JP2014111233A - Hydrodesulfurization catalyst of hydrocarbon oil - Google Patents

Hydrodesulfurization catalyst of hydrocarbon oil Download PDF

Info

Publication number
JP2014111233A
JP2014111233A JP2012266114A JP2012266114A JP2014111233A JP 2014111233 A JP2014111233 A JP 2014111233A JP 2012266114 A JP2012266114 A JP 2012266114A JP 2012266114 A JP2012266114 A JP 2012266114A JP 2014111233 A JP2014111233 A JP 2014111233A
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
mass
desulfurization
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012266114A
Other languages
Japanese (ja)
Inventor
Nobumasa Nakajima
伸昌 中嶋
Yuji Saka
祐司 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2012266114A priority Critical patent/JP2014111233A/en
Priority to PH12013000353A priority patent/PH12013000353B1/en
Priority to TW102144020A priority patent/TWI611015B/en
Publication of JP2014111233A publication Critical patent/JP2014111233A/en
Priority to MYPI2013702325A priority patent/MY185895A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst capable of conducting a hydrogenation treatment with a prescribed desulfurization rate under a relatively moderate desulfurization condition to a wide range of hydrocarbon oils.SOLUTION: There is provided a hydrodesulfurization catalyst of hydrocarbon oil, carrying cobalt and the like on alumina of 80 to 99 mass% and HY zeolite of 1 to 20 mass% and containing cobalt of 3 to 6 mass%, molybdenum of 16 to 24 mass% and phosphorus of 0.8 to 4.5 mass% in a catalyst basis and in terms of oxides, and having a specific surface area of 210 to 280 m/g, a pore volume of 0.3 to 0.6 ml/g, an average pore diameter in a pore distribution of 75 to 95 Å, the pore volume in a range of the average pore diameter being ±15 Å of at least 75% of the total pore volume, the HY zeolite having (a) SiO/AlO(molar ratio) of 3 to 10, (b) a crystal lattice constant of 2.435 to 2.465 nm, (c) a mole ratio to all Al of Al in the zeolite skeleton of 0.4 to 1, and (d) a crystallite diameter of 30 to 100 nm.

Description

本発明は、炭化水素油の水素化脱硫触媒に関する。より具体的には、灯油、軽油、減圧軽油などの炭化水素油中の硫黄分を、比較的温和な条件で、長期間にわたって低減させることができる優れた活性を有する水素化脱硫触媒に関する。   The present invention relates to a hydrodesulfurization catalyst for hydrocarbon oil. More specifically, the present invention relates to a hydrodesulfurization catalyst having an excellent activity capable of reducing the sulfur content in hydrocarbon oils such as kerosene, light oil and vacuum gas oil under a relatively mild condition over a long period of time.

原油の蒸留や分解によって得られる炭化水素油留分は、一般に、硫黄化合物を含み、これらの油を燃料として使用する場合には、この硫黄化合物に起因する硫黄酸化物等の大気汚染物質が大気中に放出される。このため、環境問題の意識が高まる中、大気汚染に対する規制が厳しくなりつつあり、燃料油に含まれる硫黄分の低減が強く要望されている。   The hydrocarbon oil fraction obtained by distillation or cracking of crude oil generally contains sulfur compounds, and when these oils are used as fuel, air pollutants such as sulfur oxides resulting from the sulfur compounds are released into the atmosphere. Released into. For this reason, with increasing awareness of environmental problems, regulations on air pollution are becoming stricter, and there is a strong demand for reducing the sulfur content in fuel oil.

この燃料油中に含まれる硫黄化合物の低減技術としては、通常、脱硫活性を有する触媒を用いて水素化脱硫装置で原料の炭化水素油を水素化脱硫処理することが行われており、各種の脱硫触媒が提案されている。例えば、脱硫触媒として、アルミナ等の無機酸化物担体に、モリブデンやタングステン、コバルトやニッケル等の水素化活性金属成分を担持させたものが用いられており、更なる触媒性能の向上を図るため、担体の改良、担持成分の検討、担持成分の担持方法などが検討されている(例えば、特許文献1参照。)。   As a technology for reducing sulfur compounds contained in this fuel oil, hydrodesulfurization treatment of a hydrocarbon oil as a raw material is usually carried out in a hydrodesulfurization apparatus using a catalyst having desulfurization activity. Desulfurization catalysts have been proposed. For example, as a desulfurization catalyst, an inorganic oxide carrier such as alumina that is supported by a hydrogenation active metal component such as molybdenum, tungsten, cobalt, nickel, etc. is used, and in order to further improve the catalyst performance, Improvement of the carrier, examination of the supporting component, and a supporting method of the supporting component have been studied (for example, see Patent Document 1).

従来の脱硫レベル(生成油硫黄分0.2〜0.05質量%)程度であれば、現在の脱硫技術で、容易に達成することができるが、硫黄分がより低くなるまで(生成油硫黄分0.04質量%以下)脱硫することは、急激に困難になる。これは、4−メチルジベンゾチオフェン(4−MDBT)や4,6−ジメチルジベンゾチオフェン(4,6−DMDBT)のような、アルキル置換基の位置が硫黄原子の近傍にあるため触媒の脱硫活性点と接触する際に立体障害を起こす硫黄化合物が、脱硫を極めて困難にしているからである。   The conventional desulfurization level (produced oil sulfur content 0.2 to 0.05 mass%) can be easily achieved with the current desulfurization technology, but until the sulfur content becomes lower (produced oil sulfur Min. 0.04 mass% or less) Desulfurization becomes abruptly difficult. This is because the position of the alkyl substituent such as 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) is in the vicinity of the sulfur atom, so the desulfurization active site of the catalyst This is because a sulfur compound that causes steric hindrance when contacting with the catalyst makes desulfurization extremely difficult.

このような状況下で、軽油中の硫黄分をより多く除去するための脱硫技術の開発が重要視されつつある。通常、軽油中の硫黄分の低減量を増大させるために、水素化脱硫の運転条件、例えば、反応温度、液空間速度等を過酷にすることが行われている。しかし、反応温度を上げると、触媒上に炭素質が析出して触媒の活性が急速に低下し、また液空間速度を下げると、脱硫能は向上するものの、精製処理能力が低下するため設備の規模を拡張する必要が生じる。しかも、このような過酷な運転条件は、色相や貯蔵安定性等の性状面への悪影響もある。従って、運転条件を過酷にせず、よりマイルドな条件下で、軽油の脱硫を達成し得る最も良い方法は、格段に優れた脱硫活性を有する触媒を開発することである。   Under such circumstances, development of a desulfurization technique for removing more sulfur content in light oil is being emphasized. Usually, in order to increase the reduction amount of the sulfur content in light oil, the operating conditions of hydrodesulfurization, for example, the reaction temperature, the liquid space velocity, and the like are harsh. However, when the reaction temperature is raised, carbonaceous matter is deposited on the catalyst and the activity of the catalyst is rapidly reduced.When the liquid space velocity is lowered, the desulfurization ability is improved, but the purification treatment capacity is lowered. There is a need to scale. Moreover, such severe operating conditions also have an adverse effect on properties such as hue and storage stability. Therefore, the best way to achieve gas oil desulfurization under milder conditions without harsh operating conditions is to develop a catalyst with significantly superior desulfurization activity.

一方、灯油や軽油などの使用状況によっては、所定の度合いの脱硫率を確保できる脱硫活性を有しつつ、より長期間にわたって使用することができる触媒、すなわち、より長寿命性を備えた触媒が必要となることがある。さらに、灯油や軽油、そして減圧軽油までも、同一の触媒を用いて脱硫することができれば、使用触媒や装置の管理をより効率的に行うことができる。   On the other hand, depending on the use situation such as kerosene and light oil, there is a catalyst that can be used for a longer period of time while having a desulfurization activity that can secure a predetermined degree of desulfurization rate, that is, a catalyst with longer life. It may be necessary. Furthermore, if the same catalyst can be used to desulfurize kerosene, light oil, and vacuum gas oil, it is possible to more efficiently manage the catalyst and equipment used.

特開2000−342976号公報JP 2000-342976 A

本発明は、所定の脱硫活性を有し、かつ長寿命であって、ナフサから減圧軽油までの広範囲な炭化水素油に対して、比較的温和な脱硫条件で水素化処理を行うことができる触媒を提供することを目的とする。   The present invention is a catalyst that has a predetermined desulfurization activity, has a long life, and is capable of hydrotreating a wide range of hydrocarbon oils from naphtha to vacuum gas oil under relatively mild desulfurization conditions. The purpose is to provide.

このような状況下、本発明者らは鋭意研究した結果、アルミナをベースにした担体に種々の物性を有するゼオライトを複合して水素化脱硫反応を行わせて検討を進めたところ、種々のゼオライトのなかで、特定の物性を有するHYゼオライトを用いることにより、他のゼオライトを用いた場合よりも、灯油、軽油や重質軽油など、種々の炭化水素油に対して水素化脱硫反応が効率的に進むとの新たな知見を得た。当該知見に基づき、さらに検討を進めた結果、アルミナをベースにした担体に、所定の物性を有するHYゼオライトを複合して、かつ、平均細孔径などの触媒の物性を制御することにより、前記目的を達成することができることを見出し、本発明を完成するに至った。   Under these circumstances, as a result of intensive studies, the present inventors have conducted a hydrodesulfurization reaction by combining a zeolite having various physical properties with an alumina-based support. Among these, hydrodesulfurization reaction is more efficient with respect to various hydrocarbon oils such as kerosene, light oil and heavy light oil by using HY zeolite having specific physical properties than when using other zeolites. I got new knowledge to go on. As a result of further investigation based on this knowledge, the above object is obtained by combining HY zeolite having predetermined physical properties with a support based on alumina and controlling the physical properties of the catalyst such as the average pore diameter. Has been found to be able to be achieved, and the present invention has been completed.

すなわち、本発明の第一の態様は、80〜99質量%のアルミナと、1〜20質量%のHYゼオライトとを含有する複合酸化物担体に、コバルト、モリブデン、及びリンを担持させた触媒であって、触媒基準、酸化物換算で、3〜6質量%のコバルト、16〜24質量%のモリブデン、及び0.8〜4.5質量%のリンを含み、窒素吸着法で測定した比表面積が210〜280m/g、水銀圧入法で測定した細孔容積が0.3〜0.6ml/g、水銀圧入法で測定した細孔分布での平均細孔径が75〜95Å、平均細孔直径±15Åの範囲の細孔容積が全細孔容積の少なくとも75%であり、前記HYゼオライトが、
(a)SiO/Al(モル比)が、3〜10、
(b)結晶格子定数が、2.435〜2.465nm、
(c)ゼオライト骨格内Alの全Alに対するモル比が、0.4〜1、及び
(d)結晶子径が、30〜100nm、
である、炭化水素油の水素化脱硫触媒である。
That is, the first aspect of the present invention is a catalyst in which cobalt, molybdenum and phosphorus are supported on a composite oxide carrier containing 80 to 99% by mass of alumina and 1 to 20% by mass of HY zeolite. The specific surface area measured by the nitrogen adsorption method containing 3 to 6% by mass of cobalt, 16 to 24% by mass of molybdenum, and 0.8 to 4.5% by mass of phosphorus in terms of catalyst and oxide. Of 10 to 280 m 2 / g, pore volume measured by mercury intrusion method is 0.3 to 0.6 ml / g, average pore diameter in pore distribution measured by mercury intrusion method is 75 to 95 mm, average pore The pore volume in the range of ± 15 mm in diameter is at least 75% of the total pore volume;
(A) SiO 2 / Al 2 O 3 ( molar ratio), 3-10,
(B) the crystal lattice constant is 2.435 to 2.465 nm,
(C) The molar ratio of Al in the zeolite framework to the total Al is 0.4 to 1, and (d) the crystallite diameter is 30 to 100 nm,
This is a hydrodesulfurization catalyst for hydrocarbon oil.

本発明に係る炭化水素油の水素化脱硫触媒は、高い脱硫活性を有するため、軽油留分中の硫黄分の含有率を、大幅に低減させることができる。
また、本発明に係る炭化水素油の水素化脱硫触媒は、反応条件を従来の水素化処理の際の反応条件とほぼ同じかより温和とすることができるため、従来の装置を大幅改造することなく、従来使用していた水素化脱硫触媒に転用できる。
さらに、本発明に係る炭化水素油の水素化脱硫触媒を用いることにより、硫黄含有量の少ない軽油基材を、容易に供給することができる。
Since the hydrodesulfurization catalyst for hydrocarbon oil according to the present invention has a high desulfurization activity, the sulfur content in the gas oil fraction can be greatly reduced.
Further, the hydrodesulfurization catalyst for hydrocarbon oil according to the present invention can make the reaction conditions substantially the same or milder than the reaction conditions in the conventional hydrotreatment, so that the conventional apparatus is greatly modified. And can be diverted to a conventionally used hydrodesulfurization catalyst.
Furthermore, by using the hydrodesulfurization catalyst for hydrocarbon oil according to the present invention, a light oil base material having a low sulfur content can be easily supplied.

触媒A〜D及び触媒aにおいて、触媒中に含有されるゼオライトの結晶子径(nm)と脱硫反応速度定数(Ks)の関係を示した図である。In catalysts A to D and catalyst a, it is the figure which showed the relationship between the crystallite diameter (nm) of the zeolite contained in a catalyst, and a desulfurization reaction rate constant (Ks).

本発明に係る炭化水素油の水素化脱硫触媒(以下、「本発明に係る触媒」ということがある。)は、アルミナと特定の物性を有するHYゼオライトとを含有する複合酸化物担体に、コバルト、モリブデン、及びリンを担持させた触媒であって、比表面積や細孔容積、平均細孔径が特定の範囲内にある炭化水素油の水素化脱硫触媒である。特定の物性を有するHYゼオライトを含むアルミナ担体を用い、かつ比表面積や細孔容積、平均細孔径等の物性を特定の範囲内に制御することによって、比較的穏やかな脱硫条件下であっても、充分な脱硫率で水素化処理を行うことができる長寿命の水素化脱硫触媒を得ることができる。   The hydrodesulfurization catalyst for hydrocarbon oil according to the present invention (hereinafter sometimes referred to as “catalyst according to the present invention”) includes a cobalt oxide support containing alumina and HY zeolite having specific physical properties. , Molybdenum, and phosphorus, a hydrodesulfurization catalyst for hydrocarbon oils having specific surface area, pore volume, and average pore diameter within specific ranges. Even under relatively mild desulfurization conditions by using an alumina support containing HY zeolite having specific physical properties and controlling physical properties such as specific surface area, pore volume and average pore diameter within a specific range. Thus, it is possible to obtain a long-life hydrodesulfurization catalyst that can perform a hydrogenation treatment at a sufficient desulfurization rate.

<HYゼオライト>
本発明に係る触媒において用いられるHYゼオライトは、下記(a)〜(d)の物性を有する。
(a)SiO/Al(モル比)が、3〜10、
(b)結晶格子定数が、2.435〜2.465nm、
(c)ゼオライト骨格内Alの全Alに対するモル比が、0.4〜1、及び
(d)結晶子径が、30〜100nm。
<HY zeolite>
The HY zeolite used in the catalyst according to the present invention has the following physical properties (a) to (d).
(A) SiO 2 / Al 2 O 3 ( molar ratio), 3-10,
(B) the crystal lattice constant is 2.435 to 2.465 nm,
(C) The molar ratio of Al in the zeolite framework to the total Al is 0.4 to 1, and (d) the crystallite diameter is 30 to 100 nm.

(a)SiO/Al(モル比)
SiO/Al(モル比)は、ICP分析法による化学組成分析により測定することができる。
本発明に係る触媒において用いられるHYゼオライトの化学組成分析によるバルクのSiO/Al(モル比)は、3〜10であり、好ましくは5〜8である。SiO/Al(モル比)が3以上であることにより、充分な量の活性点を備えることができ、難脱物質のアルキル基の異性化やベンゼン環の水素化が充分に行われる。また、SiO/Al(モル比)が10以下であることにより、原料油(炭化水素油)の分解が進行し難く、液収率の低下が抑制できる。
本発明において用いられるHYゼオライトは、天然のフォージャサイトと基本的に同一の結晶構造を有し、酸化物として下記に示す組成物を有する。
(A) SiO 2 / Al 2 O 3 (molar ratio)
SiO 2 / Al 2 O 3 (molar ratio) can be measured by chemical composition analysis by ICP analysis.
Bulk SiO 2 / Al 2 O 3 (molar ratio) by chemical composition analysis of HY zeolite used in the catalyst according to the present invention is 3 to 10, preferably 5 to 8. When the SiO 2 / Al 2 O 3 (molar ratio) is 3 or more, a sufficient amount of active sites can be provided, and the isomerization of the difficult-to-desorb substance alkyl group and the hydrogenation of the benzene ring are sufficiently performed. Is called. Further, by SiO 2 / Al 2 O 3 (molar ratio) is 10 or less, decomposition of the raw material oil (hydrocarbon oil) hardly proceeds, reduction of liquid yield can be suppressed.
The HY zeolite used in the present invention has basically the same crystal structure as natural faujasite and has the following composition as an oxide.

Figure 2014111233
Figure 2014111233

(b)結晶格子定数
HYゼオライトの結晶格子定数(単位格子寸法)は、X線回折装置(XRD)により測定することができる。ここで、「HYゼオライトの結晶格子定数」とは、ゼオライトを構成する単位ユニットのサイズを示している。
本発明において用いられるHYゼオライトの結晶格子定数は、2.435〜2.465nmであり、好ましくは2.440〜2.460nmである。結晶格子定数が2.435nm以上であれば、難脱物質のアルキル基の異性化やベンゼン環の水素化を促進させるために必要なAl数(アルミニウム原子数)が適当であり、2.465nm以下であれば、酸点上での原料油の分解が抑制され、活性低下の主要因である炭素析出を抑制できる。
(B) Crystal lattice constant The crystal lattice constant (unit cell dimension) of HY zeolite can be measured by an X-ray diffractometer (XRD). Here, “the crystal lattice constant of HY zeolite” indicates the size of the unit unit constituting the zeolite.
The crystal lattice constant of the HY zeolite used in the present invention is 2.435 to 2.465 nm, preferably 2.440 to 2.460 nm. If the crystal lattice constant is 2.435 nm or more, the Al number (number of aluminum atoms) necessary to promote isomerization of the alkyl group of the difficult-to-desorb substance and hydrogenation of the benzene ring is appropriate, and it is 2.465 nm or less. If so, the decomposition of the raw material oil on the acid point is suppressed, and the carbon deposition that is the main factor of the decrease in activity can be suppressed.

(c)ゼオライト骨格内Alの全Alに対するモル比
ゼオライトの全アルミニウム原子に対するゼオライト骨格内アルミニウム原子のモル数は、化学組成分析によるSiO/Al比及び結晶格子定数から、下記の式(A)〜(C)を用いて算出することができる。なお、式(A)はH.K.Beyeretal.,J.Chem.Soc.,FaradayTrans.1,(81),2899(1985).に記載の式を採用したものである。
(C) Molar ratio of Al in zeolite framework to total Al The number of moles of aluminum atoms in zeolite framework relative to all aluminum atoms in zeolite is expressed by the following formula from the SiO 2 / Al 2 O 3 ratio and crystal lattice constant determined by chemical composition analysis. It can be calculated using (A) to (C). In addition, Formula (A) is H.264. K. Beyeretal. , J .; Chem. Soc. , Faraday Trans. 1, (81), 2899 (1985). Is adopted.

式(A):NA1=(ao−2.425)/0.000868
式(A)中、ao:結晶格子定数/nm、
Al:単位格子当たりのAl原子数、
2.425:単位格子骨格内の全Al原子が骨格外に脱離したときの結晶格子定数、
0.000868:実験により求めた計算値であり、aoとNAlについて1次式で整理したとき(ao=0.000868NAl+2.425)の傾き。
Formula (A): N A1 = (ao-2.425) /0.000868
In the formula (A), ao: crystal lattice constant / nm,
N Al : Number of Al atoms per unit cell,
2.425: Crystal lattice constant when all Al atoms in the unit cell skeleton are desorbed outside the skeleton,
0.000868: A calculated value obtained by experiment, and a slope when ao and N Al are arranged by a linear equation (ao = 0.000868N Al +2.425).

式(B):〔(Si/Al)計算式〕=(192−NAl)/NAl
式(B)中、192:Y型ゼオライトの結晶格子定数あたりの(Si+Al)の原子数。
Formula (B): [(Si / Al) calculation formula] = (192-N Al ) / N Al
In formula (B), 192: number of (Si + Al) atoms per crystal lattice constant of Y-type zeolite.

式(C):〔ゼオライト骨格内Al〕/〔全Al〕=〔(Si/Al)化学組成分析値〕/〔(Si/Al)計算式〕 Formula (C): [Zeolite framework Al] / [total Al] = [(Si / Al) chemical composition analysis value] / [(Si / Al) calculation formula]

本発明において用いられるHYゼオライトの全アルミニウム原子に対するゼオライト骨格内アルミニウム原子のモル比(〔ゼオライト骨格内Al]/〔全Al])は、0.4〜1であり、好ましくは0.4〜0.9である。ゼオライト骨格中のアルミナ量が多い程、ゼオライトの安定性が低く、実運用の際に劣化しやすいため、異性化や水素化に必要な酸点が発現しない。〔ゼオライト骨格内Al〕/〔全Al〕が0.4以上であれば、異性化や水素化の促進機能を損なうことなく、1以下であれば分解反応による液収率の低下を抑制できる。   The molar ratio of aluminum atoms in the zeolite framework to the total aluminum atoms of the HY zeolite used in the present invention ([Al in zeolite framework] / [total Al]) is 0.4 to 1, preferably 0.4 to 0. .9. The greater the amount of alumina in the zeolite framework, the lower the stability of the zeolite and the more likely it is to deteriorate during actual operation, so that the acid sites necessary for isomerization and hydrogenation do not appear. If [Zeolite framework Al] / [total Al] is 0.4 or more, the deterioration of the liquid yield due to the decomposition reaction can be suppressed if it is 1 or less without impairing the isomerization or hydrogenation promoting function.

(d)結晶子径
本発明に係る触媒において、用いるHYゼオライトの結晶子径は、X線回折装置により測定し、下記(1)〜(4)のようにして規定する。
(1)X線回折装置より、ゼオライトの回折ピークを算出する。
(2)(533)面、(642)面、(555)面に該当するピークより、それぞれの面の半値幅を算出する。
(3)(533)面、(642)面、(555)面それぞれの半値幅をScherrerの式(式(D))に代入し、各面のサイズを求める。
(4)前記(3)で求めた3つの面の平均値を、ゼオライト結晶径と規定する。
(D) Crystallite diameter In the catalyst according to the present invention, the crystallite diameter of the HY zeolite to be used is measured by an X-ray diffractometer and defined as (1) to (4) below.
(1) A diffraction peak of zeolite is calculated from an X-ray diffractometer.
(2) From the peaks corresponding to the (533) plane, the (642) plane, and the (555) plane, the half width of each plane is calculated.
(3) The half widths of the (533) plane, (642) plane, and (555) plane are substituted into Scherrer's formula (formula (D)) to determine the size of each plane.
(4) The average value of the three surfaces obtained in (3) is defined as the zeolite crystal diameter.

式(D):D = Kλ/βcosθ
式(D)中、D:ゼオライトの結晶子径(Å)、
K:Sherrer定数、
λ:X線波長(nm)、
β:半値幅(rad)、
θ:回折角(°)。
Formula (D): D = Kλ / βcos θ
In the formula (D), D: crystallite diameter (Å) of zeolite,
K: Scherrer constant,
λ: X-ray wavelength (nm),
β: full width at half maximum (rad),
θ: diffraction angle (°).

式(D)より得られる、本発明において用いられるHYゼオライトの結晶子径は、30〜100nmであり、好ましくは45〜95nmである。ゼオライトの結晶子径を前記範囲内にすることにより、異性化や水素化の促進機能を損なうことなく、活性低下の主要因である炭素析出を抑制することができ、また分解反応による液収率低下を抑制できる。   The crystallite diameter of the HY zeolite used in the present invention obtained from the formula (D) is 30 to 100 nm, preferably 45 to 95 nm. By making the crystallite diameter of the zeolite within the above range, it is possible to suppress the carbon precipitation, which is the main factor for the decrease in activity, without impairing the isomerization and hydrogenation promoting function, and the liquid yield by the decomposition reaction Reduction can be suppressed.

<複合酸化物担体>
本発明に係る触媒は、担体として、主成分がアルミナであり、かつ前記HYゼオライトを含む無機酸化物を用いる。具体的には、本発明に係る触媒は、必須成分として、担体基準で、80〜99質量%のアルミナと、1〜20質量%の前記HYゼオライトとを含有する複合酸化物担体に、コバルト(Co)、モリブデン(Mo)、及びリンを担持させた触媒である。
<Composite oxide support>
In the catalyst according to the present invention, an inorganic oxide containing alumina as a main component and containing the HY zeolite is used as a carrier. Specifically, the catalyst according to the present invention comprises, as an essential component, a composite oxide support containing 80 to 99% by mass of alumina and 1 to 20% by mass of the HY zeolite, based on the support. Co), molybdenum (Mo), and a catalyst carrying phosphorus.

前記複合酸化物担体の前記HYゼオライトの配合量は、担体基準で、好ましくは2〜10質量%、より好ましくは4〜8質量%である。HYゼオライトの配合量は、少なすぎても多すぎても、触媒の成型が困難となりやすい。また、少なすぎると、触媒上の酸点であるブレンステッド酸点やルイス酸点の付与が不十分となるおそれがあり、多すぎると、Moの高分散化が抑制されてしまうおそれがある。   The compounding amount of the HY zeolite in the composite oxide carrier is preferably 2 to 10% by mass, more preferably 4 to 8% by mass, based on the carrier. If the blending amount of HY zeolite is too small or too large, it is difficult to mold the catalyst. Moreover, when there are too few, there exists a possibility that provision of the Bronsted acid point and Lewis acid point which are the acid points on a catalyst may become inadequate, and when too large, there exists a possibility that high dispersion | distribution of Mo may be suppressed.

本発明に係る触媒の担体に用いられるアルミナは、α−アルミナ、β−アルミナ、γ−アルミナ、δ−アルミナ等の種々のアルミナを使用することができるが、多孔質で高比表面積であるアルミナが好ましく、中でもγ−アルミナが適している。アルミナの純度は、約98質量%以上、好ましくは約99質量%以上のものが適している。アルミナ中の不純物としては、SO 2−、Cl、Fe、NaO等が挙げられるが、これらの不純物はできるだけ少ないことが好ましい。具体的には、不純物全量で2質量%以下、好ましくは1質量%以下であることが好ましく、成分毎ではSO 2−<1.5質量%、Cl、Fe、NaO<0.1質量%であることが好ましい。 Various aluminas such as α-alumina, β-alumina, γ-alumina, and δ-alumina can be used as the alumina used in the catalyst carrier according to the present invention, but the porous alumina has a high specific surface area. Of these, γ-alumina is suitable. The purity of alumina is about 98% by mass or more, preferably about 99% by mass or more. Examples of the impurities in alumina include SO 4 2− , Cl , Fe 2 O 3 , Na 2 O, and the like, but these impurities are preferably as small as possible. Specifically, the total amount of impurities is preferably 2% by mass or less, preferably 1% by mass or less. For each component, SO 4 2− <1.5% by mass, Cl , Fe 2 O 3 , Na 2 O. <0.1% by mass is preferred.

前記HYゼオライトを含有したアルミナ担体(複合酸化物担体)の比表面積、細孔容積、及び平均細孔直径は、特に制限されないが、軽油に対する水素化脱硫活性の高い触媒にするためには、比表面積が約240〜500m/g、好ましくは約300〜450m/g、細孔容積が約0.55〜0.9ml/g、好ましくは約0.65〜0.8ml/g、平均細孔径が約60〜120Å、好ましくは約65〜90Åのものが適している。 The specific surface area, pore volume, and average pore diameter of the alumina support (composite oxide support) containing the HY zeolite are not particularly limited, but in order to obtain a catalyst having high hydrodesulfurization activity for light oil, Surface area is about 240-500 m 2 / g, preferably about 300-450 m 2 / g, pore volume is about 0.55-0.9 ml / g, preferably about 0.65-0.8 ml / g, average fine A hole diameter of about 60 to 120 mm, preferably about 65 to 90 mm is suitable.

複合酸化物担体において、比表面積が約240m/g以上であることにより、活性金属の分散性が良好になり、脱硫活性の高い触媒が得られる。また、触媒の細孔直径が小さい場合には、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下するおそれがあるが、比表面積が約500m/g以下であることにより、細孔直径が極端に小さくなるおそれがなく、触媒の細孔直径も小さくなりすぎない。 In the composite oxide support, when the specific surface area is about 240 m 2 / g or more, the dispersibility of the active metal is improved, and a catalyst having a high desulfurization activity is obtained. In addition, when the pore diameter of the catalyst is small, the diffusion of sulfur compounds into the catalyst pores becomes insufficient and the desulfurization activity may be reduced, but the specific surface area is about 500 m 2 / g or less. Therefore, there is no fear that the pore diameter becomes extremely small, and the pore diameter of the catalyst does not become too small.

複合酸化物担体においては、細孔容積内に入り込む溶媒が少なすぎる場合には、活性金属化合物の溶解性が悪くなり、金属の分散性が低下し、低活性の触媒となるおそれがある。細孔容積が約0.55ml/g以上であることにより、通常の含浸法で触媒を調製する場合、細孔容積内に充分量の溶媒が入り込むことができる。また、活性金属化合物の溶解性を上げるために、硝酸等の酸を多量に加える方法があるが、酸の添加量が多すぎる場合には、担体の比表面積が極端に低下し、脱硫性能が低下する場合がある。複合酸化物担体の細孔容積が約0.9ml/g以下であることにより、充分な比表面積を有し、活性金属の分散性が良好で脱硫活性の高い触媒が得られる。   In the composite oxide support, when too little solvent enters the pore volume, the solubility of the active metal compound is deteriorated, the dispersibility of the metal is lowered, and there is a possibility that the catalyst becomes a low activity catalyst. When the pore volume is about 0.55 ml / g or more, when a catalyst is prepared by a normal impregnation method, a sufficient amount of solvent can enter the pore volume. Further, in order to increase the solubility of the active metal compound, there is a method of adding a large amount of acid such as nitric acid. However, when the amount of acid added is too large, the specific surface area of the support is extremely reduced and the desulfurization performance is reduced. May decrease. When the pore volume of the composite oxide support is about 0.9 ml / g or less, a catalyst having a sufficient specific surface area, good dispersibility of active metals and high desulfurization activity can be obtained.

また、触媒の細孔直径が小さい場合には、硫黄化合物の触媒細孔内への拡散が不充分となり、脱硫活性が低下するおそれがある。複合酸化物担体の細孔直径が約60Å以上であることにより、活性金属を担持させることによって、細孔直径が充分な大きさである触媒を得ることができる。一方で、触媒の比表面積が小さいと、活性金属の分散性が悪くなり、脱硫活性が低下するおそれがある。複合酸化物担体の細孔直径が約120Å以下であることにより、充分な比表面積を有する触媒が得られる。   Moreover, when the pore diameter of the catalyst is small, the diffusion of sulfur compounds into the catalyst pores becomes insufficient, and the desulfurization activity may be reduced. When the composite oxide support has a pore diameter of about 60 mm or more, a catalyst having a sufficiently large pore diameter can be obtained by supporting the active metal. On the other hand, if the specific surface area of the catalyst is small, the dispersibility of the active metal is deteriorated and the desulfurization activity may be reduced. When the pore diameter of the composite oxide support is about 120 mm or less, a catalyst having a sufficient specific surface area can be obtained.

複合酸化物担体には、アルミナ、HYゼオライト以外に、上記担体物性や最終の触媒物性を満足する範囲で、ボリア、シリカ、シリカーアルミナ、チタニア、及びジルコニア等の無機酸化物を含有してもよい。   In addition to alumina and HY zeolite, the composite oxide support may contain inorganic oxides such as boria, silica, silica-alumina, titania, and zirconia as long as the above-mentioned support physical properties and final catalyst physical properties are satisfied. Good.

<炭化水素油の水素化脱硫触媒>
前記複合酸化物担体に担持させるCo化合物としては、炭酸塩、酢酸塩、硝酸塩、硫酸塩、塩化物が挙げられ、好ましくは炭酸塩、酢酸塩、より好ましくは炭酸塩である。
前記複合酸化物担体に担持させるMo化合物としては、三酸化モリブデン、モリブドリン酸、モリブデン酸アンモニウム、モリブデン酸等が挙げられ、好ましくはモリブドリン酸、三酸化モリブデンである。
<Hydrodesulfurization catalyst for hydrocarbon oil>
Examples of the Co compound supported on the composite oxide carrier include carbonates, acetates, nitrates, sulfates, and chlorides, preferably carbonates and acetates, more preferably carbonates.
Examples of the Mo compound supported on the composite oxide carrier include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like, preferably molybdophosphoric acid and molybdenum trioxide.

前記複合酸化物担体に担持させるリンとしては、モリブドリン酸等のように、Co化合物やMo化合物としてリンを含む化合物(リン化合物)を使用する場合には、これらのリン化合物に由来するものであってもよい。また、Co化合物やMo化合物としてリン化合物を使用しない場合や、これらのリン化合物に由来するリンのみでは規定のリン量に不足する場合には、さらに他のリン源を使用する。他のリン源としては、種々のリン酸が挙げられ、具体的には、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸、ポリリン酸等が挙げられ、特にオルトリン酸が好ましい。   The phosphorus to be supported on the composite oxide carrier is derived from these phosphorus compounds when using a compound containing phosphorus as a Co compound or Mo compound (phosphorus compound) such as molybdophosphoric acid. May be. Further, when a phosphorus compound is not used as the Co compound or the Mo compound, or when only a phosphorus derived from these phosphorus compounds is insufficient for the prescribed phosphorus amount, another phosphorus source is further used. Examples of other phosphorus sources include various phosphoric acids. Specific examples include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and polyphosphoric acid, and orthophosphoric acid is particularly preferable.

これらの活性成分のうち、Coの含有量は、触媒基準、酸化物換算で、3〜6質量%、好ましくは約3.5〜6質量%とする。Coの含有量が少なすぎる場合には、Coに帰属する活性点が十分に得られないおそれがあり、Coの含有量が多すぎる場合には、Co化合物の凝集によって活性金属の分散性が悪くなるばかりか、不活性な前駆体であるCo種(触媒硫化後や水素化処理中はCo種として存在する)や、担体の格子内に取り込まれたCoスピネル種が生成され、触媒活性が低下するおそれがある。Coの含有量を前記範囲内とすることにより、Coに帰属する充分量の活性点を有し、Coの分散性も良好であり、不活性なCo化合物の含有量が少ない、脱硫活性の高い触媒が得られる。 Among these active ingredients, the content of Co is 3 to 6% by mass, preferably about 3.5 to 6% by mass in terms of catalyst and oxide. If the Co content is too low, there may be insufficient active sites attributable to Co. If the Co content is too high, the dispersibility of the active metal is poor due to aggregation of the Co compound. In addition, Co 3 O 4 species (present as Co 9 S 8 species after catalytic sulfidation and during hydrogenation) and Co spinel species incorporated into the lattice of the support are generated as inactive precursors. The catalytic activity may be reduced. By setting the Co content within the above range, it has a sufficient amount of active sites attributable to Co, has good dispersibility of Co, has a low content of inactive Co compounds, and has high desulfurization activity. A catalyst is obtained.

Moの含有量は、触媒基準、酸化物換算で、16〜24質量%、好ましくは約18〜22質量%とする。Moの含有量が少なすぎる場合には、Moに起因する効果を発現させるには不十分であるおそれがある。一方で、Moの含有量が多すぎる場合には、Moの凝集によって活性金属の分散性が悪くなるばかりか、効率的に分散する活性金属含有量の限度を超えたり、触媒表面積が大幅に低下する等により、触媒活性の向上がみられない。Moの含有量を前記範囲内とすることにより、Moに起因する充分な効果が発揮され、かつMoの分散性が良好で、充分な触媒表面積を備えた、脱硫活性の高い触媒が得られる。   The Mo content is 16 to 24% by mass, preferably about 18 to 22% by mass in terms of catalyst and oxide. When there is too little content of Mo, there exists a possibility that it may be inadequate to express the effect resulting from Mo. On the other hand, when the Mo content is too large, the dispersibility of the active metal is deteriorated due to the aggregation of Mo, and the limit of the active metal content to be efficiently dispersed is exceeded, or the catalyst surface area is greatly reduced. As a result, the catalytic activity is not improved. By setting the Mo content within the above range, it is possible to obtain a catalyst having a high desulfurization activity that exhibits a sufficient effect due to Mo, has good Mo dispersibility, and has a sufficient catalyst surface area.

リンは、活性金属量当たりの脱硫活性を向上させるために活性点の質的向上を図る成分として加えられるものであり、高活性なCo−Mo−S相(脱硫活性点)を精密に創製する役割をなす。すなわち、リンは、触媒の酸性質を向上させる作用をなし、触媒が好適な酸性質の値を示す場合には、活性成分の分散性が向上し、担体上の酸点の量が最適値を示して、硫黄化合物の吸着を促進し、硫黄化合物の水素化脱硫活性を向上させる。   Phosphorus is added as a component for improving the quality of active sites in order to improve the desulfurization activity per active metal amount, and precisely creates a highly active Co-Mo-S phase (desulfurization active site). Play a role. That is, phosphorus acts to improve the acid properties of the catalyst, and when the catalyst exhibits a suitable acid property value, the dispersibility of the active ingredient is improved and the amount of acid sites on the support is optimal. It promotes adsorption of sulfur compounds and improves the hydrodesulfurization activity of sulfur compounds.

リンの含有量は、触媒基準、酸化物換算で、0.8〜4.5質量%、好ましくは約1.0〜4質量%とする。リンの含有量が少なすぎる場合には、上記のリンの作用が充分に発現せず、軽油留分中の硫黄分を効率的に除去できないおそれがある。一方で、リンの含有量が多すぎる場合には、上記のリンの作用は飽和し、さらに触媒の表面積や細孔容積の減少が起こり、脱硫活性が低下する。リンの含有量を前記範囲内とすることにより、触媒の表面積や細孔容積の減少を抑制しつつ、上記のリンの作用を充分に発揮させることができる。   The phosphorus content is 0.8 to 4.5% by mass, preferably about 1.0 to 4% by mass in terms of catalyst and oxide. When there is too little content of phosphorus, the effect | action of said phosphorus may not fully express, and there exists a possibility that the sulfur content in a light oil fraction cannot be removed efficiently. On the other hand, when the content of phosphorus is too large, the above-described action of phosphorus is saturated, and further, the surface area and pore volume of the catalyst are reduced, and the desulfurization activity is lowered. By making the content of phosphorus within the above range, the above-mentioned action of phosphorus can be sufficiently exerted while suppressing the reduction of the surface area and pore volume of the catalyst.

Co、Mo、リン各成分の上記した含有量において、活性金属であるCoとMoの最適質量比は、〔CoO〕/〔CoO+MoO〕の値で、約0.12〜0.24であることが好ましく、活性金属であるMoと触媒の酸性質向上成分であるリンの最適質量比は、〔P5〕/〔MoO〕の値で、約0.05〜0.25であることが好ましい。 In the above contents of the Co, Mo, and phosphorus components, the optimum mass ratio of Co and Mo, which are active metals, is a value of [CoO] / [CoO + MoO 3 ] and is about 0.12 to 0.24. The optimum mass ratio of Mo, which is an active metal, and phosphorus, which is an acid property improving component of the catalyst, is about 0.05 to 0.25 in terms of [P 2 O 5 ] / [MoO 3 ]. Is preferred.

CoとMoの質量比が〔CoO〕/〔CoO+MoO〕の値で小さすぎる場合には、脱硫の活性点と考えられるCo−Mo−S相が充分に生成できないことが考えられ、脱硫活性が向上しない。一方で、前記の値が大きすぎる場合には、活性に関与しない無駄なCo種(Co種や、担体の格子内に取り込まれたCoスピネル種)が生成するおそれがあり、触媒活性が低下する。CoとMoの質量比が前記の値で約0.12〜0.24であることにより、不活性のCo種の生成を抑制しつつ、Co−Mo−S相が充分に生成されるため、脱硫活性の高い触媒が得られる。 When the mass ratio of Co and Mo is too small at the value of [CoO] / [CoO + MoO 3 ], it is considered that a Co—Mo—S phase considered as an active site of desulfurization cannot be sufficiently generated, and desulfurization activity is low. Does not improve. On the other hand, if the above value is too large, there is a possibility that useless Co species (Co 9 S 8 species or Co spinel species incorporated in the lattice of the support) that are not involved in the activity may be generated, and the catalytic activity Decreases. Since the mass ratio of Co and Mo is about 0.12 to 0.24 at the above value, the Co—Mo—S phase is sufficiently generated while suppressing the generation of inert Co species, A catalyst having high desulfurization activity is obtained.

リンとMoの質量比が〔P5〕/〔MoO〕の値で小さすぎる場合には、CoとMoの渾然一体化が図れず、最終的に脱硫の活性点であるCo−Mo−S相が得られ難く、活性の低い触媒となる。一方で、前記の値が大きすぎる場合には、触媒の表面積及び細孔容積の減少を招き、触媒の活性が低下するのみならず、酸量が増えることとなり、炭素析出を招いて活性劣化を引き起こし易くなる。リンとMoの質量比が前記の値で約0.05〜0.25であることにより、触媒の表面積及び細孔容積の減少や炭素析出を抑制しつつ、Co−Mo−S相が充分に生成されるため、脱硫活性の高い触媒が得られる。 When the mass ratio of phosphorus and Mo is too small at a value of [P 2 O 5 ] / [MoO 3 ], Co and Mo cannot be integrated as a matter of course, and Co-Mo which is the active point of desulfurization is finally obtained. It is difficult to obtain a -S phase, and the catalyst becomes low in activity. On the other hand, if the above value is too large, the surface area and pore volume of the catalyst are reduced, and not only the activity of the catalyst is decreased, but also the acid amount is increased, which causes carbon deposition and deteriorates the activity. It becomes easy to cause. When the mass ratio of phosphorus and Mo is about 0.05 to 0.25 as described above, the Co—Mo—S phase is sufficiently produced while suppressing the decrease in the surface area and pore volume of the catalyst and the carbon deposition. As a result, a catalyst having high desulfurization activity can be obtained.

本発明に係る触媒は、先ず、アルミナに、前記HYゼオライトを複合化させ、得られた複合酸化物担体に、水、酸等の溶媒に前記各成分の化合物を溶解させて調製した溶液を含浸させて調製することができる。
アルミナと前記HYゼオライトを複合化させる方法は、共沈法、混練法等が挙げられる。
The catalyst according to the present invention is first impregnated with a solution prepared by complexing the HY zeolite with alumina and dissolving the compound of each component in a solvent such as water and acid in the obtained complex oxide support. Can be prepared.
Examples of a method for combining alumina and the HY zeolite include a coprecipitation method and a kneading method.

この複合酸化物担体に、Co、Mo、リンの各成分を含浸させる方法は、これら各成分を同時に含浸させる一段含浸法が好ましい。一段含浸法は、脱硫活性点数、酸性質、細孔等の触媒の特性の面、あるいは操作性の面から、有利と考えられるからである。即ち、一段含浸法によれば、CoとMoが渾然一体化して担体に取り込まれることとなるため、最終的に脱硫の活性点であるCo−Mo−S相を大幅に増加させることができる。このとき、リン成分が含浸溶液に存在していると、CoとMoの渾然一体化が促進される。これに対し、CoとMoを二段含浸させる方法では、CoとMoは十分に渾然一体化しない場合もあり、最終的に脱硫の活性点であるCo−Mo−S相の形成が困難になると考えら、例えば、Coは、前述した不活性な前駆体であるCo種や、担体の格子内に取り込まれた活性に関与しないCoスピネル種となることがある。 The method of impregnating the composite oxide carrier with Co, Mo, and phosphorus components is preferably a one-stage impregnation method in which these components are impregnated simultaneously. This is because the one-stage impregnation method is considered advantageous from the standpoint of catalyst characteristics such as the number of desulfurization active points, acid properties, and pores, or operability. That is, according to the one-step impregnation method, Co and Mo are naturally integrated and taken into the support, so that the Co—Mo—S phase, which is the active point of desulfurization, can be greatly increased. At this time, if the phosphorus component is present in the impregnation solution, the natural integration of Co and Mo is promoted. On the other hand, in the method in which Co and Mo are impregnated in two stages, Co and Mo may not be sufficiently integrated, and eventually it becomes difficult to form a Co—Mo—S phase that is an active point of desulfurization. For example, Co may be a Co 3 O 4 species that is an inactive precursor as described above, or a Co spinel species that is not involved in the activity incorporated in the lattice of the carrier.

CoとMoを担体に担持させる具体的方法は、次の通りである。
先ず、Co、Mo、リンの各化合物(Mo化合物にリンが含まれている場合は、リン化合物を加えない、又は適当量のリン化合物を添加する。)を含む溶液を調製する。当該溶液の調製時、これらの化合物の溶解を促進するために、加温(約30〜100℃)や、酸の添加を行ってもよい。当該酸としては、硝酸や、クエン酸、酢酸、リンゴ酸、酒石酸等の有機酸が挙げられる。
次いで、調製した溶液を、複合酸化物担体に、均一になるよう徐々に添加して含浸する。含浸時間は約1分〜5時間、好ましくは約5分〜3時間、温度は約5〜100℃、好ましくは約10〜80℃、雰囲気は特に限定しないが、大気中、窒素中、真空中が適している。
A specific method for supporting Co and Mo on the carrier is as follows.
First, a solution containing each of Co, Mo, and phosphorus compounds (when the Mo compound contains phosphorus, the phosphorus compound is not added, or an appropriate amount of the phosphorus compound is added) is prepared. During the preparation of the solution, heating (about 30 to 100 ° C.) or addition of an acid may be performed in order to promote dissolution of these compounds. Examples of the acid include nitric acid and organic acids such as citric acid, acetic acid, malic acid, and tartaric acid.
Next, the prepared solution is gradually added and impregnated into the composite oxide support in a uniform manner. The impregnation time is about 1 minute to 5 hours, preferably about 5 minutes to 3 hours, the temperature is about 5 to 100 ° C., preferably about 10 to 80 ° C., and the atmosphere is not particularly limited, but in air, nitrogen, or vacuum Is suitable.

含浸担持後、常温〜約80℃、窒素気流中、空気気流中、あるいは真空中で、水分をある程度(LOI《Loss on ignition》約50%以下となるように)除去し、乾燥炉、空気気流中、約80〜150℃で、約10分〜10時間乾燥する。次いで、焼成炉、空気気流中、約300〜700℃で、約10分〜10時間焼成を行う。   After impregnation support, water is removed to some extent (from about 50% or less LOI << Loss on ignition >>) in a nitrogen stream, air stream, or vacuum at room temperature to about 80 ° C., and a drying furnace, air stream Medium is dried at about 80 to 150 ° C. for about 10 minutes to 10 hours. Next, firing is performed at about 300 to 700 ° C. for about 10 minutes to 10 hours in a firing furnace and an air stream.

本発明に係る触媒中の活性金属の分布状態は、触媒中で活性金属が均一に分布しているユニフォーム型が好ましい。   The distribution state of the active metal in the catalyst according to the present invention is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.

以上のようにして調製される本発明に係る触媒は、灯油や軽油、重質軽油留分などに対する水素化活性及び脱硫活性を高めるために、その比表面積、細孔容積及び平均細孔径が、以下の値に制御される必要がある。   The catalyst according to the present invention prepared as described above has a specific surface area, a pore volume and an average pore diameter in order to increase the hydrogenation activity and desulfurization activity for kerosene, light oil, heavy gas oil fraction, etc. The following values need to be controlled.

本発明に係る触媒の窒素吸着法(BET《Braunauer−Emmett−Tailor specific surface area》法)で測定した比表面積(BET比表面積)は、210〜280m/g、好ましくは約220〜250m/gとする。BET比表面積が小さすぎる場合には、活性金属の分散性が悪くなって脱硫活性が低くなり、BET比表面積が大きすぎる場合には、細孔直径が極端に小さくなるため、触媒の細孔直径も小さくなって、水素化処理の際、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。触媒のBET比表面積を前記範囲内とすることにより、活性金属の分散性が良好であり、かつ細孔直径が充分な大きさとすることができ、脱硫活性の高い触媒を得ることができる。 Nitrogen adsorption method of the catalyst according to the present invention measured specific surface area (BET "Braunauer-Emmett-Tailor specific surface area" method) (BET specific surface area) is, 210~280m 2 / g, preferably about 220~250m 2 / g. When the BET specific surface area is too small, the dispersibility of the active metal is deteriorated and the desulfurization activity is lowered, and when the BET specific surface area is too large, the pore diameter becomes extremely small. In the hydrotreating process, the diffusion of sulfur compounds into the catalyst pores becomes insufficient, and the desulfurization activity decreases. By setting the BET specific surface area of the catalyst within the above range, the dispersibility of the active metal can be good, the pore diameter can be made sufficiently large, and a catalyst having high desulfurization activity can be obtained.

本発明に係る触媒の水銀圧入法で測定した細孔容積は、0.3〜0.6ml/g、好ましくは約0.35〜0.5ml/gとする。細孔容積が小さすぎる場合には、水素化処理の際、硫黄化合物の触媒細孔内での拡散が不十分となって脱硫活性が不十分となり、細孔容積が大きすぎる場合には、触媒の比表面積が極端に小さくなって、活性金属の分散性が低下し、低脱硫活性の触媒となる。触媒の細孔容積を前記範囲内とすることにより、硫黄化合物が触媒細孔内で充分に拡散することができ、かつ充分な比表面積を有する、脱硫活性の高い触媒を得ることができる。   The pore volume measured by the mercury intrusion method of the catalyst according to the present invention is 0.3 to 0.6 ml / g, preferably about 0.35 to 0.5 ml / g. If the pore volume is too small, the diffusion of sulfur compounds in the catalyst pores will be insufficient during the hydrotreatment, resulting in insufficient desulfurization activity. If the pore volume is too large, the catalyst The specific surface area of the catalyst becomes extremely small, the dispersibility of the active metal is lowered, and the catalyst has a low desulfurization activity. By setting the pore volume of the catalyst within the above range, it is possible to obtain a catalyst having a high desulfurization activity in which the sulfur compound can sufficiently diffuse in the catalyst pores and has a sufficient specific surface area.

本発明に係る触媒の水銀圧入法で測定した細孔分布での平均細孔直径は、75〜95Å、好ましくは約80〜90Åとする。平均細孔直径が小さすぎる場合には、反応物質が細孔内に拡散し難くなるため、脱硫反応が効率的に進行せず、平均細孔直径が大きすぎる場合には、細孔内の拡散性は良いものの、細孔内表面積が減少するため、触媒の有効比表面積が減少し、活性が低くなる。触媒の平均細孔直径を前記範囲内とすることにより、触媒の有効比表面積が充分に広く、かつ反応物質が拡散しやすく、脱硫反応が高効率で進行し得る触媒を得ることができる。   The average pore diameter in the pore distribution measured by the mercury intrusion method of the catalyst according to the present invention is 75 to 95 mm, preferably about 80 to 90 mm. If the average pore diameter is too small, the reactant will not easily diffuse into the pores, so the desulfurization reaction will not proceed efficiently, and if the average pore diameter is too large, diffusion within the pores will occur. Although the properties are good, since the surface area in the pores is reduced, the effective specific surface area of the catalyst is reduced and the activity is lowered. By setting the average pore diameter of the catalyst within the above range, it is possible to obtain a catalyst in which the effective specific surface area of the catalyst is sufficiently wide, the reactants are easily diffused, and the desulfurization reaction can proceed with high efficiency.

また、前記の細孔条件を満たす細孔の有効数を多くするために、触媒の細孔径分布、即ち平均細孔径±約15Åの細孔径を有する細孔の割合は、全細孔容積の少なくとも75%、好ましくは約80%以上とする。
しかも、細孔分布は、モノモーダルであることが好ましい。触媒の細孔径分布がシャープなもののほうが、活性に関与しない細孔がより少なくなり、より高い脱硫活性が得られる。
Further, in order to increase the effective number of pores satisfying the above pore conditions, the pore size distribution of the catalyst, that is, the proportion of pores having an average pore size of about ± 15 mm is at least the total pore volume. 75%, preferably about 80% or more.
Moreover, the pore distribution is preferably monomodal. A catalyst having a sharper pore size distribution has fewer pores that are not involved in the activity, and a higher desulfurization activity can be obtained.

本発明に係る触媒の触媒形状は、特に限定されず、通常、この種の触媒に用いられている種々の形状、例えば、円柱状、三葉型、四葉型等を採用することができる。本発明に係る触媒の大きさは、通常、直径が約1〜2mm、長さ約2〜5mmが好ましい。   The catalyst shape of the catalyst according to the present invention is not particularly limited, and various shapes usually used for this type of catalyst, for example, a cylindrical shape, a trilobal type, a four-leaf type, and the like can be adopted. In general, the size of the catalyst according to the present invention is preferably about 1 to 2 mm in diameter and about 2 to 5 mm in length.

本発明に係る触媒の機械的強度は、側面破壊強度(SCS:Side crush strength)で約2lbs/mm以上が好ましい。SCSがこれより小さいと、反応装置に充填した触媒が圧壊し、反応装置内で差圧が発生し、水素化処理運転の続行が不可能となるおそれがある。本発明に係る触媒の最密充填かさ密度(CBD:Compacted Bulk Density)は、約0.6〜1.2が好ましい。   The mechanical strength of the catalyst according to the present invention is preferably about 2 lbs / mm or more in terms of side crush strength (SCS). If the SCS is smaller than this, the catalyst charged in the reactor may be crushed and a differential pressure may be generated in the reactor, making it impossible to continue the hydrotreating operation. The close-packed bulk density (CBD) of the catalyst according to the present invention is preferably about 0.6 to 1.2.

<水素化脱硫触媒を用いた水素化処理方法>
本発明に係る触媒は、他の脱硫触媒と同様に、炭化水素油の水素化処理に用いることができる。本発明に係る触媒は、非常に脱硫活性が高く、反応条件を従来の水素化処理の際の反応条件とほぼ同じとした場合のみならず、より温和とした場合であっても、炭化水素油、特に軽油留分中の硫黄分の含有率を、大幅に低減させることができる。
<Hydroprocessing method using hydrodesulfurization catalyst>
The catalyst according to the present invention can be used for hydrotreating hydrocarbon oils, as with other desulfurization catalysts. The catalyst according to the present invention has a very high desulfurization activity, and the hydrocarbon oil can be used not only when the reaction conditions are substantially the same as those in the conventional hydrotreatment, but also when the reaction conditions are milder. In particular, the sulfur content in the gas oil fraction can be greatly reduced.

例えば、水素分圧約3〜8MPa、約300〜420℃、及び液空間速度約0.3〜5h−1の条件で、本発明に係る触媒と硫黄化合物を含む炭化水素油(例えば、軽油留分等)とを接触させて脱硫を行うことによって、炭化水素油中の難脱硫性硫黄化合物を含む硫黄化合物を減少させることができる。 For example, a hydrocarbon oil (for example, a light oil fraction) containing the catalyst according to the present invention and a sulfur compound under conditions of a hydrogen partial pressure of about 3 to 8 MPa, about 300 to 420 ° C., and a liquid space velocity of about 0.3 to 5 h −1. Etc.) can be reduced to reduce sulfur compounds containing hardly desulfurizable sulfur compounds in hydrocarbon oils.

本発明に係る触媒を用いて水素化処理することにより得られる生成油の硫黄分含有量は、500ppm以下、より具体的には20〜300ppm程度である。本発明に係る触媒を用いることにより、原料油性状にもよるが、より温和な水素化処理条件で、従来と同程度の硫黄分含有量の生成油を、長期間にわたって得ることができる。   The sulfur content of the product oil obtained by hydrotreating using the catalyst according to the present invention is 500 ppm or less, more specifically about 20 to 300 ppm. By using the catalyst according to the present invention, although it depends on the properties of the raw material oil, it is possible to obtain a product oil having a sulfur content similar to the conventional one over a long period of time under milder hydrotreating conditions.

本発明に係る触媒によって水素化処理される対象油(原料油)としては、炭化水素を含む油であればよく、例えば、直留灯油、直留軽油、接触分解軽油、熱分解軽油、水素化処理軽油、脱硫処理軽油、減圧蒸留軽油(VGO)等の、灯油や軽油留分が適している。これら原料油の代表的な性状例として、沸点範囲が150〜450℃、硫黄分が5質量%以下のものが挙げられる。   The target oil (raw oil) to be hydrotreated by the catalyst according to the present invention may be any oil containing hydrocarbons, such as straight-run kerosene, straight-run light oil, catalytic cracking light oil, pyrolysis light oil, hydrogenation. Kerosene and light oil fractions such as treated light oil, desulfurized light oil, and vacuum distilled light oil (VGO) are suitable. Typical examples of properties of these feedstock oils include those having a boiling range of 150 to 450 ° C. and a sulfur content of 5% by mass or less.

本発明に係る触媒を用いた水素化処理方法を商業規模で行うには、本発明に係る触媒の固定床、移動床、あるいは流動床式の触媒層を反応装置内に形成し、この反応装置内に原料油を導入し、上記の条件下で水素化反応を行えばよい。最も一般的には、固定床式触媒層を反応装置内に形成し、原料油を反応装置の上部に導入し、固定床を上から下に通過させ、反応装置の下部から生成物を流出させるものか、反対に原料油を反応装置の下部に導入し、固定床を下から上に通過させ、反応装置の上部から生成物を流出させるものである。   In order to perform the hydrotreating method using the catalyst according to the present invention on a commercial scale, a fixed bed, moving bed, or fluidized bed type catalyst layer of the catalyst according to the present invention is formed in the reactor, and this reactor is used. The feed oil may be introduced into the interior and the hydrogenation reaction may be performed under the above conditions. Most commonly, a fixed bed catalyst layer is formed in the reactor, feedstock is introduced into the top of the reactor, passed through the fixed bed from top to bottom, and product flows out from the bottom of the reactor. On the contrary, the raw material oil is introduced into the lower part of the reactor, passed through the fixed bed from the bottom up, and the product flows out from the upper part of the reactor.

当該水素化処理方法は、本発明に係る触媒を、単独の反応装置に充填して行う一段の水素化処理方法であってもよく、幾つかの反応装置に充填して行う多段連続水素化処理方法であってもよい。   The hydrotreating method may be a one-stage hydrotreating method performed by filling the catalyst according to the present invention into a single reactor, or a multistage continuous hydrotreating performed by filling several reactors. It may be a method.

なお、本発明に係る触媒は、使用前に(即ち、水素化処理方法を行うのに先立って)、反応装置中で硫化処理して活性化する。この硫化処理は、約200〜400℃、好ましくは約250〜350℃、常圧あるいはそれ以上の水素分圧の水素雰囲気下で、硫黄化合物を含む石油蒸留物、それにジメチルジスルファイドや二硫化炭素等の硫化剤を加えたもの、あるいは硫化水素を用いて行う。   Note that the catalyst according to the present invention is activated by sulfiding in a reaction apparatus before use (that is, prior to performing the hydrotreating method). This sulfidation treatment is conducted at about 200 to 400 ° C., preferably about 250 to 350 ° C. under a hydrogen atmosphere at normal pressure or higher, and a petroleum distillate containing sulfur compounds, dimethyl disulfide or disulfide. It is performed using a material added with a sulfurizing agent such as carbon or hydrogen sulfide.

次に、本発明の実施態様及びその効果を実施例及び比較例により、さらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
まず、実施例及び比較例における触媒の物理性状及び化学組成の分析方法を以下に示す。
Next, embodiments and effects of the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
First, analysis methods of physical properties and chemical compositions of catalysts in Examples and Comparative Examples are shown below.

<比表面積>
比表面積は、窒素吸着によるBET法により測定した。窒素吸着装置は、日本ベル社製の表面積測定装置(ベルソープ28)を使用した。
<Specific surface area>
The specific surface area was measured by the BET method using nitrogen adsorption. The nitrogen adsorption device used was a surface area measuring device (Bell Soap 28) manufactured by Bell Japan.

<細孔容積、平均細孔直径、及び細孔分布>
(使用機器)
細孔容積、平均細孔直径、及び細孔分布は、水銀圧入法により測定した。水銀圧入装置は、ポロシメーター(MICROMERITICS AUTO−PORE 9200:島津製作所製)を使用した。
<Pore volume, average pore diameter, and pore distribution>
(Used equipment)
The pore volume, average pore diameter, and pore distribution were measured by mercury porosimetry. As the mercury intrusion apparatus, a porosimeter (MICROMERITICS AUTO-PORE 9200: manufactured by Shimadzu Corporation) was used.

(測定原理)
水銀圧入法は、毛細管現象の法則に基づく。水銀と円筒細孔の場合には、この法則は下記式(E)で表される。式(E)中、Dは細孔直径、Pは掛けた圧力、γは表面張力、θは接触角である。掛けた圧力Pの関数としての細孔への進入水銀体積を測定した。なお、触媒の細孔水銀の表面張力は484dyne/cmとし、接触角は130度とした。
式(E):D=−(1/P)γcosθ
(Measurement principle)
The mercury intrusion method is based on the law of capillary action. In the case of mercury and cylindrical pores, this law is expressed by the following formula (E). In formula (E), D is the pore diameter, P is the applied pressure, γ is the surface tension, and θ is the contact angle. The mercury volume entering the pores as a function of the applied pressure P was measured. The surface tension of the pore mercury of the catalyst was 484 dyne / cm, and the contact angle was 130 degrees.
Formula (E): D = − (1 / P) 4 γ cos θ

細孔容積は、細孔へ進入した触媒グラム当たりの全水銀体積量である。平均細孔直径は、Pの関数として算出されたDの平均値である。
細孔分布は、Pを関数として算出されたDの分布である。
The pore volume is the total volume of mercury per gram of catalyst that has entered the pores. The average pore diameter is the average value of D calculated as a function of P.
The pore distribution is a distribution of D calculated as a function of P.

(測定手順)
(1)真空加熱脱気装置の電源を入れ、温度400℃、真空度5×10−2Torr以下になることを確認した。
(2)サンプルビュレットを空のまま真空加熱脱気装置に掛けた。
(3)真空度が5×10−2Torr以下となったら、サンプルビュレットを、そのコックを閉じて真空加熱脱気装置から取外し、冷却後、重量を測定した。
(4)サンプルビュレットに試料(触媒)を入れた。
(5)試料入りサンプルビュレットを真空加熱脱気装置に掛け、真空度が5×10−2Torr以下になってから1時間以上保持した。
(6)試料入りサンプルビュレットを真空加熱脱気装置から取外し、冷却後、重量を測定し、試料重量を求めた。
(7)AUTO−PORE 9200用セルに試料を入れた。
(8)AUTO−PORE 9200により測定した。
(Measurement procedure)
(1) The vacuum heating deaerator was turned on, and it was confirmed that the temperature was 400 ° C. and the degree of vacuum was 5 × 10 −2 Torr or less.
(2) The sample burette was placed in a vacuum heating and degassing device while being empty.
(3) When the degree of vacuum was 5 × 10 −2 Torr or less, the sample burette was removed from the vacuum heating and degassing device with the cock closed, and after cooling, the weight was measured.
(4) A sample (catalyst) was placed in a sample bullet.
(5) The sample burette containing the sample was put on a vacuum heating and degassing apparatus, and held for 1 hour or more after the degree of vacuum became 5 × 10 −2 Torr or less.
(6) The sample burette containing the sample was removed from the vacuum heating and degassing device, and after cooling, the weight was measured to obtain the sample weight.
(7) The sample was put into the cell for AUTO-PORE 9200.
(8) Measured by AUTO-PORE 9200.

<化学組成の分析>
(使用機器及び分析方法)
触媒中の金属分析は、誘導結合プラズマ発光分析(ICPS−2000:島津製作所製)を用いて行った。
金属の定量は、絶対検量線法にて行った。
<Analysis of chemical composition>
(Devices used and analysis methods)
The metal analysis in the catalyst was performed using inductively coupled plasma emission analysis (ICPS-2000: manufactured by Shimadzu Corporation).
The metal was quantified by an absolute calibration curve method.

(測定手順)
(1)ユニシールに、触媒0.05g、塩酸(50容量%)1ml、フッ酸一滴、及び純水1ccを投入し、加熱して溶解した。
(2)溶解後、ポリプロピレン製メスフラスコ(50ml)に移し換え、純水を加えて、50mlに秤量した。
(3)この溶液を、ICPS−2000により測定した。
(Measurement procedure)
(1) 0.05 g of catalyst, 1 ml of hydrochloric acid (50% by volume), one drop of hydrofluoric acid, and 1 cc of pure water were added to Uniseal, and dissolved by heating.
(2) After dissolution, the sample was transferred to a polypropylene volumetric flask (50 ml), pure water was added and weighed to 50 ml.
(3) This solution was measured by ICPS-2000.

[製造例1]ゼオライトの調製
以降の実施例等において用いたゼオライト1は、以下の方法により調製した。
オートクレーブ容器に入れた21.7質量%の水酸化ナトリウム水溶液230gに、17.0質量%のNaOと22.0質量%のAlを含有するアルミン酸ナトリウム29gを攪拌しながら加えた。アルミン酸ナトリウム添加後の溶液を攪拌しながら、SiO濃度24質量%の3号水硝子232gの中に加え、十分に攪拌した後、95℃で12時間加温熟成を行った。熟成終了後、温度を70℃以下となるように冷却した後、合成生成物を取り出し、ろ過、洗浄、乾燥を行い、Na−Y型種結晶を調製した。得られた種子組成物の組成は、酸化物モル比で、NaO/Al=16、SiO/Al=15、HO/Al=330であった。
[Production Example 1] Preparation of zeolite Zeolite 1 used in the following examples and the like was prepared by the following method.
29 g of sodium aluminate containing 17.0% by mass of Na 2 O and 22.0% by mass of Al 2 O 3 was added to 230 g of an aqueous solution of 21.7% by mass of sodium hydroxide in an autoclave container while stirring. It was. While stirring the solution after addition of sodium aluminate, it was added to 232 g of No. 3 water glass having a SiO 2 concentration of 24% by mass, sufficiently stirred, and then heated and aged at 95 ° C. for 12 hours. After completion of ripening, the reaction product was cooled to a temperature of 70 ° C. or lower, and then the synthesized product was taken out, filtered, washed and dried to prepare a Na—Y type seed crystal. The composition of the obtained seed composition was an oxide molar ratio of Na 2 O / Al 2 O 3 = 16, SiO 2 / Al 2 O 3 = 15, and H 2 O / Al 2 O 3 = 330. .

次いで、オートクレーブ容器に、SiO濃度29質量%のケイ酸ナトリウム溶液を220g、33.0質量%のNaOと36.5質量%のAlを含有するアルミン酸ナトリウムを31.7g、水酸化ナトリウムを6g、純水を747.0g加え、十分に攪拌した後に、上記種結晶を8.0g(乾燥基準)添加し、再度十分に攪拌を行った後、95℃で12時間加熱熟成を行った。熟成終了後、温度を70℃以下となるように冷却した後、合成生成物を取り出し、ろ過、洗浄、乾燥を行い、Na−Y型ゼオライト1を得た。その後、5質量%硝酸アンモニウム水溶液中にNa−Y型ゼオライト1を入れ、60℃一定条件下20分間攪拌した後、ろ過し、イオン交換処理を行った。イオン交換処理を2回繰り返した後、120℃、12時間乾燥させることによってNH3型Yゼオライト1を得た。
その後、得られたNH3型Yゼオライト1を600℃、4時間空気流通下で焼成することにより、H型Yゼオライト1(以下、単に「ゼオライト1」という。)を得た。こうして得られた調製された反応混合物(ゼオライト1)の組成は、酸化物モル比で、NaO/Al=2.80、SiO/Al=8.50であった。また、反応混合物中の全Alに対する前述の種子Alの量は、0.098モル%であった。
Subsequently, 220 g of a sodium silicate solution having a SiO 2 concentration of 29% by mass in an autoclave container was added to 31.7 g of sodium aluminate containing 33.0% by mass of Na 2 O and 36.5% by mass of Al 2 O 3. Then, 6 g of sodium hydroxide and 747.0 g of pure water were added and stirred sufficiently, then 8.0 g (dry basis) of the seed crystal was added, stirred again and heated at 95 ° C. for 12 hours. Aged. After completion of the aging, the mixture was cooled to a temperature of 70 ° C. or lower, and then the synthesized product was taken out, filtered, washed and dried to obtain a Na—Y zeolite 1. Thereafter, the Na-Y zeolite 1 was put in a 5 mass% ammonium nitrate aqueous solution, stirred for 20 minutes under a constant condition at 60 ° C, filtered, and subjected to ion exchange treatment. After the ion exchange treatment was repeated twice, NH3 type Y zeolite 1 was obtained by drying at 120 ° C. for 12 hours.
Thereafter, the obtained NH 3 type Y zeolite 1 was calcined at 600 ° C. for 4 hours under air flow to obtain H type Y zeolite 1 (hereinafter simply referred to as “zeolite 1”). The composition of the prepared reaction mixture (zeolite 1) thus obtained was an oxide molar ratio of Na 2 O / Al 2 O 3 = 2.80 and SiO 2 / Al 2 O 3 = 8.50. . Moreover, the amount of the aforementioned seed Al 2 O 3 with respect to the total Al 2 O 3 in the reaction mixture was 0.098 mol%.

ゼオライト2〜ゼオライト5についても、前記ゼオライト1の方法に従い調製した。
ゼオライト1〜ゼオライト5のSiO/Al(モル比)、結晶格子定数、ゼオライト骨格内Alの全Alに対するモル比(〔ゼオライト骨格内Al〕/〔全Al〕)、及び結晶子径を表1に示す。
ここで、SiO/Al(モル比)は、ICP分析法による化学組成分析から測定した。結晶格子定数は、ASTM D3906に準じてX線解析装置(XRD)を用いて測定した。全Al原子に対するゼオライト骨格内Alのモル比は、化学組成分析値とXRD測定値から計算した。詳細は前述の通りに行った。
Zeolite 2 to zeolite 5 were also prepared according to the method of zeolite 1 described above.
SiO 2 / Al 2 O 3 (molar ratio) of zeolite 1 to zeolite 5, crystal lattice constant, molar ratio of Al in zeolite framework to total Al ([Al in zeolite framework] / [total Al]), and crystallite diameter Is shown in Table 1.
Here, SiO 2 / Al 2 O 3 ( molar ratio) was measured from the chemical composition analysis by ICP analysis. The crystal lattice constant was measured using an X-ray analyzer (XRD) according to ASTM D3906. The molar ratio of Al in the zeolite framework to all Al atoms was calculated from the chemical composition analysis value and the XRD measurement value. Details were as described above.

Figure 2014111233
Figure 2014111233

[実施例1]
2.0gのゼオライト1と109.4gのアルミナ水和物とを混練し、押出成形後、600℃で2時間焼成して、直径1/16インチの柱状成形物のゼオライト−アルミナ複合担体(ゼオライト/アルミナ質量比=7/93、細孔容積=0.63ml/g、比表面積=336m/g、平均細孔直径=69Å)を得た。
これとは別に、イオン交換水40.0gに、炭酸コバルト5.51gと、モリブドリン酸19.02gと、オルトリン酸(85%水溶液)2.46gとを溶解させた含浸用溶液を調製した。
ナス型フラスコ中に、上記のゼオライト−アルミナ複合担体50.0gを投入し、そこへ上記の含浸用溶液の全量をピペットで添加し、約25℃で1時間浸漬した。その後、窒素気流中で風乾し、マッフル炉中120℃で約1時間乾燥させ、500℃で4時間焼成し、触媒Aを得た。
触媒Aは、比表面積が227m/g、細孔容積が0.40ml/g、平均細孔直が80Åであった。
[Example 1]
2.0 g of zeolite 1 and 109.4 g of alumina hydrate are kneaded, extruded and then calcined at 600 ° C. for 2 hours to form a zeolite-alumina composite carrier (zeolite) having a columnar shaped product having a diameter of 1/16 inch. / Alumina mass ratio = 7/93, pore volume = 0.63 ml / g, specific surface area = 336 m 2 / g, average pore diameter = 69 mm).
Separately, an impregnation solution was prepared by dissolving 5.51 g of cobalt carbonate, 19.02 g of molybdophosphoric acid and 2.46 g of orthophosphoric acid (85% aqueous solution) in 40.0 g of ion-exchanged water.
In an eggplant-shaped flask, 50.0 g of the above zeolite-alumina composite carrier was added, and the whole amount of the above impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 1 hour. Then, it air-dried in nitrogen stream, dried at 120 degreeC in the muffle furnace for about 1 hour, and baked at 500 degreeC for 4 hours, and the catalyst A was obtained.
Catalyst A had a specific surface area of 227 m 2 / g, a pore volume of 0.40 ml / g, and an average pore size of 80 mm.

[実施例2]
2.0gのゼオライト2と109.4gのアルミナ水和物とを混練し、押出成形後、600℃で2時間焼成して、直径1/16インチの柱状成形物のゼオライト−アルミナ複合担体(ゼオライト/アルミナ質量比=7/93、細孔容積=0.61ml/g、比表面積=342m/g、平均細孔直径=68Å)を得た。
これとは別に、イオン交換水40.0gに、炭酸コバルト5.51gと、モリブドリン酸19.02gと、オルトリン酸(85%水溶液)2.46gとを溶解させた含浸用溶液を調製した。
ナス型フラスコ中に、上記のゼオライト−アルミナ複合担体50.0gを投入し、そこへ上記の含浸用溶液の全量をピペットで添加し、約25℃で1時間浸漬した。その後、窒素気流中で風乾し、マッフル炉中120℃で約1時間乾燥させ、500℃で4時間焼成し、触媒Bを得た。
触媒Bは、比表面積が223m/g、細孔容積が0.43ml/g、平均細孔直が81Åであった。
[Example 2]
2.0 g of zeolite 2 and 109.4 g of alumina hydrate are kneaded, extruded, and calcined at 600 ° C. for 2 hours to form a zeolite-alumina composite carrier (zeolite) of a columnar molded product having a diameter of 1/16 inch. / Alumina mass ratio = 7/93, pore volume = 0.61 ml / g, specific surface area = 342 m 2 / g, average pore diameter = 68 mm).
Separately, an impregnation solution was prepared by dissolving 5.51 g of cobalt carbonate, 19.02 g of molybdophosphoric acid and 2.46 g of orthophosphoric acid (85% aqueous solution) in 40.0 g of ion-exchanged water.
In an eggplant-shaped flask, 50.0 g of the above zeolite-alumina composite carrier was added, and the whole amount of the above impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 1 hour. Then, it air-dried in nitrogen stream, dried at 120 degreeC in the muffle furnace for about 1 hour, and baked at 500 degreeC for 4 hours, and obtained the catalyst B.
Catalyst B had a specific surface area of 223 m 2 / g, a pore volume of 0.43 ml / g, and an average pore size of 81 kg.

[実施例3]
2.0gのゼオライト3と109.4gのアルミナ水和物とを混練し、押出成形後、600℃で2時間焼成して、直径1/16インチの柱状成形物のゼオライト−アルミナ複合担体(ゼオライト/アルミナ質量比=7/93、細孔容積=0.63ml/g、比表面積=333m/g、平均細孔直径=69Å)を得た。
これとは別に、イオン交換水40.0gに、炭酸コバルト5.51gと、モリブドリン酸19.02gと、オルトリン酸(85%水溶液)2.46gとを溶解させた含浸用溶液を調製した。
ナス型フラスコ中に、上記のゼオライト−アルミナ複合担体50.0gを投入し、そこへ上記の含浸用溶液の全量をピペットで添加し、約25℃で1時間浸漬した。その後、窒素気流中で風乾し、マッフル炉中120℃で約1時間乾燥させ、500℃で4時間焼成し、触媒Cを得た。
触媒Cは、比表面積が220m/g、細孔容積が0.38ml/g、平均細孔直が83Åであった。
[Example 3]
2.0 g of zeolite 3 and 109.4 g of alumina hydrate are kneaded, extruded and then calcined at 600 ° C. for 2 hours to form a zeolite-alumina composite carrier (zeolite) of a columnar molded product having a diameter of 1/16 inch. / Alumina mass ratio = 7/93, pore volume = 0.63 ml / g, specific surface area = 333 m 2 / g, average pore diameter = 69 mm).
Separately, an impregnation solution was prepared by dissolving 5.51 g of cobalt carbonate, 19.02 g of molybdophosphoric acid and 2.46 g of orthophosphoric acid (85% aqueous solution) in 40.0 g of ion-exchanged water.
In an eggplant-shaped flask, 50.0 g of the above zeolite-alumina composite carrier was added, and the whole amount of the above impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 1 hour. Then, it air-dried in nitrogen stream, it was made to dry at 120 degreeC in a muffle furnace for about 1 hour, and it baked at 500 degreeC for 4 hours, and the catalyst C was obtained.
Catalyst C had a specific surface area of 220 m 2 / g, a pore volume of 0.38 ml / g, and an average pore size of 83 mm.

[実施例4]
2.0gのゼオライト4と109.4gのアルミナ水和物とを混練し、押出成形後、600℃で2時間焼成して、直径1/16インチの柱状成形物のゼオライト−アルミナ複合担体(ゼオライト/アルミナ質量比=7/93、細孔容積=0.64ml/g、比表面積=330m/g、平均細孔直径=70Å)を得た。
これとは別に、イオン交換水40.0gに、炭酸コバルト5.51gと、モリブドリン酸19.02gと、オルトリン酸(85%水溶液)2.46gとを溶解させた含浸用溶液を調製した。
ナス型フラスコ中に、上記のゼオライト−アルミナ複合担体50.0gを投入し、そこへ上記の含浸用溶液の全量をピペットで添加し、約25℃で1時間浸漬した。その後、窒素気流中で風乾し、マッフル炉中120℃で約1時間乾燥させ、500℃で4時間焼成し、触媒Dを得た。
触媒Dは、比表面積が224m/g、細孔容積が0.39ml/g、平均細孔直が81Åであった。
[Example 4]
2.0 g of zeolite 4 and 109.4 g of alumina hydrate are kneaded, extruded and then calcined at 600 ° C. for 2 hours to form a zeolite-alumina composite carrier (zeolite composite) having a columnar shaped product having a diameter of 1/16 inch. / Alumina mass ratio = 7/93, pore volume = 0.64 ml / g, specific surface area = 330 m 2 / g, average pore diameter = 70 Å.
Separately, an impregnation solution was prepared by dissolving 5.51 g of cobalt carbonate, 19.02 g of molybdophosphoric acid and 2.46 g of orthophosphoric acid (85% aqueous solution) in 40.0 g of ion-exchanged water.
In an eggplant-shaped flask, 50.0 g of the above zeolite-alumina composite carrier was added, and the whole amount of the above impregnation solution was added thereto with a pipette and immersed at about 25 ° C. for 1 hour. Then, it air-dried in nitrogen stream, dried at 120 degreeC in the muffle furnace for about 1 hour, and baked at 500 degreeC for 4 hours, and the catalyst D was obtained.
Catalyst D had a specific surface area of 224 m 2 / g, a pore volume of 0.39 ml / g, and an average pore size of 81 kg.

[比較例1]
実施例1のゼオライト1をゼオライト5に置き換えた以外は実施例1と同様にして、実施例1と同一形状のゼオライト−アルミナ複合担体(ゼオライト/アルミナ質量比=7/93、細孔容積=0.63ml/g、比表面積=334m/g、平均細孔直径=71Å)を得た。このゼオライト−アルミナ複合担体50.0gをナス型フラスコ中に投入し、そこへ実施例1と同じ含浸用溶液の全量を実施例1と同様にして添加浸漬後、実施例1と同様にして風乾、乾燥、焼成を行い、触媒aを得た。
触媒aは、比表面積が223m/g、細孔容積が0.37ml/g、平均細孔直が82Åであった。
[Comparative Example 1]
A zeolite-alumina composite carrier having the same shape as in Example 1 (zeolite / alumina mass ratio = 7/93, pore volume = 0) in the same manner as in Example 1 except that zeolite 1 in Example 1 was replaced with zeolite 5. 0.63 ml / g, specific surface area = 334 m 2 / g, average pore diameter = 71 Å). 50.0 g of this zeolite-alumina composite carrier was put into an eggplant-shaped flask, and the same amount of the same impregnation solution as in Example 1 was added and immersed in the same manner as in Example 1, and then air-dried in the same manner as in Example 1. Then, drying and calcination were performed to obtain catalyst a.
Catalyst a had a specific surface area of 223 m 2 / g, a pore volume of 0.37 ml / g, and an average pore size of 82 mm.

触媒A〜D及び触媒aの元素分析値を表2に、触媒性情を表3に示す。表3中、「SA」は比表面積(m/g)を、「PV」は細孔容積(ml/g)を、「MPD」は平均細孔直径(Å)を、「PSD」は細孔分布(MPD±15Åに全細孔容積のうち何%の細孔容積が含まれているか)(%)を、「CBD」は最密充填嵩密度(g/ml)を、それぞれ意味する。表2及び3に示すように、触媒A〜D及び触媒aはいずれも、化学組成と物理形状はほぼ同程度であった。 Table 2 shows the elemental analysis values of Catalysts A to D and Catalyst a, and Table 3 shows the catalytic properties. In Table 3, “SA” is specific surface area (m 2 / g), “PV” is pore volume (ml / g), “MPD” is average pore diameter (細孔), and “PSD” is fine. The pore distribution (what percentage of the pore volume is contained in MPD ± 15%) (%), and “CBD” means the closest packed bulk density (g / ml). As shown in Tables 2 and 3, the catalysts A to D and the catalyst a were almost the same in chemical composition and physical shape.

Figure 2014111233
Figure 2014111233

Figure 2014111233
Figure 2014111233

[直留軽油の水素化処理反応1]
実施例1〜4及び比較例1において調製した触媒A〜D及び触媒aを用い、以下の要領にて、下記性状の直留軽油の水素化処理を行った。
先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の条件で前処理した。
次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上部より導入して、下記の条件で水素化反応を進行させ、生成油とガスの混合流体を、反応装置の下部より流出させ、気液分離器で生成油を分離した。
[Hydrolysis reaction of straight-run gas oil 1]
Using the catalysts A to D and the catalyst a prepared in Examples 1 to 4 and Comparative Example 1, hydrogenation treatment of straight-run gas oil having the following properties was performed in the following manner.
First, the catalyst was filled into a high-pressure flow reactor to form a fixed bed catalyst layer, and pretreated under the following conditions.
Next, a mixed fluid of the raw material oil heated to the reaction temperature and the hydrogen-containing gas is introduced from the upper part of the reactor, and the hydrogenation reaction proceeds under the following conditions, and the mixed fluid of the product oil and the gas is reacted. The oil was discharged from the lower part of the apparatus, and the produced oil was separated by a gas-liquid separator.

触媒の前処理条件:
圧力;常圧、
雰囲気;硫化水素(5%)/水素ガス流通下、
温度;150℃にて0.5時間維持、次いで350℃にて1時間維持のステップ昇温。
Catalyst pretreatment conditions:
Pressure: normal pressure,
Atmosphere: Hydrogen sulfide (5%) / under hydrogen gas flow
Temperature: Step temperature rise: maintained at 150 ° C. for 0.5 hour and then maintained at 350 ° C. for 1 hour.

水素化反応条件:
反応温度;360℃、及び生成油硫黄分が200ppmとなる温度、
圧力(水素分圧);5MPa、
液空間速度;1.2h−1
水素/オイル比;250m/m
Hydrogenation reaction conditions:
Reaction temperature: 360 ° C., and a temperature at which the product oil sulfur content becomes 200 ppm,
Pressure (hydrogen partial pressure); 5 MPa,
Liquid space velocity; 1.2 h −1 ,
Hydrogen / oil ratio; 250 m 3 / m 3 .

原料油の性状:
油種;中東系直留軽油、
比重(15/4℃);0.8648、
蒸留性状;初留点が206.0℃、50%点が319.0℃、90%点が372.0℃、終点が390.0℃、
硫黄成分;1.44質量%、
窒素成分;170ppm、
動粘度(@30℃);6.660cSt、
流動点;2.5℃、
くもり点;3.0℃、
セタン指数;53.2、
セイボルトカラー;−16、
ASTM色 ;L1.0、
アニリン点;74.2℃。
Raw oil properties:
Oil type: Middle East straight gas oil,
Specific gravity (15/4 ° C.); 0.8648,
Distillation properties: initial boiling point 206.0 ° C, 50% point 319.0 ° C, 90% point 372.0 ° C, end point 390.0 ° C,
Sulfur component: 1.44% by mass,
Nitrogen component: 1700 ppm,
Kinematic viscosity (@ 30 ° C.); 6.660 cSt,
Pour point: 2.5 ° C
Cloudy point; 3.0 ° C,
Cetane index; 53.2,
Saybolt color; -16,
ASTM color: L1.0,
Aniline point: 74.2 ° C.

反応結果については、以下の方法で解析した。
360℃で反応装置を運転し、6日経過した時点で生成油を採取し、その性状を分析した。その後、各触媒について生成油硫黄分が200ppmとなる温度で200日の運転を行った。この生成油硫黄分一定運転に際して、触媒の劣化による生成油硫黄分上昇を抑えるために、運転温度を補償しながら運転した。
The reaction results were analyzed by the following method.
The reaction apparatus was operated at 360 ° C., and when 6 days passed, the product oil was collected and analyzed for its properties. Thereafter, each catalyst was operated for 200 days at a temperature at which the product oil sulfur content was 200 ppm. During this constant operation of the generated oil sulfur content, the operation was performed while compensating for the operating temperature in order to suppress an increase in the generated oil sulfur content due to catalyst deterioration.

〔1〕脱硫率(HDS)(%):
原料中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下の式により算出した。
〔2〕脱硫反応速度定数(Ks):
生成油の硫黄分(Sp)の減少量に対して、1.5次の反応次数を得る反応速度式の定数を脱硫反応速度定数(Ks)とした。なお、反応速度定数が高い程、触媒活性が優れていることを示している。これらの結果は、表4の通りであった。
[1] Desulfurization rate (HDS) (%):
By converting the sulfur content in the raw material into hydrogen sulfide by a desulfurization reaction, the ratio of the sulfur content that disappeared from the raw material oil was defined as the desulfurization rate, and was calculated from the sulfur analysis values of the raw material oil and the product oil by the following formula.
[2] Desulfurization reaction rate constant (Ks):
The constant of the reaction rate equation for obtaining the reaction order of 1.5 with respect to the reduction amount of the sulfur content (Sp) of the product oil was defined as the desulfurization reaction rate constant (Ks). The higher the reaction rate constant, the better the catalytic activity. These results are shown in Table 4.

脱硫率(%)=〔(Sf−Sp)/Sf〕×100
脱硫反応速度定数=2×〔1/√(Sp)−1/√(Sf)〕×(LHSV)
上記式中、Sf:原料油中の硫黄分(質量%)、
Sp:反応生成油中の硫黄分(質量%)、
LHSV:液空間速度(h−1)。
Desulfurization rate (%) = [(Sf−Sp) / Sf] × 100
Desulfurization reaction rate constant = 2 × [1 / √ (Sp) −1 / √ (Sf)] × (LHSV)
In the above formula, Sf: Sulfur content (mass%) in the raw material oil,
Sp: Sulfur content (mass%) in the reaction product oil,
LHSV: Liquid space velocity (h −1 ).

比活性(%)=〔各脱硫反応速度定数〕/〔比較触媒aの脱硫反応速度定数〕×100 Specific activity (%) = [each desulfurization reaction rate constant] / [desulfurization reaction rate constant of comparative catalyst a] × 100

〔3〕ゼオライトの結晶子径に対して〔2〕で算出した脱硫反応速度定数(Ks)をプロットしたグラフを図1に示す。
〔4〕脱硫反応速度定数(Ks):
生成油の硫黄分(Sp)の減少量に対して、1.5次の反応次数を得る反応速度式の定数を脱硫反応速度定数(Ks)とした。なお、反応速度定数が高い程、触媒活性が優れていることを示している。360℃で反応を行なった際のこれらの結果は、表4の通りであった。
[3] A graph plotting the desulfurization reaction rate constant (Ks) calculated in [2] against the crystallite diameter of zeolite is shown in FIG.
[4] Desulfurization reaction rate constant (Ks):
The constant of the reaction rate equation for obtaining the reaction order of 1.5 with respect to the reduction amount of the sulfur content (Sp) of the product oil was defined as the desulfurization reaction rate constant (Ks). The higher the reaction rate constant, the better the catalytic activity. Table 4 shows the results when the reaction was conducted at 360 ° C.

Figure 2014111233
Figure 2014111233

表4に示すように、実施例1〜4の触媒A〜Dは、比較例1の触媒aよりも、脱硫率が高く、脱硫反応速度定数も大きく、比活性も130%以上と非常に高かった。特に、触媒aを用いた場合には、生成油の硫黄分は約0.05質量%であったのに対して、触媒A〜Dを用いた場合には、0.03質量%以下にまで硫黄分を低減させることができた。
また、図1に示すように、触媒に含まれているゼオライトの結晶子径が、触媒の脱硫反応速度定数に影響を与えること、脱硫反応速度定数は、結晶子径が85〜95nm付近でピーク値をとり、結晶子径が100nm以上になると急激に低下する傾向にあることがわかった。
As shown in Table 4, the catalysts A to D of Examples 1 to 4 have a higher desulfurization rate, a larger desulfurization reaction rate constant, and a very high specific activity of 130% or more than the catalyst a of Comparative Example 1. It was. In particular, when the catalyst a is used, the sulfur content of the produced oil is about 0.05% by mass, whereas when the catalysts A to D are used, the sulfur content is 0.03% by mass or less. Sulfur content could be reduced.
Further, as shown in FIG. 1, the crystallite diameter of zeolite contained in the catalyst affects the desulfurization reaction rate constant of the catalyst, and the desulfurization reaction rate constant peaks at a crystallite diameter of about 85 to 95 nm. It was found that when the crystallite diameter is 100 nm or more, the value tends to decrease rapidly.

さらに、表5には、100日後と200日後における運転温度を示した。実施例1〜4の触媒A〜Dを用いた場合には、100日目の運転温度と200日目の運転温度との差が1〜4℃であり、長期間生成油硫黄分一定運転した場合でも、運転温度はさほど上昇させる必要はなかった。これに対して、比較例1の触媒aを用いた場合には、200日目には、100日目の運転温度よりも10℃以上も上昇させる必要があった。これらの結果から、本発明に係る触媒が、長期間にわたって安定した活性を維持できることが明らかである。   Further, Table 5 shows operating temperatures after 100 days and 200 days. When the catalysts A to D of Examples 1 to 4 were used, the difference between the operating temperature on the 100th day and the operating temperature on the 200th day was 1 to 4 ° C., and the generated oil sulfur content was operated for a long time. Even in that case, the operating temperature did not have to be increased as much. On the other hand, when the catalyst a of Comparative Example 1 was used, on the 200th day, it was necessary to increase it by 10 ° C. or more from the operating temperature on the 100th day. From these results, it is clear that the catalyst according to the present invention can maintain stable activity over a long period of time.

Figure 2014111233
Figure 2014111233

以上の結果から明らかなように、本発明に係る触媒は、従来の軽油水素化処理の場合とほぼ同じ水素分圧や反応温度等の条件下で、軽油などの炭化水素油の脱硫反応に対して極めて優れた活性を有している。このため、本発明に係る触媒により、硫黄含有量の非常に少ない軽油基材、例えば、硫黄分が0.05質量%よりもさらに低い軽油基材を、容易に供給することができる。   As is clear from the above results, the catalyst according to the present invention is suitable for desulfurization reaction of hydrocarbon oil such as light oil under the conditions of hydrogen partial pressure and reaction temperature which are almost the same as those in the conventional light oil hydrotreatment. And has extremely excellent activity. For this reason, the catalyst which concerns on this invention can supply easily the light oil base material with very little sulfur content, for example, the light oil base material whose sulfur content is still lower than 0.05 mass%.

Claims (1)

80〜99質量%のアルミナと、1〜20質量%のHYゼオライトとを含有する複合酸化物担体に、コバルト、モリブデン、及びリンを担持させた触媒であって、
触媒基準、酸化物換算で、3〜6質量%のコバルト、16〜24質量%のモリブデン、及び0.8〜4.5質量%のリンを含み、
窒素吸着法で測定した比表面積が210〜280m/g、
水銀圧入法で測定した細孔容積が0.3〜0.6ml/g
水銀圧入法で測定した細孔分布での平均細孔径が75〜95Å、平均細孔直径±15Åの範囲の細孔容積が全細孔容積の少なくとも75%であり、
前記HYゼオライトが、
(a)SiO/Al(モル比)が、3〜10、
(b)結晶格子定数が、2.435〜2.465nm、
(c)ゼオライト骨格内Alの全Alに対するモル比が、0.4〜1、及び
(d)結晶子径が、30〜100nm、
である、炭化水素油の水素化脱硫触媒。
A catalyst in which cobalt, molybdenum, and phosphorus are supported on a composite oxide support containing 80 to 99% by mass of alumina and 1 to 20% by mass of HY zeolite,
On a catalyst basis, in terms of oxide, containing 3-6 wt% cobalt, 16-24 wt% molybdenum, and 0.8-4.5 wt% phosphorus,
Specific surface area measured by nitrogen adsorption method is 210 to 280 m 2 / g,
Pore volume measured by mercury intrusion method is 0.3 to 0.6 ml / g
The average pore diameter in the pore distribution measured by mercury porosimetry is 75 to 95 mm, and the pore volume in the range of average pore diameter ± 15 mm is at least 75% of the total pore volume;
The HY zeolite is
(A) SiO 2 / Al 2 O 3 ( molar ratio), 3-10,
(B) the crystal lattice constant is 2.435 to 2.465 nm,
(C) The molar ratio of Al in the zeolite framework to the total Al is 0.4 to 1, and (d) the crystallite diameter is 30 to 100 nm,
A hydrodesulfurization catalyst for hydrocarbon oil.
JP2012266114A 2012-12-05 2012-12-05 Hydrodesulfurization catalyst of hydrocarbon oil Pending JP2014111233A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012266114A JP2014111233A (en) 2012-12-05 2012-12-05 Hydrodesulfurization catalyst of hydrocarbon oil
PH12013000353A PH12013000353B1 (en) 2012-12-05 2013-11-25 Hydrodesufurization catalyst for hydrocarbon oil
TW102144020A TWI611015B (en) 2012-12-05 2013-12-02 Hydrodesufurization catalyst for hydrocarbon oil
MYPI2013702325A MY185895A (en) 2012-12-05 2021-02-12 Hydrodesulfurization catalyst for hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012266114A JP2014111233A (en) 2012-12-05 2012-12-05 Hydrodesulfurization catalyst of hydrocarbon oil

Publications (1)

Publication Number Publication Date
JP2014111233A true JP2014111233A (en) 2014-06-19

Family

ID=51168800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012266114A Pending JP2014111233A (en) 2012-12-05 2012-12-05 Hydrodesulfurization catalyst of hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP2014111233A (en)

Similar Documents

Publication Publication Date Title
JP5928970B2 (en) Gas oil hydrodesulfurization catalyst, hydrodesulfurization catalyst production method, and gas oil hydrotreating method
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4201795B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
KR100664895B1 (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP5815321B2 (en) Hydrocarbon oil hydrotreating catalyst, hydrocarbon oil hydrotreating catalyst production method, and hydrocarbon oil hydrotreating method
JP4545328B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP5013658B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP3553429B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
JP4480120B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4680520B2 (en) Low sulfur gas oil production method and environmentally friendly gas oil
TWI611015B (en) Hydrodesufurization catalyst for hydrocarbon oil
JP2014111233A (en) Hydrodesulfurization catalyst of hydrocarbon oil
JP5337978B2 (en) Hydrotreating catalyst and hydrotreating method of vacuum gas oil
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JP2001062304A (en) Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil