JP4545328B2 - Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil - Google Patents

Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil Download PDF

Info

Publication number
JP4545328B2
JP4545328B2 JP2001037927A JP2001037927A JP4545328B2 JP 4545328 B2 JP4545328 B2 JP 4545328B2 JP 2001037927 A JP2001037927 A JP 2001037927A JP 2001037927 A JP2001037927 A JP 2001037927A JP 4545328 B2 JP4545328 B2 JP 4545328B2
Authority
JP
Japan
Prior art keywords
catalyst
mass
desulfurization
group
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001037927A
Other languages
Japanese (ja)
Other versions
JP2002239385A (en
Inventor
貴志 藤川
洋 木村
貴之 大崎
博康 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2001037927A priority Critical patent/JP4545328B2/en
Publication of JP2002239385A publication Critical patent/JP2002239385A/en
Application granted granted Critical
Publication of JP4545328B2 publication Critical patent/JP4545328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素油用水素化処理触媒の製造方法と、この製造方法により製造された触媒を用いた炭化水素油の水素化処理方法とに関し、特に、軽油を水素化処理する際に、軽油中の硫黄分を従来のこの種の触媒を使用する場合よりも大幅に低減することができる優れた活性を有する触媒の製造方法と、この製造方法により製造された触媒を用いる水素化処理方法とに関する。
【0002】
【技術背景】
近年、大気環境改善のために、軽油の品質規制値が世界的に厳しくなる傾向にあり、既に、北欧諸国の一部では、軽油の品質規制を硫黄分50ppm以下、芳香族分5%以下とする強化が始まっており、このような規制強化は、今後、更に厳しくなるものと予想される。我が国においても、近い将来、軽油について、硫黄分50ppm以下への規制強化が見込まれている。
軽油中の硫黄分は、排ガス対策として期待されている酸化触媒、窒素酸化物(NOx)還元触媒、連続再生式ディーゼル排気微粒子除去フィルター等の後処理装置の耐久性に悪影響を及ぼす懸念があるため、規制強化の第一対象とされている。
【0003】
以上のような理由から、軽油については、更なる低硫黄化への要請があり、従来の深度脱硫技術、超深度脱硫技術のより一層の改善が求められている。
軽油の超深度脱硫では、4,6−ジメチルジベンゾチオフェン(4,6−DMDBT)以上の重質難脱硫性硫黄化合物をいかに効率よく除去するかが課題となっている。
これらの物質が脱硫され難いのは、アルキル置換基の位置が硫黄原子の近傍にあるため、触媒の活性点と接触する際に立体障害を起こすためと考えられている。
従って、超深度脱硫領域で効率的に脱硫反応を行わせるには、脱硫活性点への立体障害を有するこれらの物質の脱硫反応を効率的に進行させるような触媒を設計すると共に、これらの触媒をいかに使用するか、言い換えれば、これらの触媒を使用した脱硫プロセスをどのように設計するかが重要な課題となる。
【0004】
しかも、近年の我が国を含め世界的な経済情勢の中で、上記のような超深度脱硫を、より低コストで行うことのできる触媒あるいはプロセスの設計も急務とされている。
【0005】
このような状況下で、軽油中の硫黄分を大幅に除去する超深度脱硫技術の開発が重要視されつつある。
軽油中の硫黄分の低減化技術として、通常、水素化脱硫の運転条件、例えば、反応温度、液空間速度等を過酷にすることが行われている。
しかし、反応温度を上げると、触媒上に炭素質が析出して触媒の活性が急速に低下し、また液空間速度を下げると、脱硫能力は向上するものの、精製処理能力が低下するため、設備の規模を拡張する必要が生じる。
しかも、このような過酷な運転条件は、色相や貯蔵安定性等の性状面への悪影響もある。
従って、運転条件を過酷にしないで、軽油の超深度脱硫を達成し得る最も良い方法は、格段に優れた脱硫活性を有する触媒を開発することである。
【0006】
従来の脱硫レベル(生成油硫黄分0.2〜0.05質量%)程度であれば、現在の脱硫触媒・脱硫技術で容易に達成することができるが、超深度脱硫領域(生成油硫黄分0.005質量%以下)は、上記4,6−DMDBT等のような立体障害を起こす物質により、急激に困難になる。
【0007】
そこで、深度脱硫領域で効率的に脱硫反応を行わせるには、これら脱硫活性点への立体障害を有する物質の脱硫反応を効率的に進行させるように、
1)触媒の活性点数を増やすこと、
2)活性金属量当たりの脱硫活性を上げること、
が可能な精密化学的触媒調製の技術が必要となる。
【0008】
現在、工業的に用いられている脱硫触媒は、基本的には、CoO−MoO/A1触媒と、NiO−MoO/A1触媒である。軽油の水素化処理条件下では、CoO−MoO/A1触媒が、NiO−MoO/A1触媒よりも高い脱硫活性を示すため、軽油用の脱硫触媒として多く使用されている。
【0009】
【発明の目的】
本発明の目的は、以上の諸点を考慮し、炭化水素油、特に直留軽油を硫黄分50ppm以下まで超深度脱硫することのできる水素化処理用触媒の製造方法を提供することである。
さらに、本発明の目的は、上記製造方法により製造された触媒を使用して炭化水素油、特に軽油留分を高効率で水素化処理する方法提供することである。
【0010】
【発明の概要】
すなわち、本発明の水素化処理用触媒の製造方法は、80質量%より多く99.5質量%以下のアルミナと、0.5質量%以上20質量%未満のゼオライト、ボリア、シリカ、ジルコニアの何れかを少なくとも1つ有する複合酸化物担体に、周期律表第6族金属塩を含む第1の溶液を、触媒基準、酸化物換算で、該第6族金属が10〜30質量%となるように含浸担持させ、乾燥の後、焼成し、周期律表第8族金属塩と、エチレングリコールとを含む第2の溶液を、触媒基準、酸化物換算で、該第8族金属が1〜15質量%となるように含浸担持させ、乾燥させることを特徴とする。
この製造方法によれば、高活性な脱硫活性点(Co−Mo−S相、Ni−Mo−S相等)を精密に制御でき、この結果、脱硫反応が効率的に進行し、反応条件を過酷にせずに、超深度脱硫反応を容易に達成することができる高性能脱硫触媒を得ることができる。
また、本発明の水素化処理方法は、上記の製造方法により製造された触媒の存在下、水素分圧3〜8MPa、300〜420℃、液空間速度0.3〜5hr−1で、硫黄分を含む軽油留分の接触反応を行うことを特徴とする。
【0011】
本発明の対象油は、例えば、直留軽油、接触分解軽油、熱分解軽油、水素化処理軽油、脱硫処理軽油、減圧蒸留軽油(VGO)等の軽油留分が適している。
これら原料油の代表的な性状例として、沸点範囲が150〜450℃、硫黄分が5質量%以下のものが挙げられる。
【0012】
本発明触媒の複合酸化物担体中のアルミナは、α−アルミナ、β−アルミナ、γ−アルミナ、δ−アルミナ等の種々のアルミナを使用することができるが、多孔質で高比表面積であるアルミナが好ましく、中でもγ一アルミナが適している。
アルミナの純度は、約98質量%以上、好ましくは約99質量%以上のものが適している。
アルミナ中の不純物としては、SO 2−、Cl、Fe、NaO等が挙げられるが、これらの不純物はできるだけ少ないことが望ましく、不純物全量で2質量%以下、好ましくは1質量%以下で、成分ではSO 2−<1.5質量%、、Fe、NaO<0.1質量%であることが好ましい。
【0013】
アルミナに複合化させる成分は、ゼオライト、ボリア、シリカ、ジルコニアのうちの少なくとも何れか1つである。
このうちゼオライトは、電子顕微鏡写真での測定による平均粒子径が約2.5〜6μm、好ましくは約3〜5μm、より好ましくは約3〜4μmのものである。
また、このゼオライトは、粒子径6μm以下のものがゼオライト全粒子に対して占める割合が、約70〜98%、好ましくは約75〜98%、より好ましくは約80〜98%のものである。
ゼオライトのこのような特性は、難脱硫性物質の細孔内拡散を容易にするために細孔直径を精密に制御する上で必須であり、例えば、平均粒子径が大きすぎたり、大きな粒子径の含有量が多かったりすると、複合酸化物担体を調製する過程で、アルミナとゼオライトの吸着水量や結晶性の違いから、加熱焼成時のアルミナとゼオライトの収縮率が異なり、複合酸化物担体の細孔として比較的大きなメゾあるいはマクロポアーが生じる。
また、これらの大きな細孔は、表面積を低下させるばかりでなく、残油を処理するような場合には、触媒毒となるメタル成分を容易に内部拡散させ、この結果、脱硫、脱窒素及び分解活性を低下させる。
【0014】
本発明では、ゼオライトとしては、フォージャサイトX型ゼオライト、フォージャサイトY型ゼオライト、βゼオライト、モルデナイト型ゼオライト、ZSM系ゼオライト(ZSM−4,5,8,11,12,20,21,23,34,35,38,46等がある) 、MCM−41,MCM−22,MCM−48,SSZ−33,UTD−1,CIT−5,VPI−5,TS−1,TS−2等が使用でき、特にY型ゼオライト、安定化Yゼオライト、βゼオライトが好ましい。
また、ゼオライトは、プロトン型が好ましい。
上記のボリア、シリカ、ジルコニアは、一般に、この種の触媒の担体成分として使用されるものを使用することができる。
【0015】
上記のゼオライト、ボリア、シリカ、及びジルコニアは、それぞれ単独で、あるいは二種以上を組合せて使用することができる。
これらの成分の配合量は、複合酸化物担体中、アルミナ約80質量%より多く99.5質量%以下に対し、約0.5質量%以上20質量%未満であり、好ましくはアルミナ約85〜99.5質量%に対し、約0.5〜10質量%であり、より好ましくはアルミナ約90〜99.5質量%に対し、約0.5〜10質量%である。
これらの成分は、少なすぎても多すぎても複合酸化物担体の細孔直径の制御は不十分となり、また少なすぎると複合酸化物担体のブレンステッド酸点やルイス酸点の付与が不十分となり、多すぎるとMoが高分散化できなくなる。
【0016】
複合酸化物担体の比表面積、細孔容積、及び平均細孔直径は、特に制限されないが、軽油に対する水素化脱硫活性の高い触媒にするためには、比表面積が約240〜500m/g、好ましくは約300〜450m/g、細孔容積が約0.55〜0.9ml/g 、好ましくは約0.65〜0.8ml/g、平均細孔径が約60〜120Å、好ましくは約65〜90Åのものが適している。
【0017】
比表面積が約240m/g未満では、活性金属の分散性が悪くなるため、低脱硫活性の触媒となる。
比表面積が約500m/gより大きいと、細孔直径が極端に小さくなるため、触媒の直径も小さくなる。触媒の細孔直径が小さいと、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。
【0018】
細孔容積が約0.55ml/g未満では、通常の含浸法で触媒を調製する場合、細孔容積内に入り込む溶媒が少量となる。溶媒が少量であると、活性金属化合物の溶解性が悪くなり、金属の分散性が低下し、低活性の触媒となる。活性金属化合物の溶解性を上げるためには、硝酸等の酸を多量に加える方法があるが、余り加えすぎると担体の低表面積化が起こり、脱硫性能低下の主原因となる。
細孔容積が約0.9ml/gより大きいと、比表面積が極端に小さくなって、活性金属の分散性が悪くなり、脱硫活性の低い触媒となる。
【0019】
平均細孔径が約60Å未満では、活性金属を担持した触媒の細孔径も小さくなる。触媒の細孔径が小さいと、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。
平均細孔径が約120Åより大きいと、比表面積が小さくなる。比表面積が小さいと、活性金属の分散性が悪くなり、脱硫活性の低い触媒となる。
【0020】
以上の複合酸化物担体に担持させる周期律表第6族金属としては、モリブデン、タングステンが挙げられ、好ましくはモリブデンである。
周期律表第6族金属塩としては、三酸化モリブデン、モリブドリン酸、モリブデン酸アンモニウム、モリブデン酸等が挙げられる。
周期律表第8族金属としては、コバルト、ニッケルが挙げられる。
周期律表第8族金属塩としては、炭酸塩、酢酸塩、硝酸塩、硫酸塩、塩化物が挙げられ、好ましくは炭酸塩、酢酸塩、より好ましくは炭酸塩である。
【0021】
以上の各担持成分を溶解させる溶媒は、第1の溶液、第2の溶液において、特に限定されるものではなく、種々の溶媒を使用することができ、例えば、水、アルコール類、ケトン類、芳香族類等が挙げられ、好ましくは水、アセトン、ベンゼン、トルエン、キシレン、テトラヒドロフラン、ジオキサン等であり、特に好ましくは水である。
【0022】
第1の溶液において、上記の周期律表第6族金属化合物では溶媒への溶解度が不足する場合には、リンを添加することができる。
このリン源としては、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸、ポリリン酸等の種々のリン酸が挙げられ、特にオルトリン酸が好ましい。
【0023】
第1の溶液において、上記の溶媒に溶解させる周期律表第6族金属の含有量は、触媒基準、酸化物換算で、約10〜30質量%、好ましくは約16〜28質量%となる量である。
周期律表第6族金属が約10質量%未満では、周期律表第6族金属に起因する効果を発現させるには不十分であり、約30質量%を超えると、周期律表第6族金属の凝集によって金属の分散性が悪くなるばかりか、効率的に分散する活性金属含有量の限度を超えたり、触媒表面積が大幅に低下する等により、触媒活性の向上がみられない。
【0024】
また、本発明では、第2の溶液において、上記の周期律表第8族金属化合物と共に、水酸基、エーテル結合、カルボキシル基、アミノ基の何れかを少なくとも1つ有する有機化合物を併用することが重要である。
この有機化合物としては、クエン酸、リンゴ酸、酒石酸、マロン酸、ニトリロ三酢酸、エチレンジアミン四酢酸、ジエチレントリアミン、二アンモニウムエチレンジアミン四酢酸、トリス(2−アミノエチル)アミン、トリエチレンテトラミン、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、トリエチレングリコール、ヘキシレングリコール、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、グリセリン、トリメチロールエタン、トリメチロールプロパン、分子量200〜1000のポリエチレングリコール、ポリプロピレングリコール、メトキシ酢酸、炭酸エチレンが挙げられる。
この有機化合物の使用量は、特に制限しないが、一般には、モル比で、〔有機化合物〕/〔周期律表第6族金属+周期律表第8族金属〕が0.02〜2程度となるようにすることが適している。
【0025】
第2の溶液において、上記の溶媒に溶解させる周期律表第8族金属の含有量は、触媒基準、酸化物換算で、約1〜15質量%、好ましくは約3〜8質量%となる量である。
周期律表第8族金属が約1質量%未満では、周期律表第8族金属に帰属する活性点が十分に得られず、約15質量%を超えると、周期律表第8族金属化合物の凝集によって活性金属の分散性が悪くなるばかりか、不活性な前駆体であるCo種、NiO種等(触媒硫化後や水素化処理中はCo種、Ni種として存在する)や、担体の格子内に取り込まれたCoスピネル種、Niスピネル種等を生成するため、触媒能の向上がみられない上、逆に触媒能が低下する。
【0026】
周期律表第8族金属、周期律表第6族金属の上記した含有量において、活性金属である周期律表第8族金属と周期律表第6族金属の最適質量比は、酸化物換算で、〔周期律表第8族金属〕/〔周期律表第8族金属+周期律表第6族金属〕の値で、約0.1〜0.25である。
周期律表第8族金属と周期律表第6族金属の質量比が上記の値で約0.1未満では、脱硫の活性点と考えられるCo−Mo−S相、Ni−Mo−S相等が十分に生成できず、脱硫活性が向上しない。約0.25より大きいと、活性に関与しない無駄なCo種、Ni種(Co種、Ni種や、担体の格子内に取り込まれたCoスピネル種、Niスピネル種) が生成し、触媒活性が低下する。
【0027】
溶媒の使用量は、第1の溶液、第2の溶液ともに、少なすぎれば、担体を充分に含浸することができず、多すぎれば、溶解した活性金属が担体上に含浸せず、含浸溶液容器のへりなどに付着してしまい、所望の担持量が得られないため、通常は、第1の溶液、第2の溶液のそれぞれにおいて、担体約100gに対して、約50〜150gであり、好ましくは約50〜90gである。
【0028】
本発明においては、上記溶媒に上記各成分を溶解させて含浸用の第1の溶液、第2の溶液を調製するが、このときの温度は、第1、第2の溶液ともに、約0℃を超え約100℃未満でよく、この範囲内の温度であれば、上記溶媒に上記各成分を良好に溶解させることができる。
【0029】
このようにして調製した含浸用の第1の溶液、第2の溶液を、上記の担体に含浸させるが、このとき、先ず第1の溶液を含浸させ、乾燥の後、焼成するか、焼成しないで、次に第2の溶液を含浸させ、乾燥させる。この操作により、溶液中の上記の各成分を、上記の担体に担持させる。
この含浸条件は、第1の溶液、第2の溶液ともに、種々の条件を採ることができるが、通常、温度は、約0℃を超え約100℃未満、好ましくは約10〜約50℃、より好ましくは約15〜30℃が適しており、含浸時間は、約15分〜5時間、好ましくは約20分〜4時間、より好ましくは約30分〜3.5時間が適している。第1の溶液、第2の溶液ともに、温度が高すぎると、含浸中に乾燥が起こり、分散度が偏ってしまう。なお、第1、第2の溶液とも、含浸中は、攪拌することが好ましい。
【0030】
第1溶液含浸後の乾燥は、風乾、熱風乾燥、加熱乾燥、凍結乾燥等の種々の乾燥方法により行うことができる。
また、乾燥の後に焼成を行う場合は、ロータリーキルン、電気炉、マッフル炉、アランダムバス、電気管状炉等の種々の装置を用いた焼成方法により行うことができるが、通常、ロータリーキルン、電気炉中の空気流通下、あるいはマッフル炉で行うことが好ましい。
【0031】
焼成温度は、これらの焼成方法に応じて適宜選定して決めればよいが、電気炉中の空気流通下や、マッフル炉で焼成する場合は、約200〜800℃、好ましくは約300〜700℃、より好ましくは約450〜650℃が適している。焼成温度が低すぎると、活性金属の担持が不充分で、被毒物質も残り、高すぎると、シンタリングが生じてしまう。焼成時間は、約2〜10時間、好ましくは約3〜5時間が適している。
【0032】
第2溶液含浸担持後、常温〜約80℃、窒素気流中、空気気流中、あるいは真空中で、水分をある程度(LOI《Loss on ignition》約50%以下となるように)除去し、乾燥炉、空気気流中、約80〜200℃で、約10分〜30時間乾燥する。
【0033】
以上のような本発明による製造方法で得られる触媒は、軽油に対する水素化脱硫活性を高めるために、その比表面積、細孔容積及び平均細孔径が、以下の値であることが好ましい。
比表面積は、窒素吸着法(BET法)で測定して約220〜300m/g、好ましくは約230〜270m/gとする。約220m/g未満では、活性金属の分散性が悪くなって低脱硫活性の触媒となり、約300m/gより大きいと、細孔径が極端に小さくなるため、触媒の細孔径も小さくなって、水素化処理の際、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。
【0034】
細孔容積は、水銀圧入法で測定して約0.4〜0.6m1/g、好ましくは約0.45〜0.55m1/gとする。約0.4m1/g未満では、水素化処理の際、硫黄化合物の触媒細孔内での拡散が不十分となって脱硫活性が不十分となり、約0.6m1/gより大きいと、触媒の比表面積が極端に小さくなって、活性金属の分散性が低下し、低脱硫活性の触媒となる。
【0035】
平均細孔直径は、水銀圧入法で測定した細孔分布で約65〜95Å、好ましくは約70〜90Åとする。約65Å未満では、反応物質が細孔内に拡散し難くなるため、脱硫反応が効率的に進行せず、約95Åより大きいと、細孔内の拡散性は良いものの、細孔内表面積が減少するため、触媒の有効比表面積が減少し、活性が低くなる。
また、上記の細孔条件を満たす細孔の有効数を多くするために、触媒の細孔径分布、すなわち平均細孔径±約15Åの細孔径を有する細孔の割合は、約75%以上、好ましくは約80%以上とする。
しかも、細孔分布は、モノモーダルであることが好ましい。触媒の細孔径分布がシャープなものでないと、活性に関与しない細孔が増大し、脱硫活性が減少する。
【0036】
触媒形状は、特に限定されず、通常、この種の触媒に用いられている種々の形状、例えば、円柱状、三葉型、四葉型等を採用することができる。触媒の大きさは、通常、直径が約1〜2mm、長さ約2〜5mmが好ましい。
触媒の機械的強度は、側面破壊強度(SCS《Side crush strength》)で約21bs/mm以上が好ましい。SCSが、これより小さいと、反応装置に充填した触媒が破壊され、反応装置内で差圧が発生し、水素化処理運転の続行が不可能となる。
触媒の最密充填かさ密度(CBD:Compacted Bulk Density)は、約0.6〜1.2が好ましい。
【0037】
触媒中の活性金属の分布状態は、触媒中で活性金属が均一に分布しているユニフォーム型が好ましい。
【0038】
本発明の水素化処理方法は、水素分圧約3〜8MPa、約300〜420℃、及び液空間速度約0.3〜5hr−1の条件で、以上の触媒と硫黄化合物を含む軽油留分とを接触させて脱硫を行い、軽油留分中の難脱硫性硫黄化合物を含む硫黄化合物を減少する方法である。
本発明の方法で得られる生成油の硫黄分含有量は、50ppm以下であり、従来技術によるよりも硫黄分を少なくすることができる。
【0039】
本発明の水素化処理方法を商業規模で行うには、本発明の触媒の固定床、移動床、あるいは流動床式の触媒層を反応装置内に形成し、この反応装置内に原料油を導入し、上記の条件下で水素化反応を行えばよい。
最も一般的には、固定床式触媒層を反応装置内に形成し、原料油を反応装置の上部に導入し、固定床を下から上に通過させ、反応装置の上部から生成物を流出させるものである。
【0040】
本発明の水素化処理方法は、本発明の触媒を、単独の反応装置に充填して行う一段の水素化処理方法であってもよいし、幾つかの反応装置に充填して行う多段連続水素化処理方法であってもよい。
【0041】
なお、本発明の触媒は、使用前に(すなわち、本発明の水素化処理方法を行うのに先立って)、反応装置中で硫化処理して活性化する。
この硫化処理は、約200〜400℃、好ましくは約250〜350℃、常圧あるいはそれ以上の水素分圧の水素雰囲気下で、硫黄化合物を含む石油蒸留物、それにジメチルジスルファイドや二硫化炭素等の硫化剤を加えたもの、あるいは硫化水素を用いて行う。
【0042】
【実施例】
実施例1
シリカとアルミナ水和物とを混練し、押出成形後、600℃で2時間焼成して直径1/16インチの柱状成形物のシリカ−アルミナ複合担体(シリカ/アルミナ質量比=1/99、細孔容積0.70m1/g、比表面積359m/g、平均細孔直径70Å)を得た。
イオン交換水19.6gに、パラモリブデン酸アンモニウム9.81gを溶解させた含浸用の溶液を調製した。
ナス型フラスコ中に、上記のシリカ−アルミナ複合担体30.0gを投入し、そこへ上記の含浸用溶液の全量をピペットで添加し、約25℃で3時間浸漬した。
この後、窒素気流中で風乾し、マッフル炉中120℃で約1時間乾燥させ、500℃で4時間焼成した。
一方、イオン交換水19.9gに、硝酸コバルト6水和物7.77gとエチレングリコール2.49gを溶解させた含浸用の溶液を調製した。
ナス型フラスコ中に、上記の焼成物を投入し、そこへ上記の含浸用溶液の全量をピペットで添加し、約25℃で3時間浸漬した。
この後、窒素気流中で風乾し、マッフル炉中100℃で約24時間乾燥させ、触媒Aを得た。
【0043】
実施例2
SiO/A1モル比6のSHYゼオライト粉末(平均粒子径3.5μm、粒子径6μm以下のものがゼオライト全粒子の87%)と、アルミナ水和物を混練し、押出成形後、600℃で2時間焼成して直径1/16インチの柱状成形物のゼオライト−アルミナ複合担体(ゼオライト/アルミナ質量比:7/93、細孔容積0.69m1/g、比表面積374m/g、平均細孔直径67Å)を得た。
イオン交換水22.2gに、モリブドリン酸11.4gとリン酸1.17gを溶解させた含浸用の溶液を調製した。
ナス型フラスコ中に、上記のゼオライト−アルミナ複合担体30.0gを投入し、そこへ上記の含浸用溶液の全量をピペットで添加し、約25℃で3時間浸漬した。
この後、窒素気流中で風乾し、マッフル炉中120℃で約1時間乾燥させ、500℃で4時間焼成した。
一方、イオン交換水18.8gに、硝酸コバルト6水和物8.09gとエチレングリコール2.58gを溶解させた含浸用の溶液を調製した。
ナス型フラスコ中に、上記の焼成物を投入し、そこへ上記の含浸用溶液の全量をピペットで添加し、約25℃で3時間浸漬した。
この後、窒素気流中で風乾し、マッフル炉中100℃で約24時間乾燥させ、触媒Bを得た。
【0044】
実施例3
ボリアとアルミナ水和物とを混練し、押出成形後、600℃で2時間焼成して直径1/16インチの柱状成形物のボリア−アルミナ複合担体(ボリア/アルミナ質量比=2/98、細孔容積0.71m1/g、比表面積363m/g、平均細孔直径72Å)を得た。
このボリア−アルミナ複合担体30.0gについて実施例1と同様の操作を行い、触媒Cを得た。
【0045】
実施例4
ジルコニアとアルミナ水和物とを混練し、押出成形後、600℃で2時間焼成して直径1/16インチの柱状成形物のジルコニア−アルミナ複合担体(ジルコニア/アルミナ質量比=2/98、細孔容積0.69m1/g、比表面積348m/g、平均細孔直径70Å)を得た。
このジルコニア−アルミナ複合担体30.0gについて実施例1と同様の操作を行い、触媒Dを得た。
【0046】
実施例5
実施例1においてパラモリブデン酸アンモニウムの含浸担持後の乾燥、焼成において、焼成を除く以外は実施例1と同様の操作を行い、触媒Eを得た。
【0047】
比較例1
イオン交換水21.6gに、炭酸コバルト3.31g、モリブドリン酸11.41g、及びオルトリン酸1.17gを溶解して含浸用の溶液を調製した。
ナス型フラスコ中に、γ−アルミナ担体(細孔容積0.69m1/g、比表面積364m/g、平均細孔直径64Å)30.0gを投入し、そこへ上記の含浸用溶液の全量をピペットで添加し、約25℃で1時間浸漬した。
この後、窒素気流中で風乾し、マッフル炉中120℃で約1時間乾燥させ、500℃で4時間焼成し、触媒aを得た。
【0048】
以上の実施例及び比較例で得た触媒の元素分析値と物性値を表1に示す。
なお、触媒の分析に用いた方法及び分析機器を以下に示す。
【0049】
〔1〕物理性状の分析
・比表面積は、窒素吸着によるBET法により測定した。
窒素吸着装置は、日本ベル(株)製の表面積測定装置(ベルソープ28)を使用した。
・細孔容積、平均細孔直径、及び細孔分布は、水銀圧入法により測定した。
水銀圧入装置は、ポロシメーター(MICROMERITICSAUTO−PORE 9200:島津製作所製)を使用した。
【0050】
【表1】

Figure 0004545328
Figure 0004545328
【0051】
〔直留軽油の水素化処理反応〕
上記の実施例及び比較例で調製した触媒を用い、以下の要領にて、下記性状の直留軽油の水素化処理を行った。
先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の条件で前処理した。
次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上部より導入して、下記の条件で水素化反応を進行させ、生成油とガスの混合流体を、反応装置の下部より流出させ、気液分離器で生成油を分離した。
【0052】
触媒の前処理条件:
圧力 ;常圧
雰囲気;硫化水素(5%)/水素ガス流通下
温度 ;150℃にて0.5hr維持、次いで350℃にて1hr維持のステップ昇温
【0053】
【表2】
水素化反応条件:
反応温度 ;360、365℃
圧力(水素分圧) ;4.9Mpa
液空間速度 ;1.0hr−1
水素/オイル比 ;250m(normal)/kL
【0054】
【表3】
原料油の性状:
油種 ;中東系直留軽油
比重(15/4℃);0.8567
蒸留性状 ;初留点が203.0℃、50%点が315.5℃、90%点が371.0℃、終点が389.0℃
硫黄成分 ;1.364質量%
窒素成分 ;150ppm
動粘度(@30℃);6.608cSt
流動点 ;5.0℃
くもり点 ;6.0℃
セタン指数 ;57.1
セイボルトカラー ;−10
ASTM色 ;0.5
アニリン点 ;74.3℃
【0055】
反応結果については、以下の方法で解析した。
360℃、365℃で反応装置を運転し、6日経過した時点で生成油を採取し、その性状を分析した。
〔1〕脱硫率(HDS)(%)
原料中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下の式により算出した。
〔2〕脱硫反応速度定数(Ks):
生成油の硫黄分(Sp)の減少量に対して、1.3次の反応次数を得る反応速度式の定数を脱硫反応速度定数(Ks)とする。
なお、反応速度定数が高い程、触媒活性が優れていることを示している。これらの結果は、表4の通りであった。
【0056】
【数1】
脱硫率(%)=〔(Sf−Sp)/Sf〕×100
脱硫反応速度定数=〔1/(Sp)1.3−1−1/(Sf)1.3−1〕×(LHSV)
式中、Sf:原料油中の硫黄分(質量%)
Sp:反応生成油中の硫黄分(質量%)
LHSV:液空間速度(hr−1
比活性(%)=
各脱硫反応速度定数/比較触媒aの脱硫反応速度定数×100
【0057】
【表4】
Figure 0004545328
【0058】
表4から判るように、本発明の製造法による触媒を用いれば、超深度脱硫領域を容易にクリアーできることがわかる。
【0059】
以上の結果から明らかなように、本発明により製造した触媒は、従来の軽油水素化処理の場合とほぼ同じ水素分圧や反応温度等の条件下で、超深度脱硫領域での軽油の脱硫反応に対して、極めて優れた活性を有することが判る。
【0060】
【発明の効果】
以上詳述したように、本発明によれば、次のような効果を奏することができる。
(1)高い脱硫活性を有するため、軽油中の硫黄分の含有率を大幅に低減させることができる。
(2)反応条件を従来の水素化処理の際の反応条件とほぼ同じとすることができるため、従来の装置を大幅改造することなく転用できる。
(3)硫黄含有量の少ない軽油基材を、容易に供給することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hydrotreating catalyst for hydrocarbon oils, and a hydrotreating method for hydrocarbon oils using the catalyst produced by the production method, and in particular, when hydrotreating light oil, Method for producing catalyst having excellent activity capable of significantly reducing sulfur content in light oil as compared with conventional use of this type of catalyst, and hydrotreating method using catalyst produced by this production method And about.
[0002]
[Technical background]
In recent years, quality control values for diesel oil have been stricter globally in order to improve the air environment. In some Nordic countries, the quality regulations for diesel oil have already been reduced to 50 ppm for sulfur and 5% for aromatics. The tightening of regulations is starting, and such tightening of regulations is expected to become even stricter in the future. In Japan as well, regulations for light oil are expected to be tightened to 50 ppm or less in the near future.
The sulfur content in diesel oil may adversely affect the durability of post-treatment devices such as oxidation catalysts, nitrogen oxide (NOx) reduction catalysts, and continuously regenerating diesel exhaust particulate removal filters that are expected as a countermeasure for exhaust gas. It is the first target for stricter regulations.
[0003]
For the above reasons, there is a demand for further reduction of sulfur in light oil, and further improvement of conventional deep desulfurization technology and ultra-deep desulfurization technology is required.
In the ultra-deep desulfurization of light oil, how to efficiently remove heavy non-desulfurization sulfur compounds of 4,6-dimethyldibenzothiophene (4,6-DMDBT) or more is an issue.
The reason why these substances are not easily desulfurized is thought to be because steric hindrance occurs when they contact the active site of the catalyst because the position of the alkyl substituent is in the vicinity of the sulfur atom.
Therefore, in order to efficiently perform the desulfurization reaction in the ultra-deep desulfurization region, a catalyst that efficiently proceeds the desulfurization reaction of these substances having steric hindrance to the desulfurization active site is designed and these catalysts are used. In other words, how to design a desulfurization process using these catalysts is an important issue.
[0004]
Moreover, in the global economic situation including Japan in recent years, there is an urgent need to design a catalyst or process that can carry out the above ultra-deep desulfurization at a lower cost.
[0005]
Under such circumstances, development of an ultra-deep desulfurization technology that significantly removes sulfur content in light oil is being emphasized.
As a technique for reducing the sulfur content in light oil, usually, the operating conditions of hydrodesulfurization, for example, the reaction temperature, the liquid space velocity, and the like are harsh.
However, when the reaction temperature is raised, carbonaceous matter is deposited on the catalyst and the activity of the catalyst is rapidly reduced.If the liquid space velocity is lowered, the desulfurization ability is improved, but the purification treatment capacity is lowered. Need to expand the scale of
Moreover, such severe operating conditions also have an adverse effect on properties such as hue and storage stability.
Therefore, the best way to achieve ultra-deep desulfurization of light oil without harsh operating conditions is to develop a catalyst with significantly superior desulfurization activity.
[0006]
The conventional desulfurization level (product oil sulfur content 0.2 to 0.05 mass%) can be easily achieved with the current desulfurization catalyst / desulfurization technology. 0.005% by mass or less) becomes abruptly difficult due to substances that cause steric hindrance such as 4,6-DMDBT.
[0007]
Therefore, in order to efficiently perform the desulfurization reaction in the deep desulfurization region, the desulfurization reaction of the substance having steric hindrance to these desulfurization active points is efficiently advanced.
1) increase the number of active points of the catalyst,
2) Increase desulfurization activity per active metal amount,
Therefore, it is necessary to prepare a fine chemical catalyst.
[0008]
Currently, industrially used desulfurization catalysts are CoO—MoO 3 / A1 2 O 3 catalyst and NiO—MoO 3 / A1 2 O 3 catalyst. Under the hydrotreating conditions of light oil, the CoO-MoO 3 / A1 2 O 3 catalyst exhibits a higher desulfurization activity than the NiO-MoO 3 / A1 2 O 3 catalyst, and is therefore often used as a desulfurization catalyst for light oil. Yes.
[0009]
OBJECT OF THE INVENTION
In view of the above points, an object of the present invention is to provide a method for producing a hydrotreating catalyst that can desulfurize hydrocarbon oil, particularly straight-run gas oil, to a sulfur content of 50 ppm or less.
Furthermore, the objective of this invention is providing the method of hydrotreating hydrocarbon oil, especially a light oil fraction with high efficiency using the catalyst manufactured by the said manufacturing method .
[0010]
SUMMARY OF THE INVENTION
That is, the method for producing the hydrotreating catalyst of the present invention includes any of alumina greater than 80% by mass and 99.5% by mass or less, and zeolite of 0.5% by mass or more and less than 20% by mass , boria, silica, zirconia. A first solution containing a Group 6 metal salt of the periodic table on a composite oxide support having at least one of the above, so that the Group 6 metal becomes 10 to 30% by mass in terms of catalyst and oxide. impregnating carried on, after the drying and baking, the periodic table group 8 metal salts, a second solution comprising a ethylene glycol, catalysts criteria, in terms of oxide, a group said 8 metal is 1 to 15 It is characterized in that it is impregnated and supported so as to be in mass% and dried .
According to this production method, highly active desulfurization active sites (Co—Mo—S phase, Ni—Mo—S phase, etc.) can be precisely controlled. As a result, the desulfurization reaction proceeds efficiently and the reaction conditions are severe. Therefore, it is possible to obtain a high-performance desulfurization catalyst that can easily achieve an ultra-deep desulfurization reaction.
Further, the hydrotreating method of the present invention comprises a sulfur content in the presence of the catalyst produced by the above production method , at a hydrogen partial pressure of 3 to 8 MPa, 300 to 420 ° C., a liquid space velocity of 0.3 to 5 hr −1. It is characterized by carrying out a catalytic reaction of a gas oil fraction containing.
[0011]
As the target oil of the present invention, for example, light oil fractions such as straight-run gas oil, catalytic cracking gas oil, pyrolysis gas oil, hydrotreated gas oil, desulfurized gas oil, and vacuum distilled gas oil (VGO) are suitable.
Typical examples of properties of these feedstock oils include those having a boiling range of 150 to 450 ° C. and a sulfur content of 5% by mass or less.
[0012]
Various aluminas such as α-alumina, β-alumina, γ-alumina, and δ-alumina can be used as the alumina in the composite oxide support of the catalyst of the present invention, but the alumina is porous and has a high specific surface area. Of these, γ-alumina is suitable.
The purity of alumina is about 98% by mass or more, preferably about 99% by mass or more.
Examples of the impurities in alumina include SO 4 2− , Cl , Fe 2 O 3 , Na 2 O and the like. These impurities are desirably as small as possible, and the total amount of impurities is 2% by mass or less, preferably 1 It is preferable that SO 4 2- <1.5% by mass, , Fe 2 O 3 , Na 2 O <0.1% by mass in terms of components.
[0013]
The component to be combined with alumina is at least one of zeolite, boria, silica, and zirconia.
Among these, zeolite has an average particle size of about 2.5 to 6 μm, preferably about 3 to 5 μm, more preferably about 3 to 4 μm as measured by an electron micrograph.
Further, the ratio of the zeolite having a particle diameter of 6 μm or less to the whole zeolite particles is about 70 to 98%, preferably about 75 to 98%, more preferably about 80 to 98%.
Such characteristics of zeolite are essential for precise control of the pore diameter in order to facilitate the diffusion of the difficult-to-desulfurize substance into the pores. For example, the average particle size is too large or the large particle size is large. In the process of preparing a composite oxide support, the shrinkage rate of alumina and zeolite during heating and firing differs due to differences in the amount of adsorbed water and crystallinity between the alumina and zeolite during the preparation of the composite oxide support. A relatively large meso or macropore is formed as a hole.
These large pores not only reduce the surface area, but also easily disperse the metal components that become catalyst poisons when processing residual oil, resulting in desulfurization, denitrification and decomposition. Reduce activity.
[0014]
In the present invention, as the zeolite, faujasite X type zeolite, faujasite Y type zeolite, β zeolite, mordenite type zeolite, ZSM type zeolite (ZSM-4,5,8,11,12,20,21,23) 34, 35, 38, 46 etc.), MCM-41, MCM-22, MCM-48, SSZ-33, UTD-1, CIT-5, VPI-5, TS-1, TS-2 etc. Y-type zeolite, stabilized Y zeolite, and β zeolite are particularly preferable.
Further, the zeolite is preferably a proton type.
As the above boria, silica, and zirconia, those generally used as a carrier component of this type of catalyst can be used.
[0015]
Said zeolite, a boria, a silica, and a zirconia can be used individually or in combination of 2 types or more, respectively.
The compounding amount of these components is about 0.5% by mass or more and less than 20% by mass with respect to more than about 80% by mass of alumina and 99.5% by mass or less in the composite oxide support, preferably about 85 to 85% by mass of alumina. It is about 0.5-10 mass% with respect to 99.5 mass%, More preferably, it is about 0.5-10 mass% with respect to about 90-99.5 mass% of alumina.
If these components are too little or too much, the control of the pore diameter of the composite oxide support will be insufficient, and if it is too little, the Bronsted acid point and Lewis acid point of the composite oxide support will not be sufficiently imparted. If the amount is too large, Mo cannot be highly dispersed.
[0016]
The specific surface area, pore volume, and average pore diameter of the composite oxide support are not particularly limited, but in order to obtain a catalyst having high hydrodesulfurization activity for light oil, the specific surface area is about 240 to 500 m 2 / g, Preferably about 300-450 m 2 / g, pore volume is about 0.55-0.9 ml / g, preferably about 0.65-0.8 ml / g, average pore diameter is about 60-120 mm, preferably about 65-90 mm is suitable.
[0017]
When the specific surface area is less than about 240 m 2 / g, the dispersibility of the active metal is deteriorated, so that the catalyst has a low desulfurization activity.
When the specific surface area is larger than about 500 m 2 / g, the pore diameter becomes extremely small, so that the catalyst diameter also becomes small. When the pore diameter of the catalyst is small, the diffusion of sulfur compounds into the catalyst pores becomes insufficient, and the desulfurization activity is lowered.
[0018]
When the pore volume is less than about 0.55 ml / g, a small amount of solvent enters the pore volume when the catalyst is prepared by the usual impregnation method. When the amount of the solvent is small, the solubility of the active metal compound is deteriorated, the dispersibility of the metal is lowered, and a low activity catalyst is obtained. In order to increase the solubility of the active metal compound, there is a method in which a large amount of acid such as nitric acid is added. However, if too much is added, the surface area of the support is reduced, which is the main cause of desulfurization performance deterioration.
When the pore volume is larger than about 0.9 ml / g, the specific surface area becomes extremely small, the dispersibility of the active metal is deteriorated, and the catalyst has a low desulfurization activity.
[0019]
When the average pore size is less than about 60 mm, the pore size of the catalyst supporting the active metal is also small. When the pore diameter of the catalyst is small, the diffusion of the sulfur compound into the catalyst pores becomes insufficient, and the desulfurization activity decreases.
When the average pore diameter is larger than about 120 mm, the specific surface area becomes small. When the specific surface area is small, the dispersibility of the active metal is deteriorated and the catalyst has a low desulfurization activity.
[0020]
Examples of the Group 6 metal of the periodic table supported on the composite oxide carrier include molybdenum and tungsten, and preferably molybdenum.
Examples of Group 6 metal salts of the periodic table include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like.
Examples of the Group 8 metal of the periodic table include cobalt and nickel.
Examples of Group 8 metal salts of the periodic table include carbonates, acetates, nitrates, sulfates and chlorides, with carbonates and acetates being preferred, and carbonates being more preferred.
[0021]
The solvent for dissolving each of the above supported components is not particularly limited in the first solution and the second solution, and various solvents can be used, for example, water, alcohols, ketones, Aromatics etc. are mentioned, Preferably they are water, acetone, benzene, toluene, xylene, tetrahydrofuran, dioxane, etc., Especially preferably, it is water.
[0022]
In the first solution, phosphorus can be added when the group 6 metal compound of the periodic table has insufficient solubility in a solvent.
Examples of the phosphorus source include various phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, polyphosphoric acid, and orthophosphoric acid is particularly preferable.
[0023]
In the first solution, the content of the Group 6 metal in the periodic table dissolved in the solvent is about 10 to 30% by mass, preferably about 16 to 28% by mass in terms of catalyst and oxide. It is.
If the Group 6 metal of the periodic table is less than about 10% by mass, it is not sufficient to develop the effect due to the Group 6 metal of the Periodic Table, and if it exceeds about 30% by mass, the Group 6 of the Periodic Table is used. Not only the metal dispersibility is deteriorated due to the metal aggregation, but also the catalytic activity is not improved due to exceeding the limit of the active metal content to be efficiently dispersed, or the catalyst surface area is greatly reduced.
[0024]
In the present invention, in the second solution, it is important to use an organic compound having at least one of a hydroxyl group, an ether bond, a carboxyl group, and an amino group together with the Group 8 metal compound of the periodic table. It is.
These organic compounds include citric acid, malic acid, tartaric acid, malonic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriamine, diammoniumethylenediaminetetraacetic acid, tris (2-aminoethyl) amine, triethylenetetramine, ethylene glycol, propylene Glycol, diethylene glycol, trimethylene glycol, triethylene glycol, hexylene glycol, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, glycerin, trimethylolethane, trimethylolpropane, molecular weight 200-1000 polyethylene glycol, polyp Propylene glycol, methoxy acetic acid, ethylene carbonate.
The amount of the organic compound used is not particularly limited, but in general, [organic compound] / [Group 6 metal of the periodic table + Group 8 metal of the periodic table] is about 0.02 to 2 in terms of molar ratio. It is suitable to be.
[0025]
In the second solution, the content of the Group 8 metal in the periodic table dissolved in the solvent is about 1 to 15% by mass, preferably about 3 to 8% by mass in terms of catalyst and oxide. It is.
When the group 8 metal of the periodic table is less than about 1% by mass, the active sites belonging to the group 8 metal of the periodic table cannot be obtained sufficiently, and when it exceeds about 15% by mass, the group 8 metal compound of the periodic table The agglomeration of the active metal not only deteriorates the dispersibility of the active metal, but is also an inert precursor such as Co 3 O 4 species, NiO species, etc. (Co 9 S 8 species, Ni 3 S 2 after catalyst sulfidation and during hydrotreatment) The present invention produces Co spinel species, Ni spinel species, and the like incorporated in the lattice of the carrier, so that the catalytic ability is not improved and the catalytic ability is decreased.
[0026]
In the above-described contents of the periodic table group 8 metal and the periodic table group 6 metal, the optimum mass ratio of the active group periodic group 8 metal to the periodic table group 6 metal is the oxide equivalent. The value of [Group 8 metal of the periodic table] / [Group 8 metal of the periodic table + Group 6 metal of the periodic table] is about 0.1 to 0.25.
When the mass ratio of the Group 8 metal of the periodic table to the Group 6 metal of the periodic table is less than about 0.1 in the above value, a Co—Mo—S phase, a Ni—Mo—S phase, etc. that are considered as active sites for desulfurization Cannot be produced sufficiently and the desulfurization activity is not improved. If it is greater than about 0.25, useless Co species and Ni species (Co 9 S 8 species, Ni 3 S 2 species, Co spinel species and Ni spinel species incorporated into the lattice of the support) that are not involved in the activity are present. And the catalytic activity is reduced.
[0027]
If the amount of the solvent used is too small for both the first solution and the second solution, the support cannot be sufficiently impregnated. If the amount is too large, the dissolved active metal will not be impregnated on the support. Since it adheres to the edge of the container and the desired carrying amount cannot be obtained, it is usually about 50 to 150 g with respect to about 100 g of the carrier in each of the first solution and the second solution, Preferably it is about 50-90g.
[0028]
In the present invention, the above components are dissolved in the solvent to prepare first and second solutions for impregnation. The temperature at this time is about 0 ° C. for both the first and second solutions. If the temperature is within this range, the above components can be dissolved well in the solvent.
[0029]
The first solution and the second solution for impregnation thus prepared are impregnated into the above-mentioned carrier. At this time, first, the first solution is impregnated and dried or calcined or not calcined. Then, the second solution is impregnated and dried. By this operation, each component in the solution is supported on the carrier.
The impregnation conditions may be various conditions for both the first solution and the second solution. Usually, the temperature is more than about 0 ° C. and less than about 100 ° C., preferably about 10 to about 50 ° C., More preferably, about 15 to 30 ° C. is suitable, and the impregnation time is about 15 minutes to 5 hours, preferably about 20 minutes to 4 hours, more preferably about 30 minutes to 3.5 hours. If the temperature of both the first solution and the second solution is too high, drying occurs during the impregnation and the degree of dispersion is biased. Both the first and second solutions are preferably stirred during the impregnation.
[0030]
Drying after the first solution impregnation can be performed by various drying methods such as air drying, hot air drying, heat drying, freeze drying and the like.
Moreover, when firing after drying, it can be performed by a firing method using various apparatuses such as a rotary kiln, electric furnace, muffle furnace, alundum bath, electric tubular furnace, etc., but usually in a rotary kiln or electric furnace. It is preferable to carry out in an air flow or in a muffle furnace.
[0031]
The firing temperature may be appropriately selected and determined according to these firing methods. However, when firing in an air furnace or in a muffle furnace, the firing temperature is about 200 to 800 ° C., preferably about 300 to 700 ° C. More preferably, about 450 to 650 ° C is suitable. If the calcination temperature is too low, the active metal is not sufficiently supported, and poisonous substances remain. If it is too high, sintering will occur. The baking time is about 2 to 10 hours, preferably about 3 to 5 hours.
[0032]
After the impregnation of the second solution, the moisture is removed to some extent (so that the LOI << Loss on ignition >> is about 50% or less) at room temperature to about 80 ° C, in a nitrogen stream, in an air stream or in a vacuum, and then dried Dry in an air stream at about 80 to 200 ° C. for about 10 minutes to 30 hours.
[0033]
The catalyst obtained by the production method according to the present invention as described above preferably has the following values for the specific surface area, pore volume and average pore diameter in order to increase the hydrodesulfurization activity for light oil.
The specific surface area is about 220 to 300 m 2 / g, preferably about 230 to 270 m 2 / g as measured by a nitrogen adsorption method (BET method). If it is less than about 220 m 2 / g, the dispersibility of the active metal is deteriorated, resulting in a catalyst with low desulfurization activity. If it is more than about 300 m 2 / g, the pore diameter becomes extremely small, so the pore diameter of the catalyst also becomes small. In the hydrotreatment, the sulfur compound is not sufficiently diffused into the catalyst pores, and the desulfurization activity is reduced.
[0034]
The pore volume is about 0.4 to 0.6 m1 / g, preferably about 0.45 to 0.55 m1 / g, measured by mercury porosimetry. If it is less than about 0.4 m1 / g, the diffusion of sulfur compounds in the catalyst pores will be insufficient during the hydrotreatment, resulting in insufficient desulfurization activity. The specific surface area becomes extremely small, the dispersibility of the active metal is lowered, and the catalyst has a low desulfurization activity.
[0035]
The average pore diameter is about 65 to 95 mm, preferably about 70 to 90 mm in terms of pore distribution measured by mercury porosimetry. If it is less than about 65 mm, the reactants are difficult to diffuse into the pores, so the desulfurization reaction does not proceed efficiently. If it is greater than about 95 mm, the diffusibility in the pores is good, but the surface area in the pores decreases Therefore, the effective specific surface area of the catalyst is reduced and the activity is lowered.
In order to increase the effective number of pores satisfying the above-mentioned pore conditions, the pore size distribution of the catalyst, that is, the proportion of pores having an average pore size of about ± 15 mm is preferably about 75% or more, preferably Is about 80% or more.
Moreover, the pore distribution is preferably monomodal. If the pore size distribution of the catalyst is not sharp, pores that do not participate in activity increase and desulfurization activity decreases.
[0036]
The catalyst shape is not particularly limited, and various shapes usually used for this type of catalyst, for example, a cylindrical shape, a trilobal type, a four-leaf type, and the like can be adopted. The size of the catalyst is usually preferably about 1 to 2 mm in diameter and about 2 to 5 mm in length.
The mechanical strength of the catalyst is preferably about 21 bs / mm or more in terms of side surface breaking strength (SCS << Side crash strength >>). If the SCS is smaller than this, the catalyst charged in the reactor is destroyed, a differential pressure is generated in the reactor, and the hydrotreating operation cannot be continued.
The close-packed bulk density (CBD) of the catalyst is preferably about 0.6 to 1.2.
[0037]
The distribution state of the active metal in the catalyst is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.
[0038]
The hydrotreating method of the present invention comprises a gas oil fraction containing the above catalyst and a sulfur compound under conditions of a hydrogen partial pressure of about 3 to 8 MPa, about 300 to 420 ° C., and a liquid space velocity of about 0.3 to 5 hr −1. Is desulfurized by bringing the sulfur compounds into contact with each other to reduce sulfur compounds including hardly desulfurizable sulfur compounds in the gas oil fraction.
The sulfur content of the product oil obtained by the method of the present invention is 50 ppm or less, and the sulfur content can be reduced as compared with the prior art.
[0039]
In order to carry out the hydrotreating method of the present invention on a commercial scale, a fixed bed, moving bed or fluidized bed type catalyst layer of the catalyst of the present invention is formed in the reactor, and the feedstock is introduced into the reactor. The hydrogenation reaction may be performed under the above conditions.
Most commonly, a fixed bed catalyst layer is formed in the reactor, feedstock is introduced into the top of the reactor, the fixed bed is passed from bottom to top, and the product is drained from the top of the reactor. Is.
[0040]
The hydrotreating method of the present invention may be a single-stage hydrotreating method performed by filling the catalyst of the present invention into a single reactor, or multistage continuous hydrogen performed by filling several reactors. It may be a processing method.
[0041]
Note that the catalyst of the present invention is activated by sulfiding in a reactor before use (that is, prior to performing the hydrotreatment method of the present invention).
This sulfidation treatment is conducted at about 200 to 400 ° C., preferably about 250 to 350 ° C. under a hydrogen atmosphere at normal pressure or higher, and a petroleum distillate containing sulfur compounds, dimethyl disulfide or disulfide. It is performed using a material added with a sulfurizing agent such as carbon or hydrogen sulfide.
[0042]
【Example】
Example 1
Silica and alumina hydrate are kneaded, extruded, and then fired at 600 ° C. for 2 hours to form a columnar shaped silica-alumina composite carrier (silica / alumina mass ratio = 1/99, fine, 1/16 inch diameter). Pore volume 0.70 m1 / g, specific surface area 359 m 2 / g, average pore diameter 70 mm).
A solution for impregnation was prepared by dissolving 9.81 g of ammonium paramolybdate in 19.6 g of ion-exchanged water.
In an eggplant-shaped flask, 30.0 g of the above silica-alumina composite carrier was added, and the entire amount of the above impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 3 hours.
Then, it air-dried in nitrogen stream, dried at 120 degreeC in the muffle furnace for about 1 hour, and baked at 500 degreeC for 4 hours.
On the other hand, a solution for impregnation was prepared by dissolving 7.77 g of cobalt nitrate hexahydrate and 2.49 g of ethylene glycol in 19.9 g of ion-exchanged water.
The fired product was put into an eggplant-shaped flask, and the whole amount of the impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 3 hours.
Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 100 ° C. for about 24 hours to obtain Catalyst A.
[0043]
Example 2
A SHY zeolite powder having an SiO 2 / A1 2 O 3 molar ratio of 6 (average particle size of 3.5 μm, particle size of 6 μm or less is 87% of all zeolite particles) and alumina hydrate are kneaded, and after extrusion molding, A zeolite-alumina composite carrier of a columnar molded product having a diameter of 1/16 inch and calcined at 600 ° C. for 2 hours (zeolite / alumina mass ratio: 7/93, pore volume 0.69 m1 / g, specific surface area 374 m 2 / g, An average pore diameter of 67 mm) was obtained.
A solution for impregnation was prepared by dissolving 11.4 g of molybdophosphoric acid and 1.17 g of phosphoric acid in 22.2 g of ion-exchanged water.
In an eggplant-shaped flask, 30.0 g of the above zeolite-alumina composite carrier was added, and the entire amount of the above impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 3 hours.
Then, it air-dried in nitrogen stream, dried at 120 degreeC in the muffle furnace for about 1 hour, and baked at 500 degreeC for 4 hours.
On the other hand, an impregnation solution was prepared by dissolving 8.09 g of cobalt nitrate hexahydrate and 2.58 g of ethylene glycol in 18.8 g of ion-exchanged water.
The fired product was put into an eggplant-shaped flask, and the whole amount of the impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 3 hours.
Then, it air-dried in nitrogen stream, and it was made to dry at 100 degreeC in a muffle furnace for about 24 hours, and the catalyst B was obtained.
[0044]
Example 3
Boria and alumina hydrate are kneaded, extruded, fired at 600 ° C. for 2 hours, and a boria-alumina composite support of a columnar molded product having a diameter of 1/16 inch (boria / alumina mass ratio = 2/98, fine Pore volume 0.71 m1 / g, specific surface area 363 m 2 / g, average pore diameter 72 mm).
The same operation as in Example 1 was performed on 30.0 g of this boria-alumina composite carrier, whereby catalyst C was obtained.
[0045]
Example 4
Zirconia and alumina hydrate are kneaded, extruded and then fired at 600 ° C. for 2 hours to form a columnar shaped zirconia-alumina composite carrier (zirconia / alumina mass ratio = 2/98, finer) of 1/16 inch diameter. The pore volume was 0.69 m1 / g, the specific surface area was 348 m 2 / g, and the average pore diameter was 70 mm.
The same operation as in Example 1 was performed on 30.0 g of this zirconia-alumina composite carrier, whereby catalyst D was obtained.
[0046]
Example 5
In Example 1, drying and calcination after impregnation with ammonium paramolybdate were carried out in the same manner as in Example 1 except that calcination was omitted, and Catalyst E was obtained.
[0047]
Comparative Example 1
A solution for impregnation was prepared by dissolving 3.31 g of cobalt carbonate, 11.41 g of molybdophosphoric acid and 1.17 g of orthophosphoric acid in 21.6 g of ion-exchanged water.
In an eggplant-shaped flask, 30.0 g of γ-alumina carrier (pore volume 0.69 m1 / g, specific surface area 364 m 2 / g, average pore diameter 64 mm) was added, and the total amount of the above impregnation solution was added thereto. It was added with a pipette and soaked at about 25 ° C. for 1 hour.
Then, it air-dried in nitrogen stream, it was made to dry at 120 degreeC in a muffle furnace for about 1 hour, and it baked at 500 degreeC for 4 hours, and the catalyst a was obtained.
[0048]
Table 1 shows the elemental analysis values and physical property values of the catalysts obtained in the above Examples and Comparative Examples.
The method and analytical equipment used for the analysis of the catalyst are shown below.
[0049]
[1] Analysis of physical properties / specific surface area was measured by the BET method by nitrogen adsorption.
As the nitrogen adsorption apparatus, a surface area measuring apparatus (Bell Soap 28) manufactured by Nippon Bell Co., Ltd. was used.
-The pore volume, average pore diameter, and pore distribution were measured by mercury porosimetry.
As the mercury intrusion apparatus, a porosimeter (MICROMERITIC AUTO-PORE 9200: manufactured by Shimadzu Corporation) was used.
[0050]
[Table 1]
Figure 0004545328
Figure 0004545328
[0051]
[Hydrolysis reaction of straight-run gas oil]
Using the catalysts prepared in the above Examples and Comparative Examples, hydrogenation of straight run gas oil having the following properties was performed in the following manner.
First, the catalyst was filled into a high-pressure flow reactor to form a fixed bed catalyst layer, and pretreated under the following conditions.
Next, a mixed fluid of the raw material oil heated to the reaction temperature and the hydrogen-containing gas is introduced from the upper part of the reactor, and the hydrogenation reaction proceeds under the following conditions, and the mixed fluid of the product oil and the gas is reacted. The oil was discharged from the lower part of the apparatus, and the produced oil was separated by a gas-liquid separator.
[0052]
Catalyst pretreatment conditions:
Pressure; normal pressure atmosphere; temperature under hydrogen sulfide (5%) / hydrogen gas flow; step temperature increase of 150 ° C. for 0.5 hr and then 350 ° C. for 1 hr
[Table 2]
Hydrogenation reaction conditions:
Reaction temperature: 360, 365 ° C
Pressure (hydrogen partial pressure); 4.9 Mpa
Liquid space velocity: 1.0 hr −1
Hydrogen / oil ratio; 250 m 3 (normal) / kL
[0054]
[Table 3]
Raw oil properties:
Oil type: Specific gravity of Middle East straight gas oil (15/4 ° C); 0.8567
Distillation properties: initial boiling point 203.0 ° C, 50% point 315.5 ° C, 90% point 371.0 ° C, end point 389.0 ° C
Sulfur component: 1.364% by mass
Nitrogen component: 150 ppm
Kinematic viscosity (@ 30 ° C); 6.608 cSt
Pour point: 5.0 ° C
Cloudy point: 6.0 ℃
Cetane index; 57.1
Saybolt color -10
ASTM color; 0.5
Aniline point: 74.3 ° C
[0055]
The reaction results were analyzed by the following method.
The reactor was operated at 360 ° C. and 365 ° C., and when 6 days had passed, the product oil was collected and analyzed for its properties.
[1] Desulfurization rate (HDS) (%)
By converting the sulfur content in the raw material into hydrogen sulfide by a desulfurization reaction, the ratio of the sulfur content that disappeared from the raw material oil was defined as the desulfurization rate, and was calculated from the sulfur analysis values of the raw material oil and the product oil by the following formula.
[2] Desulfurization reaction rate constant (Ks):
The desulfurization reaction rate constant (Ks) is defined as a constant in the reaction rate equation that obtains the 1.3th order reaction order with respect to the reduction amount of the sulfur content (Sp) of the product oil.
The higher the reaction rate constant, the better the catalytic activity. These results are shown in Table 4.
[0056]
[Expression 1]
Desulfurization rate (%) = [(Sf−Sp) / Sf] × 100
Desulfurization reaction rate constant = [1 / (Sp) 1.3-1 -1 / (Sf) 1.3-1 ] × (LHSV)
In formula, Sf: Sulfur content (mass%) in raw material oil
Sp: Sulfur content (mass%) in reaction product oil
LHSV: Liquid space velocity (hr −1 )
Specific activity (%) =
Each desulfurization reaction rate constant / desulfurization reaction rate constant of comparative catalyst a × 100
[0057]
[Table 4]
Figure 0004545328
[0058]
As can be seen from Table 4, the ultra-deep desulfurization region can be easily cleared by using the catalyst according to the production method of the present invention.
[0059]
As is clear from the above results, the catalyst produced according to the present invention is a desulfurization reaction of light oil in the ultra-deep desulfurization region under conditions such as hydrogen partial pressure and reaction temperature that are almost the same as those of conventional light oil hydrotreatment. On the other hand, it can be seen that it has extremely excellent activity.
[0060]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
(1) Since it has a high desulfurization activity, the sulfur content in the light oil can be greatly reduced.
(2) Since the reaction conditions can be made substantially the same as those in the conventional hydrotreatment, the conventional apparatus can be diverted without significant modification.
(3) A light oil base material with a low sulfur content can be easily supplied.

Claims (2)

80質量%より多く99.5質量%以下のアルミナと、0.5質量%以上20質量%未満のゼオライト、ボリア、シリカ、ジルコニアの何れかを少なくとも1つ有する複合酸化物担体に、周期律表第6族金属塩を含む第1の溶液を、触媒基準、酸化物換算で、該第6族金属が10〜30質量%となるように含浸担持させ、乾燥の後、焼成し、周期律表第8族金属塩と、エチレングリコールとを含む第2の溶液を、触媒基準、酸化物換算で、該第8族金属が1〜15質量%となるように含浸担持させ、乾燥させることを特徴とする炭化水素油用水素化脱硫触媒の製造方法。The composite oxide support having at least one of alumina greater than 80% by mass and 99.5% by mass or less and 0.5% by mass or more and less than 20% by mass of zeolite, boria, silica, zirconia, The first solution containing the Group 6 metal salt is impregnated and supported so that the Group 6 metal is 10 to 30 % by mass in terms of catalyst and oxide, dried, calcined, and periodic table. A second solution containing a Group 8 metal salt and ethylene glycol is impregnated and supported so that the Group 8 metal is 1 to 15 % by mass in terms of catalyst and oxide, and dried. A method for producing a hydrodesulfurization catalyst for hydrocarbon oil. 請求項1に記載の炭化水素油用水素化脱硫触媒の製造方法により製造された触媒の存在下、水素分圧3〜8MPa、300〜420℃、液空間速度0.3〜5hr−1で、硫黄分を含む軽油留分の接触反応を行うことを特徴とする炭化水素油の水素化処理方法。In the presence of a catalyst produced by the method for producing a hydrodesulfurization catalyst for hydrocarbon oils according to claim 1 , at a hydrogen partial pressure of 3-8 MPa, 300-420 ° C., and a liquid space velocity of 0.3-5 hr −1 , A hydrotreating method for hydrocarbon oil, characterized by carrying out a catalytic reaction of a gas oil fraction containing sulfur.
JP2001037927A 2001-02-15 2001-02-15 Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil Expired - Fee Related JP4545328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037927A JP4545328B2 (en) 2001-02-15 2001-02-15 Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037927A JP4545328B2 (en) 2001-02-15 2001-02-15 Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2002239385A JP2002239385A (en) 2002-08-27
JP4545328B2 true JP4545328B2 (en) 2010-09-15

Family

ID=18900994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037927A Expired - Fee Related JP4545328B2 (en) 2001-02-15 2001-02-15 Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP4545328B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852863B1 (en) * 2003-03-24 2005-05-06 Inst Francais Du Petrole CATALYST AND USE THEREOF FOR IMPROVING THE FLOW POINT OF HYDROCARBON LOADS
FR2852865B1 (en) * 2003-03-24 2007-02-23 Inst Francais Du Petrole CATALYST AND USE THEREOF FOR IMPROVING THE FLOW POINT OF HYDROCARBON LOADS
JP2004290728A (en) * 2003-03-25 2004-10-21 Cosmo Oil Co Ltd Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JP4521172B2 (en) * 2003-09-26 2010-08-11 出光興産株式会社 Desulfurization agent and desulfurization method using the same
KR100800741B1 (en) * 2003-10-03 2008-02-01 알베마를 네덜란드 비.브이. Process for activating a hydrotreating catalyst
CN100448538C (en) * 2004-10-29 2009-01-07 中国石油化工股份有限公司 Distillate hydrogenation catalyst and its preparation method
FR2880823B1 (en) * 2005-01-20 2008-02-22 Total France Sa HYDROTREATING CATALYST, PROCESS FOR PREPARING THE SAME AND USE THEREOF
FR2880822B1 (en) * 2005-01-20 2007-05-11 Total France Sa HYDROTREATING CATALYST, PROCESS FOR PREPARING THE SAME AND USE THEREOF
JP5002136B2 (en) * 2005-06-17 2012-08-15 千代田化工建設株式会社 Catalyst composition for hydrotreating light hydrocarbon oil, process for producing the same, and hydrorefining process for light hydrocarbon oil
JP5060044B2 (en) * 2005-12-08 2012-10-31 日本ケッチェン株式会社 Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
WO2012035004A2 (en) * 2010-09-17 2012-03-22 Shell Internationale Research Maatschappij B.V. Hydrocracking catalyst composition
CN116328851A (en) * 2021-12-23 2023-06-27 中国石油天然气股份有限公司 Hydrogenation catalyst carrier containing B acid and preparation and application thereof
CN114409520B (en) * 2022-02-11 2023-05-30 万华化学集团股份有限公司 Method for preparing trimethylolpropane by hydrogenation with high condensation yield

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275143A (en) * 1990-03-26 1991-12-05 Cosmo Sogo Kenkyusho:Kk Catalyst composition for hydrogen-processing hydrocarbon oil and hydrodesulfurization metho using the same
JPH06198193A (en) * 1992-12-28 1994-07-19 Sumitomo Metal Mining Co Ltd Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and its production
JPH07136523A (en) * 1993-11-12 1995-05-30 Japan Energy Corp Production of hydrogenation catalyst
JP2000279816A (en) * 1999-03-12 2000-10-10 Agip Petroli Spa Catalyst composition for modifying quality of hydrocarbon mixture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275143A (en) * 1990-03-26 1991-12-05 Cosmo Sogo Kenkyusho:Kk Catalyst composition for hydrogen-processing hydrocarbon oil and hydrodesulfurization metho using the same
JPH06198193A (en) * 1992-12-28 1994-07-19 Sumitomo Metal Mining Co Ltd Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and its production
JPH07136523A (en) * 1993-11-12 1995-05-30 Japan Energy Corp Production of hydrogenation catalyst
JP2000279816A (en) * 1999-03-12 2000-10-10 Agip Petroli Spa Catalyst composition for modifying quality of hydrocarbon mixture

Also Published As

Publication number Publication date
JP2002239385A (en) 2002-08-27

Similar Documents

Publication Publication Date Title
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP5796871B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP5928970B2 (en) Gas oil hydrodesulfurization catalyst, hydrodesulfurization catalyst production method, and gas oil hydrotreating method
JP4545328B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP5815321B2 (en) Hydrocarbon oil hydrotreating catalyst, hydrocarbon oil hydrotreating catalyst production method, and hydrocarbon oil hydrotreating method
JP5013658B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP3553429B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4480120B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
JP4916370B2 (en) Process for hydrotreating diesel oil
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
TWI611015B (en) Hydrodesufurization catalyst for hydrocarbon oil
JP5337978B2 (en) Hydrotreating catalyst and hydrotreating method of vacuum gas oil
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP2001062304A (en) Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil
JP2014111233A (en) Hydrodesulfurization catalyst of hydrocarbon oil

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070827

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees