JP2007160250A - Method of manufacturing catalyst, catalytic cracking catalyst and method of producing low-sulfur catalytically-cracked gasoline - Google Patents

Method of manufacturing catalyst, catalytic cracking catalyst and method of producing low-sulfur catalytically-cracked gasoline Download PDF

Info

Publication number
JP2007160250A
JP2007160250A JP2005361623A JP2005361623A JP2007160250A JP 2007160250 A JP2007160250 A JP 2007160250A JP 2005361623 A JP2005361623 A JP 2005361623A JP 2005361623 A JP2005361623 A JP 2005361623A JP 2007160250 A JP2007160250 A JP 2007160250A
Authority
JP
Japan
Prior art keywords
mass
catalyst
catalytic cracking
drying
fluid catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005361623A
Other languages
Japanese (ja)
Other versions
JP5060045B2 (en
Inventor
Toshio Ito
俊夫 伊藤
Akira Iino
明 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2005361623A priority Critical patent/JP5060045B2/en
Publication of JP2007160250A publication Critical patent/JP2007160250A/en
Application granted granted Critical
Publication of JP5060045B2 publication Critical patent/JP5060045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for efficiently decreasing the sulfur content in a gasoline base material to ≤50 mass ppm when the gasoline base material is produced by catalytically cracking heavy oil or heavy gas oil in a FCC plant and to provide a method of manufacturing the catalyst and a method of producing low-sulfur catalytically-cracked gasoline efficiently by using the catalyst. <P>SOLUTION: The method of manufacturing the fluid catalytic cracking catalyst having a desulfurizing function comprises the steps of: depositing a rare earth element on a carrier which contains 2-40 mass% alumina, 2-40 mass% silica, 5-50 mass% zeolite and 5-50 mass% clay mineral, by an ion exchange method or an impregnation method; drying the rare earth element-deposited carrier; impregnating the resulting carrier with at least one metal selected from the group consisting of vanadium, zinc and manganese and depositing the selected metal(s) to the resulting carrier; and drying the metal-deposited carrier. Each of the drying steps satisfies the following conditions: (a) the drying temperature is within 60-300°C; (b) the drying time is within 30-120 minutes; and (c) the time to expose to a temperature of ≥200°C is within 10 minutes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、触媒の製造方法、接触分解触媒及び低硫黄接触分解ガソリンの製造方法に関し、詳しくは、流動接触分解装置で低硫黄の接触分解ガソリンを製造するための触媒及びその製造方法並びに低硫黄接触分解ガソリンの製造方法に関する。   The present invention relates to a method for producing a catalyst, a catalytic cracking catalyst, and a method for producing low sulfur catalytic cracking gasoline, and more particularly, a catalyst for producing low sulfur catalytic cracking gasoline in a fluid catalytic cracking apparatus, a method for producing the catalyst, and low sulfur. The present invention relates to a method for producing catalytic cracking gasoline.

最近の環境問題の高まりに伴い、全世界的にガソリン中の硫黄分が規制されるようになってきた。日本においても2005年にはガソリン中の硫黄含有量が50質量ppm以下に規制され、さらに今後10質量ppm以下になることが予想される。
一般に流動接触分解(以下「FCC」と省略する場合がある。)装置で製造される接触分解ガソリンには大気汚染物質である硫黄化合物が含まれている。この接触分解ガソリンから硫黄分を除去して環境に優しいガソリンを製造することは、石油精製会社にとって重要である。
With the recent increase in environmental problems, the sulfur content in gasoline has been regulated worldwide. Even in Japan, the sulfur content in gasoline is regulated to 50 mass ppm or less in 2005, and is expected to be 10 mass ppm or less in the future.
In general, catalytic cracking gasoline produced by a fluid catalytic cracking (hereinafter sometimes abbreviated as “FCC”) apparatus contains sulfur compounds that are air pollutants. It is important for an oil refinery company to remove sulfur from the catalytic cracked gasoline to produce an environmentally friendly gasoline.

ところで、未脱硫減圧軽油を、ダビソン社製の脱硫機能を付加した流動接触分解触媒(以下「脱硫機能付加FCC触媒」という。)で処理している例が報告されている(非特許文献1参照)。しかしながら、用いている原料油が未脱硫処理油であるとともに、触媒の脱硫機能が十分でないため、得られる接触分解ガソリンの硫黄分は200〜400質量ppmと高い。これは、水素化脱硫処理が施されていない重油や重質軽油においては、含まれている硫黄分が接触分解では除去され難い構造を有しているためで、これらの触媒を用いて硫黄分200質量ppm未満の接触分解ガソリンを製造することは困難である。仮に、原料油として水素化処理脱硫重油や水素化処理重質軽油を用いても、非特許文献1に記載の脱硫機能付加FCC触媒では、脱硫活性が十分でないため、硫黄分50質量ppm以下の接触分解ガソリンを製造することは困難である。   By the way, an example in which undesulfurized vacuum gas oil is treated with a fluid catalytic cracking catalyst having a desulfurization function (hereinafter referred to as “desulfurization function-added FCC catalyst”) manufactured by Davison has been reported (see Non-Patent Document 1) ). However, since the raw material oil used is undesulfurized oil and the desulfurization function of the catalyst is not sufficient, the sulfur content of the obtained catalytic cracked gasoline is as high as 200 to 400 ppm by mass. This is because heavy oil and heavy gas oil that have not been hydrodesulfurized have a structure in which the contained sulfur content is difficult to be removed by catalytic cracking. It is difficult to produce catalytic cracking gasoline of less than 200 ppm by mass. Even if hydrotreated desulfurized heavy oil or hydrotreated heavy gas oil is used as the raw material oil, the desulfurization function-added FCC catalyst described in Non-Patent Document 1 does not have sufficient desulfurization activity, so that the sulfur content is 50 mass ppm or less. It is difficult to produce catalytic cracking gasoline.

また、脱硫機能付加FCC触媒を用いて接触分解ガソリン中の硫黄含有量を低減する技術については、これまで、幾つかの提案がなされている。例えば酸化物マトリックス中に分散したゼオライト及びアルミナにNi、Cu、Zn、Al、Snなどの化合物から選ばれるルイス酸を1〜50質量%担持してなる触媒を用い、硫黄含有炭化水素を接触分解し、硫黄分を減少させた接触分解ガソリンを製造する方法が提案されている(特許文献1、請求項1及び2参照))。しかしながら、この方法においては、得られる接触分解ガソリン中の硫黄含有量は200〜300質量ppm、あるいはそれ以上と高く、該触媒の脱硫性能は十分ではない(特許文献1、実施例参照)。
さらに、0よりも大きい酸化状態のV,Niなどの金属、及び希土類元素をゼオライト内部の細孔構造の中に含む脱硫機能付加FCC触媒と、通常のFCC平衡触媒との混合触媒を用い、硫黄分を低減させた接触分解ガソリンを製造する方法が開示されている(特許文献2、特許請求の範囲参照)。しかしながら、この方法において、1例を上げると、通常の減圧軽油(VGO)を原料油として用いた際に得られる接触分解ガソリン中の硫黄分は600質量ppm程度と高い値である(特許文献2、実施例14参照)。また、硫黄分が0.071質量%と非常に低い原料油を用いた場合でも、接触分解ガソリンの硫黄分は79質量ppmと高く、該混合触媒の脱硫機能は十分ではない(特許文献2、実施例15参照)。
In addition, several proposals have been made so far regarding techniques for reducing the sulfur content in catalytic cracked gasoline using a FCC catalyst with a desulfurization function. For example, catalytic cracking of sulfur-containing hydrocarbons is carried out using a catalyst in which a Lewis acid selected from compounds such as Ni, Cu, Zn, Al and Sn is supported on zeolite and alumina dispersed in an oxide matrix. However, a method for producing catalytically cracked gasoline having a reduced sulfur content has been proposed (see Patent Document 1, Claims 1 and 2). However, in this method, the sulfur content in the obtained catalytic cracking gasoline is as high as 200 to 300 ppm by mass or more, and the desulfurization performance of the catalyst is not sufficient (see Patent Document 1, Examples).
Furthermore, using a mixed catalyst of a desulfurization function-added FCC catalyst containing a metal such as V and Ni in an oxidation state greater than 0 and a rare earth element in the pore structure inside the zeolite, and a normal FCC equilibrium catalyst, sulfur is used. A method for producing catalytically cracked gasoline with reduced content is disclosed (see Patent Document 2 and Claims). However, in this method, if one example is given, the sulfur content in the catalytic cracked gasoline obtained when normal vacuum gas oil (VGO) is used as the feedstock is as high as about 600 mass ppm (Patent Document 2). See Example 14). Further, even when a feedstock having a very low sulfur content of 0.071% by mass is used, the sulfur content of catalytic cracked gasoline is as high as 79 ppm by mass, and the desulfurization function of the mixed catalyst is not sufficient (Patent Document 2, See Example 15).

「Oil&Gas Journal」、Feb.12(2001年)“Oil & Gas Journal”, Feb. 12 (2001) 特開平6−277519号公報JP-A-6-277519 特開2000−198989号公報JP 2000-198989 A

本発明は、このような状況下でなされたもので、重油や重質軽油をFCC装置により接触分解させてガソリン基材を製造するに際し、該ガソリン基材中の硫黄分を効率よく50質量ppm以下に低減させ得る触媒、該触媒の製造方法、及び該触媒を用いた低硫黄接触分解ガソリンの効率的な製造方法を提供するものである。   The present invention has been made under such circumstances. When a gasoline base material is produced by catalytically cracking heavy oil or heavy light oil with an FCC apparatus, the sulfur content in the gasoline base material is efficiently 50 mass ppm. The present invention provides a catalyst that can be reduced, a method for producing the catalyst, and an efficient method for producing low-sulfur catalytic cracking gasoline using the catalyst.

本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、特定の含有量のアルミナ、シリカ、ゼオライト及び粘土鉱物を含む担体に希土類元素をイオン交換法又は含浸法により担持し、乾燥後、特定の金属を含浸担持し、焼成を行わずに乾燥工程のみを経て調製された触媒が、前記課題を解決し得ることを見出した。本発明はかかる知見に基づいて完成されたものである。
すなわち、本発明は、
(1)アルミナ2〜40質量%、シリカ2〜40質量%、ゼオライト5〜50質量%及び粘土鉱物5〜50質量%を含む担体に希土類元素をイオン交換法又は含浸法により担持し、乾燥し、次いでバナジウム、亜鉛、及びマンガンからなる群から選ばれる少なくとも一種の金属を含浸担持し、乾燥する脱硫機能付加流動接触分解触媒の製造方法であって、それぞれの乾燥が以下の条件を満足することを特徴とする脱硫機能付加流動接触分解触媒の製造方法、
(a)乾燥温度が60〜300℃の範囲である、
(b)乾燥時間が30〜120分である、
(c)200℃以上の温度にさらされる時間が10分以内である、
(2)前記乾燥が以下の条件を満足する上記(1)に記載の脱硫機能付加流動接触分解触媒の製造方法、
(a)乾燥温度が60〜250℃の範囲である、
(b)乾燥時間が30〜80分である、
(c)200℃以上の温度にさらされる時間が10分以内である、
(3)前記金属の含有量が触媒を基準として500〜20,000質量ppmである上記(1)又は(2)に記載の脱硫機能付加流動接触分解触媒の製造方法、
(4)前記希土類元素の含有量が触媒を基準として0.5〜2.5質量%である上記(1)〜(3)のいずれかに記載の脱硫機能付加流動接触分解触媒の製造方法、
(5)前記担体の酸量が200〜400μmol/gであり、かつマクロ細孔表面積が50〜150m2/gである上記(1)〜(4)のいずれかに記載の脱硫機能付加流動接触分解触媒の製造方法、
(6)上記(1)〜(5)のいずれかに記載の製造方法により得られる脱硫機能付加流動接触分解触媒、
(7)上記(6)に記載の脱硫機能付加流動接触分解触媒2〜100質量%と流動接触分解平衡触媒0〜98質量%とからなる混合触媒を用いて、水素化脱硫重油又は水素化脱硫重質軽油を脱硫することを特徴とする低硫黄接触分解ガソリンの製造方法、
(8)水素化処理脱硫重油又は水素化処理脱硫重質軽油中の硫黄含有量が0.03〜0.7質量%である上記(7)に記載の低硫黄接触分解ガソリンの製造方法、
(9)流動接触分解平衡触媒中のバナジウム及び/又はニッケルの蓄積量が50〜20,000質量ppmである上記(7)又は(8)に記載の低硫黄接触分解ガソリンの製造方法、及び
(10)低硫黄接触分解ガソリンがC5留分〜沸点範囲230℃の留分であり、硫黄含有量が50質量ppm以下である上記(7)〜(9)のいずれかに記載の低硫黄接触分解ガソリンの製造方法、
を提供するものである。
As a result of intensive research to achieve the above object, the present inventors have supported rare earth elements on a support containing a specific content of alumina, silica, zeolite, and clay mineral by an ion exchange method or an impregnation method. The inventors have found that a catalyst prepared by impregnating and supporting a specific metal after drying and only undergoing a drying step without performing calcination can solve the above-mentioned problems. The present invention has been completed based on such findings.
That is, the present invention
(1) A rare earth element is supported by an ion exchange method or an impregnation method on a support containing 2 to 40% by mass of alumina, 2 to 40% by mass of silica, 5 to 50% by mass of zeolite, and 5 to 50% by mass of clay mineral, and dried. Then, a method for producing a desulfurization function-added fluid catalytic cracking catalyst in which at least one metal selected from the group consisting of vanadium, zinc, and manganese is impregnated, supported, and dried, and each drying satisfies the following conditions: A process for producing a desulfurization function-added fluid catalytic cracking catalyst,
(A) The drying temperature is in the range of 60 to 300 ° C.
(B) The drying time is 30 to 120 minutes.
(C) The time of exposure to a temperature of 200 ° C. or higher is within 10 minutes,
(2) The method for producing a desulfurization function-added fluid catalytic cracking catalyst according to (1), wherein the drying satisfies the following conditions:
(A) The drying temperature is in the range of 60 to 250 ° C.
(B) The drying time is 30 to 80 minutes.
(C) The time of exposure to a temperature of 200 ° C. or higher is within 10 minutes,
(3) The method for producing a desulfurization function-added fluid catalytic cracking catalyst according to (1) or (2), wherein the content of the metal is 500 to 20,000 mass ppm based on the catalyst,
(4) The method for producing a desulfurization function-added fluid catalytic cracking catalyst according to any one of the above (1) to (3), wherein the rare earth element content is 0.5 to 2.5% by mass based on the catalyst,
(5) Desulfurization function-added fluid contact according to any one of the above (1) to (4), wherein the support has an acid amount of 200 to 400 μmol / g and a macropore surface area of 50 to 150 m 2 / g. Production method of cracking catalyst,
(6) Desulfurization function-added fluid catalytic cracking catalyst obtained by the production method according to any one of (1) to (5) above,
(7) Hydrodesulfurized heavy oil or hydrodesulfurization using a mixed catalyst comprising 2 to 100% by mass of the desulfurization function-added fluid catalytic cracking catalyst according to (6) and 0 to 98% by mass of the fluid catalytic cracking equilibrium catalyst A method for producing low sulfur catalytic cracking gasoline, characterized by desulfurizing heavy gas oil;
(8) The method for producing low-sulfur catalytic cracking gasoline according to (7), wherein the sulfur content in the hydrotreated desulfurized heavy oil or the hydrotreated desulfurized heavy gas oil is 0.03 to 0.7% by mass,
(9) The method for producing low-sulfur catalytic cracking gasoline as described in (7) or (8) above, wherein the accumulated amount of vanadium and / or nickel in the fluid catalytic cracking equilibrium catalyst is 50 to 20,000 ppm by mass; 10) The low sulfur catalytic cracking gasoline according to any one of the above (7) to (9), wherein the low sulfur catalytic cracking gasoline is a C 5 fraction to a boiling point range of 230 ° C., and the sulfur content is 50 mass ppm or less. A method for producing cracked gasoline,
Is to provide.

本発明の流動接触分解触媒によれば、流動接触分解装置を用いて分解処理及び脱硫処理をすることで、残油留分からは硫黄含有量50質量ppm以下のガソリン留分を、また重質軽油留分からは硫黄含有量30質量ppm以下のガソリン留分を効率よく製造することができる。   According to the fluid catalytic cracking catalyst of the present invention, by performing cracking and desulfurization using a fluid catalytic cracking apparatus, a gasoline fraction having a sulfur content of 50 mass ppm or less is obtained from the residual oil fraction, and a heavy gas oil A gasoline fraction having a sulfur content of 30 mass ppm or less can be efficiently produced from the fraction.

本発明の触媒は、アルミナ、シリカ、ゼオライト及び粘土鉱物を含む担体に希土類元素をイオン交換又は含浸法により担持し、乾燥し、次いで特定の金属を含浸担持し、再び乾燥する工程によって調製される。
担体を構成するアルミナとしては特に限定されず、γ−アルミナ、δ−アルミナ、η−アルミナ、θ−アルミナ、χ−アルミナ等が好適に使用できる。また、ゼオライトの種類としては特に限定されず、Y型ゼオライト、β−ゼオライト、ZSM−5、L型ゼオライトなどが挙げられ、これらのうち特にY型ゼオライトが好ましい。さらに、粘土鉱物としては、カオリン、ベントナイト等が好適に使用でき、特にカオリンが好ましい。
担体にはその他の耐火性金属酸化物を含んでいてもよく、例えば、シリカ・アルミナ、チタニア、チタニア・アルミナなどが挙げられる。
上記担体中のアルミナ、シリカ、ゼオライト及び粘土鉱物の含有量としては、それぞれ2〜40質量%、2〜40質量%、5〜50質量%及び5〜50質量%である。
The catalyst of the present invention is prepared by a process in which a rare earth element is supported by an ion exchange or impregnation method on a support containing alumina, silica, zeolite and clay mineral, dried, then impregnated and supported by a specific metal, and dried again. .
The alumina constituting the carrier is not particularly limited, and γ-alumina, δ-alumina, η-alumina, θ-alumina, χ-alumina and the like can be suitably used. Moreover, it does not specifically limit as a kind of zeolite, Y type zeolite, (beta) -zeolite, ZSM-5, L type zeolite, etc. are mentioned, Among these, Y type zeolite is especially preferable. Furthermore, kaolin, bentonite, etc. can be used suitably as a clay mineral, and especially kaolin is preferable.
The support may contain other refractory metal oxides, and examples thereof include silica / alumina, titania, titania / alumina, and the like.
The contents of alumina, silica, zeolite, and clay mineral in the carrier are 2 to 40% by mass, 2 to 40% by mass, 5 to 50% by mass, and 5 to 50% by mass, respectively.

上記担体の酸量は200〜400μmol/gの範囲であり、かつ、マクロ細孔表面積が50〜150m2/gの範囲が好ましい。酸量が200μmol/g以上であると硫黄化合物の分解及び脱硫が十分行われる点で好適であり、一方400μmol/g以下であると分解反応が進みすぎて、ガスやコークなどの目的外生成物の収率が高くなることがなく、高い経済性を得ることができる。以上の点から、特に好ましい酸量は250〜300μmol/gの範囲である。
また、マクロ細孔表面積が50m2/g以上であると、原料油の分解が十分に行われ、接触分解ガソリンの収率が高く、かつ脱硫も十分なされる。一方150m2/g以下であると大きな細孔が多くなり過ぎて、分解活性が低下するということがなく、また十分な脱硫活性が得られる。以上の点から、特に好ましいマクロ細孔表面積は60〜120m2/gの範囲である。なお、前記酸量及びマクロ細孔表面積は下記の方法で測定した値である。
<酸量>
触媒上の酸点に塩基性ガス(アンモニア、ピリジン)が強く吸着することを利用して、触媒の酸性質をアンモニア微分吸着熱測定法により測定する。吸着熱の大小で酸点の強度が測定でき、同時に吸着量から、酸量を求めることができる。吸着熱量は熱量計で直接測定し、吸着量は圧力変化から測定する。
<マクロ細孔表面積>
BET多点法において窒素の相対圧力(P/P0)=0.3で測定した表面積からtプロットマイクロ表面積を差し引いた値である。
The acid amount of the carrier is preferably in the range of 200 to 400 μmol / g, and the macropore surface area is preferably in the range of 50 to 150 m 2 / g. When the acid amount is 200 μmol / g or more, it is preferable in that the sulfur compound is sufficiently decomposed and desulfurized. On the other hand, when the acid amount is 400 μmol / g or less, the decomposition reaction proceeds excessively, and undesired products such as gas and coke. The yield of can be increased and high economic efficiency can be obtained. From the above points, a particularly preferable acid amount is in the range of 250 to 300 μmol / g.
Further, when the macropore surface area is 50 m 2 / g or more, the feedstock is sufficiently decomposed, the yield of catalytic cracked gasoline is high, and desulfurization is also sufficient. On the other hand, when it is 150 m 2 / g or less, there are too many large pores, the decomposition activity does not decrease, and sufficient desulfurization activity is obtained. From the above points, the particularly preferred macropore surface area is in the range of 60 to 120 m 2 / g. The acid amount and the macropore surface area are values measured by the following method.
<Acid amount>
Utilizing the fact that basic gas (ammonia, pyridine) is strongly adsorbed on the acid sites on the catalyst, the acid properties of the catalyst are measured by the ammonia differential adsorption heat measurement method. The strength of the acid point can be measured by the magnitude of the heat of adsorption, and at the same time, the acid amount can be determined from the amount of adsorption. The heat of adsorption is measured directly with a calorimeter, and the amount of adsorption is measured from the pressure change.
<Macropore surface area>
This is a value obtained by subtracting the t-plot micro surface area from the surface area measured with the relative pressure of nitrogen (P / P 0 ) = 0.3 in the BET multipoint method.

次に、希土類元素としては、ランタン、セリウムなどが好適に挙げられ、特にランタンが好ましい。希土類元素を担持することで、触媒の安定性、特に水熱安定性を付与することができ、また分解活性を向上することができる。これら希土類元素の含有量は触媒基準で0.5〜2.5質量%の範囲が好ましい。
希土類元素の担持方法としては、イオン交換法又は含浸法を用いることができる。イオン交換法としては、常法を用いることができ、例えば、希土類硝酸塩溶液の2〜10%水溶液を調製し、この中に触媒100gを入れ常温〜90℃の温度で5分〜6時間攪拌後、ろ過、イオン交換水で洗浄し、余分な希土類元素を除去することでイオン交換することができる。また、含浸法についても、常法を用いることができ、例えば、イオン交換水を用いて触媒100gが吸収できる水分量を求めておき、該水分量に規定量の希土類硝酸を常温〜90℃程度で溶解し、触媒100gに含浸することにより効率的に希土類元素を担持することができる。
Next, as the rare earth element, lanthanum, cerium and the like are preferably mentioned, and lanthanum is particularly preferable. By supporting the rare earth element, the stability of the catalyst, particularly hydrothermal stability can be imparted, and the decomposition activity can be improved. The content of these rare earth elements is preferably in the range of 0.5 to 2.5% by mass based on the catalyst.
As a method for supporting the rare earth element, an ion exchange method or an impregnation method can be used. As the ion exchange method, a conventional method can be used. For example, a 2 to 10% aqueous solution of a rare earth nitrate solution is prepared, and 100 g of the catalyst is put therein, followed by stirring at a temperature of room temperature to 90 ° C. for 5 minutes to 6 hours. The ion exchange can be performed by filtering, washing with ion exchange water, and removing excess rare earth elements. Also, the impregnation method may be a conventional method. For example, the amount of water that can be absorbed by 100 g of catalyst using ion-exchanged water is obtained, and a specified amount of rare earth nitric acid is added to the amount of water at a room temperature to about 90 ° C. It is possible to efficiently carry the rare earth element by dissolving the catalyst in 100 g and impregnating 100 g of the catalyst.

希土類元素を担持した後に乾燥を行うが、本発明では乾燥のみで焼成などの熱処理を行わない点が特徴である。乾燥の条件としては以下の通りである。
(a)乾燥温度が60〜300℃の範囲である。
(b)乾燥時間が30〜120分である。
(c)200℃以上の温度にさらされる時間が10分以内である。
乾燥が不十分であると希土類溶液が管壁等に付着して量が不正確になる上、取り扱いも困難である。一方、乾燥が過度になるとバナジウム等の金属を含浸した際に、バナジウム等がゼオライト細孔内に入り、触媒の性能が低下する。上記条件で乾燥を行うことでこのような不都合がなく、高い脱硫機能を有する流動接触分解触媒が得られる。以上の点から乾燥温度については、さらに60〜250℃の範囲が好ましく、また乾燥時間については30〜80分の範囲が好ましい。さらに乾燥温度が200℃以上に到達する場合には、200℃に達するまでの時間が5分以上、特には10〜60分程度であることが好ましい。
Although drying is performed after the rare earth element is supported, the present invention is characterized in that heat treatment such as firing is not performed only by drying. The drying conditions are as follows.
(A) The drying temperature is in the range of 60 to 300 ° C.
(B) Drying time is 30 to 120 minutes.
(C) Time to be exposed to a temperature of 200 ° C. or higher is within 10 minutes.
If the drying is insufficient, the rare earth solution adheres to the tube wall and the amount becomes inaccurate, and handling is difficult. On the other hand, when drying is excessive, vanadium or the like enters the zeolite pores when impregnated with a metal such as vanadium, and the performance of the catalyst is lowered. By performing drying under the above conditions, there is no such inconvenience, and a fluid catalytic cracking catalyst having a high desulfurization function can be obtained. From the above points, the drying temperature is preferably in the range of 60 to 250 ° C., and the drying time is preferably in the range of 30 to 80 minutes. Furthermore, when the drying temperature reaches 200 ° C. or higher, it is preferable that the time to reach 200 ° C. is 5 minutes or longer, particularly about 10 to 60 minutes.

上記乾燥の後にバナジウム、亜鉛及びマンガンからなる群から選ばれる少なくとも一種の金属を含浸担持する。これらの金属のうち特にバナジウムが好ましく、また、これらの金属の含有量は触媒を基準として、500〜20,000質量ppmの範囲が好ましい。これらの金属の含有量が500質量ppm以上であると、十分な分解活性及び脱硫活性が発揮される。一方、20,000質量ppm以下であるとコークやガスなどの目的外生成物の収率を低く抑えることができ、高い経済性が得られる。
これら特定金属の担持は含浸法を用いる。含浸法によれば、バナジウム等の金属を中細孔又は大細孔(以下、中細孔又は大細孔を「マクロ細孔」ということがある。)に担持することができ、触媒の脱硫活性を向上させることができる。一方、イオン交換法で担持させた場合には、7A程度のゼオライト細孔(以下、「ミクロ細孔」ということがある。)にバナジウム等の金属が入るため、重油及び重質軽油に脱硫効果のあるバナジウム等、すなわち原料油に接することのできるバナジウム等の有効量が少なくなり、脱硫活性が低下する。
After the drying, at least one metal selected from the group consisting of vanadium, zinc and manganese is impregnated and supported. Of these metals, vanadium is particularly preferable, and the content of these metals is preferably in the range of 500 to 20,000 mass ppm based on the catalyst. When the content of these metals is 500 ppm by mass or more, sufficient decomposition activity and desulfurization activity are exhibited. On the other hand, if it is 20,000 ppm by mass or less, the yield of unintended products such as coke and gas can be kept low, and high economic efficiency can be obtained.
The impregnation method is used for loading these specific metals. According to the impregnation method, a metal such as vanadium can be supported in medium pores or large pores (hereinafter, the medium pores or large pores may be referred to as “macropores”), and the catalyst is desulfurized. The activity can be improved. On the other hand, when supported by the ion exchange method, vanadium and other metals enter zeolite pores of about 7A (hereinafter sometimes referred to as “micropores”), so desulfurization effect on heavy oil and heavy light oil. The effective amount of vanadium and the like, that is, vanadium that can come into contact with the raw material oil is reduced, and the desulfurization activity is lowered.

担持法の具体例としては、バナジウム金属源としてナフテン酸バナジウムなどの有機溶剤溶液を用いて含浸法により担持する方法、アセチルアセトバナジウム、ほう化バナジウム、臭化バナジウム、塩化バナジウム、フッ化バナジウム、酸化バナジウムアセチルアセトナート、ステアリン酸酸化バナジウム、酸化硫酸バナジウム、オキシ三塩化バナジウム、硫化バナジウム、蓚酸バナジルなどの水溶液を用いて含浸法により担持する方法などが挙げられる。
亜鉛金属源としては、酢酸亜鉛、亜鉛アセチルアセトナート、安息香酸亜鉛、塩基性炭酸亜鉛、塩化亜鉛、乳酸亜鉛、硝酸亜鉛、リン酸亜鉛、硫化亜鉛などが挙げられ、マンガン源としては、炭酸マンガン、塩化マンガン、ギ酸マンガン、グルコン酸マンガン、硝酸マンガン、シュウ酸マンガン、リン酸マンガン、硫酸マンガン、硝酸アンモニウムマンガン、安息香酸マンガンなどが挙げられる。
Specific examples of the supporting method include a method of supporting by an impregnation method using an organic solvent solution such as vanadium naphthenate as a vanadium metal source, acetylacetovanadium, vanadium boride, vanadium bromide, vanadium chloride, vanadium fluoride, oxidation Examples thereof include a method of supporting by an impregnation method using an aqueous solution of vanadium acetylacetonate, vanadium stearate oxide, vanadium oxide sulfate, vanadium oxytrichloride, vanadium sulfide, vanadyl oxalate, and the like.
Examples of zinc metal sources include zinc acetate, zinc acetylacetonate, zinc benzoate, basic zinc carbonate, zinc chloride, zinc lactate, zinc nitrate, zinc phosphate, zinc sulfide, and manganese sources include manganese carbonate. Manganese chloride, manganese formate, manganese gluconate, manganese nitrate, manganese oxalate, manganese phosphate, manganese sulfate, ammonium manganese nitrate, manganese benzoate and the like.

上述のようにして調製された触媒はその後再び乾燥されるが、その乾燥条件は希土類元素を担持した後の乾燥と同様であり、焼成工程を含まないことが特徴である。乾燥が不十分であると金属含液が管壁等に付着して量が不正確になる上、取り扱いも困難である。一方、過度の乾燥を行った場合には、バナジウム等の金属がゼオライト細孔内に入り、触媒の性能が低下する。   The catalyst prepared as described above is then dried again, and the drying conditions are the same as those for drying after supporting the rare earth element, and it is characterized by not including the calcination step. If the drying is insufficient, the metal-containing liquid adheres to the pipe wall and the amount becomes inaccurate, and handling is difficult. On the other hand, when excessive drying is performed, a metal such as vanadium enters the pores of the zeolite, and the performance of the catalyst decreases.

次に、本発明に係る低硫黄接触分解ガソリンの製造方法は、上記脱硫機能付加FCC触媒2〜100質量%と流動接触分解平衡触媒(以下「FCC平衡触媒」という。)0〜98質量%とからなる混合触媒を用いて、水素化処理脱硫重油又は水素化処理脱硫重質軽油を原料油として、これをさらに脱硫することを特徴とする。
FCC平衡触媒とは、一般にFCC装置において使用される接触分解触媒であって、FCC装置内で新触媒から寿命に達した触媒まで完全に混合され平均化された触媒のことである。本発明においては、バナジウム及び/又はニッケル蓄積量が該触媒全量に対して50〜20,000質量ppmにあるFCC平衡触媒が好適に用いられる。上記バナジウム及び/又はニッケル蓄積量が50質量ppm以上であると、十分な水素化能が得られ、所望の低硫黄接触分解ガソリンが得られやすい。また、20,000質量ppm以下であると、バナジウムやニッケルによる触媒被毒がなく、十分な分解活性が得られる。以上の点から、より好ましいバナジウム及び/又はニッケル蓄積量は100〜10,000質量ppmの範囲である。
本発明において使用されるFCC平衡触媒としては、REUSY、USY、REYなどのゼオライト、アルミナ、シリカ・アルミナ、チタニア、アルミナ・チタニア及び粘土鉱物(カオリン、ハロイサイトなど)などからなる触媒を挙げることができる。
Next, the method for producing low sulfur catalytic cracking gasoline according to the present invention comprises 2 to 100% by mass of the desulfurization function-added FCC catalyst and 0 to 98% by mass of fluid catalytic cracking equilibrium catalyst (hereinafter referred to as “FCC equilibrium catalyst”). Using a mixed catalyst comprising: hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil as raw material oil, this is further desulfurized.
The FCC equilibrium catalyst is a catalytic cracking catalyst that is generally used in an FCC apparatus, and is a catalyst that is completely mixed and averaged from a new catalyst to a catalyst that has reached the end of its life in the FCC apparatus. In the present invention, an FCC equilibrium catalyst having a vanadium and / or nickel accumulation amount of 50 to 20,000 mass ppm with respect to the total amount of the catalyst is suitably used. When the above-mentioned vanadium and / or nickel accumulation amount is 50 mass ppm or more, sufficient hydrogenation ability is obtained, and a desired low-sulfur catalytic cracking gasoline is easily obtained. Further, when it is 20,000 mass ppm or less, there is no catalyst poisoning by vanadium or nickel, and sufficient decomposition activity can be obtained. From the above points, a more preferable vanadium and / or nickel accumulation amount is in the range of 100 to 10,000 ppm by mass.
Examples of the FCC equilibrium catalyst used in the present invention include catalysts comprising zeolite such as REUSY, USY, REY, alumina, silica / alumina, titania, alumina / titania, and clay minerals (kaolin, halloysite, etc.). .

上記混合触媒において、脱硫機能付加FCC触媒の含有量は2〜100質量%であり、FCC平衡触媒の含有量は0〜98質量%の範囲である。すなわち、触媒が脱硫機能付加FCC触媒のみで構成されていてもよい。該平衡触媒の混合量は、原料油の性状、通油量、目的とする製品の量、目的とする製品の性状等によって、適宜決定されるものであるが、脱硫機能付加FCC触媒の含有量が2質量%以上であると十分な脱硫活性が得られる。さらに好ましい含有量は、脱硫機能付加FCC触媒が10〜30質量%であり、FCC平衡触媒が70〜90質量%である。   In the above mixed catalyst, the content of the desulfurization function-added FCC catalyst is 2 to 100% by mass, and the content of the FCC equilibrium catalyst is 0 to 98% by mass. That is, the catalyst may be composed only of a desulfurization function-added FCC catalyst. The mixing amount of the equilibrium catalyst is appropriately determined depending on the properties of the raw material oil, the oil passing amount, the amount of the target product, the properties of the target product, etc. The content of the desulfurization function-added FCC catalyst When the content is 2% by mass or more, sufficient desulfurization activity is obtained. Further preferable contents are 10 to 30% by mass of the desulfurization function-added FCC catalyst and 70 to 90% by mass of the FCC equilibrium catalyst.

本発明では、上記混合触媒を用いて、水素化処理脱硫重油又は水素化処理脱硫重質軽油をFCC装置にて分解処理し、分解反応とともに脱硫反応を行って、低硫黄接触分解ガソリンを製造するものである。ここで原料油として水素化処理脱硫重油又は水素化処理脱硫重質軽油を用いることが肝要である。これらの原料油は、硫黄化合物が脱硫され易い構造になっており、FCC装置内で脱硫反応を容易に起こさせ低硫黄分解ガソリンを得ることができる。
重油又は重質軽油の水素化脱硫方法としては特に制限はなく、従来重油や重質軽油の水素化脱硫に慣用されている方法を用いることができる。例えばMo、Wなどの周期率表第6族金属及びCo,Niなどの周期律表第8族金属の一種または二種以上、具体的にはCo−Mo又はNi−Moなどをアルミナ、シリカ、ゼオライトあるいはこれらの混合物などの担体に担持させた触媒を用い、反応温度300〜450℃程度、水素分圧3〜20Mpa・G程度、LHSV(液空間速度)0.1〜2.0hr-1程度の条件で水素化脱硫処理する方法などが用いられる。
本発明においては、原料油である水素化処理脱硫重油又は水素化処理脱硫重質軽油として、硫黄含有量が、通常0.03〜0.7質量%、好ましくは0.05〜0.5質量%の範囲にあるものが好適に用いられる。
In the present invention, hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil is cracked with an FCC unit using the above mixed catalyst, and desulfurized with the cracking reaction to produce low sulfur catalytic cracked gasoline. Is. Here, it is important to use hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil as the raw material oil. These feedstocks have a structure in which sulfur compounds are easily desulfurized, and a low sulfur cracked gasoline can be obtained by easily causing a desulfurization reaction in the FCC apparatus.
There is no restriction | limiting in particular as a hydrodesulfurization method of heavy oil or heavy light oil, The method conventionally used by the hydrodesulfurization of heavy oil or heavy light oil can be used. For example, Periodic Table Group 6 metals such as Mo and W and Periodic Table Group 8 metals such as Co and Ni, one or more metals, specifically Co—Mo or Ni—Mo etc. may be alumina, silica, Using a catalyst supported on a support such as zeolite or a mixture thereof, reaction temperature of about 300 to 450 ° C., hydrogen partial pressure of about 3 to 20 Mpa · G, LHSV (liquid space velocity) of about 0.1 to 2.0 hr −1 For example, a hydrodesulfurization treatment method may be used.
In the present invention, as the hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil as the raw material oil, the sulfur content is usually 0.03 to 0.7% by mass, preferably 0.05 to 0.5% by mass. Those in the range of% are preferably used.

FCC装置における水素化処理脱硫重油又は水素化処理脱硫重質軽油の分解及び脱硫反応の条件としては、例えば、温度は480〜650℃の範囲が好ましく、さらには480〜550℃の範囲が好ましい。また、反応圧力は0.02〜5MPa・Gの範囲が好ましく、さらには0.02〜0.5MPa・Gの範囲が好ましい。
処理温度が上記範囲内である場合は、触媒の分解活性及び生成する接触分解ガソリン留分の脱硫率が高く好ましい。なお、触媒再生温度は、通常600〜800℃である。本発明においては、このようにして得られた分解処理油から、蒸留により沸点範囲がC5留分〜230℃程度の留分を分取することにより、目的の低硫黄接触分解ガソリンを製造することができる。そして、該接触分解ガソリン中の硫黄分量を50質量ppm以下に低減させることができる。なお、本発明において接触分解ガソリンとは沸点範囲がC5留分〜230℃の留分をいう。また、接触分解ガソリン中の硫黄分は下記の方法により測定した値である。
<接触分解ガソリン中の硫黄分>
試料の接触分解ガソリンを加熱した燃焼管に導入し、酸素と不活性ガス気流中で燃焼させる。燃焼生成した二酸化硫黄を電解液に吸収させて電量滴定し、この際消費された電気量から、硫黄分を求める。なお、試料中の硫黄分は、予め硫黄標準液を用いて求めておいた回収係数によって補正する。
As conditions for the decomposition and desulfurization reaction of hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil in the FCC apparatus, for example, the temperature is preferably in the range of 480 to 650 ° C, and more preferably in the range of 480 to 550 ° C. The reaction pressure is preferably in the range of 0.02 to 5 MPa · G, and more preferably in the range of 0.02 to 0.5 MPa · G.
When the treatment temperature is within the above range, the cracking activity of the catalyst and the desulfurization rate of the produced catalytic cracking gasoline fraction are preferable. The catalyst regeneration temperature is usually 600 to 800 ° C. In the present invention, such a degradation process oil obtained by the, by the boiling range is collected fraction of about C 5 fraction to 230 ° C. min by distillation, to produce a low sulfur catalytically cracked gasoline object be able to. And the sulfur content in this catalytic cracking gasoline can be reduced to 50 mass ppm or less. Incidentally, the boiling range from a catalytic cracking gasoline in the present invention refers to the fraction of the C 5 fraction to 230 ° C.. Moreover, the sulfur content in catalytic cracking gasoline is a value measured by the following method.
<Sulfur content in catalytic cracking gasoline>
Sample catalytically cracked gasoline is introduced into a heated combustion tube and burned in an oxygen and inert gas stream. The sulfur dioxide produced by combustion is absorbed in the electrolyte and titrated, and the sulfur content is determined from the amount of electricity consumed. In addition, the sulfur content in the sample is corrected by a recovery coefficient obtained in advance using a sulfur standard solution.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
物性測定方法及び触媒評価方法
(1)脱硫機能付加FCC触媒における担体の酸量及びマクロ細孔表面積:明細書本文記載の方法に従って測定した。
(2)接触分解ガソリン中の硫黄含有量(質量ppm):明細書本文記載の方法に従って測定した。
(3)接触分解ガソリンの収率(質量%):得られたC5〜230℃留分の重量を原料油重量で除して100を掛けて算出した。
(4)コーク収率(質量%):再生塔で得られた一酸化炭素(CO)及び二酸化炭素(CO2)量よりカーボンの重量を求め、これを原料油重量で除して100を掛けて算出した。
(5)原料油転化率(質量%):ガス収率、C3、C4留分収率、接触分解ガソリン収率及びコーク収率を加えて算出した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Physical property measurement method and catalyst evaluation method (1) Desulfurization function-added FCC catalyst acid amount and macropore surface area: measured according to the method described in the specification.
(2) Sulfur content (mass ppm) in catalytically cracked gasoline: measured according to the method described in the specification.
(3) Yield (mass%) of catalytic cracked gasoline: Calculated by dividing the weight of the obtained C 5 -230 ° C. fraction by the weight of the raw oil and multiplying by 100.
(4) Coke yield (mass%): The weight of carbon is determined from the amount of carbon monoxide (CO) and carbon dioxide (CO 2 ) obtained in the regeneration tower, and this is divided by the weight of the raw material oil and multiplied by 100. Calculated.
(5) Feedstock oil conversion (mass%): Calculated by adding gas yield, C 3 , C 4 fraction yield, catalytic cracking gasoline yield and coke yield.

実施例1
(1)脱硫機能付加FCC触媒の調製
最終触媒の質量基準で、径10nmの細孔を多く有する噴霧乾燥ベーマイトゲルアルミナ(ラロッシュ・ケミカルズ社製「VERSAL250」)が30質量%、USYゼオライト(東ソー(株)製「FSZ―330HUA」)が30質量%、粘土鉱物カオリン(土屋カオリン工業(株)製「ASP−170」)が20質量%及びシリカゾルが20質量%になるように、それぞれの成分をイオン交換水に加え、固形分15質量%のスラリーとした。ついで、上記スラリーを、スプレードライヤーを用いて温度150℃、デイスク回転数9000rpm、スラリー供給速度10cm3/minの条件で噴霧乾燥処理して、直径20〜120μmの球状接触分解触媒を得た。
その後、この球状接触分解触媒を硝酸ランタン5質量%イオン交換水に浸漬させた後、洗浄し、120℃で80分間乾燥を行うことにより、該触媒に最終触媒の質量基準でランタン3質量%を担持した。次に酸化硫酸バナジウムを最終触媒においてバナジウム濃度が4000質量ppmになるように含浸法で担持し、120℃で80分乾燥した。
(2)分解、脱硫反応
上記(1)で調製した脱硫機能付加FCC触媒300gとバナジウムが530質量ppm及びニッケルが290質量ppm蓄積された実装置のFCC平衡触媒1700gとを均一に混合した。この混合触媒を連続式流動床ベンチプラントに充填し、硫黄分0.17質量%の水素化処理重質軽油を原料油として用い、反応温度535℃、反応圧力0.15MPa、触媒再生温度680℃、触媒/原料油比=7.0、原料油供給量950g/hrの条件で分解、脱硫反応を行った。なお、原料油中の硫黄分量はJIS K2541に準拠して測定した。
生成油を15段蒸留装置にて、沸点範囲C5〜230℃の留分を接触分解ガソリンとして分取し、その硫黄分量を測定した。反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
Example 1
(1) Preparation of FCC catalyst with added desulfurization function 30% by mass of spray-dried boehmite gel alumina (“VERSAL250” manufactured by Laroche Chemicals) having many pores having a diameter of 10 nm based on the mass of the final catalyst, USY zeolite (Tosoh ( Co., Ltd. “FSZ-330HUA”) is 30% by mass, clay mineral kaolin (“ASP-170” manufactured by Tsuchiya Kaolin Industry Co., Ltd.) is 20% by mass, and silica sol is 20% by mass. In addition to ion-exchanged water, a slurry having a solid content of 15% by mass was obtained. Subsequently, the slurry was spray-dried using a spray dryer at a temperature of 150 ° C., a disk rotation speed of 9000 rpm, and a slurry supply rate of 10 cm 3 / min to obtain a spherical catalytic cracking catalyst having a diameter of 20 to 120 μm.
Thereafter, the spherical catalytic cracking catalyst was immersed in 5% by mass of lanthanum nitrate ion-exchanged water, washed, and dried at 120 ° C. for 80 minutes to give 3% by mass of lanthanum based on the mass of the final catalyst. Supported. Next, vanadium oxide sulfate was supported by an impregnation method so that the vanadium concentration in the final catalyst was 4000 ppm by mass, and dried at 120 ° C. for 80 minutes.
(2) Decomposition and desulfurization reaction 300 g of the desulfurization function-added FCC catalyst prepared in (1) above and 1700 g of FCC equilibrium catalyst of an actual apparatus in which 530 mass ppm of vanadium and 290 mass ppm of nickel were accumulated were mixed. This mixed catalyst is charged into a continuous fluidized bed bench plant, and hydrogenated heavy gas oil having a sulfur content of 0.17% by mass is used as a raw material oil. The reaction temperature is 535 ° C., the reaction pressure is 0.15 MPa, and the catalyst regeneration temperature is 680 ° C. The cracking and desulfurization reactions were carried out under the conditions of catalyst / feed oil ratio = 7.0 and feed oil feed rate of 950 g / hr. In addition, the sulfur content in raw material oil was measured based on JISK2541.
The product oil was fractionated in a 15-stage distillation apparatus as a catalytically cracked gasoline having a boiling point range of C 5 to 230 ° C., and the sulfur content was measured. The evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline are shown in Table 1.

実施例2
最終触媒の質量基準で、径10nmの細孔を多く有する噴霧乾燥ベーマイトゲルアルミナ(ラロッシュ・ケミカルズ社製「VERSAL250」)が20質量%、USYゼオライト(東ソー(株)製「FSZ−330HUA」)が20質量%、粘土鉱物としてカオリン(土屋カオリン工業(株)製「ASP−170」)が40質量%及びシリカゾルが20質量となるように、それぞれの成分をイオン交換水に加え、固形分15質量%のスラリーを得た。その後、実施例1と同様にして、触媒を調製し、同様に評価した。結果を第1表に示す。
Example 2
Spray-dried boehmite gel alumina (“VERSAL250” manufactured by Laroche Chemicals) having many pores having a diameter of 10 nm based on the mass of the final catalyst is 20% by mass, USY zeolite (“FSZ-330HUA” manufactured by Tosoh Corporation) 20% by mass, kaolin (“ASP-170” manufactured by Tsuchiya Kaolin Industry Co., Ltd.) as a clay mineral is 40% by mass, and each component is added to ion-exchanged water so that the silica sol is 20% by mass, and the solid content is 15% by mass. % Slurry was obtained. Thereafter, a catalyst was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例3
実施例1のアルミナ量を15質量%、ゼオライト量を25質量%及びカオリン量を40質量%としたこと以外は実施例1と同様にして触媒を調製し、同様に評価した。結果を第1表に示す。
Example 3
A catalyst was prepared in the same manner as in Example 1 except that the amount of alumina in Example 1 was 15% by mass, the amount of zeolite was 25% by mass, and the amount of kaolin was 40% by mass. The results are shown in Table 1.

実施例4
混合触媒に代えて、実施例1(1)で調製した脱硫機能付加FCC触媒のみ2000gを用いたこと以外は実施例1と同様にして、分解、脱硫反応を行い、同様に評価した。その結果を第1表に示す。
Example 4
In place of the mixed catalyst, 2000 g of the desulfurization function-added FCC catalyst prepared in Example 1 (1) was used, except that the decomposition and desulfurization reactions were performed in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1.

実施例5
球状接触分解触媒を硝酸ランタン5質量%イオン交換水に浸漬し、洗浄した後の乾燥条件を以下のようにし、またバナジウムを含浸担持した後の乾燥条件を以下のようにしたこと以外は実施例1と同様にして触媒を調製し、同様に評価した。結果を第1表に示す。
乾燥条件;60℃から250℃まで30分かけて昇温しながら乾燥(200℃以上の温度にさらされる時間は約8分)
Example 5
Except that the spherical catalytic cracking catalyst was immersed in 5% by mass of lanthanum nitrate ion exchange water and washed, the drying conditions were as follows, and the drying conditions after impregnating and supporting vanadium were as follows. The catalyst was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1.
Drying conditions: drying while raising the temperature from 60 ° C. to 250 ° C. over 30 minutes (the time exposed to a temperature of 200 ° C. or more is about 8 minutes)

比較例1
実施例1で用いたFCC平衡触媒のみを用いたこと以外は実施例1と同様にして、分解、脱硫反応を行い、同様に評価した。その結果を第1表に示す。
Comparative Example 1
A decomposition and a desulfurization reaction were performed in the same manner as in Example 1 except that only the FCC equilibrium catalyst used in Example 1 was used, and the same evaluation was performed. The results are shown in Table 1.

比較例2
実施例1(1)の脱硫機能付加FCC触媒の調製において得られた球状接触分解触媒に、実施例1と同様にランタン3質量%を担持した後、590℃で3時間焼成した。次いで、濃度2質量%の酸化硫酸バナジウム水溶液に攪拌しながら30分間浸漬し、ろ過、イオン交換水での洗浄、120℃での乾燥を120分行い、590℃焼成を3時間行って脱硫機能付加FCC触媒を調製した。実施例1と同様にして混合触媒を調製し、分解、脱硫反応を行い、同様に評価した。その結果を第1表に示す。
Comparative Example 2
The spherical catalytic cracking catalyst obtained in the preparation of the desulfurization function-added FCC catalyst of Example 1 (1) was loaded with 3% by mass of lanthanum in the same manner as in Example 1, and then calcined at 590 ° C. for 3 hours. Next, it is immersed in an aqueous vanadium sulfate solution with a concentration of 2% by mass for 30 minutes while stirring, filtered, washed with ion-exchanged water, dried at 120 ° C for 120 minutes, and baked at 590 ° C for 3 hours to add a desulfurization function. An FCC catalyst was prepared. A mixed catalyst was prepared in the same manner as in Example 1, subjected to decomposition and desulfurization reaction, and evaluated in the same manner. The results are shown in Table 1.

比較例3
実施例2で用いた市販FCC触媒を590℃で3時間焼成し、焼成後のバナジウム含有量が4000質量ppmになるように濃度2質量%の酸化硫酸バナジウム水溶液を用い、攪拌しながらイオン交換法により担持した。ろ過、イオン交換水での洗浄、120℃での乾燥を120分行い、590℃焼成を3時間行って脱硫機能付加FCC触媒を調製した。実施例1と同様にして混合触媒を調製し、分解、脱硫反応を行い、同様に評価した。その結果を第1表に示す。
Comparative Example 3
The commercial FCC catalyst used in Example 2 was calcined at 590 ° C. for 3 hours, and an ion exchange method was performed with stirring using an aqueous vanadium sulfate solution having a concentration of 2 mass% so that the vanadium content after the calcining was 4000 mass ppm. Supported by. Filtration, washing with ion exchange water, and drying at 120 ° C. were performed for 120 minutes, and calcination was performed at 590 ° C. for 3 hours to prepare a desulfurization function-added FCC catalyst. A mixed catalyst was prepared in the same manner as in Example 1, subjected to decomposition and desulfurization reaction, and evaluated in the same manner. The results are shown in Table 1.

Figure 2007160250
Figure 2007160250

本発明の製造方法により得られる脱硫機能付加FCC触媒によれば、接触分解ガソリン中の硫黄分量を50質量ppm以下に低減できるため、硫黄分規制値が50質量ppm以下の場合、直接脱硫装置あるいは間接脱硫装置での過酷な前処理及び接触分解ガソリンの水素化脱硫などの後処理が不要になり、経済性が著しく向上する。また、硫黄分規制値が10質量ppm以下の場合、後処理装置の規模が小さくなり、水素消費量が減少すると共に、接触分解ガソリンのオクタン価の低下を抑制することができるため、低硫黄分接触分解ガソリンを経済的に有利に製造することができる。
According to the desulfurization function-added FCC catalyst obtained by the production method of the present invention, the sulfur content in the catalytic cracked gasoline can be reduced to 50 ppm by mass or less. Therefore, when the sulfur content regulation value is 50 ppm by mass or less, Severe pretreatment in indirect desulfurization equipment and post-treatment such as hydrodesulfurization of catalytic cracking gasoline are not required, and the economic efficiency is remarkably improved. In addition, when the sulfur content regulation value is 10 mass ppm or less, the scale of the aftertreatment device is reduced, the hydrogen consumption is reduced, and the decrease in the octane number of the catalytic cracking gasoline can be suppressed. Cracked gasoline can be produced economically advantageously.

Claims (10)

アルミナ2〜40質量%、シリカ2〜40質量%、ゼオライト5〜50質量%及び粘土鉱物5〜50質量%を含む担体に希土類元素をイオン交換法又は含浸法により担持し、乾燥し、次いでバナジウム、亜鉛、及びマンガンからなる群から選ばれる少なくとも一種の金属を含浸担持し、乾燥する脱硫機能付加流動接触分解触媒の製造方法であって、それぞれの乾燥が以下の条件を満足することを特徴とする脱硫機能付加流動接触分解触媒の製造方法。
(a)乾燥温度が60〜300℃の範囲である。
(b)乾燥時間が30〜120分である。
(c)200℃以上の温度にさらされる時間が10分以内である。
A rare earth element is supported by an ion exchange method or an impregnation method on a support containing 2 to 40% by mass of alumina, 2 to 40% by mass of silica, 5 to 50% by mass of zeolite, and 5 to 50% by mass of a clay mineral, dried, and then vanadium. A method for producing a desulfurization function-added fluid catalytic cracking catalyst impregnated with, supported by, and dried with at least one metal selected from the group consisting of zinc, and manganese, wherein each drying satisfies the following conditions: A method for producing a desulfurization function addition fluid catalytic cracking catalyst.
(A) The drying temperature is in the range of 60 to 300 ° C.
(B) Drying time is 30 to 120 minutes.
(C) Time to be exposed to a temperature of 200 ° C. or higher is within 10 minutes.
前記乾燥が以下の条件を満足する請求項1に記載の脱硫機能付加流動接触分解触媒の製造方法。
(a)乾燥温度が60〜250℃の範囲である。
(b)乾燥時間が30〜80分である。
(c)200℃以上の温度にさらされる時間が10分以内である。
The method for producing a desulfurization function-added fluid catalytic cracking catalyst according to claim 1, wherein the drying satisfies the following conditions.
(A) The drying temperature is in the range of 60 to 250 ° C.
(B) The drying time is 30 to 80 minutes.
(C) Time to be exposed to a temperature of 200 ° C. or higher is within 10 minutes.
前記金属の含有量が触媒を基準として500〜20,000質量ppmである請求項1又は2に記載の脱硫機能付加流動接触分解触媒の製造方法。 The method for producing a desulfurization function-added fluid catalytic cracking catalyst according to claim 1 or 2, wherein the metal content is 500 to 20,000 ppm by mass based on the catalyst. 前記希土類元素の含有量が触媒を基準として0.5〜2.5質量%である請求項1〜3のいずれかに記載の脱硫機能付加流動接触分解触媒の製造方法。 The method for producing a desulfurization function-added fluid catalytic cracking catalyst according to any one of claims 1 to 3, wherein the rare earth element content is 0.5 to 2.5 mass% based on the catalyst. 前記担体の酸量が200〜400μmol/gであり、かつマクロ細孔表面積が50〜150m2/gである請求項1〜4のいずれかに記載の脱硫機能付加流動接触分解触媒の製造方法。 The method for producing a desulfurization function-added fluid catalytic cracking catalyst according to any one of claims 1 to 4, wherein the support has an acid amount of 200 to 400 µmol / g and a macropore surface area of 50 to 150 m 2 / g. 請求項1〜5のいずれかに記載の製造方法により得られる脱硫機能付加流動接触分解触媒。 A desulfurization function-added fluid catalytic cracking catalyst obtained by the production method according to claim 1. 請求項6に記載の脱硫機能付加流動接触分解触媒2〜100質量%と流動接触分解平衡触媒0〜98質量%とからなる混合触媒を用いて、水素化脱硫重油又は水素化脱硫重質軽油を脱硫することを特徴とする低硫黄接触分解ガソリンの製造方法。 A hydrodesulfurized heavy oil or a hydrodesulfurized heavy gas oil is produced using a mixed catalyst comprising 2 to 100% by mass of a desulfurization function-added fluid catalytic cracking catalyst according to claim 6 and 0 to 98% by mass of a fluid catalytic cracking equilibrium catalyst. A process for producing low sulfur catalytic cracking gasoline characterized by desulfurization. 水素化処理脱硫重油又は水素化処理脱硫重質軽油中の硫黄含有量が0.03〜0.7質量%である請求項7に記載の低硫黄接触分解ガソリンの製造方法。 The method for producing low sulfur catalytic cracked gasoline according to claim 7, wherein the sulfur content in the hydrotreated desulfurized heavy oil or the hydrotreated desulfurized heavy gas oil is 0.03 to 0.7 mass%. 流動接触分解平衡触媒中のバナジウム及び/又はニッケルの蓄積量が50〜20,000質量ppmである請求項7又は8に記載の低硫黄接触分解ガソリンの製造方法。 The method for producing low-sulfur catalytic cracking gasoline according to claim 7 or 8, wherein the accumulated amount of vanadium and / or nickel in the fluid catalytic cracking equilibrium catalyst is 50 to 20,000 ppm by mass. 低硫黄接触分解ガソリンがC5留分〜沸点範囲230℃の留分であり、硫黄含有量が50質量ppm以下である請求項7〜9のいずれかに記載の低硫黄接触分解ガソリンの製造方法。

Low sulfur catalytically cracked gasoline is a fraction of the C 5 fraction to the boiling point range 230 ° C., a method of manufacturing low sulfur catalytically cracked gasoline according to any one of claims 7 to 9 sulfur content is not more than 50 mass ppm .

JP2005361623A 2005-12-15 2005-12-15 Method for producing catalyst, catalytic cracking catalyst, and method for producing low sulfur catalytic cracking gasoline Expired - Fee Related JP5060045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361623A JP5060045B2 (en) 2005-12-15 2005-12-15 Method for producing catalyst, catalytic cracking catalyst, and method for producing low sulfur catalytic cracking gasoline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361623A JP5060045B2 (en) 2005-12-15 2005-12-15 Method for producing catalyst, catalytic cracking catalyst, and method for producing low sulfur catalytic cracking gasoline

Publications (2)

Publication Number Publication Date
JP2007160250A true JP2007160250A (en) 2007-06-28
JP5060045B2 JP5060045B2 (en) 2012-10-31

Family

ID=38243756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361623A Expired - Fee Related JP5060045B2 (en) 2005-12-15 2005-12-15 Method for producing catalyst, catalytic cracking catalyst, and method for producing low sulfur catalytic cracking gasoline

Country Status (1)

Country Link
JP (1) JP5060045B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088137A (en) * 2009-09-24 2011-05-06 Petroleum Energy Center Catalytic cracking catalyst for hydrocarbon oil, manufacturing method therefor, and method for catalytically cracking hydrocarbon oil
JP2011088136A (en) * 2009-09-24 2011-05-06 Petroleum Energy Center Catalytic cracking catalyst for hydrocarbon oil, manufacturing method therefor and method for catalytically cracking hydrocarbon oil
CN108031487A (en) * 2017-11-22 2018-05-15 青岛惠城环保科技股份有限公司 A kind of preparation method for the catalytic cracking catalyst for reducing content of sulfur in gasoline
CN112108176A (en) * 2019-06-21 2020-12-22 中国石油天然气股份有限公司 Preparation method of catalyst for reducing sulfur content of catalytically cracked gasoline

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027066A (en) * 2001-07-12 2003-01-29 Idemitsu Kosan Co Ltd Method for desulfurization of catalytically cracked gasoline
JP2004083615A (en) * 2002-08-22 2004-03-18 Idemitsu Kosan Co Ltd Method for producing low-sulfur catalytically cracked gasoline
JP2005015766A (en) * 2003-06-02 2005-01-20 Petroleum Energy Center Production method for low-sulfur catalytically cracked gasoline

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027066A (en) * 2001-07-12 2003-01-29 Idemitsu Kosan Co Ltd Method for desulfurization of catalytically cracked gasoline
JP2004083615A (en) * 2002-08-22 2004-03-18 Idemitsu Kosan Co Ltd Method for producing low-sulfur catalytically cracked gasoline
JP2005015766A (en) * 2003-06-02 2005-01-20 Petroleum Energy Center Production method for low-sulfur catalytically cracked gasoline

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088137A (en) * 2009-09-24 2011-05-06 Petroleum Energy Center Catalytic cracking catalyst for hydrocarbon oil, manufacturing method therefor, and method for catalytically cracking hydrocarbon oil
JP2011088136A (en) * 2009-09-24 2011-05-06 Petroleum Energy Center Catalytic cracking catalyst for hydrocarbon oil, manufacturing method therefor and method for catalytically cracking hydrocarbon oil
CN108031487A (en) * 2017-11-22 2018-05-15 青岛惠城环保科技股份有限公司 A kind of preparation method for the catalytic cracking catalyst for reducing content of sulfur in gasoline
CN112108176A (en) * 2019-06-21 2020-12-22 中国石油天然气股份有限公司 Preparation method of catalyst for reducing sulfur content of catalytically cracked gasoline

Also Published As

Publication number Publication date
JP5060045B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP6506430B2 (en) Improved resid hydroprocessing catalyst containing titania
JP5796871B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP5217034B2 (en) Hydrodesulfurization / dewaxing catalyst for hydrocarbon oil, method for producing the same, and method for hydrotreating hydrocarbon oil using the catalyst
RU2745372C2 (en) Catalyst for desulfurization of liquid oil products, its production and use
JP5060045B2 (en) Method for producing catalyst, catalytic cracking catalyst, and method for producing low sulfur catalytic cracking gasoline
CN107970961B (en) Hydrocarbon oil desulfurization catalyst, preparation method thereof and hydrocarbon oil desulfurization method
JP5841481B2 (en) Method for hydrotreating heavy residual oil
JP5584252B2 (en) Multifunctional catalyst additive composition and preparation method thereof
JP4409996B2 (en) Process for producing low sulfur catalytic cracking gasoline
CN107970994B (en) Hydrocarbon oil desulfurization catalyst, preparation method thereof and hydrocarbon oil desulfurization method
JP5091401B2 (en) Method for producing hydrogen, method for producing reformed gasoline, and method for producing aromatic hydrocarbon
JP2004083615A (en) Method for producing low-sulfur catalytically cracked gasoline
JP5537780B2 (en) Light oil composition
CN107970962B (en) Hydrocarbon oil desulfurization catalyst, preparation method thereof and hydrocarbon oil desulfurization method
JP4916370B2 (en) Process for hydrotreating diesel oil
JP4493997B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP2014173025A (en) Hydrogenation purification method for vacuum gas oil
JP5841480B2 (en) Method for hydrotreating heavy residual oil
CN113731427A (en) Bifunctional desulfurization catalyst, preparation method thereof and hydrocarbon oil desulfurization method
JP2005270855A (en) Adsorbent of sulfur compound in hydrocarbon oil and method for removing sulfur compound in hydrocarbon oil
CN114177931B (en) Catalyst for desulfurizing and reducing olefin of gasoline and preparation method thereof
JP3990675B2 (en) Hydrodesulfurization method of light oil
JP2013212447A (en) Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst
JP3990673B2 (en) Hydrodesulfurization method of light oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5060045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees