JP4916370B2 - Process for hydrotreating diesel oil - Google Patents

Process for hydrotreating diesel oil Download PDF

Info

Publication number
JP4916370B2
JP4916370B2 JP2007109633A JP2007109633A JP4916370B2 JP 4916370 B2 JP4916370 B2 JP 4916370B2 JP 2007109633 A JP2007109633 A JP 2007109633A JP 2007109633 A JP2007109633 A JP 2007109633A JP 4916370 B2 JP4916370 B2 JP 4916370B2
Authority
JP
Japan
Prior art keywords
catalyst
group
mass
metal
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007109633A
Other languages
Japanese (ja)
Other versions
JP2008266420A (en
Inventor
和幸 桐山
洋 木村
芳範 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2007109633A priority Critical patent/JP4916370B2/en
Publication of JP2008266420A publication Critical patent/JP2008266420A/en
Application granted granted Critical
Publication of JP4916370B2 publication Critical patent/JP4916370B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、軽油の水素化処理方法に関する。更に詳しくは、硫黄分及び窒素分が極めて低減され、色相も優れた軽油を製造することができる軽油の水素化処理方法に関する。   The present invention relates to a method for hydrotreating light oil. More specifically, the present invention relates to a method for hydrotreating light oil that can produce light oil with extremely low sulfur content and nitrogen content and excellent hue.

大気環境改善のため、ディーゼル自動車から排出される窒素酸化物や浮遊粒子状物質等を低減することは重要な課題である。これらの汚染物質を低減する方法として、ディーゼル自動車への排ガス処理装置の搭載が有効であると考えられている。しかしながら、これらの排ガス処理装置は耐硫黄性が低いものが多いことから、この装置を効果的に機能させるためには、燃料油(軽油)中に含まれる硫黄分を大幅に低減することが望ましい。そこで、これらの要求に対応するため、優れた脱硫性能を有する各種脱硫触媒技術が提案されている(例えば、特許文献1参照)。   In order to improve the atmospheric environment, it is an important issue to reduce nitrogen oxides, suspended particulate matter, etc. emitted from diesel vehicles. As a method for reducing these pollutants, it is considered effective to install an exhaust gas treatment device in a diesel vehicle. However, since many of these exhaust gas treatment devices have low sulfur resistance, it is desirable to significantly reduce the sulfur content in fuel oil (light oil) in order to make this device function effectively. . In order to meet these requirements, various desulfurization catalyst technologies having excellent desulfurization performance have been proposed (see, for example, Patent Document 1).

ところで、従来の技術により、軽油留分の硫黄を大幅に低減しようとすると、着色しやすくなる傾向にあり、これまでの製品のイメージを保持するという観点から色相は、無色透明が好ましい。即ち、セーボルトカラーで+25以上であることが望ましい。
また、従来の技術では、脱窒素反応性は、脱硫反応性と比較して、反応性が悪いことが知られており、水素化脱硫触媒を用いて水素化脱窒素反応を十分に行うためには、例えば、高い温度が必要となる。そのような条件下で炭化水素油を水素化処理した場合には、水素化脱窒素に関しては満足する結果が得られているが、生成油の軽質化や、色相の悪化が過度に進むという不都合が生じる。
By the way, when it is going to reduce sulfur of a light oil fraction significantly by the conventional technique, it tends to be colored easily, and the hue is preferably colorless and transparent from the viewpoint of maintaining the image of the product so far. That is, it is desirable that the Saybolt color is +25 or more.
In addition, in the conventional technology, it is known that the denitrification reactivity is poor compared to the desulfurization reactivity, and in order to sufficiently perform the hydrodenitrogenation reaction using a hydrodesulfurization catalyst. For example, a high temperature is required. When hydrocarbon oils are hydrotreated under such conditions, satisfactory results have been obtained for hydrodenitrogenation, but the disadvantage is that the product oil is lightened and the hue deteriorates excessively. Occurs.

国際公開第2004/054712号パンフレットInternational Publication No. 2004/054712 Pamphlet

本発明の目的は、上記従来の状況に鑑み、軽油中の硫黄分及び窒素分を極めて低い濃度まで低減できるとともに、色相の悪化を抑制して色相に優れた軽油を製造することができる軽油の水素化処理方法を提供することである。   In light of the above-described conventional situation, the object of the present invention is to reduce the sulfur content and nitrogen content in light oil to a very low concentration, and to produce a light oil excellent in hue while suppressing deterioration of the hue. It is to provide a hydroprocessing method.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、一定の性状の触媒を用い、一定の条件下で軽油の水素化処理を行うことによって、上記目的を達成することができ、硫黄分及び窒素分が極めて低減され、色相も優れた軽油を製造し得ることを見出して、本発明を完成した。
即ち、本発明は、上記目的を達成するために、次の軽油の水素化処理方法を提供するものである。
(1)触媒として、無機酸化物担体上に、周期律表第6族金属から選ばれた少なくとも1種を10〜40質量%(触媒基準、酸化物換算)、ニッケルを必須として周期律表第8族金属から選ばれた少なくとも1種を1〜15質量%(触媒基準、酸化物換算)、リンを1.5〜6質量%(触媒基準、酸化物換算)、及び有機酸を2〜14質量%(触媒基準、炭素元素換算)担持し、かつ、周期律表第8族金属1モル当たりの有機酸担持量が0.2〜1.2モルで、周期律表第8族金属中のニッケルのモル比率が60モル%以上である触媒を用い、水素分圧9〜18MPa、温度300〜420℃、液空間速度0.3〜5hr−1の反応条件で軽油を水素化処理することを特徴とする軽油の水素化処理方法。
(2)硫黄分が10質量ppm以下、窒素分が1質量ppm以下、かつセーボルトカラーが+25以上の軽油を製造することを特徴とする上記(1)記載の軽油の水素化処理方法。
(3)触媒として、無機酸化物担体上に、周期律表第6族金属から選ばれた少なくとも1種を10〜40質量%(触媒基準、酸化物換算)、ニッケルを必須として周期律表第8族金属から選ばれた少なくとも1種を1〜15質量%(触媒基準、酸化物換算)、リンを1.5〜6質量%(触媒基準、酸化物換算)、及び有機酸を2〜14質量%(触媒基準、炭素元素換算)担持し、かつ、周期律表第8族金属1モル当たりの有機酸担持量が0.2〜1.2モルで、周期律表第8族金属中のニッケルのモル比率が60モル%以上である触媒を用い、水素分圧9〜18MPa、温度300〜420℃、液空間速度0.3〜5hr −1 の反応条件で軽油を水素化処理する、軽油の脱硫かつ色相の悪化を抑制することを特徴とする軽油の水素化処理方法。
(4)無機酸化物担体上に、周期律表第6族金属から選ばれた少なくとも1種を10〜40質量%(触媒基準、酸化物換算)、ニッケルを必須として周期律表第8族金属から選ばれた少なくとも1種を1〜15質量%(触媒基準、酸化物換算)、リンを1.5〜6質量%(触媒基準、酸化物換算)、及び有機酸を2〜14質量%(触媒基準、炭素元素換算)担持させ、かつ、周期律表第8族金属1モル当たりの有機酸担持量が0.2〜1.2モルで、周期律表第8族金属中のニッケルのモル比率が60モル%以上である触媒層を含み、水素分圧9〜18MPa、温度300〜420℃、液空間速度0.3〜5hr −1 の反応条件で軽油を水素化処理する、軽油の脱硫かつ色相の悪化を抑制することを特徴とする軽油の水素化処理装置。
As a result of intensive studies to achieve the above object, the inventors of the present invention can achieve the above object by hydrotreating light oil under a certain condition using a catalyst having a certain property. The present invention has been completed by discovering that it is possible to produce a light oil having a very low sulfur content and nitrogen content and excellent hue.
That is, the present invention provides the following light oil hydrotreating method in order to achieve the above object.
(1) As a catalyst, 10 to 40 mass% (catalyst standard, oxide conversion) of at least one selected from Group 6 metals of the periodic table on an inorganic oxide support, and nickel is essential and the periodic table 1 to 15% by mass (catalyst standard, oxide conversion) of at least one selected from Group 8 metals, 1.5 to 6% by mass (catalyst standard, oxide conversion) of phosphorus, and 2 to 14 of organic acid It is supported by mass% (catalyst basis, in terms of carbon element), and the amount of organic acid supported per 1 mol of group 8 metal of the periodic table is 0.2 to 1.2 mol. Hydrogenation of light oil is carried out using a catalyst having a nickel molar ratio of 60 mol% or more under reaction conditions of a hydrogen partial pressure of 9 to 18 MPa, a temperature of 300 to 420 ° C., and a liquid space velocity of 0.3 to 5 hr −1. A process for hydrotreating diesel oil, characterized by
(2) The diesel oil hydrotreating method according to (1), wherein a diesel oil having a sulfur content of 10 mass ppm or less, a nitrogen content of 1 mass ppm or less, and a Saebold color of +25 or more is produced.
(3) 10 to 40% by mass (catalyst standard, oxide conversion) of at least one selected from Group 6 metals on the periodic table on the inorganic oxide support as a catalyst, and nickel as essential 1 to 15% by mass (catalyst standard, oxide conversion) of at least one selected from Group 8 metals, 1.5 to 6% by mass (catalyst standard, oxide conversion) of phosphorus, and 2 to 14 of organic acid It is supported by mass% (catalyst basis, in terms of carbon element), and the amount of organic acid supported per 1 mol of group 8 metal of the periodic table is 0.2 to 1.2 mol. Gas oil, which uses a catalyst having a nickel molar ratio of 60 mol% or more and hydrotreats light oil under reaction conditions of a hydrogen partial pressure of 9 to 18 MPa, a temperature of 300 to 420 ° C., and a liquid space velocity of 0.3 to 5 hr −1. For hydrotreating diesel oil, characterized in that desulfurization of oil and suppression of hue deterioration are suppressed .
(4) On the inorganic oxide support, at least one selected from Group 6 metals of the Periodic Table is 10 to 40% by mass (catalyst standard, oxide conversion), nickel is essential, and Group 8 metals of the Periodic Table 1 to 15% by mass (catalyst standard, oxide conversion), 1.5 to 6% by mass (catalyst standard, oxide conversion) of phosphorus, and 2 to 14% by mass of organic acid Catalyst standard, in terms of carbon element), and the supported amount of organic acid per mole of group 8 metal of the periodic table is 0.2 to 1.2 moles, and the mole of nickel in the group 8 metal of the periodic table Gas oil desulfurization comprising a catalyst layer having a ratio of 60 mol% or more, and hydrotreating light oil under reaction conditions of a hydrogen partial pressure of 9 to 18 MPa, a temperature of 300 to 420 ° C., and a liquid space velocity of 0.3 to 5 hr −1. And the hydroprocessing apparatus of the light oil characterized by suppressing the deterioration of a hue.

本発明によれば、上記所定の性状の触媒を用い、上記所定の条件下で軽油の水素化処理を行うことによって、軽油中の硫黄分及び窒素分を極めて低い濃度まで低減できるとともに、色相の悪化を抑制して色相に優れた軽油を製造することができる。   According to the present invention, by using the catalyst having the predetermined property and performing hydrogenation treatment of the light oil under the predetermined condition, the sulfur content and the nitrogen content in the light oil can be reduced to an extremely low concentration, and the hue can be reduced. It is possible to produce a light oil excellent in hue while suppressing deterioration.

<触媒>
本発明で用いる触媒は、無機酸化物担体上に、周期律表第6族金属から選ばれた少なくとも1種が10〜40質量%(触媒基準、酸化物換算)、ニッケルを必須として周期律表第8族金属から選ばれた少なくとも1種が1〜15質量%(触媒基準、酸化物換算)、リンが1.5〜6質量%(触媒基準、酸化物換算)、及び有機酸が2〜14質量%(触媒基準、炭素元素換算)担持された触媒であり、特に周期律表第8族金属としてはニッケルを必須とし、周期律表8族金属中のニッケルのモル比率が60モル%以上であり、周期律表第8族金属1モル当たりの有機酸担持量が0.2〜1.2モルである点に特徴がある。この本発明で用いる触媒にあっては、上記のように、ニッケルが周期律表第8族金属の必須成分であって、周期律表第8族金属を1種用いる場合は、ニッケルが用いられ、周期律表第8族金属を2種以上用いる場合は、周期律表第8族金属中のニッケルのモル比率が60モル%以上になるように、ニッケルが周期律表第8族金属の主成分となるように用いられる。また、この本発明で用いる触媒にあっては、平均細孔直径が65〜130Åであることが好ましい。
<Catalyst>
In the catalyst used in the present invention, at least one selected from Group 6 metals of the Periodic Table on the inorganic oxide support is 10 to 40% by mass (catalyst standard, oxide conversion), and nickel is essential. At least one selected from Group 8 metals is 1 to 15% by mass (catalyst standard, oxide conversion), phosphorus is 1.5 to 6% by mass (catalyst standard, oxide conversion), and organic acid is 2 to 2%. 14% by mass (based on catalyst, in terms of carbon element) is a supported catalyst. Nickel is essential as the Group 8 metal of the periodic table, and the molar ratio of nickel in the Group 8 metal of the periodic table is 60 mol% or more. It is characterized in that the supported amount of organic acid per 1 mol of Group 8 metal of the periodic table is 0.2 to 1.2 mol. In the catalyst used in the present invention, as described above, nickel is an essential component of the group 8 metal of the periodic table, and nickel is used when one kind of the group 8 metal of the periodic table is used. When using two or more Group 8 metals in the periodic table, nickel is the main group 8 metal in the periodic table so that the molar ratio of nickel in the Group 8 metal in the periodic table is 60 mol% or more. Used to be a component. In the catalyst used in the present invention, the average pore diameter is preferably 65 to 130 mm.

(無機酸化物担体)
本発明で用いる触媒の無機酸化物担体は、脱硫活性を向上させるために、主成分がアルミナである無機酸化物担体が好ましい。
上記アルミナとしては、α-アルミナ、γ-アルミナ、δ−アルミナ、アルミナ水和物等の種々のアルミナを使用することができるが、多孔質で高比表面積であるアルミナが好ましく、中でもγ-アルミナが適している。アルミナの純度は、約98質量%以上、好ましくは約99質量%以上のものが適している。アルミナ中の不純物としては、SO 2−、Cl、Fe、NaO等が挙げられるが、これらの不純物はできるだけ少ないことが望ましく、不純物全量で2質量%以下、好ましくは1質量%以下であることが好ましい。
(Inorganic oxide support)
The inorganic oxide support of the catalyst used in the present invention is preferably an inorganic oxide support whose main component is alumina in order to improve the desulfurization activity.
As the above alumina, various aluminas such as α-alumina, γ-alumina, δ-alumina, and alumina hydrate can be used, and porous and high specific surface area alumina is preferable, among which γ-alumina Is suitable. The purity of alumina is about 98% by mass or more, preferably about 99% by mass or more. Examples of the impurities in alumina include SO 4 2− , Cl , Fe 2 O 3 , Na 2 O and the like. These impurities are desirably as small as possible, and the total amount of impurities is 2% by mass or less, preferably 1 It is preferable that it is below mass%.

アルミナ以外の無機酸化物担体の成分としては、ゼオライト、ボリア、シリカ、リン及びジルコニアから選ばれる1種以上が好ましい。これらはそれぞれ単独で、あるいは2種以上を組合せて使用できる。
上記ゼオライトとしては、フォージャサイトX型ゼオライト、フォージャサイトY型ゼオライト、βゼオライト、モルデナイト型ゼオライト、ZSM系ゼオライト(ZSM-4、5、8、11、12、20、21、23、34、35、38、46等がある)、MCM−41、MCM-22、MCM−48、SSZ−33、UTD−1、CIT−5、VPI−6、TS−1、TS−2等が使用でき、特にY型ゼオライト、安定化Yゼオライト、βゼオライトが好ましい。また、ゼオライトは、プロトン型が好ましい。
上記のボリア、シリカ、ジルコニア、リンは、一般に、この種の触媒担体の成分として使用されるものを使用することができる。
上記のゼオライト、ボリア、シリカ、ジルコニア及びリンの添加量は、酸化物担体中に0.5質量%から20質量%未満であり、好ましくは0.5〜15質量%であり、より好ましくは0.5〜10質量%であることが望ましい。これらの成分の添加量が上記範囲であれば、これらの成分の過不足により細孔直径の制御が難しくなることを回避でき、また、これらの成分の不足によりブレンステッド酸点やルイス酸点の付与が不十分となることや、これらの成分の過多により周期律表第6族金属、特にモリブデンが高分散しにくい傾向になることを回避できる。
As the component of the inorganic oxide carrier other than alumina, one or more selected from zeolite, boria, silica, phosphorus and zirconia are preferable. These can be used alone or in combination of two or more.
Examples of the zeolite include faujasite X type zeolite, faujasite Y type zeolite, β zeolite, mordenite type zeolite, ZSM type zeolite (ZSM-4, 5, 8, 11, 12, 20, 21, 23, 34, 35, 38, 46 etc.), MCM-41, MCM-22, MCM-48, SSZ-33, UTD-1, CIT-5, VPI-6, TS-1, TS-2 etc. can be used, In particular, Y type zeolite, stabilized Y zeolite, and β zeolite are preferable. Further, the zeolite is preferably a proton type.
As the above boria, silica, zirconia, and phosphorus, those generally used as components of this type of catalyst support can be used.
The amount of zeolite, boria, silica, zirconia and phosphorus added is 0.5% to less than 20% by weight in the oxide carrier, preferably 0.5 to 15% by weight, more preferably 0. It is desirable that it is 5-10 mass%. If the addition amount of these components is in the above range, it is possible to avoid the difficulty of controlling the pore diameter due to the excess or deficiency of these components, and the deficiency of these components causes the Bronsted acid point or the Lewis acid point to decrease. It can be avoided that the impartation becomes insufficient and that the Group 6 metal of the periodic table, particularly molybdenum, tends not to be highly dispersed due to an excess of these components.

本発明で用いる触媒の無機酸化物担体は、580℃〜700℃で1.5〜3時間焼成して調製したものが好ましい。本発明で用いる触媒は、後述するように、無機酸化物担体に活性成分を担持させた後は、200℃以下での乾燥だけで調製することが好ましいため、触媒の機械強度や物性は、一般に、無機酸化物担体の焼成で得ることとなる。無機酸化物担体の焼成が、580℃以上で1.5時間以上であれば、十分な触媒の機械強度を得ることができ、また、700℃以下で3時間以下であれば、無機酸化物担体の比表面積、細孔容積、平均細孔直径の好ましからざる低下を回避することができて、好ましい。
また、無機酸化物担体の比表面積、細孔容積、平均細孔直径は、炭化水素油に対する水素化脱硫活性の高い触媒にするために、比表面積270〜550m/g、細孔容積0.55〜0.90ml/g、平均細孔直径5〜12nmであることが好ましい。
The inorganic oxide support of the catalyst used in the present invention is preferably prepared by calcination at 580 ° C. to 700 ° C. for 1.5 to 3 hours. As described later, the catalyst used in the present invention is preferably prepared only by drying at 200 ° C. or lower after the active component is supported on the inorganic oxide carrier. Therefore, the mechanical strength and physical properties of the catalyst are generally The inorganic oxide carrier is obtained by firing. If the firing of the inorganic oxide support is 580 ° C. or more and 1.5 hours or more, sufficient mechanical strength of the catalyst can be obtained, and if it is 700 ° C. or less and 3 hours or less, the inorganic oxide support is obtained. It is preferable that an undesirable decrease in the specific surface area, pore volume, and average pore diameter can be avoided.
In addition, the specific surface area, pore volume, and average pore diameter of the inorganic oxide support are such that the specific surface area is 270 to 550 m 2 / g and the pore volume is 0.00. It is preferably 55 to 0.90 ml / g and an average pore diameter of 5 to 12 nm.

(活性金属)
本発明で用いる触媒に含有させる周期律表第6族金属(以下、「6族金属」と略す)は、モリブデン、タングステンが好ましく、モリブデンがより好ましい。6族金属の原料としては、特に限定はなく、例えば三酸化モリブデンやモリブドリン酸などが好ましく用いられる。
6族金属の含有量は、触媒基準、酸化物換算で、10〜40質量%である。10質量%以上であれば、6族金属に起因する効果を発現させるのに十分であり、好ましい。また、40質量%以下であれば、6族金属の含浸(担持)工程で6族金属化合物の凝集が生じず、6族金属の分散性が良くなり、また、効率的に分散する6族金属含有量の限度を超えず、触媒表面積が大幅に低下しない等により、触媒活性の向上がみられ、好ましい。
(Active metal)
The Group 6 metal (hereinafter abbreviated as “Group 6 metal”) contained in the catalyst used in the present invention is preferably molybdenum or tungsten, and more preferably molybdenum. The raw material for the Group 6 metal is not particularly limited, and for example, molybdenum trioxide or molybdophosphoric acid is preferably used.
The content of the Group 6 metal is 10 to 40% by mass in terms of catalyst and oxide. If it is 10 mass% or more, it is sufficient for expressing the effects attributable to the Group 6 metal, and it is preferable. Moreover, if it is 40 mass% or less, the group 6 metal compound does not aggregate in the impregnation (support) step of the group 6 metal, the dispersibility of the group 6 metal is improved, and the group 6 metal that is dispersed efficiently The catalyst activity is improved because it does not exceed the limit of the content and the surface area of the catalyst is not significantly reduced.

本発明で用いる触媒に含有させる周期律表第8族金属(以下、「8族金属」と略す)は、ニッケルを必須成分とする。ニッケルは、単独で使用しても、ニッケル以外の8族金属、例えばコバルト等と複合化して使用してもよいが、8族金属としてニッケルとニッケル以外の8族金属を複合化して使用するときは、8族金属中のニッケルのモル比率、即ちNi/(Ni+Ni以外の8族金属)のモル比が60モル%以上、好ましくは70モル%以上になるように使用することが肝要である。使用8族金属中のニッケルのモル比率を60〜100モル%とすると、生成油のセーボルトカラーを+25以上とすることが可能となる。
8族金属の原料としては、特に限定はないが、クエン酸コバルト、クエン酸ニッケル化合物等が好ましく用いられる。
8族金属の含有量は、触媒基準、酸化物換算で、1〜15質量%、好ましくは、3〜8質量%である。1質量%以上であれば、8族金属に帰属する活性点が十分に得られるため好ましい。また、15質量%以下であれば、8族金属の含有(担持)工程で凝集物を生じることなく、8族金属の担体上での分散性を維持することができるため好ましい。
The Group 8 metal (hereinafter abbreviated as “Group 8 metal”) contained in the catalyst used in the present invention contains nickel as an essential component. Nickel may be used alone or in combination with a group 8 metal other than nickel, for example, cobalt, etc. When nickel 8 and a group 8 metal other than nickel are used in combination It is important to use so that the molar ratio of nickel in the Group 8 metal, that is, the molar ratio of Ni / (Group 8 metal other than Ni + Ni) is 60 mol% or more, preferably 70 mol% or more. When the molar ratio of nickel in the used group 8 metal is 60 to 100 mol%, the Saebold color of the produced oil can be +25 or more.
The raw material for the Group 8 metal is not particularly limited, but cobalt citrate, nickel citrate compounds and the like are preferably used.
The content of the group 8 metal is 1 to 15% by mass, preferably 3 to 8% by mass in terms of catalyst and oxide. If it is 1 mass% or more, since the active point which belongs to a group 8 metal is fully obtained, it is preferable. Moreover, if it is 15 mass% or less, since the dispersibility on the support | carrier of a group 8 metal can be maintained, without producing an aggregate in the containing (supporting) process of a group 8 metal, it is preferable.

また、本発明で用いる触媒では、8族金属と6族金属は、酸化物換算で、[8族金属]/[8族金属+6族金属]の値で、0.1〜0.25であることが好ましい。この[8族金属]/[8族金属+6族金属]を0.1以上とすることで、脱硫性能に深く関係する活性点(例えば、CoMoS相、NiMoS相など)の生成を効率的に得ることができ、6族金属と8族金属の相乗効果をより高めることができる。また、0.25以下とすることで、不活性な8族金属種が生成するのを抑制することができる。   In the catalyst used in the present invention, the group 8 metal and the group 6 metal are 0.1 to 0.25 in terms of oxide, in terms of [group 8 metal] / [group 8 metal + group 6 metal]. It is preferable. By making this [Group 8 metal] / [Group 8 metal + Group 6 metal] 0.1 or more, it is possible to efficiently obtain the generation of active sites (for example, CoMoS phase, NiMoS phase, etc.) that are deeply related to desulfurization performance. And the synergistic effect of the Group 6 metal and the Group 8 metal can be further enhanced. Moreover, it can suppress that an inactive group 8 metal seed | species produces | generates by setting it as 0.25 or less.

(有機酸)
本発明で用いる触媒に含有させる有機酸としては、カルボン酸が挙げられ、好ましくは多価カルボン酸、更に好ましくは脂肪族多価カルボン酸が挙げられる。脂肪族多価カルボン酸としては、例えば、クエン酸、リンゴ酸、酒石酸、シュウ酸、コハク酸、マロン酸、アジピン酸、グルコン酸等が挙げられるが、この内最も好ましいのはクエン酸である。また、8族金属として、例えば、クエン酸ニッケルやクエン酸コバルト等の有機酸と8族金属との化合物を用いた場合には、これを有機酸源とすることもできる。これらの有機酸を用いる場合、1種単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。また、有機酸と8族金属との化合物中の有機酸を有機酸源とした場合で、これだけでは有機酸の量が十分でない場合には、更に他の有機酸原料を併用することもできる。
(Organic acid)
Examples of the organic acid contained in the catalyst used in the present invention include carboxylic acids, preferably polyvalent carboxylic acids, and more preferably aliphatic polyvalent carboxylic acids. Examples of the aliphatic polyvalent carboxylic acid include citric acid, malic acid, tartaric acid, oxalic acid, succinic acid, malonic acid, adipic acid, gluconic acid and the like, among which citric acid is most preferable. In addition, as a group 8 metal, for example, when a compound of an organic acid such as nickel citrate or cobalt citrate and a group 8 metal is used, this can be used as an organic acid source. When using these organic acids, it can also be used individually by 1 type, or can also be used in combination of 2 or more type. In addition, when the organic acid in the compound of the organic acid and the group 8 metal is used as the organic acid source and the amount of the organic acid is not sufficient by itself, another organic acid raw material can be used in combination.

有機酸の含有量は、触媒基準、炭素元素換算で2〜14質量%、好ましくは2〜10質量%、より好ましくは2〜5質量%である。有機酸は、触媒製造時に担体上に8族金属との錯体化合物を形成し、この状態で担持されることで、その後の活性化処理(硫化処理)により高活性を有するようになると考えられる活性点構造を生成する効果を有する。有機酸がこのような効果を十分に発揮するためには、炭素元素換算で少なくとも2質量%用いることが必要となる。一方、過剰に有機酸を用いた場合には、有機酸由来の炭素分が触媒上に堆積し、触媒活性点の被覆等による活性低下が懸念される。そのため、有機酸は、炭素元素換算で14質量%以下とすることが好ましい。   The content of the organic acid is 2 to 14% by mass, preferably 2 to 10% by mass, more preferably 2 to 5% by mass in terms of catalyst and in terms of carbon element. The organic acid forms a complex compound with a group 8 metal on the support during the production of the catalyst and is supported in this state, so that the activity is considered to have high activity by the subsequent activation treatment (sulfurization treatment). It has the effect of generating a point structure. In order for the organic acid to sufficiently exhibit such an effect, it is necessary to use at least 2% by mass in terms of carbon element. On the other hand, when an excessive amount of organic acid is used, a carbon component derived from the organic acid is deposited on the catalyst, and there is a concern that the activity may be reduced due to the covering of the catalyst active site. Therefore, the organic acid is preferably 14% by mass or less in terms of carbon element.

また、本発明で用いる触媒における有機酸の含有量は、8族金属量に対するモル比(有機酸/8族金属)が0.2〜1.2、好ましくは0.6〜1である。有機酸/8族金属モル比を0.2以上とすることで、8族金属に帰属する活性点がより得やすくなる。一方、有機酸/8族金属モル比を1.2以下とすることで、金属含浸液の粘度が高くなりすぎるのを抑制でき、含浸液が担体内部まで浸透しやすくなり、また活性金属を高分散に担持しやすくなる。
更に、有機酸の含有量は、6族金属と8族金属の総量に対するモル比[有機酸/(6族金属+8属金属)]が0.35以下、好ましくは0.28以下、更に好ましくは0.25以下であることが望ましい。モル比[有機酸/(6族金属+8属金属)]を0.35以下とすることで、金属と錯体化しない過剰の有機酸による触媒のコーク劣化を抑制できる。
In addition, the content of the organic acid in the catalyst used in the present invention is such that the molar ratio (organic acid / Group 8 metal) to the amount of Group 8 metal is 0.2 to 1.2, preferably 0.6 to 1. By setting the organic acid / Group 8 metal molar ratio to 0.2 or more, it becomes easier to obtain the active sites belonging to the Group 8 metal. On the other hand, by setting the organic acid / Group 8 metal molar ratio to 1.2 or less, it is possible to suppress the viscosity of the metal impregnating liquid from becoming too high, the impregnating liquid can easily penetrate into the inside of the carrier, and the active metal is increased. It becomes easy to carry in dispersion.
Further, the organic acid content is such that the molar ratio [organic acid / (Group 6 metal + Group 8 metal)] to the total amount of Group 6 metal and Group 8 metal is 0.35 or less, preferably 0.28 or less, more preferably. It is desirable that it is 0.25 or less. By setting the molar ratio [organic acid / (group 6 metal + group 8 metal)] to 0.35 or less, the coke deterioration of the catalyst due to an excess organic acid that does not complex with the metal can be suppressed.

(リン)
本発明で用いる触媒には、活性金属の分散性を向上させるために、リン酸化物を含有させる。本発明で用いる触媒で使用するリン酸化物の原料としては、特に限定はないが、オルトリン酸等が好ましく用いられる。
リン含有量は、触媒を基準として酸化物換算で表示して、1.5〜6質量%、好ましくは2.5〜6質量%である。リンは、活性金属を有効活用させ、高脱硫活性を有すると考えられる硫化構造の生成を促進する効果を有する。このような効果を十分に発揮させるためには、リン含有量を1.5質量%以上とすることが好ましい。一方、リン含有量が多すぎると、触媒細孔の縮小を起こす原因となり、その結果、活性金属化合物の拡散性の低下や活性金属の過度の凝集が生じ、触媒性能の低下する場合がある。したがって、リンの含有量は6質量%以下とすることが好ましい。
また、本発明で用いる触媒におけるリン含有量と族金属含有量の好ましいモル比は、P/MoOの値で0.07〜0.3、更に好ましくは0.09〜0.25である。リン含有量と族金属含有量のモル比を0.07以上とすることで、脱硫活性が高いと考えられる硫化構造をより効率的に形成することができる。また、0.3以下とすることで、触媒の細孔容積や比表面積の低下を抑制し、触媒性能の低下を抑制することができる。
(Rin)
The catalyst used in the present invention contains a phosphorus oxide in order to improve the dispersibility of the active metal. The raw material for the phosphorus oxide used in the catalyst used in the present invention is not particularly limited, but orthophosphoric acid or the like is preferably used.
The phosphorus content is 1.5 to 6% by mass, preferably 2.5 to 6% by mass, expressed in terms of oxide based on the catalyst. Phosphorus has an effect of promoting the production of a sulfide structure that is considered to have a high desulfurization activity by effectively utilizing an active metal. In order to sufficiently exhibit such an effect, the phosphorus content is preferably 1.5% by mass or more. On the other hand, if the phosphorus content is too high, the catalyst pores may be reduced. As a result, the diffusibility of the active metal compound may be reduced or the active metal may be excessively aggregated, resulting in a reduction in catalyst performance. Therefore, the phosphorus content is preferably 6% by mass or less.
Further, the preferred molar ratio of the phosphorus content and the Group 6 metal content in the catalyst used in the present invention, 0.07 to 0.3 the value of P 2 O 5 / MoO 3, more preferably 0.09 to 0. 25. By setting the molar ratio between the phosphorus content and the Group 6 metal content to 0.07 or more, a sulfide structure considered to have high desulfurization activity can be more efficiently formed. Moreover, by setting it as 0.3 or less, the fall of the pore volume and specific surface area of a catalyst can be suppressed, and the fall of catalyst performance can be suppressed.

(物理性状)
本発明で用いる触媒の平均細孔直径は、水銀圧入法にて測定した値で6.5〜13.5nmであることが好ましく、7〜13.5nmであることがより好ましく、更に好ましくは8〜13.5nmである。平均細孔直径が6.5nm以上であれば、反応対象化合物が触媒細孔内に拡散しやすいため好ましく、13.5nm以下であれば、比表面積が極端に小さくならず、活性金属の高分散性を維持しやすいため好ましい。
更に、本発明の触媒は、窒素吸着法(BET法)にて測定した比表面積が100〜500m/g、水銀圧入法にて測定した細孔容積が0.2〜0.9ml/gであることが好ましい。
なお、上記の平均細孔直径および細孔容積は、触媒を400℃で1時間真空脱気した後、水銀圧入法により測定を行ったときの数値である。また、比表面積は、触媒を400℃で1時間真空脱気した後、BET法にて測定を行ったときの数値である。
(Physical properties)
The average pore diameter of the catalyst used in the present invention is preferably 6.5 to 13.5 nm, more preferably 7 to 13.5 nm, still more preferably 8 as measured by a mercury intrusion method. ˜13.5 nm. If the average pore diameter is 6.5 nm or more, it is preferable because the reaction target compound easily diffuses into the catalyst pores, and if it is 13.5 nm or less, the specific surface area does not become extremely small, and the active metal is highly dispersed. It is preferable because it is easy to maintain the properties.
Furthermore, the catalyst of the present invention has a specific surface area measured by a nitrogen adsorption method (BET method) of 100 to 500 m 2 / g and a pore volume measured by a mercury intrusion method of 0.2 to 0.9 ml / g. Preferably there is.
The average pore diameter and pore volume described above are values when the catalyst is vacuum degassed at 400 ° C. for 1 hour and then measured by a mercury intrusion method. The specific surface area is a numerical value when the catalyst is vacuum degassed at 400 ° C. for 1 hour and then measured by the BET method.

(製造方法)
本発明で用いる触媒の製造方法としては、6族金属から選択された少なくとも1種、8族金属から選択された少なくとも1種、リン酸、有機酸を含有する溶液を用いて、所定の含有量となるように上記無機酸化物担体に担持後、乾燥処理のみで仕上げ、高温焼成は行わずに乾燥することで製造する方法が好ましい。
上記成分の担体への担持方法は、通常の方法を用いることができ、所定量の活性金属を偏りなく担持することができれば良い。このような方法としては、例えば含浸法等が挙げられる。
乾燥方法は、特に制限されないが、一般に、室温にて風乾した後、空気気流中、窒素気流中あるいは真空中で、乾燥温度200℃以下で、5〜20時間乾燥する。乾燥温度を200℃以下とすることで、錯体化していると考えられる活性金属と有機酸を触媒上に維持することができ、その結果、活性化処理をすることで高活性な触媒を得ることができる。
ただし、真空中で乾燥を行う場合は、圧力760mmHg換算で上記の温度範囲になるように乾燥することが好ましい。
(Production method)
The method for producing a catalyst used in the present invention includes a solution containing at least one selected from Group 6 metals, at least one selected from Group 8 metals, phosphoric acid, and an organic acid. A method of manufacturing by supporting the inorganic oxide carrier so that it is obtained, finishing only by a drying process, and drying without performing high-temperature baking is preferable.
As a method for supporting the above components on the carrier, a normal method can be used, as long as a predetermined amount of active metal can be supported evenly. Examples of such a method include an impregnation method.
The drying method is not particularly limited, but generally, after air drying at room temperature, drying is performed at a drying temperature of 200 ° C. or less for 5 to 20 hours in an air stream, a nitrogen stream or a vacuum. By setting the drying temperature to 200 ° C. or lower, the active metal and organic acid considered to be complexed can be maintained on the catalyst, and as a result, a highly active catalyst can be obtained by performing the activation treatment. Can do.
However, when drying in vacuum, it is preferable to dry so that it may become said temperature range in conversion of a pressure of 760 mmHg.

<水素化処理方法>
本発明の水素化処理は、水素分圧8〜20MPa、温度300〜420℃、液空間速度0.3〜5hr−1の条件下で、前記の触媒と硫黄化合物を含む軽油留分とを接触させることによって行う。この条件で水素化処理を行うことにより、軽油留分中の難脱硫物質を含む硫黄化合物及び窒素化合物を減少させ、かつ優れた色相を持つ軽油を生産することができる。
本発明の水素化処理における水素分圧は8〜20MPaであり、好ましくは9〜18MPa、更に好ましくは10〜16MPaである。水素分圧が8MPa未満であると、生成油が着色するので好ましくない。一方、水素分圧20MPa以上であると、水素消費量が増加してしまうため、経済的ではない。
本発明の水素化処理方法を商業規模で行うには、本発明で用いる上記所定の性状の触媒により固定床、移動床あるいは流動床式の触媒層を反応装置内に形成し、この反応装置内に原料油を導入し、上記の条件で水素化処理を行えばよい。一般的には、固定床式触媒床を反応装置内に形成し、原料油を反応装置の上部より導入し、固定床を上から下に通過させ、反応装置の下部から生成物を流出させるものである。また、本発明の方法は、上記所定の性状の触媒を、単独の反応装置に充填して行う一段の水素化処理方法であってもよいし、いくつかの反応装置に充填して行う多段連続水素化処理方法であってもよい。
また、本発明の方法では、使用触媒は、使用前(即ち、水素化処理を開始する前)に、反応装置中で硫化処理して活性化する。この硫化処理は、一般に、200〜400℃、好ましくは、250〜350℃、常圧あるいはそれ以上の圧の水素雰囲気下で、硫黄化合物を含む石油蒸留物、それにジメチルジスルフィドや二硫化炭素等の硫化剤を加えたもの、あるいは硫化水素を用いて行うことができる。
<Hydrogenation method>
In the hydrotreatment of the present invention, the catalyst is contacted with a gas oil fraction containing a sulfur compound under the conditions of a hydrogen partial pressure of 8 to 20 MPa, a temperature of 300 to 420 ° C., and a liquid space velocity of 0.3 to 5 hr −1. By doing. By performing the hydrogenation treatment under these conditions, it is possible to reduce the sulfur compounds and nitrogen compounds containing hardly desulfurized substances in the light oil fraction, and to produce light oil having an excellent hue.
The hydrogen partial pressure in the hydrotreatment of the present invention is 8 to 20 MPa, preferably 9 to 18 MPa, and more preferably 10 to 16 MPa. When the hydrogen partial pressure is less than 8 MPa, the produced oil is colored, which is not preferable. On the other hand, if the hydrogen partial pressure is 20 MPa or more, the hydrogen consumption increases, which is not economical.
In order to carry out the hydrotreating method of the present invention on a commercial scale, a fixed bed, moving bed or fluidized bed type catalyst layer is formed in the reactor with the catalyst having the predetermined properties used in the present invention. The raw material oil may be introduced into the tank and hydrotreated under the above conditions. In general, a fixed bed type catalyst bed is formed in the reactor, feedstock is introduced from the top of the reactor, the fixed bed is passed from the top to the bottom, and the product is discharged from the bottom of the reactor. It is. Further, the method of the present invention may be a single-stage hydrotreating method in which the catalyst having the predetermined property is charged in a single reactor, or a multistage continuous process in which it is charged in several reactors. It may be a hydroprocessing method.
In the method of the present invention, the catalyst used is activated by sulfiding in the reactor before use (that is, before starting the hydrotreatment). This sulfidation treatment is generally performed at 200 to 400 ° C., preferably 250 to 350 ° C. under a hydrogen atmosphere at atmospheric pressure or higher, such as petroleum distillates containing sulfur compounds, dimethyl disulfide, carbon disulfide and the like. It can carry out using what added the sulfurizing agent, or hydrogen sulfide.

<原料油>
本発明の処理対象油は、例えば、直留軽油、接触分解軽油、熱分解軽油、水素化処理軽油、脱硫処理軽油、減圧蒸留軽油(VGO)等の軽油留分である。これらの原料油の代表的な性状例として、沸点範囲が150〜450℃、硫黄化合物濃度が5質量%以下のものが挙げられる。
<Raw oil>
The oil to be treated of the present invention is, for example, a light oil fraction such as straight-run gas oil, catalytic cracking gas oil, pyrolysis gas oil, hydrotreated gas oil, desulfurized gas oil, vacuum distilled gas oil (VGO) and the like. Typical properties of these feedstocks include those having a boiling range of 150 to 450 ° C. and a sulfur compound concentration of 5% by mass or less.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

〔触媒の製造〕
触媒製造例1
SiO/Alモル比6のSHYゼオライト粉末(平均粒子径3.5μm、かつ87質量%が粒子径6μm以下のもの)とアルミナ水和物を混練し、押出成形後、600℃で2時間焼成して直径1.6mmの柱状成形物のゼオライト−アルミナ複合担体(ゼオライト/アルミナ質量比:5/95、細孔容積:0.79ml/g、比表面積:311m/g、平均細孔径9.3nm)を得た。
イオン交換水22.3gに、クエン酸第一ニッケル8.2g、クエン酸第一コバルト1.2g、リン酸(85%水溶液)2.2gを投入し、80℃に加温して10分間攪拌した。次いで、モリブドリン酸17.6gを投入し溶解させ、同温度で15分間攪拌して含浸用の溶液を調製した。
ナス型フラスコ中に、上記のゼオライト−アルミナ複合担体30gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中、空気気流中・大気圧・120℃で約16時間乾燥させ、触媒Aを得た。この触媒Aの化学性状を表1に示す。
[Production of catalyst]
Catalyst production example 1
A SHY zeolite powder having an SiO 2 / Al 2 O 3 molar ratio of 6 (average particle diameter of 3.5 μm and 87 mass% having a particle diameter of 6 μm or less) and alumina hydrate were kneaded and extruded at 600 ° C. A zeolite-alumina composite support (calculated zeolite / alumina mass ratio: 5/95, pore volume: 0.79 ml / g, specific surface area: 311 m 2 / g, average fine) (Pore diameter 9.3 nm).
To 22.3 g of ion-exchanged water, 8.2 g of nickel citrate, 1.2 g of cobaltous citrate, and 2.2 g of phosphoric acid (85% aqueous solution) were heated to 80 ° C. and stirred for 10 minutes. did. Next, 17.6 g of molybdophosphoric acid was added and dissolved, and stirred at the same temperature for 15 minutes to prepare a solution for impregnation.
In an eggplant-shaped flask, 30 g of the above zeolite-alumina composite carrier was added, and the entire amount of the above impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 3 hours. Then, it was air-dried in a nitrogen stream, and dried for about 16 hours in a muffle furnace, in an air stream, at atmospheric pressure, and 120 ° C. to obtain Catalyst A. The chemical properties of the catalyst A are shown in Table 1.

触媒製造例2
イオン交換水22.3gに、クエン酸第一ニッケル10.3g、リン酸(85%水溶液)2.2gを投入し、80℃に加温して10分間攪拌した。次いで、モリブドリン酸17.6gを投入し溶解させ、同温度で15分間攪拌して含浸用の溶液を調製した。
ナス型フラスコ中に、実施例1で得たものと同様のゼオライト−アルミナ複合担体30gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中、空気気流中・大気圧・120℃で約16時間乾燥させ、触媒Bを得た。この触媒Bの化学性状を表1に示す。
Catalyst production example 2
To 22.3 g of ion-exchanged water, 10.3 g of nickel citrate and 2.2 g of phosphoric acid (85% aqueous solution) were added, heated to 80 ° C. and stirred for 10 minutes. Next, 17.6 g of molybdophosphoric acid was added and dissolved, and stirred at the same temperature for 15 minutes to prepare a solution for impregnation.
In an eggplant-shaped flask, 30 g of the same zeolite-alumina composite carrier as obtained in Example 1 was added, and the entire amount of the above impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 3 hours. Then, it was air-dried in a nitrogen stream, and dried in a muffle furnace, in an air stream, at atmospheric pressure, and 120 ° C. for about 16 hours to obtain catalyst B. Table 1 shows the chemical properties of the catalyst B.

触媒製造例3
イオン交換水22.3gに、クエン酸第一ニッケル4.1g、クエン酸第一コバルト6.2g、リン酸(85%水溶液)2.2gを投入し、80℃に加温して10分間攪拌した。次いで、モリブドリン酸17.6gを投入し溶解させ、同温度で15分間攪拌して含浸用の溶液を調製した。
ナス型フラスコ中に、実施例1で得たものと同様のゼオライト−アルミナ複合担体30gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中、空気気流中・大気圧・120℃で約16時間乾燥させ、触媒aを得た。この触媒aの化学性状を表1に示す。
Catalyst production example 3
In 22.3 g of ion-exchanged water, 4.1 g of nickel citrate, 6.2 g of cobaltous citrate, and 2.2 g of phosphoric acid (85% aqueous solution) are added, heated to 80 ° C., and stirred for 10 minutes. did. Next, 17.6 g of molybdophosphoric acid was added and dissolved, and stirred at the same temperature for 15 minutes to prepare a solution for impregnation.
In an eggplant-shaped flask, 30 g of the same zeolite-alumina composite carrier as obtained in Example 1 was added, and the entire amount of the above impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 3 hours. Thereafter, the catalyst was air-dried in a nitrogen stream and dried in a muffle furnace, in an air stream, at atmospheric pressure, and 120 ° C. for about 16 hours to obtain catalyst a. Table 1 shows the chemical properties of the catalyst a.

触媒製造例4
イオン交換水22.3gに、クエン酸第一コバルト10.3g、リン酸(85%水溶液)2.3gを投入し、80℃に加温して10分間攪拌した。次いで、モリブドリン酸17.6gを投入し溶解させ、同温度で15分間攪拌して含浸用の溶液を調製した。
ナス型フラスコ中に、実施例1で得たものと同様のゼオライト−アルミナ複合担体30gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中、空気気流中・大気圧・120℃で約16時間乾燥させ、触媒bを得た。この触媒bの化学性状を表1に示す。
Catalyst production example 4
To 22.3 g of ion-exchanged water, 10.3 g of cobaltous citrate and 2.3 g of phosphoric acid (85% aqueous solution) were added, heated to 80 ° C. and stirred for 10 minutes. Next, 17.6 g of molybdophosphoric acid was added and dissolved, and stirred at the same temperature for 15 minutes to prepare a solution for impregnation.
In an eggplant-shaped flask, 30 g of the same zeolite-alumina composite carrier as obtained in Example 1 was added, and the entire amount of the above impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 3 hours. Thereafter, the catalyst was air-dried in a nitrogen stream and dried in a muffle furnace in an air stream / atmospheric pressure / 120 ° C. for about 16 hours to obtain catalyst b. Table 1 shows the chemical properties of the catalyst b.

触媒製造例5
イオン交換水21.6gに、炭酸コバルト3.3g、モリブドリン酸11.4gとオルトリン酸1.2gを溶解させた含浸用の溶液を調製した。
ナス型フラスコ中に、γ−アルミナ担体(細孔容積0.69ml/g、比表面積364m/g、平均細孔径6.4nm)30gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で1時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中、空気気流中・大気圧・120℃で約4間乾燥させ、500℃で4時間焼成し、触媒cを得た。この触媒cの化学性状を表1に示す。
Catalyst production example 5
A solution for impregnation was prepared by dissolving 3.3 g of cobalt carbonate, 11.4 g of molybdophosphoric acid and 1.2 g of orthophosphoric acid in 21.6 g of ion-exchanged water.
In an eggplant-shaped flask, 30 g of γ-alumina carrier (pore volume 0.69 ml / g, specific surface area 364 m 2 / g, average pore diameter 6.4 nm) was put, and the entire amount of the above impregnating solution was pipetted into it. Added and soaked at about 25 ° C. for 1 hour. Then, it was air-dried in a nitrogen stream, dried in a muffle furnace, in an air stream, at atmospheric pressure and 120 ° C. for about 4 hours, and calcined at 500 ° C. for 4 hours to obtain catalyst c. Table 1 shows the chemical properties of the catalyst c.

Figure 0004916370
Figure 0004916370

〔直留軽油の水素化処理〕
実施例1,2、比較例1〜5
上記の触媒製造例1〜5で得た触媒A、B、a、b、cを用いて、以下の要領にて、下記性状の直留軽油の水素化処理を行った。なお、これらの触媒中、触媒A,Bは本発明に規定する所定の性状の触媒であり、触媒a〜cは本発明の規定を逸脱した性状の比較触媒である。また、各実施例、比較例で用いた触媒は、実施例1が触媒A、実施例2が触媒B、比較例1が触媒A、比較例2,3が触媒a、比較例4が触媒b、比較例5が触媒cである。
[Hydroprocessing of straight run diesel oil]
Examples 1 and 2 and Comparative Examples 1 to 5
Using the catalysts A, B, a, b, and c obtained in the above Catalyst Production Examples 1 to 5, hydrogenation of straight-run gas oil having the following properties was performed in the following manner. Of these catalysts, the catalysts A and B are catalysts having predetermined properties defined in the present invention, and the catalysts a to c are comparative catalysts having properties deviating from the definitions of the present invention. The catalyst used in each example and comparative example is catalyst A in example 1, catalyst B in example 2, catalyst A in comparative example 1, catalyst a in comparative examples 2 and 3, catalyst b in comparative example 4 Comparative Example 5 is catalyst c.

先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の条件で前処理した。
次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上部より導入して、下記の条件で水素化反応を進行させ、生成油とガスの混合流体を、反応装置の下部より流出させ、気液分離器で生成油を分離した。6日経過した時点の生成油を採取し、その性状を分析し、以下の方法で脱硫反応速度定数、比活性を解析した。比活性の解析結果を表2に示した。
First, the catalyst was filled into a high-pressure flow reactor to form a fixed bed catalyst layer, and pretreated under the following conditions.
Next, a mixed fluid of the raw material oil heated to the reaction temperature and the hydrogen-containing gas is introduced from the upper part of the reactor, and the hydrogenation reaction proceeds under the following conditions, and the mixed fluid of the product oil and the gas is reacted. The oil was discharged from the lower part of the apparatus, and the produced oil was separated by a gas-liquid separator. The product oil at the time when 6 days had passed was collected, its properties were analyzed, and the desulfurization reaction rate constant and specific activity were analyzed by the following methods. The analysis results of specific activity are shown in Table 2.

前処理:下記条件下、原料油による液硫化を行った。
圧力(水素分圧);10MPa
雰囲気;水素及び原料油(液空間速度2.0hr−1、水素/オイル比200m(normal)/kl)
温度;常温(約22℃)で水素及び原料油を導入し、20℃/hrで昇温し、300℃にて24時間維持、次いで反応温度である350℃まで20℃/hrで昇温
水素化反応条件:
反応温度 ;350℃
圧力(水素分圧);7MPaまたは10MPa
液空間速度 ;1.3hr−1
水素/オイル比 ;200m(normal)/kl
原料油の性状:
油種 ;中東系直留軽油
密度(15/4℃);0.8570
蒸留性状 ;初留点が186.0℃、50%点が312.0℃、
90%点が355℃、終点が371.5℃
硫黄成分 ;1.41質量%
窒素成分 ;250質量ppm
動粘度(@30℃);7.026cSt
流動点 ;0.0℃
くもり点 ;4.0℃
セタン指数 ;55.4
Pretreatment: Liquid sulfidation with raw material oil was performed under the following conditions.
Pressure (hydrogen partial pressure): 10 MPa
Atmosphere: Hydrogen and raw material oil (liquid space velocity 2.0 hr −1 , hydrogen / oil ratio 200 m 3 (normal) / kl)
Temperature: Hydrogen and raw material oil are introduced at room temperature (about 22 ° C.), heated at 20 ° C./hr, maintained at 300 ° C. for 24 hours, and then heated up to 350 ° C., which is the reaction temperature, at 20 ° C./hr. Reaction conditions:
Reaction temperature: 350 ° C
Pressure (hydrogen partial pressure): 7 MPa or 10 MPa
Liquid space velocity; 1.3 hr −1
Hydrogen / oil ratio; 200 m 3 (normal) / kl
Raw oil properties:
Oil type: Middle East straight oil density (15/4 ° C); 0.8570
Distillation property: initial boiling point is 186.0 ° C, 50% point is 312.0 ° C,
90% point is 355 ° C, end point is 371.5 ° C
Sulfur component: 1.41% by mass
Nitrogen component: 250 mass ppm
Kinematic viscosity (@ 30 ° C); 7.026 cSt
Pour point: 0.0 ° C
Cloudy point: 4.0 ℃
Cetane index; 55.4

生成油の性状分析:
硫黄分:JIS K 2541 原油及び石油製品 -硫黄分試験方法-
窒素分:JIS K 2609 原油及び石油製品 -窒素分析試験方法-
セ−ボルトカラー:JIS K 2580 石油製品 -色試験方法-
脱硫反応速度定数(ks):
生成油の硫黄分(Sp)の減少量に対して、1.2次の反応次数を得る反応速度式の定数を脱硫反応速度定数(ks)とする。反応速度定数が高い程、触媒活性が優れていることを示している。
脱硫反応速度定数=[1/(1.2−1)]×〔1/(Sp)(1.2−1)−1/(Sf)(1.2−1)〕×(LHSV)
式中、Sf:原料油中の硫黄分(質量%)
Sp:反応生成油中の硫黄分(質量%)
LHSV:液空間速度(hr−1
比活性(%)=(各脱硫反応速度定数/比較触媒bの脱硫反応速度定数)×100
Analysis of product oil properties:
Sulfur content: JIS K 2541 Crude oil and petroleum products -Sulfur content test method-
Nitrogen content: JIS K 2609 Crude oil and petroleum products-Nitrogen analysis test method-
Sebolt Color: JIS K 2580 Petroleum Products -Color Test Method-
Desulfurization reaction rate constant (ks):
The constant of the reaction rate equation that obtains the reaction order of 1.2 with respect to the reduction amount of the sulfur content (Sp) of the product oil is defined as the desulfurization reaction rate constant (ks). The higher the reaction rate constant, the better the catalytic activity.
Desulfurization reaction rate constant = [1 / (1.2-1)] × [1 / (Sp) (1.2-1) −1 / (Sf) (1.2-1) ] × (LHSV)
In formula, Sf: Sulfur content (mass%) in raw material oil
Sp: Sulfur content (mass%) in reaction product oil
LHSV: Liquid space velocity (hr −1 )
Specific activity (%) = (each desulfurization reaction rate constant / desulfurization reaction rate constant of comparative catalyst b) × 100

Figure 0004916370
Figure 0004916370

表2から明らかなように、本発明で規定する所定性状の触媒AまたはBを用いて本発明で規定する反応条件で水素化処理を行うと、硫黄分が10質量ppm以下、窒素分が1質量ppm以下で、かつセーボルトカラーが+25以上と色相が良好な軽油が得られることがわかる。
一方、実施例と同じ触媒を用いていても、水素分圧が本発明の規定から外れて低い場合には、比較例1のように硫黄分を十分に低減できず、窒素分や色相も十分ではない。また、実施例と同じ水素分圧であっても、使用する触媒の性状が本発明の規定から外れる場合には、比較例2〜5のように硫黄分や窒素分が十分低減できなかったり、色相が不十分であったりするなど、十分な効果を得ることができない。
As is apparent from Table 2, when the hydrogenation treatment is performed using the catalyst A or B having the predetermined properties defined in the present invention under the reaction conditions defined in the present invention, the sulfur content is 10 mass ppm or less and the nitrogen content is 1 It can be seen that light oil having a mass of ppm or less and a good hue with a Saybolt color of +25 or more can be obtained.
On the other hand, even if the same catalyst as in the example is used, if the hydrogen partial pressure is low and deviates from the definition of the present invention, the sulfur content cannot be sufficiently reduced as in Comparative Example 1, and the nitrogen content and hue are also sufficient. is not. Further, even if the hydrogen partial pressure is the same as in the examples, if the properties of the catalyst used deviate from the provisions of the present invention, the sulfur content and nitrogen content cannot be sufficiently reduced as in Comparative Examples 2 to 5, Sufficient effects cannot be obtained such as insufficient hue.

Claims (4)

触媒として、無機酸化物担体上に、周期律表第6族金属から選ばれた少なくとも1種を10〜40質量%(触媒基準、酸化物換算)、ニッケルを必須として周期律表第8族金属から選ばれた少なくとも1種を1〜15質量%(触媒基準、酸化物換算)、リンを1.5〜6質量%(触媒基準、酸化物換算)、及び有機酸を2〜14質量%(触媒基準、炭素元素換算)担持し、かつ、周期律表第8族金属1モル当たりの有機酸担持量が0.2〜1.2モルで、周期律表第8族金属中のニッケルのモル比率が60モル%以上である触媒を用い、水素分圧9〜18MPa、温度300〜420℃、液空間速度0.3〜5hr−1の反応条件で軽油を水素化処理することを特徴とする軽油の水素化処理方法。 As a catalyst, 10 to 40% by mass (catalyst standard, oxide conversion) of at least one selected from Group 6 metals of the Periodic Table on an inorganic oxide support, and Group 8 metals of the Periodic Table with nickel as an essential component 1 to 15% by mass (catalyst standard, oxide conversion), 1.5 to 6% by mass (catalyst standard, oxide conversion) of phosphorus, and 2 to 14% by mass of organic acid Catalyst basis, in terms of carbon element), and the supported amount of organic acid per mole of group 8 metal of the periodic table is 0.2 to 1.2 moles, and the mole of nickel in the group 8 metal of the periodic table A gas oil is hydrotreated under the reaction conditions of a hydrogen partial pressure of 9 to 18 MPa, a temperature of 300 to 420 ° C., and a liquid space velocity of 0.3 to 5 hr −1 using a catalyst having a ratio of 60 mol% or more. A method for hydrotreating diesel oil. 硫黄分が10質量ppm以下、窒素分が1質量ppm以下、かつセーボルトカラーが+25以上の軽油を製造することを特徴とする請求項1記載の軽油の水素化処理方法。   The gas oil hydrotreating method according to claim 1, wherein a diesel oil having a sulfur content of 10 mass ppm or less, a nitrogen content of 1 mass ppm or less, and a Saebold color of +25 or more is produced. 触媒として、無機酸化物担体上に、周期律表第6族金属から選ばれた少なくとも1種を10〜40質量%(触媒基準、酸化物換算)、ニッケルを必須として周期律表第8族金属から選ばれた少なくとも1種を1〜15質量%(触媒基準、酸化物換算)、リンを1.5〜6質量%(触媒基準、酸化物換算)、及び有機酸を2〜14質量%(触媒基準、炭素元素換算)担持し、かつ、周期律表第8族金属1モル当たりの有機酸担持量が0.2〜1.2モルで、周期律表第8族金属中のニッケルのモル比率が60モル%以上である触媒を用い、水素分圧9〜18MPa、温度300〜420℃、液空間速度0.3〜5hrAs a catalyst, 10 to 40% by mass (catalyst standard, oxide conversion) of at least one selected from Group 6 metals of the Periodic Table on an inorganic oxide support, and Group 8 metals of the Periodic Table with nickel as an essential component 1 to 15% by mass (catalyst standard, oxide conversion), 1.5 to 6% by mass (catalyst standard, oxide conversion) of phosphorus, and 2 to 14% by mass of organic acid Catalyst basis, in terms of carbon element), and the supported amount of organic acid per mole of group 8 metal of the periodic table is 0.2 to 1.2 moles, and the mole of nickel in the group 8 metal of the periodic table Using a catalyst having a ratio of 60 mol% or more, hydrogen partial pressure 9 to 18 MPa, temperature 300 to 420 ° C., liquid space velocity 0.3 to 5 hr −1-1 の反応条件で軽油を水素化処理する、軽油の脱硫かつ色相の悪化を抑制することを特徴とする軽油の水素化処理方法。A gas oil hydrotreating process characterized in that gas oil hydrotreating under the reaction conditions of the above, wherein desulfurization of gas oil and deterioration of hue are suppressed. 無機酸化物担体上に、周期律表第6族金属から選ばれた少なくとも1種を10〜40質量%(触媒基準、酸化物換算)、ニッケルを必須として周期律表第8族金属から選ばれた少なくとも1種を1〜15質量%(触媒基準、酸化物換算)、リンを1.5〜6質量%(触媒基準、酸化物換算)、及び有機酸を2〜14質量%(触媒基準、炭素元素換算)担持させ、かつ、周期律表第8族金属1モル当たりの有機酸担持量が0.2〜1.2モルで、周期律表第8族金属中のニッケルのモル比率が60モル%以上である触媒層を含み、水素分圧9〜18MPa、温度300〜420℃、液空間速度0.3〜5hr10% to 40% by mass (catalyst standard, oxide conversion) of at least one selected from Group 6 metal of the periodic table on the inorganic oxide support, and selected from Group 8 metal of the Periodic Table with nickel as essential. 1 to 15% by mass (catalyst standard, oxide conversion), phosphorus 1.5 to 6% by mass (catalyst standard, oxide conversion), and organic acid 2 to 14% by mass (catalyst reference, In terms of carbon element), and the organic acid loading per mole of Group 8 metal of the periodic table is 0.2 to 1.2 moles, and the molar ratio of nickel in the Group 8 metal of the periodic table is 60. Including a catalyst layer of mol% or more, hydrogen partial pressure 9 to 18 MPa, temperature 300 to 420 ° C., liquid space velocity 0.3 to 5 hr −1-1 の反応条件で軽油を水素化処理する、軽油の脱硫かつ色相の悪化を抑制することを特徴とする軽油の水素化処理装置。A gas oil hydrotreating apparatus characterized in that the gas oil is hydrotreated under the reaction conditions of the above, and desulfurization of the gas oil and deterioration of the hue are suppressed.
JP2007109633A 2007-04-18 2007-04-18 Process for hydrotreating diesel oil Expired - Fee Related JP4916370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109633A JP4916370B2 (en) 2007-04-18 2007-04-18 Process for hydrotreating diesel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109633A JP4916370B2 (en) 2007-04-18 2007-04-18 Process for hydrotreating diesel oil

Publications (2)

Publication Number Publication Date
JP2008266420A JP2008266420A (en) 2008-11-06
JP4916370B2 true JP4916370B2 (en) 2012-04-11

Family

ID=40046367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109633A Expired - Fee Related JP4916370B2 (en) 2007-04-18 2007-04-18 Process for hydrotreating diesel oil

Country Status (1)

Country Link
JP (1) JP4916370B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483861B2 (en) * 2008-11-06 2014-05-07 Jx日鉱日石エネルギー株式会社 Production method of purified fraction
JP5730006B2 (en) 2010-12-24 2015-06-03 昭和シェル石油株式会社 Light oil composition
JP5890729B2 (en) * 2012-03-30 2016-03-22 出光興産株式会社 Hydrodenitrogenation catalyst, method for producing hydrodenitrogenation catalyst, and method for producing light oil base

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4282118B2 (en) * 1998-10-05 2009-06-17 新日本石油株式会社 Hydrodesulfurization method of light oil
AU2003289408A1 (en) * 2002-12-18 2004-07-09 Cosmo Oil Co., Ltd. Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
JP4576334B2 (en) * 2003-03-07 2010-11-04 Jx日鉱日石エネルギー株式会社 Hydrotreating process for diesel oil fraction
JP2007009159A (en) * 2005-07-04 2007-01-18 Nippon Oil Corp Method for producing hydrogenation-purified gas oil, hydrogenation-purified gas oil and gas oil composition

Also Published As

Publication number Publication date
JP2008266420A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP5228221B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
KR100755194B1 (en) Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
JP6307072B2 (en) Improved residual hydrotreating catalyst containing titania
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
CN105579135A (en) Hydroprocessing catalyst for heavy hydrocarbon oil, method for manufacturing hydroprocessing catalyst for heavy hydrocarbon oil, and hydroprocessing method for heavy hydrocarbon oil
JP5439673B2 (en) Method for hydrotreating heavy hydrocarbon oil
JP4545328B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP5013658B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil
JP5815321B2 (en) Hydrocarbon oil hydrotreating catalyst, hydrocarbon oil hydrotreating catalyst production method, and hydrocarbon oil hydrotreating method
JP4916370B2 (en) Process for hydrotreating diesel oil
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4576257B2 (en) Production method of oil fraction
JP4969754B2 (en) Hydrodesulfurization method for gas oil fraction and reactor for hydrodesulfurization
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
CN102614889B (en) Hydrotreatment catalyst and application thereof
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4778605B2 (en) Hydrodesulfurization catalyst for diesel oil fraction
JP2006306974A (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP2001062304A (en) Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil
JP2010069466A (en) Hydrogenation catalyst
JP2005013848A (en) Carrier for hydrogenation catalyst, hydrogenation catalyst of hydrocarbon oil and hydrogenation method using the hydrogenation catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees