JP4800565B2 - Method for producing presulfided hydrotreating catalyst and method for desulfurizing light oil - Google Patents

Method for producing presulfided hydrotreating catalyst and method for desulfurizing light oil Download PDF

Info

Publication number
JP4800565B2
JP4800565B2 JP2003312904A JP2003312904A JP4800565B2 JP 4800565 B2 JP4800565 B2 JP 4800565B2 JP 2003312904 A JP2003312904 A JP 2003312904A JP 2003312904 A JP2003312904 A JP 2003312904A JP 4800565 B2 JP4800565 B2 JP 4800565B2
Authority
JP
Japan
Prior art keywords
oil
hydrotreating catalyst
mass
temperature
light oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003312904A
Other languages
Japanese (ja)
Other versions
JP2005082619A (en
Inventor
智章 平野
博道 小鹿
和浩 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2003312904A priority Critical patent/JP4800565B2/en
Publication of JP2005082619A publication Critical patent/JP2005082619A/en
Application granted granted Critical
Publication of JP4800565B2 publication Critical patent/JP4800565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、水素化処理触媒の予備硫化方法及び軽油の脱硫方法、詳しくは水素化処理触媒の本来の性能を発揮させる予備硫化方法と該方法により活性化された触媒を用いた軽油の脱硫方法に関するものである。   The present invention relates to a hydrosulfurization catalyst presulfurization method and a gas oil desulfurization method, and more particularly, a presulfurization method that exhibits the original performance of the hydrotreatment catalyst and a gas oil desulfurization method using the catalyst activated by the method. It is about.

従来、炭化水素油の水素化処理には、耐火性無機酸化物を担体とし、これに周期表第6族、第8族〜第10族金属成分の群から選択される少なくとも一種の水素化活性金属成分を担持させることにより調製した触媒が用いられてきた。これらの耐火性無機酸化物としては、主成分としてアルミナが使用され、水素化活性金属成分としては、例えば、モリブデン、タングステン、コバルト、ニッケルなどが選択されている。
ところが、近年の環境規制の強化により、従来の水素化処理触媒では炭化水素油の水素化処理効率に対するニーズに答えられないことが明らかになってきた。そこで、水素化処理活性向上のため、さまざまな工夫が行われてきており、例えば、水素化活性を有する金属の担持量を増やし、かつ、高分散に担持する方法が有力である。
Conventionally, for hydrotreating hydrocarbon oil, a refractory inorganic oxide is used as a carrier, and at least one hydrogenation activity selected from the group consisting of Group 6 and Group 8 to Group 10 metal components of the periodic table. Catalysts prepared by loading metal components have been used. As these refractory inorganic oxides, alumina is used as the main component, and as the hydrogenation active metal component, for example, molybdenum, tungsten, cobalt, nickel or the like is selected.
However, in recent years, with the strengthening of environmental regulations, it has become clear that conventional hydrotreating catalysts cannot answer the needs for the hydrotreating efficiency of hydrocarbon oils. Thus, various devices have been devised for improving the hydrotreating activity. For example, a method of increasing the amount of a metal having hydrogenation activity and supporting it in a highly dispersed manner is effective.

一方で、水素化活性金属成分は硫化された状態で水素化活性を発揮するため、炭化水素等の脱硫反応に先立って、水素化活性金属成分を活性化するための予備硫化が通常行われる。従来から予備硫化の条件は種々検討されており、段階的に予備硫化温度を上げる手法が知られている(例えば特許文献1参照)。
そして、上述のような水素化活性金属成分を高分散に担持した水素化処理触媒は、活性金属成分が予備硫化されやすく、水素化反応の反応条件において、より多くの活性点が反応に寄与するため好ましいが、このような高分散化された水素化活性金属成分は硫化とともに水素還元されやすく、従来の予備硫化方法では水素化活性金属成分が水素還元される場合がある。一旦水素還元された金属成分は容易には硫化されないため、水素化活性を発揮しない場合が生じる。
特に、こうした現象はパイロットプラントのような小規模の設備において、水素化活性金属成分が水素還元されず、硫化されるような触媒系であっても、実装置のような大規模な設備では、水素還元されやすく、より顕著に不具合が現れる。
On the other hand, since the hydrogenation active metal component exhibits hydrogenation activity in a sulfided state, preliminary sulfidation for activating the hydrogenation active metal component is usually performed prior to the desulfurization reaction of hydrocarbons or the like. Conventionally, various presulfurization conditions have been studied, and a technique for increasing the presulfidation temperature stepwise is known (see, for example, Patent Document 1).
In the hydrotreating catalyst supporting the hydrogenation active metal component as described above in a highly dispersed state, the active metal component is easily presulfided, and more active sites contribute to the reaction under the reaction conditions of the hydrogenation reaction. Therefore, such a highly dispersed hydrogenated active metal component is easily hydrogen-reduced together with sulfuration, and the hydrogenation-active metal component may be hydrogen-reduced in the conventional presulfidation method. Since the metal component once hydrogen-reduced is not easily sulfided, the hydrogenation activity may not be exhibited.
In particular, in a small-scale facility such as a pilot plant, such a phenomenon may occur in a large-scale facility such as an actual device, even in a catalyst system in which a hydrogenation active metal component is not reduced by hydrogen but is sulfided. It is easy to be reduced with hydrogen, and the trouble appears more remarkably.

特表2002−537975号公報JP 2002-537975 A

本発明は、前記の課題を解決するためになされたもので、水素化活性金属成分が高分散に担持された水素化処理触媒を、予備硫化時に水素還元することなく硫化させ、本来の水素化活性を発揮させる予備硫化された水素化処理触媒の製造方法を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems. A hydrotreating catalyst in which a hydrogenation active metal component is supported in a highly dispersed state is sulfided without hydrogen reduction at the time of preliminary sulfidation, and the original hydrogenation is performed. It is an object of the present invention to provide a method for producing a presulfided hydrotreating catalyst that exhibits its activity.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、予備硫化を比較的低温で硫化度が50%以上になるまで行ない、その後比較的高い温度で予備硫化を完了することによって、前記の課題を解決し得ることを見出し、本発明を完成したものである。   As a result of intensive studies to achieve the above object, the present inventors have conducted preliminary sulfidization until the degree of sulfidation reaches 50% or higher at a relatively low temperature, and then completed the preliminary sulfidation at a relatively high temperature. Thus, the inventors have found that the above-described problems can be solved and completed the present invention.

すなわち、本発明は、
(1)昇温プログラム還元法(TPR法)により得られる還元プロファイルで特定される、380℃以下の還元面積が全還元面積の5%以上であり、耐火性無機酸化物担体と、モリブデン及びニッケルとを含有する水素化処理触媒を予備硫化して予備硫化された水素化処理触媒を製造する方法であって、(A)予備硫化油を用いて該水素化処理触媒を湿潤状態とし、温度を120℃〜230℃の範囲に保持しながら、分解温度が250℃以下である硫化剤を添加して硫化度が50%以上になるまで水素化処理触媒の硫化処理を行う工程を含むことを特徴とする予備硫化された水素化処理触媒の製造方法、
(2)前記(A)硫化処理を行う工程で生じるオフガス中の硫化水素濃度が200体積ppm以上となった後に、(B)温度を230〜310℃の範囲に昇温し、該温度範囲で硫化度が75%以上になるまで保持する工程を有する上記(1)記載の予備硫化された水素化処理触媒の製造方法、
)前記(A)硫化処理を行う工程が予備硫化油を通油するものであり、さらに(C)水素化処理触媒層の出口分離槽においてオフガスと該予備硫化油を分離する工程および(D)該予備硫化油をリサイクル使用する工程を有する上記(1)又は(2)に記載の予備硫化された水素化処理触媒の製造方法、
)上記(1)〜()のいずれかに記載の製造方法で得られた予備硫化された水素化処理触媒を用いる軽油の脱硫方法、
)生成する軽油の硫黄含有量が50質量ppm未満である上記()記載の軽油の脱硫方法、
)生成する軽油の硫黄含有量が10質量ppm未満である上記()記載の軽油の脱硫方法、
)生成する軽油中の2環以上の多環芳香族含有量が5質量%以下であり、単環芳香族含有量が20質量%以下である上記()〜()のいずれかに記載の軽油の脱硫方法、
を提供するものである。
That is, the present invention
(1) The reduction area of 380 ° C. or lower specified by the reduction profile obtained by the temperature programmed reduction method (TPR method) is 5% or more of the total reduction area, and the refractory inorganic oxide support, molybdenum and nickel a method of manufacturing a hydrotreating catalyst with hydrotreating catalyst containing was presulfided by presulfiding the door, the hydrogenation treatment catalyst and wet with (a) pre-sulfurized oil, the temperature while maintained in the range of 120 ° C. to 230 ° C., vulcanization degree and decomposition temperature was added 250 ° C. or less is sulfurization agent comprises a step of performing a sulfurization treatment of the hydrotreating catalyst until 50% or more A method for producing a pre-sulfided hydrotreating catalyst,
(2) After the hydrogen sulfide concentration in the off-gas generated in the step (A) of performing the sulfiding treatment is 200 ppm by volume or more, (B) the temperature is raised to a range of 230 to 310 ° C., A method for producing a presulfided hydrotreating catalyst according to (1) above, comprising a step of maintaining the degree of sulfidization to 75% or more,
( 3 ) The step (A) of performing the sulfidation treatment involves passing the pre-sulfided oil, and (C) a step of separating the off-gas from the pre-sulfided oil in the outlet separation tank of the hydrotreating catalyst layer; D) A process for producing a presulfided hydrotreating catalyst according to (1) or (2) above, comprising the step of recycling the presulfurized oil,
( 4 ) A desulfurization method for light oil using the presulfided hydrotreating catalyst obtained by the production method according to any one of (1) to ( 3 ) above,
( 5 ) The desulfurization method for light oil according to ( 4 ), wherein the sulfur content of the light oil to be produced is less than 50 ppm by mass,
( 6 ) The desulfurization method of the gas oil according to the above ( 4 ), wherein the sulfur content of the produced gas oil is less than 10 ppm by mass,
( 7 ) Any of the above ( 4 ) to ( 6 ), wherein the polycyclic aromatic content of two or more rings in the light oil to be produced is 5% by mass or less and the monocyclic aromatic content is 20% by mass or less. A method for desulfurizing gas oil according to claim 1,
Is to provide.

本発明の予備硫化された水素化処理触媒の製造方法によれば、水素化活性金属を還元することなく、硫化することができ、触媒の本来の性能を発揮させることができる。従って、軽油の深度脱硫等に代表される炭化水素油の水素化処理に効果的に利用することができる。 According to the method for producing a presulfided hydrotreating catalyst of the present invention, the hydrogenation active metal can be sulfided without reduction, and the original performance of the catalyst can be exhibited. Therefore, it can be effectively used for hydrotreating hydrocarbon oils represented by deep desulfurization of light oil.

本発明に係る水素化処理触媒は、昇温プログラム還元法(TPR法)により得られる還元プロファイルで特定される、380℃以下の還元面積が全還元面積の5%以上である。
昇温プログラム還元法(TPR法;Temperature Programmed Reduction)とは水素気流中に触媒を置き、室温から1027℃まで昇温していった際の水素の消費量をTCD(熱伝導型検出器)等で測定することによって、水素化処理金属の水素還元挙動を調べる手法であり、本発明では水素の消費量を縦軸に、温度を横軸にプロットした還元プロファイルを得るものである。本発明においては、この還元プロファイルにおいて、380℃以下の還元面積が全還元面積の5%以上である水素化処理触媒を用いるものである。さらには380℃以下の還元面積が全還元面積の10%以上、特には15%以上であることが好ましい。
In the hydrotreating catalyst according to the present invention, the reduction area of 380 ° C. or lower specified by a reduction profile obtained by a temperature programmed reduction method (TPR method) is 5% or more of the total reduction area.
Temperature-programmed reduction (TPR method) is a method of measuring the amount of hydrogen consumed when a catalyst is placed in a hydrogen stream and the temperature is raised from room temperature to 1027 ° C. This is a method for examining the hydrogen reduction behavior of the hydrotreated metal. In the present invention, a reduction profile is obtained in which the hydrogen consumption is plotted on the vertical axis and the temperature is plotted on the horizontal axis. In the present invention, in this reduction profile, a hydrotreating catalyst having a reduction area of 380 ° C. or lower of 5% or more of the total reduction area is used. Furthermore, the reduction area of 380 ° C. or less is preferably 10% or more, particularly 15% or more of the total reduction area.

本発明の水素化処理触媒の予備硫化方法は、(A)120℃〜230℃の範囲で硫化度が50%以上になるまで硫化処理を行う工程を含むことを特徴とする。予備硫化の温度が120℃未満であると水素化活性金属成分の硫化が十分行われず、また230℃を超えると水素化活性金属成分の水素還元が支配的になる。以上の観点から予備硫化の温度範囲は140℃〜220℃の範囲であることがより好ましい。また本発明において、硫化度は上記温度範囲で50%以上であることが必須であるが、60%以上であることが好ましく、70%以上であることがさらに好ましい。硫化度を上げるためには上記温度範囲内での硫化時間を長くとることにより達成される。
ここで硫化度とは、水素化活性金属が安定な硫化物に硫化されるのに必要な硫黄分の質量をA、総硫黄供給量をB、オフガス中に硫化水素(H2S)の形態で留出した硫黄分の累積質量をC及び液中に留出した硫黄分の累積質量をDとした場合に、(B−C−D)/Aで定義される。なお、水素化活性金属が安定な硫化物に硫化されるとは、金属元素をMとした場合に、周期表第6族金属においてはMS2の状態まで、周期表第8〜第10族金属においてはMSの状態まで硫化されたことをいう。
The hydrosulfurization catalyst preliminary sulfidation method of the present invention includes a step (A) of performing a sulfidation treatment in a range of 120 ° C. to 230 ° C. until the degree of sulfidation reaches 50% or more. If the presulfiding temperature is less than 120 ° C., the hydrogenation active metal component is not sufficiently sulfided, and if it exceeds 230 ° C., hydrogen reduction of the hydrogenation active metal component becomes dominant. From the above viewpoint, the temperature range of preliminary sulfidation is more preferably in the range of 140 ° C to 220 ° C. In the present invention, the degree of sulfidation is essential to be 50% or more in the above temperature range, but is preferably 60% or more, and more preferably 70% or more. Increasing the degree of sulfidation is achieved by increasing the sulfidation time within the above temperature range.
Here, the degree of sulfidation refers to the mass of sulfur necessary for the hydrogenation active metal to be sulfided to a stable sulfide, A is the total sulfur supply amount, and B is the form of hydrogen sulfide (H 2 S) in the off-gas. When the cumulative mass of the sulfur content distilled in step C is C and the cumulative mass of the sulfur content distilled in the liquid is D, it is defined as (B−C−D) / A. It should be noted that the hydrogenation active metal is sulfided into a stable sulfide when the metal element is M, and in the periodic table group 6 metal up to the MS 2 state, the periodic table group 8 to 10 metal In, it means that it was sulfided to the MS state.

本発明の予備硫化は上記条件を満足するものであればその方法は特に限定されないが、通常120℃〜180℃の範囲で予備硫化油を用いて触媒を湿潤な状態にし、その後120℃〜230℃の範囲に保持しながら、該予備硫化油に硫化剤を添加し、水素化活性金属の硫化度が50%以上になるまで、好ましくは60%以上、さらに好ましくは70%以上になるまで、該条件で予備硫化を行う。予備硫化油については特に制限はなく、直留系の軽質軽油留分(LGO)、重質軽油留分(HGO)、灯油留分、分解系の分解灯油留分、分解軽油留分、さらには水素化処理された灯油留分、軽油留分等を用いることができる。これらのうち特に好適なのは直留系の軽質軽油留分及び灯油留分である。これら予備硫化油に通常硫化剤を添加して水素化処理触媒の予備硫化を行うが、該予備硫化油中の硫黄分の含有量が高い場合には硫化剤の添加を省略することもできる。該予備硫化油中の硫黄分含有量については特に制限はなく、硫化剤を添加しない場合は、10質量ppm〜5質量%の範囲であればよいが、好ましくは0.3〜4.5質量%の範囲であり、0.5〜4.0質量%の範囲であることがより好ましい。一方、予備硫化油に硫化剤を添加する場合には、硫黄分含有量が10質量ppm〜5質量%の範囲になるように硫化剤を添加すればよいが、硫化剤を硫黄分含有量が0.1〜4.5質量%の範囲になるように添加することが好ましく、硫黄分含有量が0.5〜4.0質量%の範囲になるようにすることがより好ましい。
前述したように、予備硫化油中の硫黄分含有量を10質量ppm以上とすることによって水素化活性金属を効率的に硫化することが可能であり、5質量%以下であると水素化処理触媒の発熱が抑制され好ましい。
The method of the presulfurization of the present invention is not particularly limited as long as the above conditions are satisfied, but the catalyst is usually wetted with presulfided oil in the range of 120 ° C to 180 ° C, and then 120 ° C to 230 ° C. While maintaining in the range of ° C., a sulfiding agent is added to the pre-sulfided oil until the sulfidity of the hydrogenated active metal is 50% or more, preferably 60% or more, more preferably 70% or more, Presulfurization is performed under these conditions. There are no particular restrictions on the pre-sulfurized oil, straight-run light gas oil fraction (LGO), heavy light oil fraction (HGO), kerosene fraction, cracked cracked kerosene fraction, cracked gas oil fraction, A hydrotreated kerosene fraction, a light oil fraction, or the like can be used. Of these, a straight-run light gas oil fraction and a kerosene fraction are particularly preferred. Usually, a sulfiding agent is added to these pre-sulfurized oils to pre-sulfurize the hydrotreating catalyst. However, when the sulfur content in the pre-sulfurized oil is high, the addition of the sulfiding agent can be omitted. There is no restriction | limiting in particular about sulfur content in this preliminary | backup sulfurized oil, When not adding a sulfurizing agent, it may be in the range of 10 mass ppm-5 mass%, Preferably it is 0.3-4.5 mass. %, And more preferably in the range of 0.5 to 4.0% by mass. On the other hand, when a sulfurizing agent is added to the preliminary sulfurized oil, the sulfurizing agent may be added so that the sulfur content is in the range of 10 mass ppm to 5 mass%. It is preferable to add so that it may become in the range of 0.1-4.5 mass%, and it is more preferable to make it contain sulfur content in the range of 0.5-4.0 mass%.
As described above, by setting the sulfur content in the pre-sulfided oil to 10 mass ppm or more, it is possible to efficiently sulfidize the hydrogenation active metal, and when it is 5 mass% or less, the hydrotreating catalyst. Is preferable because it suppresses the heat generation.

また、予備硫化処理中にオフガスからは硫化水素が検出されるが、前記硫化度が50%以上となり、かつ、オフガス中の硫化水素濃度が200体積ppm以上となった後に、硫化温度を230℃〜310℃の範囲まで昇温させ、水素化処理触媒の硫化度が75%以上になるまで該温度を保持することが好ましい。昇温の開始は上述のように硫化度が50%以上で、かつオフガス中の硫化水素濃度が200体積ppm以上となった後に行うことが好ましいが、オフガス中の硫化水素濃度が500体積ppm以上となった後に昇温することがさらに好ましく、1000体積ppm以上となった後に昇温することが特に好ましい。
硫化温度を120℃〜230℃の範囲から230℃〜310℃の範囲まで昇温させる速度については、設備に応じて適宜選定されるが、通常5℃/時〜50℃/時の範囲で行うことが好ましい。
また、上記予備硫化は通常水素加圧条件下で行われるが、圧力の制限は特になく、水素化処理条件と同条件か、それに準じた条件で行うことが一般に行われる。具体的には、0.5MPa〜25MPaの範囲で好適に行われる。さらに上述した予備硫化油を用いて触媒を湿潤な状態にする工程においても、水素ガスを流通することが好ましい。
水素ガスとしては、例えば水素化処理設備において水素化処理に使用する水素ガスを用いることができ、またスチームリフォーマーやプラットフォーマー等の設備で使用する水素ガスを用いることもできる。水素純度については特に制限はないが、通常70%以上のものが好適に使用される。
また、上述した予備硫化油はオフガスを分離した後に、再度硫化剤を添加して予備硫化処理にリサイクル使用することができる。この場合予備硫化油中の硫黄含有量は予備硫化反応塔の出口において、0.3質量%以上を維持することが好ましく、さらには0.5質量%以上、特には0.7質量%以上を維持することが好ましい。
Further, hydrogen sulfide is detected from the off-gas during the preliminary sulfidation treatment. After the sulfidity is 50% or more and the hydrogen sulfide concentration in the off-gas is 200 ppm by volume or more, the sulfidation temperature is set to 230 ° C. It is preferable to raise the temperature to a range of ˜310 ° C. and maintain the temperature until the sulfidation degree of the hydrotreating catalyst reaches 75% or more. The temperature increase is preferably started after the degree of sulfidization is 50% or more and the hydrogen sulfide concentration in the offgas is 200 ppm by volume or more as described above, but the hydrogen sulfide concentration in the offgas is 500 ppm by volume or more. It is more preferable to raise the temperature after becoming, and it is particularly preferable to raise the temperature after becoming 1000 volume ppm or more.
The speed at which the sulfurization temperature is raised from the range of 120 ° C. to 230 ° C. to the range of 230 ° C. to 310 ° C. is appropriately selected according to the equipment, but is usually performed in the range of 5 ° C./hour to 50 ° C./hour. It is preferable.
The preliminary sulfidation is usually carried out under hydrogen pressure conditions, but there is no particular limitation on the pressure, and it is generally carried out under the same conditions as the hydrotreating conditions or conditions similar thereto. Specifically, it is suitably performed in the range of 0.5 MPa to 25 MPa. Furthermore, it is preferable to circulate hydrogen gas also in the step of moistening the catalyst using the above-described presulfided oil.
As the hydrogen gas, for example, hydrogen gas used for hydroprocessing in a hydroprocessing facility can be used, and hydrogen gas used in facilities such as a steam reformer and a platformer can also be used. Although there is no restriction | limiting in particular about hydrogen purity, Usually, a 70% or more thing is used suitably.
Further, the above-described presulfurized oil can be recycled for presulfidation treatment by adding a sulfurizing agent again after separating off-gas. In this case, the sulfur content in the presulfided oil is preferably maintained at 0.3% by mass or more at the outlet of the presulfided reaction tower, more preferably 0.5% by mass or more, particularly 0.7% by mass or more. It is preferable to maintain.

上記予備硫化に用いる硫化剤としては、特に限定されず、硫化水素、二硫化炭素に加えて、チオフェン、ジメチルスルフィド、ジメチルジスルフィド、ジオクチルポリサルファイド、ジアルキルペンタサルファイド、ジブチルポリサルファイド、スルファゾール等の有機硫黄化合物及びそれらの混合物が挙げられる。これらの有機硫黄化合物及びそれらの混合物は分解温度が250℃以下であることが好ましく、さらには220℃以下、特には200℃以下であることが好ましい。分解温度が250℃以下であることによって、水素化活性金属成分の硫化が進行し、還元が進行しにくいという利点がある。具体的にはジメチルジスルフィド、スルファゾール、ジオクチルポリスルフィド、ジアルキルペンタスルフィド等が好適に用いられる。   The sulfiding agent used for the preliminary sulfidation is not particularly limited, and in addition to hydrogen sulfide and carbon disulfide, organic sulfur compounds such as thiophene, dimethyl sulfide, dimethyl disulfide, dioctyl polysulfide, dialkylpentasulfide, dibutyl polysulfide, sulfazole, and the like A mixture thereof may be mentioned. These organic sulfur compounds and mixtures thereof preferably have a decomposition temperature of 250 ° C. or lower, more preferably 220 ° C. or lower, and particularly preferably 200 ° C. or lower. When the decomposition temperature is 250 ° C. or lower, there is an advantage that sulfidation of the hydrogenation active metal component proceeds and reduction does not proceed easily. Specifically, dimethyl disulfide, sulfazole, dioctyl polysulfide, dialkyl pentasulfide and the like are preferably used.

また、本発明の水素化処理触媒の予備硫化方法において、用いられる水素化処理触媒は耐火性無機酸化物担体と、周期表第6族金属と、周期表第8族、第9族及び第10族から選ばれる少なくとも1種の金属を含有するものであることが好ましい。
ここで耐火性無機酸化物としては特に限定されず、通常触媒担体として使用される無機酸化物を用いることができ、具体的にはアルミナ、シリカ、シリカ−アルミナ(シリカとアルミナの複合酸化物、シリカをコーティングしたアルミナ、シリカとアルミナの混合物を含む)、チタニア、チタニア−アルミナ(チタニアとアルミナの複合酸化物、チタニアをコーティングしたアルミナ、チタニアとアルミナの混合物を含む)等が好適に使用される。
また触媒担体の細孔径としては、8〜25nmの範囲であることが好ましく、さらには10〜22nmの範囲が好ましい。比表面積は80〜300m2/gの範囲であることが好ましく、さらには100〜250m2/gの範囲が好ましい。細孔容積は0. 4〜1.0ミリリットル/gの範囲が好ましく、さらには0.5〜0.9ミリリットル/gの範囲が好ましい。
Moreover, in the presulfidation method for a hydrotreating catalyst of the present invention, the hydrotreating catalyst used is a refractory inorganic oxide support, a periodic table group 6 metal, a periodic table group 8, group 9 and group 10. It is preferable that it contains at least one metal selected from the group.
Here, the refractory inorganic oxide is not particularly limited, and an inorganic oxide usually used as a catalyst carrier can be used. Specifically, alumina, silica, silica-alumina (a composite oxide of silica and alumina, Alumina coated with silica, including a mixture of silica and alumina), titania, titania-alumina (compound oxide of titania and alumina, alumina coated with titania, including a mixture of titania and alumina), etc. are preferably used. .
Further, the pore diameter of the catalyst carrier is preferably in the range of 8 to 25 nm, more preferably in the range of 10 to 22 nm. The specific surface area is preferably in the range of 80 to 300 m 2 / g, more preferably in the range of 100 to 250 m 2 / g. The pore volume is preferably in the range of 0.4 to 1.0 ml / g, and more preferably in the range of 0.5 to 0.9 ml / g.

次に、周期表第6族金属としてはモリブデン、タングステンなどが使用されるが、特にモリブデンが好適に使用される。触媒調製時に用いるモリブデン化合物としては、三酸化モリブデン、パラモリブデン酸アンモニウムなどが好適である。また、触媒調製時に用いるタングステン化合物としては、三酸化タングステン、タングステン酸アンモニウムなどが好適である。
また、周期表第8〜10族金属としては、通常コバルトまたはニッケルが好適に使用される。触媒調製時に用いるコバルト化合物としては、炭酸コバルトや硝酸コバルトなどが好ましく、ニッケル化合物としては、炭酸ニッケルや硝酸ニッケルなどが好ましい。
さらに、リン化合物を担持させることができ、触媒調製時に用いるリン化合物としては、五酸化リン、正リン酸などが使用される。
Next, molybdenum, tungsten, or the like is used as the Group 6 metal of the periodic table, and molybdenum is particularly preferably used. As the molybdenum compound used in preparing the catalyst, molybdenum trioxide, ammonium paramolybdate and the like are suitable. Moreover, as a tungsten compound used at the time of catalyst preparation, tungsten trioxide, ammonium tungstate, etc. are suitable.
Moreover, as a periodic table group 8-10 metal, usually cobalt or nickel is used suitably. As a cobalt compound used at the time of catalyst preparation, cobalt carbonate and cobalt nitrate are preferable, and as a nickel compound, nickel carbonate and nickel nitrate are preferable.
Furthermore, a phosphorus compound can be supported, and phosphorus pentoxide, orthophosphoric acid, and the like are used as the phosphorus compound used in preparing the catalyst.

上記の水素化活性金属は、通常含浸法により担持される。上記の第6族及び第8〜10族金属ならびにリン化合物は別々に含浸してもよいが、同時に行うのが効率的である。より具体的には、これらの金属を脱イオン水に溶解させた後、その含浸液の液量を、用いる水素化処理用触媒担体の吸水量に等しくなるように調整した後、含浸させる。含浸時のpHは含浸液の安定性を考慮し、一般には酸性領域では1〜4、好ましくは1.5〜3.5であり、アルカリ領域では9〜12、好ましくは10〜11である。pHの調整は、有機酸やアンモニアなどを用いて行うことができる。
含浸液中の第6族金属、第8族金属〜第10族金属及びリンの含有量は、目標とする担持量から計算で求める。
一般的には、周期表第6族金属の担持量は触媒全量に対して、酸化物基準で5〜50質量%の範囲であることが好ましく、10〜40質量%の範囲がより好ましく、15〜35質量%の範囲がさらに好ましい。また周期表第8〜10族金属の担持量は、酸化物基準で1〜15質量%の範囲であることが好ましく、2〜12質量%の範囲がより好ましく、3〜10質量%の範囲がさらに好ましい。これらの水素化活性金属がこの範囲内であると水素化処理活性が高くなる。
The hydrogenation active metal is usually supported by an impregnation method. The Group 6 and Group 8 to 10 metals and the phosphorus compound may be impregnated separately, but it is efficient to carry out at the same time. More specifically, after these metals are dissolved in deionized water, the amount of the impregnating solution is adjusted so as to be equal to the amount of water absorbed by the hydrotreating catalyst carrier used, and then impregnated. In consideration of the stability of the impregnating solution, the pH at the time of impregnation is generally 1 to 4, preferably 1.5 to 3.5 in the acidic region, and 9 to 12, preferably 10 to 11 in the alkaline region. The pH can be adjusted using an organic acid or ammonia.
The contents of Group 6 metal, Group 8 metal to Group 10 metal and phosphorus in the impregnating solution are calculated from the target loading amount.
In general, the supported amount of Group 6 metal of the periodic table is preferably in the range of 5 to 50% by mass, more preferably in the range of 10 to 40% by mass, based on the total amount of the catalyst, 15 The range of ˜35% by mass is more preferable. In addition, the supported amount of Group 8-10 metals in the periodic table is preferably in the range of 1-15% by mass, more preferably in the range of 2-12% by mass, and in the range of 3-10% by mass on the oxide basis. Further preferred. When these hydrogenation active metals are within this range, the hydrotreating activity becomes high.

上記含浸の後に、通常熱処理を行う。逐次的に含浸を実施する場合は、含浸の度に熱処理を行うことも可能であるし、複数の含浸を行った後、最後に熱処理を行うこともできる。熱処理は空気中で、通常550℃以下、好ましくは300℃以下、さらには70〜300℃の範囲、特には80〜150℃の範囲で行うことが好ましい。また、熱処理時間としては2〜48時間程度、さらに好ましくは3〜16時間程度行うことが好ましい。   After the impregnation, a normal heat treatment is performed. When the impregnation is performed sequentially, the heat treatment can be performed every time the impregnation is performed, or after a plurality of impregnations, the heat treatment can be finally performed. The heat treatment is preferably performed in air, usually at 550 ° C. or less, preferably 300 ° C. or less, more preferably in the range of 70 to 300 ° C., particularly in the range of 80 to 150 ° C. The heat treatment time is preferably about 2 to 48 hours, more preferably about 3 to 16 hours.

上述のようにして調製された水素化処理触媒は、本発明の予備硫化方法によって予備硫化され、種々の水素化処理反応に適用される。処理する炭化水素油としては、全ての石油留分を用いることができるが、具体的には、灯油、軽質軽油、重質軽油、分解軽油等から常圧残油、減圧残油、脱れき減圧残油、アスファルテン油、タールサンド油等を挙げることができる。
これらのうち、特に軽質軽油留分の超深脱領域(硫黄分50質量ppm以下)のための水素化処理触媒として有用であり、より具体的には沸点が140℃〜400℃である炭化水素油を水素化処理することにより、硫黄分50質量ppm以下、さらには硫黄分30質量ppm以下、特には硫黄分10質量ppm以下の軽油留分を製造するのに好ましく用いられる。
また、上述の軽質軽油の超深脱条件にて、脱芳香族処理も効果的に行うことができる。具体的には2環以上の多環芳香族留分を5質量%以下に、単環芳香族留分を20質量%以下とした軽油留分を効率よく製造することができる。
The hydrotreating catalyst prepared as described above is presulfided by the presulfiding method of the present invention and applied to various hydrotreating reactions. As the hydrocarbon oil to be treated, all petroleum fractions can be used. Specifically, from kerosene, light diesel oil, heavy diesel oil, cracked diesel oil, etc., normal pressure residual oil, vacuum residual oil, degassed vacuum Residual oil, asphaltene oil, tar sand oil and the like can be mentioned.
Of these, hydrocarbons that are particularly useful as hydrotreating catalysts for ultra-deep desulfurization regions of light gas oil fractions (sulfur content of 50 mass ppm or less), and more specifically, hydrocarbons having a boiling point of 140 ° C to 400 ° C. By hydrotreating the oil, it is preferably used to produce a gas oil fraction having a sulfur content of 50 mass ppm or less, further a sulfur content of 30 mass ppm or less, and particularly a sulfur content of 10 mass ppm or less.
In addition, dearomatization treatment can be effectively performed under the above-mentioned ultra-deep degassing conditions for light gas oil. Specifically, it is possible to efficiently produce a light oil fraction in which a polycyclic aromatic fraction having two or more rings is 5% by mass or less and a monocyclic aromatic fraction is 20% by mass or less.

前記留分を水素化処理する場合の条件としては、通常の水素化処理と同様であればよく、例えば反応温度250〜400℃、反応圧力2〜25MPa、水素/原料油比50〜2000Nm3/キロリットル、液空間速度(LHSV)0.2〜10.0hr-1で処理することができる。 The conditions in the case of hydrotreating the fraction may be the same as those in normal hydrotreating, for example, a reaction temperature of 250 to 400 ° C., a reaction pressure of 2 to 25 MPa, and a hydrogen / feed oil ratio of 50 to 2000 Nm 3 / It can be processed at kiloliters and liquid hourly space velocity (LHSV) of 0.2-10.0 hr −1 .

次に、実施例及び比較例を用いて本発明をさらに詳しく説明する。
(TPRによる評価方法)
各実施例及び比較例で得られた触媒試料を120℃、1時間空気中で乾燥し、100mgを採取して、管型のリアクターに充填した。次いで、27℃にて水素濃度65%のH2/Ar(アルゴン)ガスを20cc/分の供給速度で30分間流通させた。流量一定下、10℃/分の昇温速度で1027℃まで温度を上げ、水素の消費量をTCD(熱伝導型検出器)にて測定した。
測定した水素の消費量を縦軸に、温度を横軸にプロットし、27℃〜1027℃の範囲の全還元面積及び380℃以下の還元面積を求めた。
Next, the present invention will be described in more detail using examples and comparative examples.
(Evaluation method by TPR)
The catalyst samples obtained in each Example and Comparative Example were dried in air at 120 ° C. for 1 hour, and 100 mg was collected and filled into a tubular reactor. Then, H 2 / Ar (argon) gas having a hydrogen concentration of 65% was circulated at 27 ° C. for 30 minutes at a supply rate of 20 cc / min. Under a constant flow rate, the temperature was increased to 1027 ° C. at a rate of temperature increase of 10 ° C./min, and the hydrogen consumption was measured with a TCD (thermal conductivity detector).
The measured hydrogen consumption was plotted on the vertical axis and the temperature was plotted on the horizontal axis, and the total reduction area in the range of 27 ° C. to 1027 ° C. and the reduction area of 380 ° C. or less were obtained.

製造例1
(1)オキソチタン化合物溶液(A1)の調製
チタン含水酸化物粉末(TiO2として85質量%含有)12.7gと70gの純水を内容積1リットルのガラス製ビーカーに入れ、攪拌しスラリー化した。次に、35質量%過酸化水素水78.7gと26質量%のアンモニア水26.5gを混合した水溶液を該含水酸化チタンスラリーに添加した。その後、25℃を維持したまま3時間攪拌し、チタン含有水溶液を得た。そこへ、クエン酸第一水和物28.4gを添加した。その後、30℃以下の温度で6時間保持した後、80〜95℃で12時間保持することにより、オキソチタン化合物の水溶液(A1)120gを得た。
得られた水溶液(A1)を30℃の条件で2時間減圧乾燥することにより粉末化し、次の元素分析値(水分を除く)を有するオキソチタン化合物を得た。
C(24.2質量%),H(4.1質量%),N(10.0質量%),O(45.4質量%),Ti(16.3質量%)
また、IR分光法により、アンモニウム、COO−、Ti=Oの存在も確認され、元素分析結果と併せて、チタン(Ti)1当量に対し、アンモニウムは2当量,クエン酸基は1当量存在することがわかった。その結果、この粉末は、(NH4)2[Ti(O)(クエン酸基)] であることが分かった。
Production Example 1
(1) Preparation of oxotitanium compound solution (A1) 12.7 g of titanium hydrated oxide powder (containing 85 mass% as TiO 2 ) and 70 g of pure water were put into a glass beaker having an internal volume of 1 liter and stirred to form a slurry. . Next, an aqueous solution obtained by mixing 78.7 g of 35% by mass hydrogen peroxide and 26.5 g of 26% by mass ammonia water was added to the hydrous titanium oxide slurry. Then, it stirred for 3 hours, maintaining 25 degreeC, and obtained titanium containing aqueous solution. There, 28.4 g of citric acid monohydrate was added. Then, after hold | maintaining at the temperature of 30 degrees C or less for 6 hours, 120g of oxotitanium compound aqueous solution (A1) was obtained by hold | maintaining at 80-95 degreeC for 12 hours.
The obtained aqueous solution (A1) was pulverized by drying under reduced pressure for 2 hours at 30 ° C. to obtain an oxotitanium compound having the following elemental analysis values (excluding moisture).
C (24.2 mass%), H (4.1 mass%), N (10.0 mass%), O (45.4 mass%), Ti (16.3 mass%)
In addition, the presence of ammonium, COO-, and Ti = O was confirmed by IR spectroscopy. Together with the results of elemental analysis, 2 equivalents of ammonium and 1 equivalent of citric acid group existed for 1 equivalent of titanium (Ti). I understood it. As a result, this powder was found to be (NH 4 ) 2 [Ti (O) (citrate group)].

(2)チタン含有担体(B1)の製造
上記(1)で調製したオキソチタン化合物水溶液(A1)59gに、酢酸セリウム−水和物((CH3COO)3Ce・H2O)を1.0g添加し、脱イオン水で希釈し80ミリリットルとして全量を溶解した。次に、この水溶液を細孔容積が0.8mL/g、比表面積200cm2/gで、円筒状のγ−アルミナ100gに常圧下にて含浸(ポアフィリング法)した。70℃で1時間減圧にて乾燥後、120℃で3時間乾燥機にて乾燥させ、500℃で4時間焼成し、セリウム酸化物(CeO2)0.5質量%添加チタニア(TiO2)5質量%担持アルミナ担体(B1)を得た。
(2) Production of titanium-containing support (B1) To 59 g of the aqueous oxotitanium compound (A1) prepared in (1) above, 1.0 g of cerium acetate-hydrate ((CH 3 COO) 3 Ce · H 2 O) was added. Add and dilute with deionized water to 80 ml to dissolve the whole volume. Next, 100 g of cylindrical γ-alumina was impregnated under normal pressure (pore filling method) with a pore volume of 0.8 mL / g and a specific surface area of 200 cm 2 / g. After drying under reduced pressure at 70 ° C. for 1 hour, drying in a dryer at 120 ° C. for 3 hours, firing at 500 ° C. for 4 hours, and adding 0.5% by mass of cerium oxide (CeO 2 ) titania (TiO 2 ) 5 A mass% supported alumina carrier (B1) was obtained.

(3)水素化処理触媒の製造
炭酸ニッケル50g、三酸化モリブデン97g、正リン酸25g(純度80質量%)に脱イオン水を250ミリリットル加え、攪拌しながら、80℃で溶解し、室温まで冷却後、脱イオン水にて250ミリリットルに希釈し、含浸液(S1)を調製した。
こうして得た含浸液(S1)を50ミリリットル採取し、ポリエチレングリコール(分子量400)6gを添加して、上記(2)で得られた担体(B1)100gの吸水量に見合うように脱イオン水にて希釈し、常圧にて担体(B1)に含浸させ、70℃で1時間減圧にて乾燥した後、120℃で16時間乾燥し、水素化処理触媒(C1)を製造した。水素化処理触媒(C1)に関し、上記TPR法による評価結果を図1及び第2表に示す。
(3) Production of hydrotreating catalyst 250 ml of deionized water was added to 50 g of nickel carbonate, 97 g of molybdenum trioxide and 25 g of orthophosphoric acid (purity 80% by mass), dissolved at 80 ° C. with stirring, and cooled to room temperature. Thereafter, it was diluted to 250 ml with deionized water to prepare an impregnating solution (S1).
50 ml of the impregnating solution (S1) thus obtained was collected, 6 g of polyethylene glycol (molecular weight 400) was added, and deionized water was added to meet the water absorption of 100 g of the carrier (B1) obtained in (2) above. Then, the support (B1) was impregnated at normal pressure, dried at 70 ° C. for 1 hour under reduced pressure, and then dried at 120 ° C. for 16 hours to produce a hydrotreating catalyst (C1). With respect to the hydrotreating catalyst (C1), the evaluation results by the TPR method are shown in FIG. 1 and Table 2.

製造例2
(1)チタン含有担体(B2)の製造
市販のジヒドロキシビス(ラクタト)チタンモノアンモニウム塩(Ti(OCH(CH3)COOH)(OCH(CH3)COONH4)(OH)2の水溶液37gに、酢酸セリウム−水和物((CH3COO)3Ce・H2O)を1.0g添加し、脱イオン水で希釈し80ミリリットルとして全量を溶解した。次に、この水溶液を製造例1(2)で用いたのと同様のγ−アルミナ100gに常圧下で含浸(ポアフィリング法)した。70℃で1時間減圧にて乾燥後、120℃で3時間乾燥機にて乾燥させ、500℃で4時間焼成し、セリウム酸化物(CeO2)0.5質量%添加チタニア(TiO2)5質量%担持アルミナ担体(B2)を得た。
Production Example 2
(1) Production of titanium-containing support (B2) To 37 g of an aqueous solution of commercially available dihydroxybis (lactato) titanium monoammonium salt (Ti (OCH (CH 3 ) COOH) (OCH (CH 3 ) COONH 4 ) (OH) 2 ) 1.0 g of cerium acetate-hydrate ((CH 3 COO) 3 Ce · H 2 O) was added and diluted with deionized water to dissolve the whole amount to 80 ml. 2) 100 g of the same γ-alumina as used in 2) was impregnated under normal pressure (pore filling method), dried at 70 ° C. for 1 hour under reduced pressure, and then dried at 120 ° C. for 3 hours in a drier, 500 ° C. Was calcined for 4 hours to obtain 0.5% by mass of cerium oxide (CeO 2 ) and 5% by mass of titania (TiO 2 ) -supported alumina support (B2).

(2)水素化処理触媒の製造
製造例1(3)で調製した含浸液(S1)を50ミリリットル採取し、ポリエチレングリコール(分子量400)6gを添加して、上記(1)で得られた担体(B2)100gの吸水量に見合うように脱イオン水にて希釈した。次いで、常圧にて担体(B2)に含浸させ、70℃で1時間減圧にて乾燥した後、120℃で16時間乾燥し、水素化処理触媒(C2)を製造した。水素化処理触媒(C2)に関し、上記TPR法による評価結果を第2表に示す。
(2) Production of hydrotreating catalyst 50 ml of the impregnating solution (S1) prepared in Production Example 1 (3) was collected, 6 g of polyethylene glycol (molecular weight 400) was added, and the support obtained in (1) above. (B2) Diluted with deionized water to meet the water absorption of 100 g. Next, the support (B2) was impregnated at normal pressure, dried at 70 ° C. for 1 hour under reduced pressure, and then dried at 120 ° C. for 16 hours to produce a hydrotreating catalyst (C2). Regarding the hydrotreating catalyst (C2), the evaluation results by the TPR method are shown in Table 2.

製造例3
触媒組成として、酸化ニッケル(NiO)、三酸化モリブデン(MoO3)および五酸化リン(P25)がそれぞれ6質量%、32質量%および3質量%となるように炭酸ニッケル、三酸化モリブデン、正リン酸を脱イオン水100ミリリットルに加え、加熱・溶解させた。室温まで冷却後、トリエチレングリコール8gを添加して、含浸液(S2)を調製した。
平均細孔径12.0nm、細孔容積0.74cc/gのγ−アルミナ成形体100gに、その吸水量に見合うように上記含浸液(S2)を脱イオン水にて希釈・定容し、常圧にて含浸した。ロータリーエバポレーターを用いて、回転させながら70℃、2時間減圧下で乾燥した後、120℃で12時間乾燥し、水素化処理触媒(C3)を製造した。水素化処理触媒(C3)に関し、上記TPR法による評価結果を第2表に示す。
Production Example 3
The catalyst composition is nickel carbonate, molybdenum trioxide so that nickel oxide (NiO), molybdenum trioxide (MoO 3 ), and phosphorus pentoxide (P 2 O 5 ) are 6 mass%, 32 mass%, and 3 mass%, respectively. Then, normal phosphoric acid was added to 100 ml of deionized water, and heated and dissolved. After cooling to room temperature, 8 g of triethylene glycol was added to prepare an impregnation liquid (S2).
The above impregnating liquid (S2) was diluted with deionized water and the volume was adjusted to 100 g of a γ-alumina molded body having an average pore diameter of 12.0 nm and a pore volume of 0.74 cc / g. Impregnation with pressure. Using a rotary evaporator, it was dried under reduced pressure at 70 ° C. for 2 hours while rotating, and then dried at 120 ° C. for 12 hours to produce a hydrotreating catalyst (C3). Regarding the hydrotreating catalyst (C3), the evaluation results by the TPR method are shown in Table 2.

製造例4
平均細孔径11.8nm、細孔容積0.75cc/gのシリカ・アルミナ成形体100gに、その吸水量に見合うように製造例3で調製した含浸液(S2)を脱イオン水にて希釈・定容し、常圧にて含浸した。製造例3と同様に乾燥し、水素化処理触媒(C4)を製造した。水素化処理触媒(C4)に関し、上記TPR法による評価結果を第2表に示す。
Production Example 4
Dilute the impregnating solution (S2) prepared in Production Example 3 with deionized water to 100 g of a silica-alumina molded body having an average pore diameter of 11.8 nm and a pore volume of 0.75 cc / g to meet the water absorption amount. Constant volume and impregnation at normal pressure. Drying was conducted in the same manner as in Production Example 3 to produce a hydrotreating catalyst (C4). Regarding the hydrotreating catalyst (C4), the evaluation results by the TPR method are shown in Table 2.

製造例5
製造例1で製造した水素化処理触媒(C1)をマッフル炉にて、500℃、4時間、空気中で焼成して、水素化処理触媒(C5)を製造した。水素化処理触媒(C5)に関し、上記TPR法による評価結果を第2表に示す。
Production Example 5
The hydrotreating catalyst (C1) produced in Production Example 1 was calcined in air at 500 ° C. for 4 hours in a muffle furnace to produce a hydrotreating catalyst (C5). Regarding the hydrotreating catalyst (C5), the evaluation results by the TPR method are shown in Table 2.

実施例1
(1)予備硫化
上記製造例1〜4で製造された水素化処理触媒(C1〜C4)を固定床流通式反応装置の反応管に100ミリリットル充填した。ついで、室温で圧力4.9MPa(50kg/cm2G)、流量37.5リットル/時で水素を流通させた後、10℃/時の速度で140℃まで昇温した。次に水素化処理していない第1表に示す性状を有する軽質軽油(LGO)を流量150ミリリットル/時で通油し、触媒を湿潤な状態した。その後、10℃/時の速度で180℃まで昇温し、180℃に達した時点で、硫化剤としてジメチルジスルフィド(DMDS)をLGO中に硫黄分として0.5質量%となるように添加を開始するとともに、反応管出口の高圧分離槽から得られる反応管出口油を連続的にポンプサンクションに戻し、LGOのリサイクル運転を行った。180℃に到達した時点から10時間経過した後、硫化度が50%以上になったので、10℃/時の速度で200℃まで昇温した。200℃で6時間保持した時点で、オフガス中の硫化水素濃度が1150体積ppmまで増加していたので、10℃/時の速度で290℃まで昇温し、該温度で2時間保持した後、硫化剤の添加を停止した。その後10℃/時の速度で310℃まで昇温し、LGO単独での硫化を行った。
Example 1
(1) Presulfurization 100 ml of the hydrotreating catalyst (C1 to C4) produced in Production Examples 1 to 4 was filled in a reaction tube of a fixed bed flow type reactor. Subsequently, hydrogen was circulated at a pressure of 4.9 MPa (50 kg / cm 2 G) at a room temperature and a flow rate of 37.5 liters / hour, and then heated to 140 ° C. at a rate of 10 ° C./hour. Next, light gas oil (LGO) having the properties shown in Table 1 that was not hydrotreated was passed through at a flow rate of 150 ml / hour to keep the catalyst wet. Thereafter, the temperature was raised to 180 ° C. at a rate of 10 ° C./hour, and when 180 ° C. was reached, dimethyl disulfide (DMDS) was added as a sulfurizing agent in LGO so that the sulfur content would be 0.5 mass%. At the same time, the reaction tube outlet oil obtained from the high pressure separation tank at the reaction tube outlet was continuously returned to the pump suction and the LGO was recycled. After 10 hours from the time when the temperature reached 180 ° C., the degree of sulfidation reached 50% or more, so the temperature was raised to 200 ° C. at a rate of 10 ° C./hour. Since the hydrogen sulfide concentration in the off-gas increased to 1150 ppm by volume at the time of holding at 200 ° C. for 6 hours, the temperature was raised to 290 ° C. at a rate of 10 ° C./hour, and held at the temperature for 2 hours. The addition of sulfiding agent was stopped. Thereafter, the temperature was raised to 310 ° C. at a rate of 10 ° C./hour, and sulfidation with LGO alone was performed.

(2)軽油の水素化処理
上記(1)に記載の方法で予備硫化した水素化処理触媒に対して、原料油を水素ガスとともに反応管の下段から導入するアップフロー形式で流通させ、反応性を評価した。原料油は予備硫化に使用した第1表に示すLGOを用い、反応温度320℃〜360℃、水素分圧5MPa、水素/原料油比250Nm3/キロリットル、LHSV=2.0hr-1の条件で実施した。
評価は硫黄分40質量ppmおよび8質量ppmを実現するための反応温度で行った。反応温度が低いほど触媒活性が高いことを示す。その結果を第2表に示す。また単環芳香族留分および2環以上の多環芳香族留分の含有量を併せて第2表に示す。
(2) Hydrogenation of diesel oil Reactivities of the hydrotreating catalyst pre-sulfided by the method described in (1) above are circulated in an up-flow manner in which the raw oil is introduced from the lower stage of the reaction tube together with hydrogen gas. Evaluated. The feedstock used was LGO used in the preliminary sulfidation as shown in Table 1, conditions of reaction temperature 320 ° C. to 360 ° C., hydrogen partial pressure 5 MPa, hydrogen / feed oil ratio 250 Nm 3 / kiloliter, LHSV = 2.0 hr −1 It carried out in.
The evaluation was performed at a reaction temperature for realizing a sulfur content of 40 mass ppm and 8 mass ppm. A lower reaction temperature indicates higher catalyst activity. The results are shown in Table 2. The contents of monocyclic aromatic fractions and polycyclic aromatic fractions having two or more rings are also shown in Table 2.

比較例1
前記製造例1〜4で製造した触媒(C1〜C4)を用いて、従来の方法で予備硫化を行ったこと以外は実施例1と同様にして、軽油の水素化処理での反応性を評価した。
ここで従来の予備硫化方法として以下のような方法を用いた。すなわち、実施例1と同様に固定床流通式反応装置に前記水素化処理触媒を充填し、室温で圧力4.9MPa(50kg/cm2G)、流量37.5リットル/時で水素を流通させた後、10℃/時の速度で140℃まで昇温した。次に水素化処理していない第1表に示す性状を有する軽質軽油(LGO)を流量150ミリリットル/時で通油し、触媒を湿潤な状態した。その後、10℃/時の速度で180℃まで昇温し、180℃に達した時点で、硫化剤としてジメチルジスルフィド(DMDS)をLGO中に硫黄分として0.5質量%となるように添加を開始するとともに、反応管出口の高圧分離槽から得られる反応管出口油を連続的にポンプサンクションに戻し、LGOのリサイクル運転を行った。180℃に到達した時点から同温度で3時間保持した。このときの硫化度は20%であった。その後、10℃/時の速度で240℃まで昇温し、240℃で6時間保持した時点で、オフガス中の硫化水素濃度が1000体積ppmまで増加していたので、10℃/時の速度で290℃まで昇温し、該温度で2時間保持した後、硫化剤の添加を停止した。その後10℃/時の速度で310℃まで昇温し、LGO単独での硫化を行った。
結果を第2表に示す。
Comparative Example 1
Using the catalysts (C1 to C4) produced in Production Examples 1 to 4, the reactivity in light oil hydrotreating was evaluated in the same manner as in Example 1 except that preliminary sulfidation was performed by a conventional method. did.
Here, the following method was used as a conventional preliminary sulfidation method. That is, in the same manner as in Example 1, the hydrotreating catalyst was filled in a fixed bed flow type reactor, and hydrogen was passed at room temperature with a pressure of 4.9 MPa (50 kg / cm 2 G) and a flow rate of 37.5 liters / hour. After that, the temperature was raised to 140 ° C. at a rate of 10 ° C./hour. Next, light gas oil (LGO) having the properties shown in Table 1 that was not hydrotreated was passed through at a flow rate of 150 ml / hour to keep the catalyst wet. Thereafter, the temperature was raised to 180 ° C. at a rate of 10 ° C./hour, and when 180 ° C. was reached, dimethyl disulfide (DMDS) was added as a sulfurizing agent in LGO so that the sulfur content would be 0.5 mass%. At the same time, the reaction tube outlet oil obtained from the high pressure separation tank at the reaction tube outlet was continuously returned to the pump suction and the LGO was recycled. When the temperature reached 180 ° C., the temperature was maintained for 3 hours. The degree of sulfidization at this time was 20%. Thereafter, when the temperature was raised to 240 ° C. at a rate of 10 ° C./hour and held at 240 ° C. for 6 hours, the hydrogen sulfide concentration in the off-gas increased to 1000 ppm by volume, so at a rate of 10 ° C./hour. The temperature was raised to 290 ° C. and maintained at that temperature for 2 hours, and then the addition of the sulfurizing agent was stopped. Thereafter, the temperature was raised to 310 ° C. at a rate of 10 ° C./hour, and sulfidation with LGO alone was performed.
The results are shown in Table 2.

比較例2
前記製造例5で製造した水素化処理触媒(C5)を用いて、実施例1と同様に予備硫化処理および軽油の水素化処理を行った。結果を第2表および第3表に示す。
Comparative Example 2
Using the hydrotreating catalyst (C5) produced in Production Example 5, preliminary sulfidation treatment and light oil hydrogenation treatment were carried out in the same manner as in Example 1. The results are shown in Tables 2 and 3.

Figure 0004800565
Figure 0004800565

Figure 0004800565
Figure 0004800565

本発明の予備硫化方法によれば、水素化活性金属成分が高分散に担持された水素化処理触媒を、予備硫化時に水素還元することなく硫化させ、本来の水素化活性を発揮させる予備硫化方法を提供することができる。この予備硫化方法を用いて活性化した水素化処理触媒を、例えば軽油の脱硫処理に用いることによって、軽油中の硫黄含有量を50質量ppm未満、さらには水素化処理条件によっては10質量ppm未満にまで低減させることができ、かつ脱芳香族処理も効果的に行うことができる。   According to the preliminary sulfidation method of the present invention, the hydrosulfurization catalyst in which the hydrogenation active metal component is supported in a highly dispersed state is sulfided without hydrogen reduction at the time of preliminary sulfidation, and the original hydrogenation activity is exhibited. Can be provided. By using the hydrotreating catalyst activated using this preliminary sulfidation method, for example, for the desulfurization treatment of light oil, the sulfur content in the light oil is less than 50 ppm by mass, and further less than 10 ppm by mass depending on the hydrotreating conditions. And a dearomatic treatment can be effectively performed.

製造例1にて調製された触媒のTPRプロファイルである。2 is a TPR profile of a catalyst prepared in Production Example 1.

Claims (7)

昇温プログラム還元法(TPR法)により得られる還元プロファイルで特定される、380℃以下の還元面積が全還元面積の5%以上であり、耐火性無機酸化物担体と、モリブデン及びニッケルとを含有する水素化処理触媒を予備硫化して予備硫化された水素化触媒を製造する方法であって、(A)予備硫化油を用いて該水素化処理触媒を湿潤状態とし、温度を120℃〜230℃の範囲に保持しながら、分解温度が250℃以下である硫化剤を添加して硫化度が50%以上になるまで水素化処理触媒の硫化処理を行う工程を含むことを特徴とする予備硫化された水素化処理触媒の製造方法。 The reduction area of 380 ° C. or lower specified by the reduction profile obtained by the temperature rising programmed reduction method (TPR method) is 5% or more of the total reduction area, and contains a refractory inorganic oxide support, molybdenum and nickel A method for producing a pre-sulfided hydrogenation catalyst by pre-sulfiding a hydrotreating catalyst to be used, wherein (A) the pre-sulfided oil is used to wet the hydrotreating catalyst, and the temperature is set to 120 ° C to 230 ° C. while maintained in the range of ° C., vulcanization degree by adding a decomposition temperature of 250 ° C. or less sulfurizing agent is characterized by comprising a step of performing a sulfurization treatment of the hydrotreating catalyst until 50% or more preliminary A method for producing a sulfurized hydrotreating catalyst. 前記(A)硫化処理を行う工程で生じるオフガス中の硫化水素濃度が200体積ppm以上となった後に、(B)温度を230〜310℃の範囲に昇温し、該温度範囲で硫化度が75%以上になるまで保持する工程を有する請求項1記載の予備硫化された水素化処理触媒の製造方法。   After the hydrogen sulfide concentration in the off-gas generated in the step (A) of performing the sulfiding treatment is 200 ppm by volume or more, (B) the temperature is raised to a range of 230 to 310 ° C., and the sulfidity degree is within the temperature range. The method for producing a presulfided hydrotreating catalyst according to claim 1, further comprising a step of holding until 75% or more. 前記(A)硫化処理を行う工程が予備硫化油を通油するものであり、さらに(C)水素化処理触媒層の出口分離槽においてオフガスと該予備硫化油を分離する工程及び(D)該予備硫化油をリサイクル使用する工程を有する請求項1又は2に記載の予備硫化された水素化処理触媒の製造方法。 (A) The step of performing the sulfidation treatment is to pass the pre-sulfided oil, and (C) the step of separating off-gas and the pre-sulfided oil in the outlet separation tank of the hydrotreating catalyst layer; The method for producing a presulfided hydrotreating catalyst according to claim 1 or 2 , further comprising a step of recycling the presulfided oil. 請求項1〜のいずれかに記載の製造方法で得られた予備硫化された水素化処理触媒を用いる軽油の脱硫方法。 Method for desulfurizing gas oil used claims 1-3 either in presulfided hydrotreating catalyst obtained by the production method according. 生成する軽油の硫黄含有量が50質量ppm未満である請求項記載の軽油の脱硫方法。 The desulfurization method of the light oil of Claim 4 whose sulfur content of the light oil to produce is less than 50 mass ppm. 生成する軽油の硫黄含有量が10質量ppm未満である請求項記載の軽油の脱硫方法。 The desulfurization method of the light oil of Claim 4 whose sulfur content of the light oil to produce is less than 10 mass ppm. 生成する軽油中の2環以上の多環芳香族含有量が5質量%以下であり、単環芳香族含有量が20質量%以下である請求項4〜6のいずれかに記載の軽油の脱硫方法。 The desulfurization of light oil according to any one of claims 4 to 6 , wherein the content of polycyclic aromatic compounds of 2 or more rings in the light oil to be produced is 5% by mass or less and the content of monocyclic aromatics is 20% by mass or less. Method.
JP2003312904A 2003-09-04 2003-09-04 Method for producing presulfided hydrotreating catalyst and method for desulfurizing light oil Expired - Lifetime JP4800565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312904A JP4800565B2 (en) 2003-09-04 2003-09-04 Method for producing presulfided hydrotreating catalyst and method for desulfurizing light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312904A JP4800565B2 (en) 2003-09-04 2003-09-04 Method for producing presulfided hydrotreating catalyst and method for desulfurizing light oil

Publications (2)

Publication Number Publication Date
JP2005082619A JP2005082619A (en) 2005-03-31
JP4800565B2 true JP4800565B2 (en) 2011-10-26

Family

ID=34414024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312904A Expired - Lifetime JP4800565B2 (en) 2003-09-04 2003-09-04 Method for producing presulfided hydrotreating catalyst and method for desulfurizing light oil

Country Status (1)

Country Link
JP (1) JP4800565B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801410A (en) * 2012-11-14 2014-05-21 中国石油天然气股份有限公司 Presulfurization method for hydrogenation catalyst

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571885B2 (en) * 2005-05-12 2010-10-27 日本ケッチェン株式会社 Hydrotreating catalyst, method for producing the same, and hydrotreating method
CN107486251B (en) * 2016-06-12 2019-12-27 中国石油化工股份有限公司 Preparation method of hydrogenation catalyst and hydrogenation catalyst prepared by same
CN107486249B (en) * 2016-06-12 2019-12-27 中国石油化工股份有限公司 Preparation method of hydrogenation catalyst and hydrogenation catalyst prepared by same
CN107486250B (en) * 2016-06-12 2019-12-27 中国石油化工股份有限公司 Preparation method of dipping solution and dipping solution prepared by method
CN107486216B (en) * 2016-06-12 2019-12-27 中国石油化工股份有限公司 Preparation method of dipping solution and dipping solution prepared by method
CN111097418A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Liquid-phase hydrofining method of poly DCPD petroleum resin based on modified nickel-based supported catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661464B2 (en) * 1986-02-26 1994-08-17 住友金属鉱山株式会社 Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
JPH04197448A (en) * 1990-11-29 1992-07-17 Sumitomo Metal Mining Co Ltd Preparation of catalyst for hydrogenation
US6197718B1 (en) * 1999-03-03 2001-03-06 Exxon Research And Engineering Company Catalyst activation method for selective cat naphtha hydrodesulfurization
JP4644351B2 (en) * 1999-10-27 2011-03-02 出光興産株式会社 Metal compound-supported refractory inorganic oxide support and hydrotreating catalyst using the support
JP2001276626A (en) * 2000-04-03 2001-10-09 Idemitsu Kosan Co Ltd Hydrogenation catalyst and manufacturing method thereof and hydrogenating method of hydrocarbon oil
WO2002049963A1 (en) * 2000-12-19 2002-06-27 Idemitsu Kosan Co., Ltd. Titanium compound, aqueous solution containing titanium, and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801410A (en) * 2012-11-14 2014-05-21 中国石油天然气股份有限公司 Presulfurization method for hydrogenation catalyst

Also Published As

Publication number Publication date
JP2005082619A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
US10507458B2 (en) Hydrotreating catalyst and process for preparing the same
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP5060044B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
KR101521313B1 (en) A composition useful in the catalytic hydroprocessing of hydrocarbon feedstocks, a method of making such catalyst, and a process of using such catalyst
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
US6383975B1 (en) Procedure to obtain a catalyst for the hydrodenitrogenation and hydrodesulfurization of middle and heavy oil fraction and the resulting product
KR20160016783A (en) A hydroprocessing catalyst composition containing a heterocyclic polar compound, a method of making such a catalyst, and a process of using such catalyst
CN111741811B (en) Process for hydroconverting a heavy hydrocarbon feedstock in a hybrid reactor
EP3065867B1 (en) Process for preparing a hydrotreating catalyst
EP2196260A1 (en) Hydrodesulphurization nanocatalyst, its use and a process for its production
JP4800565B2 (en) Method for producing presulfided hydrotreating catalyst and method for desulfurizing light oil
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP2005262173A (en) Hydrogenation treatment catalyst for hydrocarbon and production method therefor, and super-depth desulfurization method for gas oil using the catalyst
CN1211157C (en) Hydrocracking after-treatment catalyst and preparing method thereof
JP2013027838A (en) Method of regenerating hydrogenation catalyst
JP5863096B2 (en) Method for producing hydrotreating catalyst
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4916370B2 (en) Process for hydrotreating diesel oil
US8921254B2 (en) Hydroprocessing catalyst and methods of making and using such a catalyst
JP2010214297A (en) Carbon carrier catalyst for removing metal from heavy crude oil and residual oil
JP4938178B2 (en) Hydrocarbon hydrotreating method
JP2004074148A (en) Carrier containing titanium, its production method, hydrogen treating catalyst for hydrocarbon oil, and hydrogen treating method using it
JP2004016975A (en) Carrier containing titanium, its manufacturing method, and catalyst for hydrogenating hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4800565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term