JP2010069466A - Hydrogenation catalyst - Google Patents

Hydrogenation catalyst Download PDF

Info

Publication number
JP2010069466A
JP2010069466A JP2008243097A JP2008243097A JP2010069466A JP 2010069466 A JP2010069466 A JP 2010069466A JP 2008243097 A JP2008243097 A JP 2008243097A JP 2008243097 A JP2008243097 A JP 2008243097A JP 2010069466 A JP2010069466 A JP 2010069466A
Authority
JP
Japan
Prior art keywords
catalyst
coke
hydrotreating
mass
hydrotreating catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008243097A
Other languages
Japanese (ja)
Inventor
Ryuichiro Iwamoto
隆一郎 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2008243097A priority Critical patent/JP2010069466A/en
Publication of JP2010069466A publication Critical patent/JP2010069466A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogenation catalyst capable of efficiently and stably carrying out a hydrogenation treatment for a long period of time, even when treating heavy hydrocarbon oil of an inferior property detrimental to carrying out a hydrogenation treatment including hydrogenation desulfurization, metal removal by hydrogenation, and hydrogenation decomposition, or the like. <P>SOLUTION: The dehydrogenation catalyst is characterized in that a coke component in an amount of from 20-40 mass% and a sulfur component in an amount of from 5-10 mass% based on the amount of the whole catalyst are contained therein, and H/C (in mole ratio) of the coke component is from 0.5-0.7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水素化処理触媒に関し、特に重質炭化水素油の水素化脱硫触媒として有効な水素化処理触媒に関するものである。   The present invention relates to a hydroprocessing catalyst, and more particularly to a hydroprocessing catalyst effective as a hydrodesulfurization catalyst for heavy hydrocarbon oils.

常圧残油や、減圧残油などの重質炭化水素油の硫黄化合物は、巨大分子中に取り込まれて存在しているため、その硫黄分を除去するための水素化処理は、過酷な高温条件で処理しなければならない。しかし通常このような条件で水素化処理を行うと水素化処理触媒表面にコ−クの生成が促進されることから、触媒が急激に劣化し、運転可能期間(触媒寿命)が短くなってしまうという欠点があった。この傾向は水素化処理をする重質炭化水素油の性状が劣質(高沸点、高硫黄分、高残炭分など)であるほど顕著である。
このような問題を解決するため、従来は水素化処理触媒を連続的あるいは定期的に交換したり、単位触媒あたりの処理量を低下させ負荷を低減するという方法が取られていた。しかし、これらの方法では、経済性が低下するため、実質的に劣質な重質炭化水素油の処理は困難であった。
そのため、劣化しにくい、すなわち、触媒寿命の長い水素化処理触媒の出現が求められていた。
Sulfur compounds of heavy hydrocarbon oils such as atmospheric residual oil and vacuum residual oil are present in macromolecules, so hydrotreatment to remove the sulfur content is a severe high temperature It must be handled with conditions. However, when hydrotreating is usually performed under such conditions, the production of cake is promoted on the surface of the hydrotreating catalyst, so that the catalyst is rapidly deteriorated and the operating period (catalyst life) is shortened. There was a drawback. This tendency becomes more prominent as the properties of the heavy hydrocarbon oil to be hydrotreated are inferior (high boiling point, high sulfur content, high residual carbon content, etc.).
In order to solve such problems, conventionally, a method has been employed in which the hydrotreating catalyst is continuously or periodically replaced, or the load per unit catalyst is reduced to reduce the load. However, in these methods, since economical efficiency is lowered, it has been difficult to treat substantially inferior heavy hydrocarbon oil.
Therefore, there has been a demand for the appearance of a hydrotreating catalyst that is not easily deteriorated, that is, has a long catalyst life.

重質炭化水素油の水素化処理、及び該水素化処理を長時間安定に行える触媒については、多くの研究が行われている。例えば、特許文献1では、耐火性酸化物担体に、触媒に対して、特定割合で酸化ニッケル、三酸化モリブデン、酸化マグネシウム及び五酸化リンを担持させた水素化脱硫触媒が開示されている。しかし、活性を高めるために、添加する塩基性物質の担持量を増大すると脱硫活性が低下することがあり好ましくなかった。
また、特許文献2は、原油や、減圧残油など水素化処理に関し、アルミナ含有担体に、周期表第6B族金属と第8族金属を担持し、それらの金属の分布を触媒粒子最外表面部より中心部により高濃度で担持させた水素化処理触媒を用いた水素化処理方法を開示している。この触媒は、活性金属の触媒担体上の担持分布を最適化することにより触媒被毒の低減を図るものであるが、触媒製造法が複雑で、工業的製造が困難であった。
さらに特許文献3は、モリブデン並びにリン、ホウ素又はフッ素を含有する重質炭化水素油の水素化精製触媒であり、触媒被毒を抑制するためニッケルやコバルトを含有しない触媒を開示する。しかしながら、脱硫性能が極めて低い触媒であり、問題の根本的解決とはならなかった。
Much research has been conducted on hydrotreating heavy hydrocarbon oils and catalysts capable of performing the hydrotreating stably for a long time. For example, Patent Document 1 discloses a hydrodesulfurization catalyst in which nickel oxide, molybdenum trioxide, magnesium oxide, and phosphorus pentoxide are supported on a refractory oxide carrier at a specific ratio with respect to the catalyst. However, increasing the amount of the basic substance to be added to increase the activity is not preferable because the desulfurization activity may decrease.
Patent Document 2 relates to hydrotreating such as crude oil and vacuum residue, and supports a group 6B metal and a group 8 metal on the periodic table on an alumina-containing support, and the distribution of these metals is determined on the outermost surface of the catalyst particles. Discloses a hydrotreating method using a hydrotreating catalyst supported at a higher concentration in the central part than in the part. This catalyst is intended to reduce the poisoning of the catalyst by optimizing the distribution of the active metal supported on the catalyst carrier. However, the catalyst production method is complicated and industrial production is difficult.
Further, Patent Document 3 discloses a hydrorefining catalyst for heavy hydrocarbon oil containing molybdenum and phosphorus, boron or fluorine, and discloses a catalyst containing no nickel or cobalt in order to suppress catalyst poisoning. However, it is a catalyst with extremely low desulfurization performance and has not been a fundamental solution to the problem.

特開平11−319567号公報JP 11-319567 A 特開平6−184558号公報JP-A-6-184558 特開平2−35938号公報JP-A-2-35938

本発明は、水素化処理を行う上で劣質な性状を有する重質炭化水素油であっても水素化脱硫、水素化脱メタル、水素化分解などの水素化処理を効率的かつ長期間安定に実施できる水素化処理触媒を提供することを目的とするものである。   The present invention enables efficient and long-term stable hydroprocessing such as hydrodesulfurization, hydrodemetallation, and hydrocracking even for heavy hydrocarbon oils that have poor properties when performing hydroprocessing. It aims at providing the hydrotreating catalyst which can be implemented.

本発明者は、前記の好ましい触媒を開発すべく鋭意研究を重ねた結果、特定量のコーク分を担持し、かつ特定の性状を有する触媒が、上記目的に適合し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。すなわち、本発明は、   As a result of intensive studies to develop the above-mentioned preferred catalyst, the present inventor has found that a catalyst supporting a specific amount of coke and having a specific property can meet the above purpose. The present invention has been completed based on such findings. That is, the present invention

〔1〕触媒全量基準でコーク分を20〜40質量%、硫黄分を5〜10質量%含有し、かつ、コークのH/C(モル比)が0.5〜0.7であることを特徴とする水素化処理触媒、
〔2〕X線電子発光分析(XPS)におけるSp2が160.0〜163.0eVのピークを有することを特徴とする前記〔1〕に記載の水素化処理触媒、
〔3〕コーク分を含まない水素化処理触媒にコーク分を担持した触媒である前記〔1〕又は〔2〕に記載の水素化処理触媒、
〔4〕前記コーク分を含まない水素化処理触媒が、耐火性酸化物担体に、触媒全量基準で、酸化ニッケル及び/又は酸化コバルトを1〜10質量%、三酸化モリブデンを5〜30質量%並びに五酸化リンを3〜10質量%担持させた触媒である前記〔1〕〜〔3〕のいずれかに記載の水素化処理触媒、
〔5〕(1−a)コーク分を含まない水素化処理触媒を、予備硫化処理した後、該触媒を用いて炭化水素油の水素化処理を行う工程、又は(1−b)コーク分を含まない水素化処理触媒を、沸点が400〜600℃で、硫黄を含有する炭化水素に浸漬してコーク分を担持する工程である第1工程、及び(2)前記工程で得られた触媒を不活性ガス雰囲気下、400〜600℃で加熱処理する第2工程からなることを特徴とする前記〔1〕〜〔4〕のいずれかに記載の水素化処理触媒の製造方法、
〔6〕さらに、300〜400℃で空気中に暴露する第3工程を行うことを特徴とする前記〔5〕に記載の水素化処理触媒の製造方法、
〔7〕前記〔1〕〜〔4〕のいずれかに記載の水素化処理触媒、もしくは前記〔5〕又は〔6〕に記載の水素化処理触媒の製造方法によって得られた水素化処理触媒と重質炭化水素油を接触させて水素化脱硫を行うことを特徴とする炭化水素油の水素化処理方法、
を提供するものである。
[1] It contains 20 to 40% by mass of coke and 5 to 10% by mass of sulfur based on the total amount of catalyst, and H / C (molar ratio) of coke is 0.5 to 0.7. Hydroprocessing catalyst,
[2] The hydrotreating catalyst according to [1] above, wherein Sp2 in X-ray electroluminescence analysis (XPS) has a peak of 160.0 to 163.0 eV,
[3] The hydrotreating catalyst according to the above [1] or [2], which is a catalyst in which a coke fraction is supported on a hydrotreating catalyst not containing a coke fraction,
[4] The hydrotreating catalyst not containing the coke component is a refractory oxide carrier, based on the total amount of the catalyst, 1 to 10% by mass of nickel oxide and / or cobalt oxide, and 5 to 30% by mass of molybdenum trioxide. And the hydrotreating catalyst according to any one of [1] to [3], which is a catalyst supporting 3 to 10% by mass of phosphorus pentoxide,
[5] (1-a) A hydrotreating catalyst containing no coke is subjected to a preliminary sulfidation treatment, and then hydrotreating hydrocarbon oil using the catalyst, or (1-b) a coke is A first step which is a step of supporting a coke component by immersing a hydroprocessing catalyst not contained in a hydrocarbon containing sulfur having a boiling point of 400 to 600 ° C., and (2) a catalyst obtained in the above step. The method for producing a hydrotreating catalyst according to any one of [1] to [4], comprising a second step of heat treatment at 400 to 600 ° C. in an inert gas atmosphere,
[6] The method for producing a hydrotreating catalyst according to [5], further comprising performing a third step of exposing to air at 300 to 400 ° C.
[7] The hydrotreating catalyst according to any one of [1] to [4], or the hydrotreating catalyst obtained by the method for producing a hydrotreating catalyst according to [5] or [6] A hydrodesulfurization process for hydrocarbon oil, characterized in that hydrodesulfurization is performed by contacting a heavy hydrocarbon oil;
Is to provide.

本発明によれば、水素化処理を行う上で劣質な性状を有する重質炭化水素油であっても水素化脱硫、水素化脱メタル、水素化分解などの水素化処理を効率的かつ長期間安定に実施できる水素化処理触媒を提供することができる。   According to the present invention, hydroprocessing such as hydrodesulfurization, hydrodemetallation, hydrocracking and the like can be carried out efficiently and for a long time even for heavy hydrocarbon oils having inferior properties when performing hydroprocessing. A hydrotreating catalyst that can be stably carried out can be provided.

本発明の触媒は、触媒全量基準でコーク分を20〜40質量%、硫黄分を5〜10質量%含有することを要する。コーク分が20質量%未満もしくは硫黄分が5質量%未満では、必要な活性の安定化が得られず、一方、コーク分が40質量%を超えもしくは硫黄分が10質量%を超えると、触媒細孔が閉塞されて活性自体が低下し、効率的な触媒性能を示さない事態を招くことがある。好ましいコーク分は25〜35質量%であり、好ましい硫黄分は7〜9質量%である。
なお、コーク分及び硫黄分は、炭素硫黄同時分析(赤外吸収法)によって測定した値である。
The catalyst of the present invention needs to contain 20 to 40% by mass of coke and 5 to 10% by mass of sulfur based on the total amount of the catalyst. If the coke content is less than 20% by mass or the sulfur content is less than 5% by mass, the required stabilization of the activity cannot be obtained. On the other hand, if the coke content exceeds 40% by mass or the sulfur content exceeds 10% by mass, the catalyst The pores may be clogged and the activity itself may decrease, leading to a situation where efficient catalyst performance is not exhibited. A preferable coke content is 25 to 35% by mass, and a preferable sulfur content is 7 to 9% by mass.
The coke content and sulfur content are values measured by carbon sulfur simultaneous analysis (infrared absorption method).

本発明の水素化処理触媒は、さらに、コーク分のH/C(モル比)が、0.5〜0.7であることを要する。コーク分のH/C(モル比)がこの範囲を満たさない場合は、所望の活性の安定化効果と触媒細孔の閉塞による活性の低下の抑制効果とを満たすことができないことがある。コーク分のH/C(モル比)は、0.55〜0.65であることが好ましい。
なお、H/C(モル比)は、CHN同時分析法で測定した値である。
The hydrotreating catalyst of the present invention further requires that the coke H / C (molar ratio) is 0.5 to 0.7. If the H / C (molar ratio) of the coke does not satisfy this range, it may not be possible to satisfy the desired activity stabilization effect and the activity reduction suppression effect due to clogging of the catalyst pores. The coke H / C (molar ratio) is preferably 0.55 to 0.65.
In addition, H / C (molar ratio) is a value measured by the CHN simultaneous analysis method.

上記コーク分は、さらに、X線電子発光分析(XPS)のSp2が160.〜163.0eVのピークを有することが好ましい。このようなピークを有すれば、活性の安定化効果と触媒細孔の閉塞による活性の低下抑制効果の確率を高めることができる。
なお、XPSは、以下の方法で行った。
The coke content further has an X-ray electroluminescence analysis (XPS) Sp2 of 160. It preferably has a peak of ˜163.0 eV. If it has such a peak, the probability of the activity stabilization effect and the activity reduction inhibitory effect by clogging of catalyst pores can be increased.
XPS was performed by the following method.

〔XPSの測定方法〕
(前処理)
触媒をメノウ乳鉢で粉砕し、XPS測定試料とした。
(測定条件)
アルミニウムのX線源を用いて150Wの出力にて測定した。またAl2pが74.8eVを基準の結合エネルギーとした。
[Measurement method of XPS]
(Preprocessing)
The catalyst was pulverized in an agate mortar to obtain an XPS measurement sample.
(Measurement condition)
Measurements were made at an output of 150 W using an aluminum X-ray source. Further, Al2p was set to 74.8 eV as a reference binding energy.

本発明の水素化処理触媒は、通常、コーク分を含まない水素化処理触媒にコーク分を担持した触媒である。
前記「コーク分を含まない水素化処理触媒」は、特に制限はなく、水素化処理触媒として区分される全ての触媒が含まれ、特に重質炭化水素油の水素化脱硫処理触媒が好ましい。
The hydrotreating catalyst of the present invention is usually a catalyst in which coke is supported on a hydrotreating catalyst that does not contain coke.
The “hydrotreating catalyst not containing coke” is not particularly limited, and includes all catalysts classified as hydrotreating catalysts, with heavy hydrocarbon oil hydrodesulfurization treating catalysts being particularly preferred.

重質炭化水素油の水素化脱硫処理触媒の具体例としては、例えば、耐火性酸化物担体に、触媒に対して、活性金属として、酸化ニッケル、三酸化モリブデン及び五酸化リンを担持させた触媒が挙げられる。この場合担持量は、所望する性能を確保し、活性金属の凝集が起こり活性の低下を招くことを避ける観点から、酸化ニッケル1〜10質量%、三酸化モリブデン5〜30質量%、五酸化リン3〜10質量%が好適である。
耐火性酸化物担体としては、アルミナ、シリカ、チタニア、ジルコニアあるいはこれらの複合酸化物担体等を挙げることができる。金属の分散性の観点からはアルミナが好ましい。
Specific examples of the hydrodesulfurization treatment catalyst for heavy hydrocarbon oil include, for example, a catalyst in which nickel oxide, molybdenum trioxide and phosphorus pentoxide are supported as active metals on a refractory oxide carrier. Is mentioned. In this case, the supported amount is 1 to 10% by mass of nickel oxide, 5 to 30% by mass of molybdenum trioxide, phosphorus pentoxide from the viewpoint of securing desired performance and avoiding active metal agglomeration and reducing the activity. 3-10 mass% is suitable.
Examples of the refractory oxide carrier include alumina, silica, titania, zirconia, and composite oxide carriers thereof. Alumina is preferred from the viewpoint of metal dispersibility.

上記コーク分を含まない水素化処理触媒の製造法は特に限定されないが、通常、耐火性酸化物担体に、ニッケル化合物、モリブデン化合物及びリン化合物を溶解させた含浸液を含浸する。その場合、有機酸化合物および分子量100以上のエチレングリコール類の共存下で前記活性金属種の担持処理を行うことが好ましい。担持処理後400〜600℃以上の温度で焼成する方法が好ましい。
以上のようにしてコーク分を含まない重油水素化脱硫触媒が得られる。
なお、前記コーク分を含まない重油脱硫触媒に担持する活性金属として、酸化ニッケル、三酸化モリブデンなどを挙げたが、それらとともに、又はそれらに代えて、酸化タングステン(好適担持量は5〜30質量%)や酸化コバルト(好適担持量は1〜10質量%)などを用いてもよく、中でも、前記酸化ニッケルとともに、又は酸化ニッケルに代えて酸化コバルトを用いたものが好適な例として挙げることができる。
The method for producing the hydrotreating catalyst not containing the coke content is not particularly limited. Usually, a refractory oxide carrier is impregnated with an impregnation solution in which a nickel compound, a molybdenum compound and a phosphorus compound are dissolved. In that case, it is preferable to carry out the supporting treatment of the active metal species in the presence of an organic acid compound and ethylene glycol having a molecular weight of 100 or more. A method of firing at a temperature of 400 to 600 ° C. or higher after the supporting treatment is preferable.
As described above, a heavy oil hydrodesulfurization catalyst containing no coke is obtained.
As the active metal supported on the heavy oil desulfurization catalyst not containing coke, nickel oxide, molybdenum trioxide and the like were mentioned, but together with or instead of them, tungsten oxide (preferably supported amount is 5 to 30 mass) %) Or cobalt oxide (preferably supported amount is 1 to 10% by mass). Among them, the one using cobalt oxide together with the nickel oxide or in place of nickel oxide is a preferable example. it can.

本発明の水素化処理触媒の製造方法は、例えば、(1−a)コーク分を含まない水素化処理触媒を、予備硫化処理した後、該触媒を用いて炭化水素油の水素化処理を行う工程、又は(1−b)コーク分を含まない水素化処理触媒を、沸点が400〜600℃で、硫黄を含有する炭化水素に浸漬してコーク分を担持する第1工程、及び(2)前記工程で得られた触媒を不活性ガス雰囲気下、400〜600℃で加熱処理する第2工程からなる方法が挙げられる。
この製造方法は、さらに、300〜400℃で空気中に暴露する第3工程を行うことが、より好ましい。
In the method for producing a hydrotreating catalyst of the present invention, for example, (1-a) a hydrotreating catalyst containing no coke is subjected to a presulfiding treatment, and then a hydrocarbon oil is hydrotreated using the catalyst. Or (1-b) a first step in which a hydrotreating catalyst containing no coke is immersed in a hydrocarbon containing sulfur at a boiling point of 400 to 600 ° C. to carry the coke, and (2) The method which consists of the 2nd process of heat-processing the catalyst obtained at the said process at 400-600 degreeC by inert gas atmosphere is mentioned.
In this production method, it is more preferable to perform the third step of exposing to air at 300 to 400 ° C.

前記第1工程(1−a)の予備硫化処理は、通常予備硫化剤として、硫化水素、二硫化炭素、チオフェン、ジメチルジスルフィド等を使用し、200〜400℃の温度範囲、反応圧力15〜250kg/cm2の範囲に選定するのが好適である。
また、水素化処理(水素化脱硫処理)の反応条件は対象となる原料油の種類により異なるが、通常反応温度200〜500℃、反応圧力15〜250kg/cm2、LHSV(液空間速度)0.1〜45(1/hr)の範囲に選定するのが好ましい。また水素ガスと炭化水素油の供給割合(水素/炭化水素油比)は通常、50〜2,000Nm3/klの範囲に選定するのが好適である。
また、第1工程(1−b)の沸点が400〜600℃で硫黄分を含有する炭化水素を浸漬する方法は、通常炭化水素油を100〜200℃で直接浸漬して担持すればよい。この場合炭化水素の硫黄分は、2〜5質量%であることが好ましい。
The pre-sulfiding treatment in the first step (1-a) usually uses hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide or the like as a pre-sulfiding agent, a temperature range of 200 to 400 ° C., and a reaction pressure of 15 to 250 kg. It is preferable to select the range of / cm 2 .
The reaction conditions for hydrotreating (hydrodesulfurization) vary depending on the type of the target feedstock, but the reaction temperature is usually 200 to 500 ° C., the reaction pressure is 15 to 250 kg / cm 2 , and the LHSV (liquid space velocity) is 0. It is preferable to select in the range of 1 to 45 (1 / hr). In addition, the supply ratio of hydrogen gas to hydrocarbon oil (hydrogen / hydrocarbon oil ratio) is usually preferably selected in the range of 50 to 2,000 Nm 3 / kl.
Moreover, the method of immersing the hydrocarbon which contains a sulfur component with the boiling point of 400-600 degreeC of a 1st process (1-b) should just normally immerse and carry | support hydrocarbon oil directly at 100-200 degreeC. In this case, the sulfur content of the hydrocarbon is preferably 2 to 5% by mass.

前記第2工程における、不活性ガス雰囲気下で加熱処理するとは、不活性ガス、例えば、窒素、アルゴン、ヘリウム、及び酸素の存在しない燃焼ガスなどの雰囲気下で加熱処理するものである。また、加熱処理は、400〜600℃であることが好ましい。400〜600℃で加熱処理すれば、良好な付着コーク分の脱水素縮合化が行える点で好ましい。したがって加熱処理は、450〜550℃であることがより好ましい。加熱処理を行う時間は、通常0.5〜40時間の範囲で選択する。   The heat treatment in an inert gas atmosphere in the second step is a heat treatment in an atmosphere of an inert gas such as nitrogen, argon, helium, and a combustion gas free of oxygen. Moreover, it is preferable that heat processing are 400-600 degreeC. Heat treatment at 400 to 600 ° C. is preferable in that dehydrogenative condensation can be performed for the good amount of attached coke. Therefore, the heat treatment is more preferably 450 to 550 ° C. The time for performing the heat treatment is usually selected in the range of 0.5 to 40 hours.

前記第3工程における、第2工程で得られた触媒を、さらに、空気中に暴露する方法は、300〜400℃の温度で空気に暴露させるのが好ましい。暴露時間は通常1〜10分が好ましい。   In the third step, the method of exposing the catalyst obtained in the second step to air is preferably exposed to air at a temperature of 300 to 400 ° C. The exposure time is usually preferably 1 to 10 minutes.

本発明の上記水素化処理触媒は、以下のような条件を満たすものが好ましい。
例えば、耐火性酸化物担体の比表面積は、5〜500m2/gが好ましく、50〜300m2/gがより好ましい。比表面積が5m2/g未満では担持金属の分散性が低下することがあり、500m2/gを超えると反応物の拡散が阻害されることがある。また、細孔容積は、0.2〜1.5cm3/gが好ましく、0.3〜1.2cm3/gがより好ましい。細孔容積は、0.2cm3/g未満であると原料油中のメタル及びコークの析出により触媒細孔が閉塞することがあり、1.5cm3/gを超えると触媒強度が著しく低下し実用に耐えなくなることがある。また、細孔径は、細孔容積の50%点が100〜300Åの範囲にあるものが好ましい。
これらの物性は、反応物である炭化水素留分の分子サイズに適した大きさであり、触媒細孔内部の反応活性点に拡散できる好適なサイズである。
なお、細孔容積及び細孔分布は、窒素による吸脱着法により測定し、BJH法[E.P.Barreff.L.G.Joyner and P.P.Halnda, J.Amer.Chem.Soc.,73,373(1951)]にて解析して得たものである。また、比表面積は、窒素によるB.E.T.法によって求めたものである。
The hydrotreating catalyst of the present invention preferably satisfies the following conditions.
For example, the specific surface area of the refractory oxide support, preferably 5~500m 2 / g, 50~300m 2 / g is more preferable. When the specific surface area is less than 5 m 2 / g, the dispersibility of the supported metal may be lowered, and when it exceeds 500 m 2 / g, diffusion of the reactant may be inhibited. Further, the pore volume is preferably 0.2~1.5cm 3 / g, 0.3~1.2cm 3 / g is more preferable. If the pore volume is less than 0.2 cm 3 / g, catalyst pores may be clogged due to the deposition of metal and coke in the raw material oil, and if it exceeds 1.5 cm 3 / g, the catalyst strength will be significantly reduced. May not be practical. The pore diameter is preferably such that the 50% point of the pore volume is in the range of 100 to 300 mm.
These physical properties are sizes suitable for the molecular size of the hydrocarbon fraction that is a reactant, and are suitable sizes that can diffuse to the reaction active sites inside the catalyst pores.
The pore volume and pore distribution were measured by an adsorption / desorption method using nitrogen, and the BJH method [E. P. Barref. L. G. Joyner and P.M. P. Halnda, J .; Amer. Chem. Soc. , 73, 373 (1951)]. Further, the specific surface area is determined by B.V. E. T. T. It was obtained by law.

本発明の水素化処理触媒の形状は特に限定されず、円柱、球状、三〜六葉、ハニカム等いずれであってもよい。例えば、固定床流通式反応装置では、通常円柱、三つ葉、四つ葉の形の触媒が好適に用いられる。   The shape of the hydrotreating catalyst of the present invention is not particularly limited, and may be any of a cylinder, a sphere, three to six leaves, a honeycomb, and the like. For example, in a fixed bed flow type reaction apparatus, a catalyst in the form of a cylinder, a three-leaf, or a four-leaf is usually preferably used.

本発明の水素化処理方法は、上記水素化処理触媒と炭化水素油を接触させて水素化処理を行うことを特徴とする炭化水素油の水素化処理方法である。
水素化処理に用いられる炭化水素油としては、灯軽油等の軽質な含硫黄炭化水素油や、常圧残油、減圧残油等重質な含硫黄炭化水素油が挙げられる。
特に、劣質な重質炭化水素油の水素化脱硫に好適に適用できる。劣質な重質炭化水素油は、例えば、API指数20以下の重質な原油から得られる、常圧残油及び減圧残油、溶剤脱歴油、熱分解油、アスファルテン油、タ−ルサンド及び粘度調整のため、これらを一旦予備的に水素化処理した原料油、またはこれらの油を軽質油で希釈したものが挙げられる。
The hydrotreating method of the present invention is a hydrotreating method for hydrocarbon oil, characterized in that hydrotreating is performed by bringing the hydrotreating catalyst into contact with a hydrocarbon oil.
Examples of the hydrocarbon oil used in the hydrotreating include light sulfur-containing hydrocarbon oils such as kerosene, and heavy sulfur-containing hydrocarbon oils such as atmospheric residual oil and vacuum residual oil.
In particular, it can be suitably applied to hydrodesulfurization of inferior heavy hydrocarbon oils. Inferior heavy hydrocarbon oils are obtained from heavy crude oils having an API index of 20 or less, such as atmospheric residual oil and vacuum residual oil, solvent history oil, pyrolysis oil, asphaltene oil, tar sand and viscosity. For the purpose of adjustment, there may be mentioned raw oils once preliminarily hydrotreated, or those diluted with light oils.

なお、劣質な重質炭化水素油は、通常、下記のような性状を有するものである。
〔劣質な重質炭化水素油の性状〕
・硫黄分: 0.5質量%以上
・窒素分: 200質量ppm以上
・バナジウム分:5質量ppm以上
・残炭分: 5質量%以上
Inferior heavy hydrocarbon oils usually have the following properties.
[Properties of inferior heavy hydrocarbon oil]
・ Sulfur content: 0.5 mass% or more ・ Nitrogen content: 200 mass ppm or more ・ Vanadium content: 5 mass ppm or more ・ Residual carbon content: 5 mass% or more

本発明の水素化処理触媒を用いて水素化処理を行うに際しては、水素化処理反応を行う前に安定化処理として予備硫化処理を行うことが好ましい。この予備硫化処理は予備硫化剤として、硫化水素、二硫化炭素、チオフェン、ジメチルジスルフィド等を使用し、通常200〜400℃の温度範囲で行う。また、水素化脱硫処理の反応条件は対象となる原料油の種類により異なるが、通常反応温度は、200〜500℃、反応圧力15〜250kg/cm2、LHSV(液空間速度)は0.1〜45(1/hr)の範囲に選定する。また水素ガスと炭化水素油の供給割合(水素/炭化水素油比)は通常、50〜2,000Nm3/klの範囲で選定する。
反応形式としては、特に制限はないが、通常は、固定床、移動床、沸騰床、懸濁床等の種々のプロセスが採用され、好ましくは経済性から固定床による流通方式が好適に採用される。
When performing the hydrotreating using the hydrotreating catalyst of the present invention, it is preferable to perform a presulfidation treatment as a stabilization treatment before the hydrotreating reaction. This preliminary sulfidation treatment is performed in a temperature range of 200 to 400 ° C. using hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide or the like as a preliminary sulfiding agent. The reaction conditions for the hydrodesulfurization treatment vary depending on the type of the target feedstock, but the normal reaction temperature is 200 to 500 ° C., the reaction pressure is 15 to 250 kg / cm 2 , and the LHSV (liquid space velocity) is 0.1. It selects in the range of -45 (1 / hr). The supply ratio of hydrogen gas to hydrocarbon oil (hydrogen / hydrocarbon oil ratio) is usually selected in the range of 50 to 2,000 Nm 3 / kl.
The reaction format is not particularly limited, but usually, various processes such as a fixed bed, a moving bed, a boiling bed, and a suspension bed are adopted, and a flow system using a fixed bed is preferably adopted from the viewpoint of economy. The

以下、本発明の実施例及びその比較例によって本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、触媒の物性は次の方法で測定した。
〔触媒の物性測定方法〕
(1)モリブデンの定量
誘導結合プラズマ発光分光法(ICP)で測定した。
(2)ニッケル及びリンの定量
蛍光X線分析法で測定した。
(3)平均細孔径
明細書に記載した方法で測定した。
(4)細孔容積
明細書に記載した方法で測定した。
(5)比表面積
明細書に記載した方法で測定した。
Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof, but the present invention is not limited to these examples.
The physical properties of the catalyst were measured by the following method.
[Method for measuring physical properties of catalyst]
(1) Quantitative determination of molybdenum Measured by inductively coupled plasma emission spectroscopy (ICP).
(2) Measured by quantitative fluorescent X-ray analysis of nickel and phosphorus.
(3) Average pore diameter It measured by the method described in the specification.
(4) Pore volume It measured by the method described in the specification.
(5) Specific surface area It measured by the method described in the specification.

実施例1
(コーク分を含まない水素化処理触媒A0の調製)
三酸化モリブデン165.0質量部及び塩基性炭酸ニッケルをNiO相当量で39.3質量部をイオン交換水500質量部に添加した。添加に際しては80〜90℃に加温し、1時間の撹拌を行った。次に、リン酸をP25相当量で50.8質量部加え、溶解を確認した。次にトリエチレングリコール(分子量150)を60質量部加えた。次にこの含浸液を担体の水分吸収量に見合った量に調整し、平均細孔径は140Å、細孔容積は0.60ml/g、比表面積は200m2/gの物性を有する四葉型アルミナ担体1,000質量部に常圧含浸法にて担持した。この担持物を120℃で3時間乾燥して、空気中で450℃、5時間焼成して金属担持触媒A0を得た。
こうして得た金属担持触媒A0は、乾燥質量当たり、NiOとして2.9質量%、MoO3として13.4質量%、P25として3.6質量%を含有していた。
(コーク担持触媒の調製)
次にこの金属担持触媒A0を小型高圧固定床反応装置の反応管に100cc充填した。これを硫化剤としてジメチルジスルフィド(DMDS)を添加して硫黄濃度を2.5質量%に調整した軽質軽油を用いて、130kg/cm2、水素気流中、250℃でLHSV 1h-1の条件で21時間予備硫化した。次に表1に示す常圧残油(原料油A)を反応圧力130kg/cm2、液空間速度0.5h-1、水素/油比740Nm3/kl、350℃で5日間通油してコーク担持触媒A1を得た。このコーク担持触媒A1を反応管から抜き出し、窒素中で450℃、1時間加熱処理して、空気中で放冷し、コーク担持触媒A2を得た。この触媒の物性を表2に示す。
(触媒の性能評価)
小型高圧固定床反応装置の反応管に、コーク担持触媒A2を100cc充填した。これを、硫化剤としてDMDSを添加して硫黄濃度を2.5質量%に調整した軽質軽油を、130kg/cm2、水素気流中、250℃でLHSV 1h-1、21時間、予備硫化した。続いて表1に示す常圧残油(原料油A)を反応圧力130kg/cm 2 、液空間速度0.5h-1、水素/油比740Nm3/klで通油して、生成油硫黄分が0.5質量%となるように温度を調整しながら1500時間処理した。この目標達成温度の変化を表3に示す。
Example 1
(Preparation of hydrotreating catalyst A0 containing no coke)
165.0 parts by mass of molybdenum trioxide and 39.3 parts by mass of basic nickel carbonate in an equivalent amount of NiO were added to 500 parts by mass of ion-exchanged water. During the addition, the mixture was heated to 80 to 90 ° C. and stirred for 1 hour. Next, 50.8 parts by mass of phosphoric acid in an amount equivalent to P 2 O 5 was added, and dissolution was confirmed. Next, 60 parts by mass of triethylene glycol (molecular weight 150) was added. Next, this impregnating solution was adjusted to an amount suitable for the water absorption amount of the carrier, and the four-leaf type alumina carrier having physical properties of an average pore diameter of 140 mm, a pore volume of 0.60 ml / g, and a specific surface area of 200 m 2 / g. It was supported on 1,000 parts by mass by a normal pressure impregnation method. This support was dried at 120 ° C. for 3 hours and calcined in air at 450 ° C. for 5 hours to obtain a metal-supported catalyst A0.
The metal-supported catalyst A0 thus obtained contained 2.9% by mass as NiO, 13.4% by mass as MoO 3 , and 3.6% by mass as P 2 O 5 per dry mass.
(Preparation of coke supported catalyst)
Next, 100 cc of this metal-supported catalyst A0 was charged into a reaction tube of a small high-pressure fixed bed reactor. Using light gas oil whose sulfur concentration was adjusted to 2.5 mass% by adding dimethyl disulfide (DMDS) as a sulfiding agent, this was performed under conditions of LHSV 1h −1 at 250 kg in a hydrogen stream at 130 kg / cm 2 . Presulfided for 21 hours. Next, the normal pressure residual oil (raw oil A) shown in Table 1 was passed for 5 days at a reaction pressure of 130 kg / cm 2 , a liquid space velocity of 0.5 h −1 , a hydrogen / oil ratio of 740 Nm 3 / kl, and 350 ° C. Coke-supported catalyst A1 was obtained. This coke-supported catalyst A1 was extracted from the reaction tube, heat-treated in nitrogen at 450 ° C. for 1 hour, and allowed to cool in air to obtain coke-supported catalyst A2. Table 2 shows the physical properties of this catalyst.
(Catalyst performance evaluation)
A reaction tube of a small high-pressure fixed bed reactor was filled with 100 cc of the coke-supported catalyst A2. This was lightly sulfidized with LDSV 1h −1 for 21 hours at 250 ° C. in a hydrogen gas stream at 130 kg / cm 2 in a hydrogen gas stream by adding DMDS as a sulfiding agent to adjust the sulfur concentration to 2.5 mass%. Subsequently, the normal pressure residual oil (raw oil A) shown in Table 1 was passed at a reaction pressure of 130 kg / cm 2 , a liquid space velocity of 0.5 h −1 , and a hydrogen / oil ratio of 740 Nm 3 / kl to produce a sulfur content of the product oil. Was processed for 1500 hours while adjusting the temperature to be 0.5% by mass. Table 3 shows changes in the target achievement temperature.

実施例2
実施例1で得られた金属担持触媒A1、100ccを、表1に示す常圧残油(原料油A)10Lを入れた容器に投入し、常圧、120℃で5時間ゆっくり攪拌した。その後触媒と油をろ過して分離した。この触媒を窒素中で550℃、10時間加熱処理して、空気中で放冷し、コーク担持触媒A3を得た。この触媒を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
実施例3
実施例1において、原料油Aの代わりに原料油Cを用いた他は同様の処理を行い、コーク担持触媒A4を得た。この触媒を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
実施例4
実施例1において、原料油Aの通油時間を2日とした他は同様の処理を行い、コーク担持触媒A5を得た。この触媒を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
実施例5
実施例1において、加熱処理後の冷却を窒素気流下で行った他は同様の処理を行い、コーク担持触媒A6を得た。この触媒を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
Example 2
100 cc of the metal-supported catalyst A1 obtained in Example 1 was put into a container containing 10 L of normal pressure residual oil (raw oil A) shown in Table 1, and slowly stirred at normal pressure at 120 ° C. for 5 hours. Thereafter, the catalyst and the oil were separated by filtration. This catalyst was heat-treated in nitrogen at 550 ° C. for 10 hours and allowed to cool in air to obtain a coke-supported catalyst A3. Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using this catalyst.
Example 3
In Example 1, the same treatment was performed except that the raw material oil C was used in place of the raw material oil A to obtain a coke-supported catalyst A4. Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using this catalyst.
Example 4
In Example 1, the same treatment was carried out except that the feed time of the raw material oil A was 2 days to obtain a coke-supported catalyst A5. Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using this catalyst.
Example 5
In Example 1, the same treatment was performed except that the cooling after the heat treatment was performed in a nitrogen stream to obtain a coke-supported catalyst A6. Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using this catalyst.

比較例1
実施例1において、原料油Aの代わりに原料油Bを用いた他は同様の処理を行い、コーク担持触媒A7を得た。この触媒を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
比較例2
実施例1において、原料油Aの代わりに原料油Cを用いた他は同様の処理を行い、コーク担持触媒A8を用いて評価を行なった。この触媒を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
比較例3
実施例1において、原料油Aの代わりに原料油Dを用いた他は同様の処理を行い、コーク担持触媒A9を得た。この触媒を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
Comparative Example 1
In Example 1, the same treatment was performed except that the raw material oil B was used in place of the raw material oil A to obtain a coke-supported catalyst A7. Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using this catalyst.
Comparative Example 2
In Example 1, the same treatment was performed except that the raw material oil C was used instead of the raw material oil A, and evaluation was performed using the coke-supported catalyst A8. Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using this catalyst.
Comparative Example 3
In Example 1, the same treatment was performed except that the raw material oil D was used in place of the raw material oil A to obtain a coke-supported catalyst A9. Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using this catalyst.

比較例4
実施例1において、原料油Aの代わりに原料油Cを用い30日間通油した他は同様の処理を行い、コーク担持触媒A10を得た。この触媒を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
比較例5
実施例1において、コーク担触媒A1を窒素中で700℃で処理した以外は同様の処理を行い、コーク担持触媒A11を得た。この触媒を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
比較例6
実施例1において、コーク担持触媒A2の代わりにコーク担持触媒A1を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
Comparative Example 4
In Example 1, the same treatment was performed except that the raw material oil C was used instead of the raw material oil A and passed for 30 days to obtain a coke-supported catalyst A10. Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using this catalyst.
Comparative Example 5
In Example 1, except that coke responsible lifting catalyst A1 were treated with 700 ° C. in a nitrogen performs the same treatment to obtain coke supported catalyst A11. Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using this catalyst.
Comparative Example 6
Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using the coke-supported catalyst A1 in place of the coke-supported catalyst A2.

Figure 2010069466
Figure 2010069466

Figure 2010069466
Figure 2010069466

Figure 2010069466
Figure 2010069466

本発明は、水素化処理を行う上で劣質な性状を有する重質炭化水素油であっても水素化脱硫、水素化脱メタル、水素化分解などの水素化処理を効率的かつ長期間安定に実施できる水素化処理触媒であり、水素化処理が困難な炭化水素油の精製に有効に利用される。   The present invention enables efficient and long-term stable hydroprocessing such as hydrodesulfurization, hydrodemetallation, and hydrocracking even for heavy hydrocarbon oils that have poor properties when performing hydroprocessing. It is a hydrotreating catalyst that can be used and is effectively used for refining hydrocarbon oils that are difficult to hydrotreat.

Claims (7)

触媒全量基準でコーク分を20〜40質量%、硫黄分を5〜10質量%含有し、かつ、コークのH/C(モル比)が0.5〜0.7であることを特徴とする水素化処理触媒。 The coke content is 20 to 40% by mass and the sulfur content is 5 to 10% by mass based on the total amount of the catalyst, and the H / C (molar ratio) of the coke is 0.5 to 0.7. Hydroprocessing catalyst. さらに、X線電子発光分析(XPS)におけるSp2が160.0〜163.0eVのピークを有することを特徴とする請求項1に記載の水素化処理触媒。 Furthermore, Sp2 in a X ray electroluminescence analysis (XPS) has a peak of 160.0-163.0eV, The hydroprocessing catalyst of Claim 1 characterized by the above-mentioned. コーク分を含まない水素化処理触媒にコーク分を担持した触媒である請求項1又は2に記載の水素化処理触媒。 The hydrotreating catalyst according to claim 1 or 2, wherein the hydrotreating catalyst contains no coke and the coke is supported on the hydrotreating catalyst. 前記コーク分を含まない水素化処理触媒が、耐火性酸化物担体に、触媒全量基準で、酸化ニッケル及び/又は酸化コバルトを1〜10質量%、三酸化モリブデンを5〜30質量%並びに五酸化リンを3〜10質量%担持させた触媒である請求項1〜3のいずれかに記載の水素化処理触媒。 The hydrotreating catalyst not containing the coke component is a refractory oxide support, based on the total amount of the catalyst, 1 to 10% by mass of nickel oxide and / or cobalt oxide, 5 to 30% by mass of molybdenum trioxide and pentoxide. The hydrotreating catalyst according to any one of claims 1 to 3, which is a catalyst supporting 3 to 10% by mass of phosphorus. (1−a)コーク分を含まない水素化処理触媒を、予備硫化処理した後、該触媒を用いて炭化水素油の水素化処理を行う工程、又は(1−b)コーク分を含まない水素化処理触媒を、沸点が400〜600℃で、硫黄を含有する炭化水素に浸漬してコーク分を担持する工程である第1工程、及び(2)前記工程で得られた触媒を不活性ガス雰囲気下、400〜600℃で加熱処理する第2工程からなることを特徴とする請求項1〜4のいずれかに記載の水素化処理触媒の製造方法。 (1-a) a step of presulfiding a hydrotreating catalyst not containing coke, and then hydrotreating hydrocarbon oil using the catalyst, or (1-b) hydrogen not containing coke A first step, which is a step of immersing the catalyst in a hydrocarbon containing sulfur at a boiling point of 400 to 600 ° C. to support a coke component, and (2) the catalyst obtained in the step is treated with an inert gas. It consists of a 2nd process heat-processed at 400-600 degreeC in atmosphere, The manufacturing method of the hydrotreating catalyst in any one of Claims 1-4 characterized by the above-mentioned. さらに、300〜400℃で空気中に暴露する第3工程を行うことを特徴とする請求項5に記載の水素化処理触媒の製造方法。 Furthermore, the 3rd process exposed to the air at 300-400 degreeC is performed, The manufacturing method of the hydrotreating catalyst of Claim 5 characterized by the above-mentioned. 請求項1〜4のいずれかに記載の水素化処理触媒、もしくは請求項5又は6に記載の水素化処理触媒の製造方法によって得られた水素化処理触媒と重質炭化水素油を接触させて水素化脱硫を行うことを特徴とする炭化水素油の水素化処理方法。 The hydrotreating catalyst according to any one of claims 1 to 4 or the hydrotreating catalyst obtained by the method for producing a hydrotreating catalyst according to claim 5 or 6 and a heavy hydrocarbon oil are brought into contact with each other. A hydrotreating method for hydrocarbon oil, characterized by performing hydrodesulfurization.
JP2008243097A 2008-09-22 2008-09-22 Hydrogenation catalyst Pending JP2010069466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008243097A JP2010069466A (en) 2008-09-22 2008-09-22 Hydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243097A JP2010069466A (en) 2008-09-22 2008-09-22 Hydrogenation catalyst

Publications (1)

Publication Number Publication Date
JP2010069466A true JP2010069466A (en) 2010-04-02

Family

ID=42201742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243097A Pending JP2010069466A (en) 2008-09-22 2008-09-22 Hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP2010069466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022513180A (en) * 2018-12-31 2022-02-07 ハンファ ソルーションズ コーポレーション Hydrogenation reaction catalyst and its manufacturing method
JP2022539360A (en) * 2019-06-28 2022-09-08 ハンファ ソルーションズ コーポレーション Catalyst for hydrogenation reaction and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022513180A (en) * 2018-12-31 2022-02-07 ハンファ ソルーションズ コーポレーション Hydrogenation reaction catalyst and its manufacturing method
JP7352631B2 (en) 2018-12-31 2023-09-28 ハンファ ソルーションズ コーポレーション Catalyst for hydrogenation reaction and method for producing same
JP2022539360A (en) * 2019-06-28 2022-09-08 ハンファ ソルーションズ コーポレーション Catalyst for hydrogenation reaction and method for producing the same
JP7458423B2 (en) 2019-06-28 2024-03-29 ハンファ ソルーションズ コーポレーション Catalyst for hydrogenation reaction and method for producing the same

Similar Documents

Publication Publication Date Title
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4839311B2 (en) Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils
EP2750792B1 (en) Catalyst support and catalysts prepared therefrom
JP5060044B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
KR20050085710A (en) Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
JP6476525B2 (en) Heavy hydrocarbon oil hydrotreating catalyst and heavy hydrocarbon oil hydrotreating method
JP2000210565A (en) Catalyst for hydrogenation and hydrogenation method
JP5439673B2 (en) Method for hydrotreating heavy hydrocarbon oil
JP4545328B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP5841481B2 (en) Method for hydrotreating heavy residual oil
JP2010069466A (en) Hydrogenation catalyst
JP4969754B2 (en) Hydrodesulfurization method for gas oil fraction and reactor for hydrodesulfurization
RU2634705C2 (en) Selenium-containing hydrotreating catalyst, its use and preparation method
JP2006000726A (en) Hydrogenation catalyst of hydrocarbon oil, manufacturing method therefor and hydrogenation method for hydrocarbon oil
JP2011208030A (en) Method for producing hydrogenated har oil
JP4800565B2 (en) Method for producing presulfided hydrotreating catalyst and method for desulfurizing light oil
JP4916370B2 (en) Process for hydrotreating diesel oil
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
CN111100691B (en) Hydrocarbon oil hydrotreating method
JP5841480B2 (en) Method for hydrotreating heavy residual oil
EP2723494B1 (en) Method of making a hydroprocessing catalyst
JP2010069467A (en) Method of activating spent hydrogenation catalyst
JP2004115581A (en) Method for demetallating petroleum heavy oil
JP5611750B2 (en) Sulfurization method for hydrocarbon treatment catalyst