物換算で、〔 8族金属〕/〔8族金属+6族金属〕の値で、0.1〜0.25である。この値が0.1以上であれば、脱硫の活性点と考えられるCoMoS相、NiMoS相等の生成が抑制されず、脱硫活性向上の度合いが高くなるため、好ましい。0.25以下であれば、上記の不活性なコバルト、ニッケル種等(Co種、Ni種等)の生成が抑制され、触媒活性が向上されるので好ましい。 In the above-described contents of the Group 8 metal and the Group 6 metal, the optimum mass ratio of the Group 8 metal to the Group 6 metal is preferably [group 8 metal] / [group 8 metal + group 6 metal] in terms of oxide. The value is 0.1 to 0.25. If this value is 0.1 or more, the generation of CoMoS phase, NiMoS phase and the like, which are considered as active points for desulfurization, is not suppressed, and the degree of improvement of desulfurization activity is increased, which is preferable. If it is 0.25 or less, the production of the above-described inert cobalt, nickel species (Co 9 S 8 species, Ni 3 S 2 species, etc.) is suppressed, and the catalytic activity is improved, which is preferable.

本発明では、無機酸化物担体への、6族金属、8族金属、及びリンの担持成分の担持は、一般に、これらの担持成分を含む原料化合物を含有する含浸溶液を調製し、それを、得られる触媒の担持成分の担持量が上記所定範囲となるように、担体に含浸させる含浸法により行われる。   In the present invention, the loading of the supporting component of the group 6 metal, the group 8 metal, and phosphorus on the inorganic oxide support is generally performed by preparing an impregnation solution containing a raw material compound containing these supporting components, It is carried out by an impregnation method in which the support is impregnated so that the supported amount of the supported component of the catalyst falls within the predetermined range.

6族金属を担持させるに用いる6族金属を含む原料化合物としては、三酸化モリブデン、モリブドリン酸、モリブデン酸アンモニウム、モリブデン酸等が挙げられ、好ましくは、三酸化モリブデン、モリブドリン酸である。これらの化合物の上記含浸溶液中への添加量は、得られる触媒の6族金属の担持量が上記所定範囲となる量とする。   Examples of the raw material compound containing a Group 6 metal used for supporting the Group 6 metal include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like, preferably molybdenum trioxide and molybdophosphoric acid. The amount of these compounds added to the impregnation solution is such that the amount of the group 6 metal supported on the obtained catalyst falls within the above-mentioned predetermined range.

8族金属を担持させるに用いる8族金属を含む原料化合物としては、炭酸コバルト、炭酸ニッケル、硝酸コバルト6水和物、硝酸ニッケル6水和物等が挙げられる。好ましくは、炭酸コバルト、炭酸ニッケルである。これらの化合物の上記含浸溶液中への添加量は、得られる触媒の8族金属の担持量が上記所定範囲となる量とする。   Examples of the raw material compound containing a group 8 metal used for supporting the group 8 metal include cobalt carbonate, nickel carbonate, cobalt nitrate hexahydrate, nickel nitrate hexahydrate and the like. Of these, cobalt carbonate and nickel carbonate are preferred. The amount of these compounds added to the impregnation solution is such that the supported amount of the Group 8 metal in the obtained catalyst falls within the predetermined range.

リンを担持させるのに用いるリンを含む原料化合物としては、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等が挙げられ、中でもオルトリン酸が好ましい。これらの化合物の上記含浸溶液中への添加量は、得られる触媒のリンの担持量が上記所定の触媒基準、酸化物換算で0.5〜8質量%、好ましくは1〜8質量%の範囲となる量とする。触媒のリンの担持量が0.5質量%以上であれば、触媒表面上でヘテロポリ酸を形成し、なおかつヘテロポリ酸を形成しないリンは、アルミナ表面上に分散するため、予備硫化工程で高分散かつ多層な二硫化モリブデン気結晶が形成されて、上記脱硫活性点を十分に配置できると推測されるので好ましい。また、8質量%以下であれば、触媒表面上で6族金属が十分にヘテロポリ酸を形成し、且つヘテロポリ酸を形成しないリンはアルミナ表面に分散に予備硫化工程で高品質な脱硫活性点を被覆しないため、活性低下を引き起こさないため好ましい。   Examples of the raw material compound containing phosphorus used to carry phosphorus include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and the like, among which orthophosphoric acid is preferable. The amount of these compounds added to the impregnation solution is such that the amount of phosphorus supported on the obtained catalyst is in the range of 0.5 to 8% by mass, preferably 1 to 8% by mass in terms of the above-mentioned predetermined catalyst standard and oxide. The amount to be. If the supported amount of phosphorus on the catalyst is 0.5% by mass or more, phosphorus that forms heteropolyacid on the catalyst surface and that does not form heteropolyacid disperses on the alumina surface. In addition, a multilayer molybdenum disulfide gas crystal is formed, and it is presumed that the desulfurization active sites can be sufficiently arranged. In addition, if it is 8% by mass or less, the group 6 metal sufficiently forms a heteropolyacid on the catalyst surface, and phosphorus that does not form the heteropolyacid has a high quality desulfurization active site dispersed in the alumina surface in the presulfurization step. Since it does not coat, it is preferable because it does not cause a decrease in activity.

本発明では、前記のとおり、担体としてリン酸化物を含有する無機酸化物担体も使用することができるが、担体としてリン酸化物を含有する無機酸化物担体を使用する場合は、無機酸化物担体中のリン含有量と、それに担持させたリンの担持量の合計が、上記所定の触媒基準、酸化物換算で0.5〜8質量%の範囲であることが好ましい。   In the present invention, as described above, an inorganic oxide carrier containing a phosphorus oxide can also be used as a carrier. However, when an inorganic oxide carrier containing a phosphorus oxide is used as a carrier, an inorganic oxide carrier is used. It is preferable that the total phosphorus content and the amount of phosphorus supported thereon are in the range of 0.5 to 8% by mass in terms of the predetermined catalyst standard and oxide.

上記各担持成分の原料化合物を含有する含浸溶液の調製は、常法により行うことができる。各担持成分の原料化合物を溶解させるために用いる溶媒は、一般に水である。溶媒の使用量は、少なすぎれば、担体を十分に浸漬することができず、多すぎれば、溶解した活性金属の一部が担体上に担持しきれず、含浸溶液容器のへりなどに付着してしまい、所望の担持量が得られないため、担体100gに対して、50〜90gが好ましい。含浸溶液を調製する際の温度は、0℃を超え100℃以下でよく、この範囲であれば、溶媒に各担持成分の原料化合物を良好に溶解させることができる。
なお、上記の6族金属、8族金属の原料化合物などが含浸溶液に十分に溶解しない場合には、これらの化合物とともに酸〔硝酸、有機酸(クエン酸、リンゴ酸、酒石酸等)〕を使用してもよく、好ましくは有機酸の使用である。
Preparation of the impregnation solution containing the raw material compounds of the respective supporting components can be performed by a conventional method. The solvent used for dissolving the starting compound of each supported component is generally water. If the amount of the solvent used is too small, the support cannot be sufficiently immersed, and if it is too large, a part of the dissolved active metal cannot be supported on the support and adheres to the edge of the impregnation solution container. Therefore, since a desired carrying amount cannot be obtained, 50 to 90 g is preferable with respect to 100 g of the carrier. The temperature at which the impregnation solution is prepared may exceed 0 ° C. and not more than 100 ° C. Within this range, the raw material compounds of the respective supported components can be dissolved well in the solvent.
In addition, when the above-mentioned Group 6 metal and Group 8 metal raw material compounds are not sufficiently dissolved in the impregnation solution, an acid [nitric acid, organic acid (citric acid, malic acid, tartaric acid, etc.)] is used together with these compounds. An organic acid is preferably used.

また、含浸溶液の無機酸化物担体への含浸も、常法により行うことができる。含浸条件は、種々の条件を採ることができるが、通常、含浸温度は、好ましくは0℃を超え100℃未満が適している。含浸時間は、15分〜3時間、好ましくは、20分〜2時間、更に好ましくは、30分〜1時間である。なお、温度が高すぎると、含浸操作中に乾燥が起こり、担持成分の分散度が偏ってしまう。また、含浸中は攪拌することが好ましい。   In addition, impregnation of the impregnation solution into the inorganic oxide support can be performed by a conventional method. Various conditions can be adopted as the impregnation conditions. Usually, the impregnation temperature is preferably more than 0 ° C. and less than 100 ° C. The impregnation time is 15 minutes to 3 hours, preferably 20 minutes to 2 hours, and more preferably 30 minutes to 1 hour. If the temperature is too high, drying occurs during the impregnation operation, and the degree of dispersion of the supported components is biased. Moreover, it is preferable to stir during the impregnation.

含浸溶液を含浸させた無機酸化物担体は、一般に、常温〜約80℃、窒素気流中、空気気流中、あるいは真空中で、水分をある程度〔LOI(Loss on ignition)が50%以下となるように〕除去して乾燥させる。   The inorganic oxide carrier impregnated with the impregnating solution generally has a moisture content of [LOI (Loss on ignition) of 50% or less to some extent at room temperature to about 80 ° C. in a nitrogen stream, air stream, or vacuum. Remove] and dry.

本発明では、上記のように一般に含浸法により6族金属、8族金属、及びリンの担持成分を担持せしめた無機酸化物担体を、一般に乾燥させた後、400〜550℃、好ましくは450〜500℃で焼成する。焼成時間は、焼成温度にもよるが、一般に、2〜10時間、好ましくは3〜5時間である。焼成温度が400℃未満では、6族金属、8族金属及びリンと無機酸化物担体との相互作用が小さく、水素化処理運転中に6族金属、8族金属がシンタリングすることが推察され、脱硫活性の低下を引き起こすと考えられるため、好ましくない。また、550℃を超える高温では、焼成時に6族金属、8族金属及びリンがシンタリングするため、所望の触媒性能を発揮することができない。また、焼成温度にもよるが、一般に、焼成時間が2時間以上であれば、6族金属、8族金属及びリンと無機酸化物担体との相互作用を最適にすることが可能である。また、10時間以下であれば、規模を拡張することなく、必要量の触媒製造が可能である。詳細は不明であるが、上記焼成工程を行うことで、触媒の熱耐性を向上することができ、その結果、長寿命な触媒が得られると考えられる。即ち、上記焼成工程を行わないと、触媒の最終組成物の熱に対する耐性を付与することができないため、実機の反応温度の変化による触媒劣化が大きく、長期運転が出来ないと推測される。   In the present invention, as described above, the inorganic oxide carrier on which the supporting component of the group 6 metal, the group 8 metal, and phosphorus are generally supported by the impregnation method is generally dried, and then 400 to 550 ° C., preferably 450 to Bake at 500 ° C. Although the firing time depends on the firing temperature, it is generally 2 to 10 hours, preferably 3 to 5 hours. When the firing temperature is less than 400 ° C., the interaction between the group 6 metal, the group 8 metal and phosphorus and the inorganic oxide carrier is small, and it is assumed that the group 6 metal and the group 8 metal are sintered during the hydrotreating operation. , Which is considered to cause a decrease in desulfurization activity, which is not preferable. Further, at a high temperature exceeding 550 ° C., the group 6 metal, the group 8 metal, and phosphorus are sintered at the time of firing, so that desired catalyst performance cannot be exhibited. Although depending on the firing temperature, generally, when the firing time is 2 hours or longer, it is possible to optimize the interaction between the Group 6 metal, the Group 8 metal and phosphorus and the inorganic oxide carrier. Moreover, if it is 10 hours or less, the required amount of catalyst can be produced without expanding the scale. Although details are unknown, it is considered that the heat resistance of the catalyst can be improved by performing the above-mentioned calcination step, and as a result, a long-life catalyst can be obtained. That is, unless the calcination step is performed, the heat resistance of the final composition of the catalyst cannot be imparted. Therefore, it is presumed that the catalyst is greatly deteriorated due to a change in the reaction temperature of the actual machine and cannot be operated for a long time.

上記、焼成物に担持させる有機物の炭素含有量は、触媒基準で、2〜10質量%、好ましくは2〜6質量%、より好ましくは、2〜4質量%である。
この炭素含有量が、2質量%以上では、触媒表面で8族金属が有機物と錯体化合物を十分に形成して、この場合、予備硫化工程において錯体化されていない6族金属が8族金属の硫化に先立って硫化されることにより、脱硫活性点(CoMoS相、NiMoS相等)が十分に形成されるので、不活性なコバルト、ニッケル種等の8族金属の金属種であるCo98種、Ni32種等、及び担体の格子内に取り込まれたCoスピネル種、Niスピネル種等が形成されないと推測されるため、好ましい。
10質量%以下では、触媒表面で8族金属が有機物と十分に錯体化合物を形成することができるが、一方、6族金属が有機物と錯体化合物を形成することはなく、また、余剰の有機物由来の炭素が触媒表面上に残ることはなく、好ましい。
6族金属が有機物と錯体化した場合は、活性化(硫化)の際に、6族金属の硫化が8族金属の硫化と同時に起こり、脱硫活性点(CoMoS相、NiMoS相等)が効率的に形成されず、延いては不活性なコバルト、ニッケル種等の8族金属の金属種であるCo種、Ni種等が形成されると推定される。
また、過剰な炭素は、触媒の被毒物質として硫化段階で脱硫活性点を被覆するため、活性低下の原因となる。
The carbon content of the organic substance supported on the fired product is 2 to 10% by mass, preferably 2 to 6% by mass, and more preferably 2 to 4% by mass based on the catalyst.
When the carbon content is 2% by mass or more, the group 8 metal sufficiently forms a complex compound with an organic substance on the catalyst surface. In this case, the group 6 metal not complexed in the preliminary sulfidation step is the group 8 metal. By sulfiding prior to sulfiding, desulfurization active points (CoMoS phase, NiMoS phase, etc.) are sufficiently formed, so Co 9 S 8 species which are metal species of group 8 metals such as inert cobalt and nickel species Ni 3 S 2 species and the like, and Co spinel species, Ni spinel species and the like incorporated in the lattice of the support are presumed not to be formed, which is preferable.
When the content is 10% by mass or less, the group 8 metal can sufficiently form a complex compound with an organic substance on the catalyst surface, while the group 6 metal does not form a complex compound with the organic substance. This is preferable because no carbon remains on the catalyst surface.
When a group 6 metal is complexed with an organic substance, during activation (sulfurization), sulfurization of the group 6 metal occurs simultaneously with sulfurization of the group 8 metal, and desulfurization active sites (CoMoS phase, NiMoS phase, etc.) are efficiently produced. It is presumed that Co 9 S 8 species, Ni 3 S 2 species, etc., which are metal species of Group 8 metals such as inactive cobalt and nickel species, are formed.
Further, excessive carbon covers the desulfurization active site in the sulfidation stage as a poisonous substance for the catalyst, causing a decrease in activity.

上記焼成物に担持させる有機物としては、好ましくは有機酸、多価アルコール類が挙げられ、更に好ましくはカルボン酸が、より好ましくは多価カルボン酸、最も好ましくは、脂肪族多価カルボン酸が挙げられる。カルボン酸としては、例えばクエン酸、リンゴ酸、酒石酸、シュウ酸、コハク酸、グルタン酸、グルコン酸、アジピン酸、安息香酸、フタル酸、イソフタル酸、サリチル酸、マロン酸、等が挙げられ、中でもクエン酸が好ましく用いられる。これらの有機酸は、硫黄を実質的に含まない化合物を使用することが好ましい。これらの有機酸は、必要に応じて、1種用いることも、2種以上を混合して用いることもでき、多価アルコール類などの有機物を併用することもできる。また、多価アルコール類としては、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ジエチレングリコール、ジプロピレングリコール、トリメチレングリコール、トリエチレングリコール、トリブチレングリコール、テトラエチレングリコール類が挙げられ、中でもジエチレングリコールが好ましく用いられる。これらの多価アルコールは、必要に応じて、1種用いることも、2種以上を混合して用いることもできる。   The organic substance to be carried on the fired product is preferably an organic acid or a polyhydric alcohol, more preferably a carboxylic acid, more preferably a polyvalent carboxylic acid, and most preferably an aliphatic polyvalent carboxylic acid. It is done. Examples of the carboxylic acid include citric acid, malic acid, tartaric acid, oxalic acid, succinic acid, glutaric acid, gluconic acid, adipic acid, benzoic acid, phthalic acid, isophthalic acid, salicylic acid, malonic acid, and the like. An acid is preferably used. These organic acids are preferably compounds that do not substantially contain sulfur. These organic acids can be used singly or in combination of two or more as required, and organic substances such as polyhydric alcohols can be used in combination. Examples of polyhydric alcohols include ethylene glycol, propylene glycol, glycerin, trimethylol ethane, trimethylol propane, diethylene glycol, dipropylene glycol, trimethylene glycol, triethylene glycol, tributylene glycol, and tetraethylene glycols. Of these, diethylene glycol is preferably used. These polyhydric alcohols can be used alone or in combination of two or more as required.

本発明では、上記のように担持成分を担持せしめた無機酸化物担体を焼成して得られた焼成物に、有機物を担持させて、しかる後200℃以下、好ましくは80〜200℃で乾燥する。この焼成物への有機物の担持は、有機物の溶液を用いて、有機物の担持量が、〔有機物〕/〔周期律表第8族金属〕のモル比率が0.2〜1.2、好ましくは0.6〜1.0、もっとも好ましくは0.6〜0.8となるように行われる。このモル比率が0.2以上であれば、触媒表面で8族金属が有機物と錯体化合物を十分に形成して、予備硫化工程において、8族金属に帰属する脱硫活性点が十分に得られるため好ましい。また、1.2以下であれば、触媒表面で8族金属が有機物と十分に錯体化合物を形成でき、一方で、過剰な有機物が6族金属と錯体化合物を形成することを抑制することができると考えられるため好ましい。   In the present invention, an organic substance is supported on the fired product obtained by firing the inorganic oxide carrier on which the supporting component is supported as described above, and then dried at 200 ° C. or lower, preferably 80 to 200 ° C. . The organic substance is supported on the fired product by using an organic solution, and the organic substance is supported in a molar ratio of [organic substance] / [Group 8 metal of the periodic table], preferably 0.2 to 1.2. It is carried out so as to be 0.6 to 1.0, most preferably 0.6 to 0.8. If this molar ratio is 0.2 or more, the group 8 metal sufficiently forms an organic compound and a complex compound on the catalyst surface, and in the preliminary sulfidation step, sufficient desulfurization active sites belonging to the group 8 metal are obtained. preferable. Moreover, if it is 1.2 or less, a group 8 metal can fully form a complex compound with an organic substance on the catalyst surface, and on the other hand, it can suppress that an excess organic substance forms a complex compound with a group 6 metal. Therefore, it is preferable.

上記焼成物への有機物の担持は、有機酸などの有機物の溶液を用いて、それを上記焼成物に含浸させて行われる。この有機物の含浸溶液の調製は、常法により行うことができる。有機物を溶解させるために用いる溶媒は、一般に水である。含浸溶液を調製する際の温度は、0℃を超え100℃以下が好ましい。   The organic material is supported on the fired product by impregnating the fired product with an organic solution such as an organic acid. The organic impregnation solution can be prepared by a conventional method. The solvent used for dissolving the organic substance is generally water. The temperature at which the impregnation solution is prepared is preferably more than 0 ° C and not more than 100 ° C.

また、上記焼成物への有機物の含浸溶液の含浸も、常法により行うことができる。含浸条件は、種々の条件を採ることができるが、通常、含浸温度は0℃を超え100℃未満が適しており、含浸時間は15分〜3時間が適している。含浸温度が上記範囲であれば、含浸中に乾燥が起こり、有機物の分散度が低下することがない。また、含浸時間が上記範囲であれば、上記焼成物中に有機物が均一となる。   Further, impregnation of the baked product with an organic impregnation solution can also be performed by a conventional method. Various conditions can be adopted as the impregnation conditions. Usually, the impregnation temperature is preferably more than 0 ° C. and less than 100 ° C., and the impregnation time is suitably 15 minutes to 3 hours. When the impregnation temperature is within the above range, drying occurs during the impregnation, and the dispersibility of the organic matter does not decrease. Moreover, if the impregnation time is within the above range, the organic matter becomes uniform in the fired product.

有機物の含浸溶液を含浸させて、有機物を担持させた上記焼成物は、一般に、常温〜約80℃、窒素気流中、空気気流中、あるいは真空中で、水分をある程度〔LOIが50%以下となるように〕除去し、その後、空気気流中、窒素気流中、あるいは真空中で200℃以下、好ましくは80〜200℃、更に好ましくは100〜150℃、5時間〜20時間の乾燥を行う。有機物を担持させた上記焼成物においては、担持させた有機物が、先に担持されている活性金属と錯体化すると考えられるが、乾燥を200℃以下の温度で行うと、この先に担持されている活性金属と錯体化している有機物が触媒表面上から脱離せず、その結果、得られる触媒を硫化処理したときに上記の活性点と考えられるCoMoS相、NiMoS相の形成の精密制御が容易になるため好ましい。ただし、真空中で乾燥を行う場合は、圧力760mmHg換算で上記の温度範囲になるようにして乾燥を行うことが好ましい。   The above-mentioned baked product impregnated with an organic impregnation solution and supporting the organic material generally has a certain amount of moisture [LOI of 50% or less at room temperature to about 80 ° C. in a nitrogen stream, an air stream, or in a vacuum. After that, drying is performed in an air stream, a nitrogen stream, or a vacuum at 200 ° C. or lower, preferably 80 to 200 ° C., more preferably 100 to 150 ° C., and 5 hours to 20 hours. In the above baked product carrying an organic substance, it is considered that the carried organic substance is complexed with the active metal previously carried. However, when drying is performed at a temperature of 200 ° C. or lower, the organic substance is carried on the tip. The organic substance complexed with the active metal does not desorb from the surface of the catalyst, and as a result, precise control of the formation of the CoMoS phase and NiMoS phase, which are considered to be the above active sites, is facilitated when the resulting catalyst is subjected to sulfurization treatment. Therefore, it is preferable. However, when drying is performed in a vacuum, it is preferable to perform the drying so that the above temperature range is obtained in terms of pressure of 760 mmHg.

本発明により上記の如くして得られた水素化処理触媒は、優れた脱硫活性を有しており、過酷な運転条件を必要とせずに、炭化水素油中の硫黄化合物を高度に脱硫することができる。また、本発明により得られる水素化処理触媒は、一般に、比表面積が100〜450m/g、好ましくは150〜300m/g、細孔容積が0.3〜0.9ml/g、好ましくは0.3〜0.6ml/g、平均細孔直径が40〜200Å、好ましくは65〜140Åである。 The hydrotreating catalyst obtained as described above according to the present invention has an excellent desulfurization activity, and highly desulfurizes sulfur compounds in hydrocarbon oils without requiring severe operating conditions. Can do. The hydrotreating catalyst obtained by the present invention generally has a specific surface area of 100 to 450 m 2 / g, preferably 150 to 300 m 2 / g, and a pore volume of 0.3 to 0.9 ml / g, preferably The average pore diameter is 0.3 to 0.6 ml / g and the average pore diameter is 40 to 200 mm, preferably 65 to 140 mm.

本発明により得られる触媒は、例えば、直留ナフサ、接触改質ナフサ、接触分解ナフサ、接触分解ガソリン、直留灯油、直留軽油、接触分解軽油、熱分解軽油、水素化処理軽油、脱硫処理軽油、減圧蒸留軽油(VGO)等の留分の水素化処理に好適に用いることができる。本発明により得られる触媒を、その水素化処理に好適に用い得る炭化水素油の代表的な性状例として、沸点範囲が30〜560℃、硫黄化合物濃度が5質量%以下のものが挙げられる。   Catalysts obtained by the present invention include, for example, straight-run naphtha, catalytic reforming naphtha, catalytic cracking naphtha, catalytic cracking gasoline, straight-run kerosene, straight-run light oil, catalytic cracking light oil, pyrolysis light oil, hydrotreated light oil, desulfurization treatment It can be suitably used for hydrogenation treatment of fractions such as light oil and vacuum distilled light oil (VGO). As a typical property example of the hydrocarbon oil that can be suitably used for the hydrotreating of the catalyst obtained by the present invention, those having a boiling range of 30 to 560 ° C. and a sulfur compound concentration of 5% by mass or less can be mentioned.

また、本発明により得られる触媒による上記のような炭化水素油の水素化処理は、一般に、水素分圧0.7〜8MPa、温度220〜420℃、液空間速度0.3〜10hr−1、水素/オイル比20〜1000m(normal)/klの条件により好適に行うことができる。 Moreover, the hydrogenation treatment of the hydrocarbon oil as described above with the catalyst obtained by the present invention generally involves a hydrogen partial pressure of 0.7 to 8 MPa, a temperature of 220 to 420 ° C., a liquid space velocity of 0.3 to 10 hr −1 , It can carry out suitably under the conditions of a hydrogen / oil ratio of 20 to 1000 m 3 (normal) / kl.

<再生方法>
次に、本発明の触媒の再生方法について詳細に説明する。
本発明では、周期律表第6族金属、周期律表第8族金属、及びリンを担持した水素化処理触媒であれば、その製造由来や使用由来を問うことなく、種々の製造方法で製造され、また、種々の炭化水素油の水素化処理に用いられた、種々の使用済み水素化処理触媒の再生を行うことができる。本発明で再生対象とする使用済み触媒は、無機酸化物担体に周期律表第6族金属、周期律表第8族金属、及びリン以外の成分、例えば有機物ないし有機物由来の炭素を担持した触媒であっても良い。好ましくは、ゼオライトを含有した無機酸化物担体に周期律表第6族金属、周期律表第8族金属、及びリン以外に、有機物ないし有機物由来の炭素を担持した触媒である。更に好ましくは、ゼオライトを含有した無機酸化物担体に周期律表第6族金属、周期律表第8族金属、及びリン以外に、有機酸ないし有機酸由来の炭素を担持した触媒である。より好ましくは、ゼオライトを含有した無機酸化物担体に周期律表第6族金属、周期律表第8族金属、及びリン以外に、クエン酸ないしクエン酸由来の炭素を担持した触媒である。また、本発明では、例えば、上記本発明の製造方法により得られた触媒を軽油などの炭化水素油の水素化処理に用いた後の使用済み触媒の再生を好適に行うことができる。
<Playback method>
Next, the method for regenerating the catalyst of the present invention will be described in detail.
In the present invention, the hydrotreating catalyst carrying a periodic table group 6 metal, a periodic table group 8 metal, and phosphorus is manufactured by various manufacturing methods regardless of the manufacturing origin or use origin. In addition, it is possible to regenerate various used hydroprocessing catalysts used for hydroprocessing various hydrocarbon oils. The used catalyst to be regenerated in the present invention is a catalyst in which an inorganic oxide carrier carries a group 6 metal in the periodic table, a group 8 metal in the periodic table, and components other than phosphorus, for example, organic substances or organic-derived carbon. It may be. Preferably, it is a catalyst in which an organic substance or carbon derived from an organic substance is supported on an inorganic oxide support containing zeolite in addition to a Group 6 metal, a Group 8 metal, and phosphorus in the periodic table. More preferred is a catalyst in which an organic acid or carbon derived from an organic acid is supported on an inorganic oxide support containing zeolite in addition to a Group 6 metal, a Group 8 metal and phosphorus in the periodic table. More preferably, it is a catalyst in which citric acid or carbon derived from citric acid is supported on an inorganic oxide support containing zeolite in addition to a Group 6 metal, a Group 8 metal and phosphorus in the periodic table. Further, in the present invention, for example, the used catalyst can be suitably regenerated after the catalyst obtained by the production method of the present invention is used for the hydrotreating of hydrocarbon oil such as light oil.

本発明では、まず、使用済み触媒を油分除去処理する。この油分除去処理は、一般に窒素、水蒸気、二酸化炭素、空気等を使用できる。例えば、使用済み触媒を加熱空気により300〜400℃で油分等の揮発分が除去される場合、加熱空気中の酸素濃度は、多くの処理条件によって、最適な濃度は異なるが、一般に21容量%以下、好ましくは、20容量%以下である。   In the present invention, the spent catalyst is first subjected to oil removal treatment. In general, nitrogen, water vapor, carbon dioxide, air, or the like can be used for this oil removal treatment. For example, when volatile components such as oil are removed from heated catalyst at 300 to 400 ° C. by heated air, the oxygen concentration in heated air varies depending on many processing conditions, but generally 21 vol% Hereinafter, it is preferably 20% by volume or less.

本発明では、上記のように油分除去処理された使用済み触媒を400〜550℃、好ましくは450〜500℃で焼成する。焼成時間は、焼成温度にもよるが、一般に、15分〜10時間、好ましくは30分〜9時間である。焼成温度が400℃未満では、触媒上に析出して炭素分を十分に除去できないため、活性を十分に回復させることができない。また、550℃を超える高温では、6族金属、8族金属がシンタリングしてしまうため、活性を十分に回復させることができない。また、焼成温度にもよるが、一般に、焼成時間が15分以上であれば、触媒上に析出した炭素を除去することが可能であり、また、10時間以下であれば、設備規模を拡張することなく、必要量の触媒再生が可能である。   In the present invention, the spent catalyst subjected to the oil removal treatment as described above is calcined at 400 to 550 ° C, preferably 450 to 500 ° C. The firing time is generally 15 minutes to 10 hours, preferably 30 minutes to 9 hours, although depending on the firing temperature. When the calcination temperature is less than 400 ° C., the carbon cannot be sufficiently removed by depositing on the catalyst, so that the activity cannot be sufficiently recovered. Moreover, since the group 6 metal and the group 8 metal are sintered at a high temperature exceeding 550 ° C., the activity cannot be sufficiently recovered. Although it depends on the calcination temperature, generally, if the calcination time is 15 minutes or longer, it is possible to remove carbon deposited on the catalyst, and if it is 10 hours or less, the equipment scale is expanded. Therefore, the necessary amount of catalyst regeneration can be performed.

上記、使用済み触媒の焼成物に担持させる有機物の炭素含有量は、触媒基準で、2〜10質量%、好ましくは2〜6質量%、より好ましくは2〜4質量%である。
この炭素含有量が、2質量%以上では、触媒表面で8族金属が有機物と錯体化合物を十分に形成して、この場合、予備硫化工程において錯体化されていない6族金属が8族金属の硫化に先立って硫化されることにより、脱硫活性点(CoMoS相、NiMoS相等)が十分に形成されるので、不活性なコバルト、ニッケル種等の8族金属の金属種であるCo種、Ni種等、及び担体の格子内に取り込まれたCoスピネル種、Niスピネル種等が形成されないと推測されるため、好ましい。
10質量%以下では、触媒表面で8族金属が有機物と十分に錯体化合物を形成することができるが、一方、6族金属が有機物と錯体化合物を形成することはなく、また、余剰の有機物由来の炭素が触媒表面上に残ることはなく、好ましい。
6族金属が有機物と錯体化した場合は、活性化(硫化)の際に、6族金属の硫化が8族金属の硫化と同時に起こり、脱硫活性点(CoMoS相、NiMoS相等)が効率的に形成されず、延いては不活性なコバルト、ニッケル種等の8族金属の金属種であるCo種、Ni種等が形成されると推定される。
また、過剰な炭素は、触媒の被毒物質として硫化段階で脱硫活性点を被覆するため、活性低下の原因となる。
The carbon content of the organic substance supported on the burned product of the used catalyst is 2 to 10% by mass, preferably 2 to 6% by mass, and more preferably 2 to 4% by mass based on the catalyst.
When the carbon content is 2% by mass or more, the group 8 metal sufficiently forms a complex compound with an organic substance on the catalyst surface. In this case, the group 6 metal not complexed in the preliminary sulfidation step is the group 8 metal. By sulfiding prior to sulfiding, desulfurization active sites (CoMoS phase, NiMoS phase, etc.) are sufficiently formed, so that Co 9 S 8 species which are metal species of group 8 metals such as inert cobalt and nickel species Ni 3 S 2 species and the like, and Co spinel species, Ni spinel species and the like incorporated in the support lattice are presumed not to be formed, which is preferable.
When the content is 10% by mass or less, the group 8 metal can sufficiently form a complex compound with an organic substance on the catalyst surface, while the group 6 metal does not form a complex compound with the organic substance. This is preferable because no carbon remains on the catalyst surface.
When a group 6 metal is complexed with an organic substance, during activation (sulfurization), sulfurization of the group 6 metal occurs simultaneously with sulfurization of the group 8 metal, and desulfurization active sites (CoMoS phase, NiMoS phase, etc.) are efficiently produced. It is presumed that Co 9 S 8 species, Ni 3 S 2 species, etc., which are metal species of Group 8 metals such as inactive cobalt and nickel species, are formed.
Further, excessive carbon covers the desulfurization active site in the sulfidation stage as a poisonous substance for the catalyst, causing a decrease in activity.

上記使用済み触媒の焼成物に担持させる有機物としては、上記本発明の触媒の製造方法において6族金属等の担持成分を担持せしめた無機酸化物担体の焼成物に担持させる有機物と同様の有機物を用いることができる。触媒の製造時において有機物ないし、有機物に由来する炭素分を含む触媒の場合では、触媒製造時に用いた有機物と同一の有機物を添加することが好ましい。更に好ましくは、同一、且つ同量の有機物を添加することである。
即ち、上記使用済み触媒の焼成物に担持させる有機物としては、好ましくは有機酸、多価アルコール類が挙げられ、更に好ましくはカルボン酸が、より好ましくは多価カルボン酸、最も好ましくは、脂肪族多価カルボン酸が挙げられる。カルボン酸としては、例えばクエン酸、リンゴ酸、酒石酸、シュウ酸、コハク酸、グルタン酸、グルコン酸、アジピン酸、安息香酸、フタル酸、イソフタル酸、サリチル酸、マロン酸、等が挙げられ、中でもクエン酸が好ましく用いられる。これらの有機酸は、硫黄を実質的に含まない化合物を使用することが好ましい。これらの有機酸は、必要に応じて、1種用いることも、2種以上を混合して用いることもでき、多価アルコール類などの有機物を併用することもできる。また、多価アルコール類としては、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ジエチレングリコール、ジプロピレングリコール、トリメチレングリコール、トリエチレングリコール、トリブチレングリコール、テトラエチレングリコール類が挙げられ、中でもジエチレングリコールが好ましく用いられる。これらの多価アルコールは、必要に応じて、1種用いることも、2種以上を混合して用いることもできる。
As the organic matter to be carried on the burned product of the above-mentioned used catalyst, the same organic matter as the organic matter to be carried on the burned product of the inorganic oxide carrier on which the supporting component such as Group 6 metal is loaded in the catalyst production method of the present invention is used. Can be used. In the case of a catalyst containing an organic substance or a carbon component derived from the organic substance during the production of the catalyst, it is preferable to add the same organic substance as the organic substance used in the production of the catalyst. More preferably, the same and the same amount of organic substance is added.
That is, the organic substance to be supported on the burned product of the used catalyst preferably includes an organic acid and a polyhydric alcohol, more preferably a carboxylic acid, more preferably a polyvalent carboxylic acid, most preferably an aliphatic. A polyvalent carboxylic acid is mentioned. Examples of the carboxylic acid include citric acid, malic acid, tartaric acid, oxalic acid, succinic acid, glutaric acid, gluconic acid, adipic acid, benzoic acid, phthalic acid, isophthalic acid, salicylic acid, malonic acid, and the like. An acid is preferably used. These organic acids are preferably compounds that do not substantially contain sulfur. These organic acids can be used singly or in combination of two or more as required, and organic substances such as polyhydric alcohols can be used in combination. Examples of polyhydric alcohols include ethylene glycol, propylene glycol, glycerin, trimethylol ethane, trimethylol propane, diethylene glycol, dipropylene glycol, trimethylene glycol, triethylene glycol, tributylene glycol, and tetraethylene glycols. Of these, diethylene glycol is preferably used. These polyhydric alcohols can be used alone or in combination of two or more as required.

本発明では、上記のように油分除去処理された使用済み触媒を焼成して得られた焼成物に、有機物を担持させて、しかる後200℃以下、好ましくは80〜200℃で乾燥する。この使用済み触媒の焼成物への有機物の担持は、有機物の溶液を用いて、有機物の担持量が、〔有機物〕/〔周期律表第8族金属〕のモル比率が0.2〜1.2、好ましくは0.6〜1.0、もっとも好ましくは0.6〜0.8となるように行われる。このモル比率が0.2以上であれば、触媒表面で8族金属が有機物と錯体化合物を十分に形成して、予備硫化工程において、8族金属に帰属する脱硫活性点が十分に得られるため好ましい。また、1.2以下であれば、触媒表面で8族金属が有機物と十分に錯体化合物を形成でき、一方で、過剰な有機物が6族金属と錯体化合物を形成することを抑制することができると考えられるため好ましい。   In the present invention, an organic substance is supported on the calcined product obtained by calcining the used catalyst subjected to the oil removal treatment as described above, and then dried at 200 ° C. or lower, preferably 80 to 200 ° C. The organic catalyst is supported on the fired product of the used catalyst by using an organic solution, and the organic compound is supported in a molar ratio of [organic substance] / [group 8 metal of the periodic table] of 0.2 to 1. 2, preferably 0.6 to 1.0, most preferably 0.6 to 0.8. If this molar ratio is 0.2 or more, the group 8 metal sufficiently forms an organic compound and a complex compound on the catalyst surface, and in the preliminary sulfidation step, sufficient desulfurization active sites belonging to the group 8 metal are obtained. preferable. Moreover, if it is 1.2 or less, a group 8 metal can fully form a complex compound with an organic substance on the catalyst surface, and on the other hand, it can suppress that an excess organic substance forms a complex compound with a group 6 metal. Therefore, it is preferable.

上記使用済み触媒の焼成物への有機物の担持は、有機酸等の有機物の溶液を用いて、それを上記使用済み触媒の焼成物に含浸させて行われる。この有機物の含浸溶液の調製は、常法により行うことができる。有機物を溶解させるために用いる溶媒は、一般に水である。   The organic matter is supported on the calcined product of the used catalyst by impregnating the calcined product of the used catalyst with a solution of an organic material such as an organic acid. The organic impregnation solution can be prepared by a conventional method. The solvent used for dissolving the organic substance is generally water.

また、上記使用済み触媒の焼成物への有機物の含浸溶液の含浸も、常法により行うことができる。含浸条件は、種々の条件を採ることができるが、通常、含浸温度は0℃を超え100℃未満が適しており、含浸時間は15分から3時間が適している。含浸温度が上記範囲であれば、含浸中に乾燥が起こり、有機物の分散度が低下することがない。また、含浸時間が上記範囲であれば、上記焼成物中に有機物が均一となる。   Moreover, the impregnation of the impregnated solution of the organic matter into the calcined product of the above-mentioned used catalyst can be performed by a conventional method. Various conditions can be adopted as the impregnation conditions. Usually, the impregnation temperature is preferably more than 0 ° C. and less than 100 ° C., and the impregnation time is suitably from 15 minutes to 3 hours. When the impregnation temperature is within the above range, drying occurs during the impregnation, and the dispersibility of the organic matter does not decrease. Moreover, if the impregnation time is within the above range, the organic matter becomes uniform in the fired product.

有機物の含浸溶液を含浸させて、有機物を担持させた上記使用済み触媒の焼成物は、上記本発明の触媒の製造方法において有機物を担持させた6族金属等の担持成分を担持せしめた無機酸化物担体の焼成物の場合と同様に、一般に、常温〜約80℃、窒素気流中、空気気流中、あるいは真空中で、水分をある程度〔LOIが50%以下となるように〕除去し、その後、空気気流中、窒素気流中、あるいは真空中で200℃以下、好ましくは80〜200℃、5時間〜20時間の乾燥を行う。有機物を担持させた上記使用済み触媒の焼成物においては、担持させた有機物が、使用済み触媒に担持されている活性金属と錯体化すると考えられるが、乾燥を200℃以下の温度で行うと、この使用済み触媒に担持されている活性金属と錯体化している有機物が触媒表面上から脱離せず、その結果、得られる触媒を硫化処理したときに上記の活性点と考えられるCoMoS相、NiMoS相の形成の精密制御が容易になるため好ましい。ただし、真空中で乾燥を行う場合は、圧力760mmHg換算で上記の温度範囲になるようにして乾燥を行うことが好ましい。   The fired product of the used catalyst impregnated with the organic impregnation solution and supported with the organic material is an inorganic oxide in which a supporting component such as a group 6 metal supporting the organic material is supported in the method for producing a catalyst of the present invention. As in the case of the fired product carrier, in general, moisture is removed to some extent (so that the LOI is 50% or less) in a nitrogen stream, air stream, or vacuum, and thereafter In an air stream, a nitrogen stream, or in a vacuum, drying is performed at 200 ° C. or less, preferably 80 to 200 ° C. for 5 to 20 hours. In the burned product of the above-mentioned used catalyst carrying an organic substance, it is considered that the carried organic substance is complexed with an active metal carried on the used catalyst, but when drying is performed at a temperature of 200 ° C. or less, The organic substance complexed with the active metal supported on the used catalyst does not desorb from the surface of the catalyst, and as a result, the CoMoS phase and NiMoS phase which are considered to be the above active sites when the resulting catalyst is subjected to sulfurization treatment. This is preferable because precise control of the formation of the film becomes easy. However, when drying is performed in a vacuum, it is preferable to perform the drying so that the above temperature range is obtained in terms of pressure of 760 mmHg.

本発明により上記の如くして再生された水素化処理触媒は、脱硫活性が十分に復活されており、過酷な運転条件を必要とせずに、炭化水素油中の硫黄化合物を高度に脱硫することができる。   The hydrotreating catalyst regenerated as described above according to the present invention has sufficiently recovered its desulfurization activity, and highly desulfurizes sulfur compounds in hydrocarbon oils without requiring severe operating conditions. Can do.

本発明により再生された触媒は、上記本発明の製造方法により製造された触媒と同様に、例えば、直留ナフサ、接触改質ナフサ、接触分解ナフサ、接触分解ガソリン、直留灯油、直留軽油、接触分解軽油、熱分解軽油、水素化処理軽油、脱硫処理軽油、減圧蒸留軽油(VGO)等の留分の水素化処理に好適に用いることができる。本発明により再生された触媒を、その水素化処理に好適に用い得る炭化水素油の代表的な性状例として、沸点範囲が30〜560℃、硫黄化合物濃度が5質量%以下のものが挙げられる。   The catalyst regenerated by the present invention is, for example, straight-run naphtha, catalytic reformed naphtha, catalytic cracked naphtha, catalytic cracked gasoline, straight-run kerosene, straight-run light oil, as with the catalyst produced by the production method of the present invention. , Catalytic cracking gas oil, pyrolysis gas oil, hydrotreated gas oil, desulfurized gas oil, vacuum distilled gas oil (VGO), etc. Typical examples of the properties of hydrocarbon oils that can be suitably used for the hydrotreating of the catalyst regenerated by the present invention include those having a boiling range of 30 to 560 ° C. and a sulfur compound concentration of 5% by mass or less. .

また、本発明により再生された触媒による上記のような炭化水素油の水素化処理は、一般に、水素分圧0.7〜20MPa、温度220〜420℃、液空間速度0.3〜10hr−1、水素/オイル比20〜1000m(normal)/klの条件により好適に行うことができる。 Moreover, the hydrogenation treatment of the hydrocarbon oil as described above with the catalyst regenerated according to the present invention generally involves a hydrogen partial pressure of 0.7 to 20 MPa, a temperature of 220 to 420 ° C., and a liquid space velocity of 0.3 to 10 hr −1. The hydrogen / oil ratio is preferably 20 to 1000 m 3 (normal) / kl.

以下、実施例、比較例を挙げて本発明を説明するが、本発明は以下の実施例に何ら限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained, the present invention is not limited to the following examples at all.

実施例1(製造例)
SiO/Alモル比6のSHYゼオライト粉末(平均粒子径3.5μm、粒子径6μm以下のものがゼオライト全粒子の87%)と、アルミナ水和物を混練、押出成形後、600℃で2時間焼成して直径1.5mmの柱状成形物のゼオライト-アルミナ複合担体(ゼオライト/アルミナ質量比:5/95、細孔容積0.79ml/g、比表面積311m/g、平均細孔直径93Å)を得た。
炭酸コバルト4.6g、リン酸2.2g、モリブドリン酸17.4gをイオン交換水25.6gに溶解させて攪拌して含浸溶液を得た。
上記含浸溶液を、ナス型フラスコ中で、上記ゼオライト-アルミナ複合体の無機酸化物担体30gに、常温にて1時間含浸させ、乾燥(風乾)後、マッフル炉で500℃にて4時間焼成を行って焼成物を得た。この焼成物に対して、有機物としてクエン酸を表1に記載した量含浸させて、マッフル炉で120℃、16時間乾燥させて触媒Aを得た。得られた触媒Aの化学組成を表1、物理性状を表2に示した。
Example 1 (Production Example)
A SHY zeolite powder having an SiO 2 / Al 2 O 3 molar ratio of 6 (average particle size 3.5 μm, particle size 6 μm or less is 87% of all zeolite particles) and alumina hydrate are kneaded and extruded, and then 600 A zeolite-alumina composite support of a columnar shaped product having a diameter of 1.5 mm that was fired at 2 ° C. (zeolite / alumina mass ratio: 5/95, pore volume 0.79 ml / g, specific surface area 311 m 2 / g, average fine A hole diameter of 93 mm) was obtained.
4.6 g of cobalt carbonate, 2.2 g of phosphoric acid, and 17.4 g of molybdophosphoric acid were dissolved in 25.6 g of ion-exchanged water and stirred to obtain an impregnation solution.
The above impregnation solution is impregnated with 30 g of the zeolite-alumina composite inorganic oxide support in an eggplant type flask at room temperature for 1 hour, dried (air-dried), and then fired at 500 ° C. for 4 hours in a muffle furnace. To obtain a fired product. The calcined product was impregnated with citric acid as an organic substance in the amount shown in Table 1, and dried in a muffle furnace at 120 ° C. for 16 hours to obtain Catalyst A. The chemical composition of the catalyst A obtained is shown in Table 1, and the physical properties are shown in Table 2.

参考例1(製造例)
実施例1において、焼成物に、有機物としてクエン酸に換えて、表1に記載した量のジエチレングリコールを含浸させたこと以外は、実施例1と同様にして触媒Bを得た。得られた触媒Bの化学組成を表1、物理性状を表2に示した。
Reference Example 1 (Production Example)
In Example 1, catalyst B was obtained in the same manner as in Example 1 except that the calcined product was impregnated with diethylene glycol in the amount shown in Table 1 instead of citric acid as an organic substance. The chemical composition of the obtained catalyst B is shown in Table 1, and the physical properties are shown in Table 2.

比較例1(製造例)
実施例1において、焼成物にクエン酸を含浸させないこと以外は、実施例1と同様にして触媒aを得た。得られた触媒aの化学組成を表1、物理性状を表2に示した。
Comparative Example 1 (Production Example)
In Example 1, catalyst a was obtained in the same manner as in Example 1 except that the fired product was not impregnated with citric acid. The chemical composition of the obtained catalyst a is shown in Table 1, and the physical properties are shown in Table 2.

Figure 0005228221
Figure 0005228221

Figure 0005228221
Figure 0005228221

《減圧軽油の水素化処理》
以上の実施例1(製造例)、参考例1(製造例)及び比較例1(製造例)で得た触媒の水素化脱硫活性を、原料油に下記性状の減圧軽油を用い、下記のようにして評価した。
即ち、はじめに、触媒を高圧流通式反応装置に充填して固定床式触媒床を形成し、下記の条件で前処理した。
次に、反応温度に加熱した原料油と水素含有ガスとの混合液体を、反応装置の上部より導入して、下記の条件で脱硫反応を進行させ、生成油とガスの混合液体を反応装置の下部より流出させ、気液分離器で生成油を分離した。
<< Hydrogenation of vacuum gas oil >>
The hydrodesulfurization activity of the catalysts obtained in Example 1 ( Production Example) , Reference Example 1 (Production Example), and Comparative Example 1 (Production Example) is as follows. And evaluated.
That is, first, the catalyst was charged into a high-pressure flow reactor to form a fixed bed type catalyst bed, and pretreated under the following conditions.
Next, a mixed liquid of the raw material oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the upper part of the reaction apparatus, and the desulfurization reaction proceeds under the following conditions. The product oil was separated from the bottom and separated with a gas-liquid separator.

《触媒の前処理条件》
水素分圧:4.9MPa
温度:290℃で15時間保持、次いで320℃で15時間維持のステップ昇温。
昇温速度は、25℃/h
《Catalyst pretreatment conditions》
Hydrogen partial pressure: 4.9 MPa
Temperature: Step temperature rise of holding at 290 ° C. for 15 hours and then maintaining at 320 ° C. for 15 hours.
The heating rate is 25 ° C / h

《反応条件》
反応温度:360℃
水素分圧:4.9MPa
液空間速度:0.66h−1
水素/油比:500Nm/kl
<Reaction conditions>
Reaction temperature: 360 ° C
Hydrogen partial pressure: 4.9 MPa
Liquid space velocity: 0.66 h −1
Hydrogen / oil ratio: 500 Nm 3 / kl

《原料油性状》
油種:アラビアンライト減圧軽油
比重(15℃/4℃):0.9313g/cm
蒸留性状 :初留点368℃、50%点456℃、90%点510℃、終点549℃
硫黄分:2.9質量%
流動点:32.5℃
<Raw material properties>
Oil type: Arabian light vacuum gas oil Specific gravity (15 ° C / 4 ° C): 0.9313 g / cm 3
Distillation properties: initial boiling point 368 ° C, 50% point 456 ° C, 90% point 510 ° C, end point 549 ° C
Sulfur content: 2.9% by mass
Pour point: 32.5 ° C

《原料油性状の分析方法》
比重の分析:密度試験法 JIS K 2249
蒸留性状の分析:蒸留試験分析法 JIS K 2254
硫黄分の分析:硫黄分試験法 JIS K 2541
流動点の分析:流動点試験方法 JIS K 2269
<< Method for analyzing raw oil properties >>
Analysis of specific gravity: density test method JIS K 2249
Analysis of distillation properties: Distillation test analysis method JIS K 2254
Analysis of sulfur content: Sulfur content test method JIS K2541
Pour point analysis: pour point test method JIS K 2269

上記各触媒の脱硫活性を以下の方法で解析した。
上記反応条件で反応装置を運転し、20日を経過した時点で生成油を採取し、生成油中の硫黄分と原料油の硫黄分及び液空間速度から、脱硫反応速度定数(ks)を求めた。このks値の求め方を以下に示す。
生成油の硫黄分(Sp)の減少量に対して、1.5次の反応次数を得る反応速度式の定数を脱硫反応速度定数(ks)とする。尚、反応速度定数が高い程、脱硫活性が優れていることを示している。
脱硫反応速度定数=1/(1.5−1)×[1/(Sp)(1.5−1)−1/(Sf)(1.5−1)]×(LHSV)
式中、Sf:原料油中の硫黄分(質量%)
Sp:反応生成油中の硫黄分(質量%)
LHSV:液空間速度(h-1)
脱硫相対活性(%)=各脱硫反応速度定数/比較例1の触媒aの脱硫反応速度定数×100
触媒A、B、aの評価結果として、生成油の硫黄分、脱硫反応速度定数、触媒aの反応速度定数を100とした場合の脱硫相対活性を表3に示した。
The desulfurization activity of each catalyst was analyzed by the following method.
The reactor is operated under the above reaction conditions, and when 20 days have passed, the product oil is collected, and the desulfurization reaction rate constant (ks) is obtained from the sulfur content of the product oil, the sulfur content of the feedstock oil, and the liquid space velocity. It was. The method for obtaining this ks value is shown below.
The constant of the reaction rate equation for obtaining a reaction order of 1.5 with respect to the reduction amount of the sulfur content (Sp) of the produced oil is defined as a desulfurization reaction rate constant (ks). The higher the reaction rate constant, the better the desulfurization activity.
Desulfurization reaction rate constant = 1 / (1.5-1) × [1 / (Sp) (1.5-1) −1 / (Sf) (1.5-1) ] × (LHSV)
In formula, Sf: Sulfur content in feedstock (mass%)
Sp: Sulfur content (mass%) in reaction product oil
LHSV: Liquid space velocity (h -1 )
Desulfurization relative activity (%) = desulfurization reaction rate constant / desulfurization reaction rate constant of catalyst a of Comparative Example 1 × 100
Table 3 shows the desulfurization relative activities when the sulfur content of the product oil, the desulfurization reaction rate constant, and the reaction rate constant of the catalyst a are set to 100 as the evaluation results of the catalysts A, B, and a.

Figure 0005228221
Figure 0005228221

参考例2(再生例)
国際公開番号 WO2004/054712の実施例1に従って次のようにして触媒イを製造した。
即ち、イオン交換水22.3gに、クエン酸第一コバルト10.27gとリン酸(85%水溶液)2.24gを投入し、80℃に加温して10分間攪拌した。次いで、モリブドリン酸17.61gを投入し溶解させ、同温度で15分間攪拌して含浸用の溶液を調製した。
ナス型フラスコ中に、実施例1で調製したのと同様のゼオライト-アルミナ複合体の無機酸化物担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。その後、窒素気流中で風乾し、マッフル炉中、空気気流中・大気圧・120℃で約16時間乾燥させ、触媒イを得た。
Reference example 2 (reproduction example)
According to Example 1 of International Publication No. WO2004 / 054712, Catalyst A was produced as follows.
That is, 10.27 g of cobaltous citrate and 2.24 g of phosphoric acid (85% aqueous solution) were added to 22.3 g of ion-exchanged water, heated to 80 ° C. and stirred for 10 minutes. Next, 17.61 g of molybdophosphoric acid was added and dissolved, and stirred at the same temperature for 15 minutes to prepare a solution for impregnation.
Into an eggplant-shaped flask, 30.0 g of the same inorganic oxide support of zeolite-alumina composite as prepared in Example 1 was added, and the entire amount of the above impregnation solution was added thereto with a pipette. Soaked for 3 hours. Thereafter, it was air-dried in a nitrogen stream, and dried in a muffle furnace, in an air stream, at atmospheric pressure, and 120 ° C. for about 16 hours to obtain catalyst i.

この触媒イを、炭化水素油の水素化処理に供し、その活性が許容されないレベルに低下するまで使用した。その後、空気雰囲気中において300℃、3時間処理することでこの使用済み触媒に残存している炭化水素油を除去した。この残存炭化水素油を除去した使用済み触媒上に析出している炭素を主成分とする不純物を、450℃で、4時間焼成して除去した後、この焼成物に表4に記載した量のクエン酸を含浸させて、マッフル炉で120℃、16時間乾燥させて再生触媒Cを得た。得られた再生触媒Cの化学組成を表4、物理性状を表5に示した。   This catalyst (a) was subjected to hydrotreating of hydrocarbon oil and used until its activity dropped to an unacceptable level. Thereafter, the hydrocarbon oil remaining in the spent catalyst was removed by treatment in an air atmosphere at 300 ° C. for 3 hours. The carbon-based impurities precipitated on the used catalyst from which the residual hydrocarbon oil has been removed are removed by calcination at 450 ° C. for 4 hours. The regenerated catalyst C was obtained by impregnating with citric acid and drying in a muffle furnace at 120 ° C. for 16 hours. The chemical composition of the obtained regenerated catalyst C is shown in Table 4, and the physical properties are shown in Table 5.

参考例3(再生例)
参考例2において、クエン酸に換えて、表4に記載した量のジエチレングリコールを含浸させたこと以外は、参考例2と同様にして再生触媒Dを得た。得られた再生触媒Dの化学組成を表4、物理性状を表5に示した。
Reference example 3 (reproduction example)
In Reference Example 2 , regenerated catalyst D was obtained in the same manner as Reference Example 2 , except that it was impregnated with diethylene glycol in the amount shown in Table 4 instead of citric acid. The chemical composition of the obtained regenerated catalyst D is shown in Table 4, and the physical properties are shown in Table 5.

参考例4(再生例)
参考例2において、焼成物にクエン酸を含浸させないこと以外は、参考例2と同様にして再生触媒bを得た。得られた再生触媒bの化学組成を表4、物理性状を表5に示した。
Reference example 4 (reproduction example)
In Reference Example 2 , a regenerated catalyst b was obtained in the same manner as in Reference Example 2 except that the calcined product was not impregnated with citric acid. The chemical composition of the obtained regenerated catalyst b is shown in Table 4, and the physical properties are shown in Table 5.

Figure 0005228221
Figure 0005228221

Figure 0005228221
Figure 0005228221

《減圧軽油の水素化処理》
以上の、触媒イと、参考例2〜4(再生例)で得た各再生触媒の水素化脱硫活性を、原料油として上記実施例1等(製造例)で得た触媒の評価に用いたものと同様の性状の減圧軽油を用い、上記実施例1等(製造例)で得た触媒の評価と同様にして評価した。その評価結果として、各触媒の生成油の硫黄分、脱硫反応速度定数、及び使用前の触媒イの反応速度定数を100とした場合の脱硫相対活性を表6に示した。
<< Hydrogenation of vacuum gas oil >>
The hydrodesulfurization activity of the catalyst A and each of the regenerated catalysts obtained in Reference Examples 2 to 4 (Regeneration Examples) was used for evaluation of the catalyst obtained in Example 1 above (Production Example) as a raw material oil. Evaluation was performed in the same manner as the evaluation of the catalyst obtained in Example 1 and the like (Production Example) using a vacuum gas oil having the same properties as those described above. As a result of the evaluation, Table 6 shows the desulfurization relative activity when the sulfur content of the product oil of each catalyst, the desulfurization reaction rate constant, and the reaction rate constant of the catalyst a before use are set to 100.

Figure 0005228221
Figure 0005228221

実施例(製造例)
炭酸コバルト4.54g、リン酸(85%水溶液)2.24g、モリブドリン酸17.70gをイオン交換水25.5gに溶解させて攪拌して含浸溶液を得た。
上記含浸溶液を、ナス型フラスコ中で、実施例1で調製したのと同様のゼオライト−アルミナ複合体の無機酸化物担体30.0gに、常温にて1時間含浸させ、乾燥(風乾)後、マッフル炉で500℃にて4時間焼成を行って焼成物を得た。この焼成物に対して、有機物としてクエン酸を表7に記載した量含浸させて、マッフル炉で120℃、16時間乾燥させて触媒Eを得た。得られた触媒Eの化学組成を表7、物理性状を表8に示した。
Example 2 (Production Example)
4.54 g of cobalt carbonate, 2.24 g of phosphoric acid (85% aqueous solution) and 17.70 g of molybdophosphoric acid were dissolved in 25.5 g of ion-exchanged water and stirred to obtain an impregnation solution.
The impregnation solution was impregnated with 30.0 g of an inorganic oxide support of the same zeolite-alumina composite prepared in Example 1 in an eggplant-shaped flask at room temperature for 1 hour, dried (air-dried), Firing was performed by firing at 500 ° C. for 4 hours in a muffle furnace. The calcined product was impregnated with citric acid as an organic substance in the amount shown in Table 7, and dried in a muffle furnace at 120 ° C. for 16 hours to obtain Catalyst E. The chemical composition of the obtained catalyst E is shown in Table 7, and the physical properties are shown in Table 8.

実施例(製造例)
SiO/Alモル比6のSHYゼオライト粉末(平均粒子径3.5μm、粒子径6μm以下のものがゼオライト全粒子の87%)とアルミナ水和物とオルトリン酸を混練し、押出成形後、600℃で2時間焼成して直径1/16インチの柱状成形物のリン酸化物−ゼオライト−アルミナ複合担体(リン酸化物/ゼオライト/アルミナ質量比:4.4/5/90.5、細孔容積0.66ml/g、比表面積374m/g、平均細孔直径61Å)を得た。
イオン交換水23.1gに、炭酸コバルト4.47g、モリブドリン酸16.53gを溶解させて攪拌して含浸溶液を得た。
上記含浸溶液を、ナス型フラスコ中で、上記リン酸化物−ゼオライト−アルミナ複合体の無機酸化物担体30.0gに、常温にて1時間含浸させ、乾燥(風乾)後、マッフル炉で500℃にて4時間焼成を行って焼成物を得た。この焼成物に対して、有機物としてクエン酸を表7に記載した量含浸させて、マッフル炉で120℃、16時間乾燥させて触媒Fを得た。得られた触媒Fの化学組成を表7、物理性状を表8に示した。
Example 3 (Production Example)
SH2 zeolite powder with an SiO 2 / Al 2 O 3 molar ratio of 6 (average particle size 3.5 μm, particle size 6 μm or less is 87% of all zeolite particles), alumina hydrate and orthophosphoric acid are kneaded and extruded Thereafter, it was calcined at 600 ° C. for 2 hours, and a phosphor-zeolite-alumina composite carrier having a columnar shaped product having a diameter of 1/16 inch (phosphorus oxide / zeolite / alumina mass ratio: 4.4 / 5 / 90.5, A pore volume of 0.66 ml / g, a specific surface area of 374 m 2 / g, and an average pore diameter of 61 mm were obtained.
In 23.1 g of ion-exchanged water, 4.47 g of cobalt carbonate and 16.53 g of molybdophosphoric acid were dissolved and stirred to obtain an impregnation solution.
The above impregnation solution was impregnated with 30.0 g of the above-mentioned phosphor oxide-zeolite-alumina composite inorganic oxide support at room temperature for 1 hour in an eggplant-shaped flask, dried (air-dried), and then subjected to 500 ° C. in a muffle furnace. Was fired for 4 hours to obtain a fired product. The calcined product was impregnated with citric acid as an organic substance in the amount shown in Table 7, and dried in a muffle furnace at 120 ° C. for 16 hours to obtain Catalyst F. The chemical composition of the obtained catalyst F is shown in Table 7, and the physical properties are shown in Table 8.

実施例(製造例)
シリカとアルミナ水和物とオルトリン酸を混練し、押出成形後、600℃で2時間焼成して直径1/16インチの柱状成形物のリン酸化物−シリカ−アルミナ複合担体(リン酸化物/シリカ/アルミナ質量比:4.4/5/90.5、細孔容積0.78ml/g、比表面積324m/g、平均細孔直径98Å)を得た。
イオン交換水27.3gに、炭酸コバルト4.31g、モリブドリン酸16.48gを溶解させて攪拌して含浸溶液を得た。
上記含浸溶液を、ナス型フラスコ中で、上記リン酸化物−シリカ−アルミナ複合体の無機酸化物担体30.0gに、常温にて1時間含浸させ、乾燥(風乾)後、マッフル炉で500℃にて4時間焼成を行って焼成物を得た。この焼成物に対して、有機物としてクエン酸を表7に記載した量含浸させて、マッフル炉で120℃、16時間乾燥させて触媒Gを得た。得られた触媒Gの化学組成を表7、物理性状を表8に示した。
Example 4 (Production Example)
Silica, alumina hydrate and orthophosphoric acid are kneaded, extruded and then fired at 600 ° C. for 2 hours to form a columnar molded product of phosphoric acid-silica-alumina composite support (phosphoric oxide / silica). / Alumina mass ratio: 4.4 / 5 / 90.5, pore volume 0.78 ml / g, specific surface area 324 m 2 / g, average pore diameter 98 mm).
In 27.3 g of ion-exchanged water, 4.31 g of cobalt carbonate and 16.48 g of molybdophosphoric acid were dissolved and stirred to obtain an impregnation solution.
The above impregnation solution was impregnated with 30.0 g of the above-described phosphor oxide-silica-alumina composite inorganic oxide support at room temperature for 1 hour in an eggplant-shaped flask, dried (air-dried), and then subjected to 500 ° C. in a muffle furnace. Was fired for 4 hours to obtain a fired product. The calcined product was impregnated with citric acid as an organic substance in the amount shown in Table 7, and dried in a muffle furnace at 120 ° C. for 16 hours to obtain catalyst G. The chemical composition of the obtained catalyst G is shown in Table 7, and the physical properties are shown in Table 8.

実施例(製造例)
アルミナ水和物を混練し、押出成形後、600℃で2時間焼成して直径1/16インチの柱状成形物のγ−アルミナ担体(細孔容積0.85ml/g、比表面積249m/g、平均細孔直径100Å)を得た。
イオン交換水29.4gに、炭酸コバルト4.60g、リン酸(85%水溶液)2.16g、モリブドリン酸17.42gを溶解させて攪拌して含浸溶液を得た。
上記含浸溶液を、ナス型フラスコ中で、上記γ−アルミナの無機酸化物担体30.0gに、常温にて1時間含浸させ、乾燥(風乾)後、マッフル炉で500℃にて4時間焼成を行って焼成物を得た。この焼成物に対して、有機物としてクエン酸を表7に記載した量含浸させて、マッフル炉で120℃、16時間乾燥させて触媒Hを得た。得られた触媒Hの化学組成を表7、物理性状を表8に示した。
Example 5 (Production Example)
Alumina hydrate was kneaded, extruded and then calcined at 600 ° C. for 2 hours to give a columnar molded γ-alumina carrier having a diameter of 1/16 inch (pore volume 0.85 ml / g, specific surface area 249 m 2 / g). An average pore diameter of 100 mm) was obtained.
In 29.4 g of ion-exchanged water, 4.60 g of cobalt carbonate, 2.16 g of phosphoric acid (85% aqueous solution) and 17.42 g of molybdophosphoric acid were dissolved and stirred to obtain an impregnation solution.
The above impregnation solution is impregnated in 30.0 g of the above-mentioned inorganic oxide carrier of γ-alumina at room temperature for 1 hour in an eggplant-shaped flask, dried (air-dried), and then fired at 500 ° C. for 4 hours in a muffle furnace. To obtain a fired product. The calcined product was impregnated with citric acid as an organic material in the amount shown in Table 7, and dried in a muffle furnace at 120 ° C. for 16 hours to obtain Catalyst H. The chemical composition of the obtained catalyst H is shown in Table 7, and the physical properties are shown in Table 8.

実施例(製造例)
シリカとアルミナ水和物とを混練し、押出成形後、600℃で2時間焼成して直径1/16インチの柱状成形物のシリカ−アルミナ複合担体(シリカ/アルミナ質量比:1/99、細孔容積0.70ml/g、比表面積359m/g、平均細孔直径70Å)を得た。
炭酸コバルト4.69g、リン酸(85%水溶液)2.32g、モリブドリン酸17.41gをイオン交換水24.2gに溶解させて攪拌して含浸溶液を得た。
上記含浸溶液を、ナス型フラスコ中で、上記シリカ−アルミナ複合体の無機酸化物担体30.0gに、常温にて1時間含浸させ、乾燥(風乾)後、マッフル炉で500℃にて4時間焼成を行って焼成物を得た。この焼成物に対して、有機物としてクエン酸を表7に記載した量含浸させて、マッフル炉で120℃、16時間乾燥させて触媒Iを得た。得られた触媒Iの化学組成を表7、物理性状を表8に示した。
Example 6 (Production Example)
Silica and alumina hydrate are kneaded, extruded and then fired at 600 ° C. for 2 hours to form a columnar shaped silica-alumina composite carrier having a diameter of 1/16 inch (silica / alumina mass ratio: 1/99, fine Pore volume 0.70 ml / g, specific surface area 359 m 2 / g, average pore diameter 70 mm).
4.69 g of cobalt carbonate, 2.32 g of phosphoric acid (85% aqueous solution) and 17.41 g of molybdophosphoric acid were dissolved in 24.2 g of ion-exchanged water and stirred to obtain an impregnation solution.
The impregnating solution was impregnated with 30.0 g of the inorganic oxide carrier of the silica-alumina composite in an eggplant type flask at room temperature for 1 hour, dried (air dried), and then in a muffle furnace at 500 ° C. for 4 hours. Firing was performed to obtain a fired product. The calcined product was impregnated with citric acid as an organic substance in the amount shown in Table 7, and dried in a muffle furnace at 120 ° C. for 16 hours to obtain Catalyst I. The chemical composition of the obtained catalyst I is shown in Table 7, and the physical properties are shown in Table 8.

参考例5(製造例)
実施例において、有機物としてクエン酸に換えて、表7に記載した量のジエチレングリコールを含浸させたこと以外は、実施例と同様にして触媒Jを得た。得られた触媒Jの化学組成を表7、物理性状を表8に示した。
Reference Example 5 (Production Example)
In Example 2 , catalyst J was obtained in the same manner as in Example 2 , except that the amount of diethylene glycol described in Table 7 was impregnated instead of citric acid as the organic substance. The chemical composition of the obtained catalyst J is shown in Table 7, and the physical properties are shown in Table 8.

比較例(製造例)
実施例において、焼成物にクエン酸を含浸させないこと以外は、実施例と同様にして触媒cを得た。得られた触媒cの化学組成を表7、物理性状を表8に示した。
Comparative Example 2 (Production Example)
In Example 2 , catalyst c was obtained in the same manner as in Example 2 except that the fired product was not impregnated with citric acid. The chemical composition of the obtained catalyst c is shown in Table 7, and the physical properties are shown in Table 8.

比較例(製造例)
実施例において、焼成物に、有機物としてクエン酸に換えて、表7に記載した量のリン酸を含浸させたこと以外は、実施例と同様にして触媒dを得た。得られた触媒dの化学組成を表7、物理性状を表8に示した。
Comparative Example 3 (Production Example)
In Example 2 , catalyst d was obtained in the same manner as in Example 2 , except that the calcined product was impregnated with phosphoric acid in the amount shown in Table 7 instead of citric acid as an organic substance. The chemical composition of the obtained catalyst d is shown in Table 7, and the physical properties are shown in Table 8.

比較例(製造例)
実施例において、焼成物に、有機物としてクエン酸を表7に記載した量含浸させたこと以外は、実施例と同様にして触媒eを得た。得られた触媒eの化学組成を表7、物理性状を表8に示した。
Comparative Example 4 (Production Example)
In Example 2 , catalyst e was obtained in the same manner as in Example 2 , except that the calcined product was impregnated with citric acid as an organic substance in the amount shown in Table 7. The chemical composition of the obtained catalyst e is shown in Table 7, and the physical properties are shown in Table 8.

比較例(製造例)
実施例において、焼成物に、有機物としてクエン酸を表7に記載した量含浸させたこと以外は、実施例と同様にして触媒fを得た。得られた触媒fの化学組成を表7、物理性状を表8に示した。
Comparative Example 5 (Production Example)
In Example 2 , catalyst f was obtained in the same manner as in Example 2 except that the calcined product was impregnated with citric acid as an organic substance in the amount shown in Table 7. The chemical composition of the obtained catalyst f is shown in Table 7, and the physical properties are shown in Table 8.

Figure 0005228221
Figure 0005228221

Figure 0005228221
Figure 0005228221

《直留軽油の水素化処理》
以上の実施例(製造例)、参考例5(製造例)及び比較例(製造例)で得た各触媒の水素化脱硫活性を、原料油に下記性状の直留軽油を用い、下記のようにして評価した。
即ち、はじめに、触媒を高圧流通式反応装置に充填して固定床式触媒床を形成し、下記の条件で前処理した。
次に、反応温度に加熱した原料油と水素含有ガスとの混合液体を、反応装置の上部より導入して、下記の条件で脱硫反応を進行させ、生成油とガスの混合液体を反応装置の下部より流出させ、気液分離器で生成油を分離した。
《Hydroprocessing of straight run diesel oil》
The hydrodesulfurization activity of each catalyst obtained in the above Examples 2 to 6 (Production Examples) , Reference Example 5 (Production Examples) and Comparative Examples 2 to 5 (Production Examples) is used as a raw material oil, and a straight-run gas oil having the following properties: Was evaluated as follows.
That is, first, the catalyst was charged into a high-pressure flow reactor to form a fixed bed type catalyst bed, and pretreated under the following conditions.
Next, a mixed liquid of the raw material oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the upper part of the reaction apparatus, and the desulfurization reaction proceeds under the following conditions. The product oil was separated from the bottom and separated with a gas-liquid separator.

《触媒の前処理条件》
触媒の硫化:原料油による液硫化を行った。
圧力(水素分圧):4.9MPa
雰囲気:水素及び原料油(液空間速度1.5hr−1、水素/オイル比200m(normal)/kl)
温度:常温約22℃で水素及び原料油を導入し、20℃/hrで昇温し、300℃にて24hr維持、次いで反応温度である340℃まで20℃/hrで昇温
《Catalyst pretreatment conditions》
Sulfurization of catalyst: Liquid sulfidation with raw material oil was performed.
Pressure (hydrogen partial pressure): 4.9 MPa
Atmosphere: Hydrogen and raw material oil (liquid space velocity 1.5 hr −1 , hydrogen / oil ratio 200 m 3 (normal) / kl)
Temperature: Introduce hydrogen and raw oil at room temperature of about 22 ° C, heat up at 20 ° C / hr, maintain at 300 ° C for 24 hr, then heat up to reaction temperature of 340 ° C at 20 ° C / hr

《水素化反応条件》
反応温度 :340℃
圧力(水素分圧) :4.9MPa
液空間速度 :1.0hr−1
水素/オイル比 :200m(normal)/kl
<< Hydrogenation reaction conditions >>
Reaction temperature: 340 ° C
Pressure (hydrogen partial pressure): 4.9 MPa
Liquid space velocity: 1.0 hr −1
Hydrogen / oil ratio: 200 m 3 (normal) / kl

《原料油性状》
油種 :中東系直留軽油
密度(15/4℃) :0.8588
蒸留性状 :初留点が230.0℃、50%点が310.0℃、90%点が355.0℃、終点が374.5℃
硫黄成分 :1.41質量%
窒素成分 :210質量ppm
動粘度(30℃) :6.191cSt
<Raw material properties>
Oil type: Middle East straight-run gas oil density (15/4 ° C): 0.8588
Distillation properties: initial boiling point 230.0 ° C, 50% point 310.0 ° C, 90% point 355.0 ° C, end point 374.5 ° C
Sulfur component: 1.41% by mass
Nitrogen component: 210 mass ppm
Kinematic viscosity (30 ° C.): 6.191 cSt

上記各触媒の脱硫活性を以下の方法で解析した。
上記反応条件で反応装置を運転し、6日を経過した時点で生成油を採取し、生成油中の硫黄分と原料油の硫黄分及び液空間速度から、脱硫反応速度定数(ks)を求めた。このks値の求め方を以下に示す。
生成油の硫黄分(Sp)の減少量に対して、1.2次の反応次数を得る反応速度式の定数を脱硫反応速度定数(ks)とする。尚、反応速度定数が高い程、脱硫活性が優れていることを示している。
脱硫反応速度定数=1/(1.2−1)×[1/(Sp)(1.2−1)−1/(Sf)(1.2−1)]×(LHSV)
式中、Sf:原料油の硫黄分(質量%)
Sp:反応生成油中の硫黄分(質量%)
LHSV:液空間速度(h−1)
脱硫相対活性(%)=各脱硫反応速度定数/比較例の触媒cの脱硫反応速度定数×100
触媒E〜J、c〜fの評価結果として、生成油の硫黄分、脱硫反応速度定数、触媒cの反応速度定数を100とした場合の脱硫相対活性を表9に示した。
The desulfurization activity of each catalyst was analyzed by the following method.
The reaction apparatus is operated under the above reaction conditions, and after 6 days, the product oil is collected, and the desulfurization reaction rate constant (ks) is obtained from the sulfur content of the product oil, the sulfur content of the raw material oil, and the liquid space velocity. It was. The method for obtaining this ks value is shown below.
The constant of the reaction rate equation that obtains the reaction order of 1.2 with respect to the reduction amount of the sulfur content (Sp) of the product oil is defined as the desulfurization reaction rate constant (ks). The higher the reaction rate constant, the better the desulfurization activity.
Desulfurization reaction rate constant = 1 / (1.2-1) × [1 / (Sp) (1.2-1) −1 / (Sf) (1.2-1)] × (LHSV)
In the formula, Sf: sulfur content of feedstock oil (mass%)
Sp: Sulfur content (mass%) in reaction product oil
LHSV: Liquid space velocity (h-1)
Desulfurization relative activity (%) = desulfurization reaction rate constant / desulfurization reaction rate constant of catalyst c of Comparative Example 2 × 100
Table 9 shows the desulfurization relative activities when the sulfur content of the product oil, the desulfurization reaction rate constant, and the reaction rate constant of the catalyst c are set to 100 as the evaluation results of the catalysts E to J and cf.

Figure 0005228221
Figure 0005228221

参考例6(再生例)
参考例2と同様の再生触媒Cを用いた。
Reference example 6 (reproduction example)
The same regenerated catalyst C as in Reference Example 2 was used.

参考例7(再生例)
イオン交換水20.2gに、クエン酸第一コバルト9.38g、モリブドリン酸16.35gを投入し、80℃に加温して10分間攪拌して含浸溶液を得た。
上記含浸溶液を、ナス型フラスコ中に、実施例で調製したのと同様のリン酸化物−ゼオライト−アルミナ複合体の無機酸化物担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。その後、窒素気流中で風乾し、マッフル炉中、空気気流中・大気圧・120℃で約16時間乾燥させた。
その後、参考例2と同様に使用、処理して再生触媒Kを得た。得られた再生触媒Kの化学組成を表10、物理性状を表11に示した。
Reference example 7 (reproduction example)
9.38 g of cobaltous citrate and 16.35 g of molybdophosphoric acid were added to 20.2 g of ion-exchanged water, heated to 80 ° C. and stirred for 10 minutes to obtain an impregnation solution.
Into the eggplant-shaped flask, 30.0 g of the inorganic oxide carrier of the same phosphorus oxide-zeolite-alumina composite as prepared in Example 3 was added, and the total amount of the above impregnating solution was added thereto. Was added with a pipette and soaked at about 25 ° C. for 3 hours. After that, it was air-dried in a nitrogen stream, and dried in a muffle furnace in an air stream / atmospheric pressure / 120 ° C. for about 16 hours.
Thereafter, the catalyst was used and treated in the same manner as in Reference Example 2 to obtain a regenerated catalyst K. The chemical composition of the obtained regenerated catalyst K is shown in Table 10, and the physical properties are shown in Table 11.

参考例8(再生例)
イオン交換水24.3gに、クエン酸第一コバルト9.67g、モリブドリン酸17.07gを投入し、80℃に加温して10分間攪拌して含浸溶液を得た。
上記含浸溶液を、ナス型フラスコ中に、実施例で調製したのと同様のリン酸化物−シリカ−アルミナ複合体の無機酸化物担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。その後、窒素気流中で風乾し、マッフル炉中、空気気流中・大気圧・120℃で約16時間乾燥させた。
その後、参考例2と同様に使用、処理して再生触媒Lを得た。得られた再生触媒Lの化学組成を表10、物理性状を表11に示した。
Reference example 8 (reproduction example)
9.43 g of cobaltous citrate and 17.07 g of molybdophosphoric acid were added to 24.3 g of ion-exchanged water, heated to 80 ° C. and stirred for 10 minutes to obtain an impregnation solution.
Into the eggplant-shaped flask, 30.0 g of the same phosphor oxide-silica-alumina composite inorganic oxide carrier as prepared in Example 4 was added, and the total amount of the impregnation solution was added thereto. Was added with a pipette and soaked at about 25 ° C. for 3 hours. After that, it was air-dried in a nitrogen stream, and dried in a muffle furnace in an air stream / atmospheric pressure / 120 ° C. for about 16 hours.
Thereafter, the regenerated catalyst L was obtained by using and treating in the same manner as in Reference Example 2 . The chemical composition of the obtained regenerated catalyst L is shown in Table 10, and the physical properties are shown in Table 11.

参考例9(再生例)
イオン交換水26.5gに、クエン酸第一コバルト9.44gとリン酸(85%水溶液)1.90gを投入し、80℃に加温して10分間攪拌した。次いで、モリブドリン酸17.29gを投入し溶解させ、同温度で15分間攪拌して含浸用の溶液を調製した。
上記含浸溶液を、ナス型フラスコ中に、実施例で調製したのと同様のγ−アルミナの無機酸化物担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。その後、窒素気流中で風乾し、マッフル炉中、空気気流中・大気圧・120℃で約16時間乾燥させた。
その後、参考例2と同様に使用、処理して再生触媒Mを得た。得られた再生触媒Mの化学組成を表10、物理性状を表11に示した。
Reference example 9 (reproduction example)
To 26.5 g of ion-exchanged water, 9.44 g of cobaltous citrate and 1.90 g of phosphoric acid (85% aqueous solution) were added, heated to 80 ° C. and stirred for 10 minutes. Next, 17.29 g of molybdophosphoric acid was added and dissolved, and stirred at the same temperature for 15 minutes to prepare a solution for impregnation.
Into the eggplant-shaped flask, 30.0 g of the same inorganic oxide support of γ-alumina as prepared in Example 5 was added, and the whole amount of the above impregnation solution was added thereto with a pipette. Immersion was performed at about 25 ° C. for 3 hours. After that, it was air-dried in a nitrogen stream, and dried in a muffle furnace in an air stream / atmospheric pressure / 120 ° C. for about 16 hours.
Then, it used and processed like the reference example 2, and the reproduction | regeneration catalyst M was obtained. The chemical composition of the obtained regenerated catalyst M is shown in Table 10, and the physical properties are shown in Table 11.

参考例10(再生例)
参考例3と同様の再生触媒Dを用いた。
Reference example 10 (reproduction example)
The same regenerated catalyst D as in Reference Example 3 was used.

参考例11(再生例)
参考例4と同様の再生触媒bを用いた。
Reference example 11 (reproduction example)
The same regenerated catalyst b as in Reference Example 4 was used.

参考例12(再生例)
参考例2において、クエン酸に換えて、表10に記載した量のリン酸を含浸させたこと以外は、参考例2と同様にして再生触媒gを得た。得られた再生触媒gの化学組成を表10、物理性状を表11に示した。
Reference example 12 (reproduction example)
In Reference Example 2 , regenerated catalyst g was obtained in the same manner as in Reference Example 2 , except that instead of citric acid, the amount of phosphoric acid described in Table 10 was impregnated. The chemical composition of the obtained regenerated catalyst g is shown in Table 10, and the physical properties are shown in Table 11.

Figure 0005228221
Figure 0005228221

Figure 0005228221
Figure 0005228221

《直留軽油の水素化処理》
以上の参考例6〜12(再生例)で得た触媒の水素化脱硫活性を原料油として上記実施例等(製造例)で得た触媒の評価に用いたのと同様の性状の直留軽油を用い、上記実施例等(製造例)で得た触媒の評価と同様にして評価した。その評価結果として、各触媒の生成油の硫黄分、脱硫反応速度定数、及び触媒bの反応速度定数を100とした場合の脱硫相対活性を表12に示した。
《Hydroprocessing of straight run diesel oil》
Direct distillation having the same properties as those used in the evaluation of the catalyst obtained in Example 2 above (Production Example) using the hydrodesulfurization activity of the catalyst obtained in Reference Examples 6 to 12 (Regeneration Example) as a raw material oil Evaluation was performed in the same manner as the evaluation of the catalyst obtained in Example 2 above (Production Example) using light oil. Table 12 shows the desulfurization relative activity when the sulfur content of the product oil of each catalyst, the desulfurization reaction rate constant, and the reaction rate constant of the catalyst b are set to 100 as the evaluation results.

Figure 0005228221
Figure 0005228221

《強制劣化試験》
実施例
実施例と同様の触媒Eを用いて、強制劣化試験を行った。上記実施例等(製造例)で得た触媒の評価と同様にして直留軽油の水素化処理の評価をした後、反応温度を380℃に上昇し、4日間かけて触媒を強制劣化させ、再び反応温度を340℃に戻し水素化脱硫活性を評価した。
<Forced deterioration test>
Example 7
A forced deterioration test was conducted using the same catalyst E as in Example 2 . In the same manner as the evaluation of the catalyst obtained in Example 2 etc. (Production Example), the hydrogenation treatment of straight-run gas oil was evaluated, the reaction temperature was increased to 380 ° C., and the catalyst was forcibly deteriorated over 4 days. Again, the reaction temperature was returned to 340 ° C. and the hydrodesulfurization activity was evaluated.

実施例
実施例と同様の触媒Fを用いて、実施例と同様に強制劣化試験を行った。
Example 8
A forced deterioration test was conducted in the same manner as in Example 7 using the same catalyst F as in Example 3 .

比較例
比較例と同様の触媒cを用いて、実施例と同様に強制劣化試験を行った。
Comparative Example 6
A forced deterioration test was conducted in the same manner as in Example 7 using the same catalyst c as in Comparative Example 2 .

評価結果として、触媒E、F、cの強制劣化後の生成油の硫黄分、脱硫反応速度定数、及び触媒cの反応速度定数を100とした場合の脱硫相対活性を表13に示した。
強制劣化試験を行うことにより、触媒の熱に対する耐性、触媒寿命が評価できる。本発明の製造法による触媒E、Fを用いれば、熱履歴を受けた後であっても、高い脱硫活性を有していることから、熱耐性があり、長寿命な触媒であることが判断できる。
As an evaluation result, Table 13 shows the desulfurization relative activity when the sulfur content of the product oil after forced deterioration of the catalysts E, F, and c, the desulfurization reaction rate constant, and the reaction rate constant of the catalyst c are set to 100.
By performing the forced deterioration test, the heat resistance and catalyst life of the catalyst can be evaluated. If the catalysts E and F according to the production method of the present invention are used, the catalyst has a high desulfurization activity even after being subjected to a heat history, so that it is determined that the catalyst is heat resistant and has a long life. it can.

Figure 0005228221
Figure 0005228221

以上の結果から明らかなように、本発明により製造した触媒は優れた脱硫活性を示し、かつ長期運転を可能にする触媒を提供する。また、本発明により再生した触媒は、優れた脱硫活性を示すものである。   As is clear from the above results, the catalyst produced according to the present invention provides an excellent desulfurization activity and a catalyst capable of long-term operation. Moreover, the catalyst regenerated by the present invention exhibits excellent desulfurization activity.

Claims (1)

無機酸化物担体に、触媒基準、酸化物換算で、周期律表第6族金属から選ばれた少なくとも1種を10〜40質量%、周期律表第8族金属から選ばれた少なくとも1種を1〜15質量%、リンを0.5〜8質量%となるように含有させる工程、
上記工程後の無機酸化物を400〜550℃で焼成する工程、
その焼成物に、有機を、〔有機〕/〔周期律表第8族金属〕のモル比率が0.2〜1.2となるように、前記有機の溶液を用いて、担持させる工程、
及び担持後の焼成物を200℃以下で乾燥させる工程を含むことを特徴とする炭化水素油の水素化処理触媒の製造方法。
10-40 mass% of at least one selected from Periodic Table Group 6 metal and at least one selected from Periodic Table Group 8 metal on the basis of catalyst and oxide conversion on the inorganic oxide support 1-15 mass%, the process of containing phosphorus so that it may become 0.5-8 mass%,
A step of firing the inorganic oxide after the above step at 400 to 550 ° C .;
An organic acid is supported on the fired product using the organic acid solution so that the molar ratio of [organic acid ] / [group 8 metal of the periodic table] is 0.2 to 1.2. Process,
And a process for drying the supported calcined product at 200 ° C. or lower, and a method for producing a hydrocarbon oil hydrotreating catalyst.
JP2008116450A 2007-04-27 2008-04-25 Method for producing hydrocarbon oil hydrotreating catalyst Active JP5228221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116450A JP5228221B2 (en) 2007-04-27 2008-04-25 Method for producing hydrocarbon oil hydrotreating catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007118813 2007-04-27
JP2007118813 2007-04-27
JP2008116450A JP5228221B2 (en) 2007-04-27 2008-04-25 Method for producing hydrocarbon oil hydrotreating catalyst

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012196291A Division JP5796871B2 (en) 2007-04-27 2012-09-06 Regeneration method for hydroprocessing catalyst of hydrocarbon oil

Publications (3)

Publication Number Publication Date
JP2008290071A JP2008290071A (en) 2008-12-04
JP2008290071A5 JP2008290071A5 (en) 2011-04-21
JP5228221B2 true JP5228221B2 (en) 2013-07-03

Family

ID=40165347

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008116450A Active JP5228221B2 (en) 2007-04-27 2008-04-25 Method for producing hydrocarbon oil hydrotreating catalyst
JP2012196291A Active JP5796871B2 (en) 2007-04-27 2012-09-06 Regeneration method for hydroprocessing catalyst of hydrocarbon oil

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012196291A Active JP5796871B2 (en) 2007-04-27 2012-09-06 Regeneration method for hydroprocessing catalyst of hydrocarbon oil

Country Status (1)

Country Link
JP (2) JP5228221B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5773644B2 (en) * 2010-12-28 2015-09-02 日揮触媒化成株式会社 Method for regenerating hydrotreating catalyst
JP5660672B2 (en) * 2011-01-17 2015-01-28 コスモ石油株式会社 Regeneration method for hydroprocessing catalyst of hydrocarbon oil
FR2972648B1 (en) * 2011-03-18 2013-04-26 Ifp Energies Now CATALYST FOR USE IN HYDROTREATMENT COMPRISING METALS OF GROUP VIII AND VIB AND PREPARATION WITH CITRIC ACID AND C1-C4 DIALKYL SUCCINATE
JP5863096B2 (en) * 2011-07-29 2016-02-16 日揮触媒化成株式会社 Method for producing hydrotreating catalyst
JP5797976B2 (en) * 2011-08-26 2015-10-21 電気化学工業株式会社 Method for synthesizing lithium zeolite
FR2984764B1 (en) * 2011-12-22 2014-01-17 IFP Energies Nouvelles PROCESS FOR PREPARING A CATALYST FOR USE IN HYDROTREATMENT AND HYDROCONVERSION
FR2984760B1 (en) * 2011-12-22 2014-01-17 IFP Energies Nouvelles HYDROCONVERSION USING CATALYST COMPRISING AT LEAST ONE ZEOLITHE AND METALS OF GROUP VIII AND VIB AND PREPARATION OF CATALYST
SG11201507761PA (en) * 2013-03-25 2015-10-29 Cosmo Oil Co Ltd Hydrodesulfurization catalyst for diesel oil and hydrotreating method for diesel oil
LU92430B1 (en) * 2014-04-16 2015-10-19 Catalyst Recovery Europ Sa Process for rejuvenating hydrotreating catalyst
JP2016198691A (en) * 2015-04-07 2016-12-01 出光興産株式会社 Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil
EP3305874A4 (en) * 2015-05-29 2019-01-23 JXTG Nippon Oil & Energy Corporation Method for producing hydrotreated oil and method for producing catalytic cracked oil
JP6744099B2 (en) * 2016-01-13 2020-08-19 コスモ石油株式会社 Method for producing hydrocarbon fraction
CN108704672A (en) * 2018-05-31 2018-10-26 上海华畅环保设备发展有限公司 Ebullated bed wood tar adds the on-line regeneration method and apparatus of hydrogen decaying catalyst
CN108704673A (en) * 2018-05-31 2018-10-26 上海华畅环保设备发展有限公司 Ebullated bed wood tar adds the de-oiling method and device of the outer waste discharge catalyst of hydrogen
CN114433043A (en) * 2020-11-05 2022-05-06 中国石油化工股份有限公司 Alumina carrier and preparation method thereof, silver catalyst and application
CN114433042A (en) * 2020-11-05 2022-05-06 中国石油化工股份有限公司 Alumina carrier and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621069A (en) * 1983-10-03 1986-11-04 Hri, Inc. Continuous process for catalyst regeneration by staged burnoff of carbon and sulfur compounds
JPH08183963A (en) * 1994-12-30 1996-07-16 Tonen Corp Hydrogenolysis of hydrocarbon oil
JP3802106B2 (en) * 1995-06-08 2006-07-26 日本ケッチェン株式会社 Hydrocarbon oil hydrotreating catalyst, production method thereof and activation method thereof
DE60020292T2 (en) * 1999-04-08 2006-05-04 Albemarle Netherlands B.V. A process for sulfiding an organic nitrogen and carbonyl-containing hydrotreating catalyst
JP4743739B2 (en) * 1999-07-05 2011-08-10 アルベマーレ ネザーランズ ビー.ブイ. Method for regeneration and rejuvenation of additive-containing catalyst
DK1680486T3 (en) * 2003-10-03 2022-08-22 Albemarle Netherlands Bv METHOD OF ACTIVATING A HYDROGEN PROCESSING CATALYST

Also Published As

Publication number Publication date
JP2008290071A (en) 2008-12-04
JP5796871B2 (en) 2015-10-21
JP2013017999A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5228221B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP6307072B2 (en) Improved residual hydrotreating catalyst containing titania
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
EP2250129A2 (en) Catalyst to attain low sulfur gasoline
JP2007152324A (en) Hydrogenation catalyst of hydrocarbon oil, its manufacturing method and hydrogenation method of hydrocarbon oil
JP4545328B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP5815321B2 (en) Hydrocarbon oil hydrotreating catalyst, hydrocarbon oil hydrotreating catalyst production method, and hydrocarbon oil hydrotreating method
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4047044B2 (en) Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil
JP4916370B2 (en) Process for hydrotreating diesel oil
JP2013027838A (en) Method of regenerating hydrogenation catalyst
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP2007160250A (en) Method of manufacturing catalyst, catalytic cracking catalyst and method of producing low-sulfur catalytically-cracked gasoline
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP2006306974A (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP5337978B2 (en) Hydrotreating catalyst and hydrotreating method of vacuum gas oil
JP2001334150A (en) Hydrodesulfurization catalyst for gas oil fraction
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JP2005013848A (en) Carrier for hydrogenation catalyst, hydrogenation catalyst of hydrocarbon oil and hydrogenation method using the hydrogenation catalyst
JP5773644B2 (en) Method for regenerating hydrotreating catalyst
JP2006342288A (en) Method for hydrogenation-treating hydrocarbon oil

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250