JP2006306974A - Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil - Google Patents

Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil Download PDF

Info

Publication number
JP2006306974A
JP2006306974A JP2005130224A JP2005130224A JP2006306974A JP 2006306974 A JP2006306974 A JP 2006306974A JP 2005130224 A JP2005130224 A JP 2005130224A JP 2005130224 A JP2005130224 A JP 2005130224A JP 2006306974 A JP2006306974 A JP 2006306974A
Authority
JP
Japan
Prior art keywords
catalyst
mass
group
metal
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005130224A
Other languages
Japanese (ja)
Inventor
Hideki Kanbe
英樹 神戸
Yoshinori Kato
芳範 加藤
Tomio Fukuda
富雄 福田
Minoru Hashimoto
稔 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP2005130224A priority Critical patent/JP2006306974A/en
Publication of JP2006306974A publication Critical patent/JP2006306974A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for hydrodesulfurizing a hydrocarbon oil which exhibits minimal degradation of catalytic activity caused by coke degradation and is capable of removing sulfur compounds in a light oil fraction such as a vacuum light oil at a high efficiency for a long period, a method for producing the same and a method for hydrodesulfurizing the vacuum light oil. <P>SOLUTION: The catalyst for hydrotreating the hydrocarbon oil comprises 10-30% by mass of a group 6 metal in the periodic table, 1-15% by mass of a group 8 metal in the periodic table, 2-14% by mass of carbon, 0.05-1% by mass of lithium and 0.8-8% by mass of phosphorus wherein a distribution of the phosphorus atoms obtained by line analysis in the width direction of a section through a center line with an electron prove micro-analysis instrument satisfies a specific equation. The method for producing the same and the method for hydrodesulfurizing the vacuum light oil are also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭化水素油の水素化処理触媒及びその製造方法と、この触媒を用いた炭化水素油の水素化処理方法とに関し、詳しくは、炭化水素油、なかでも減圧軽油などの軽油留分を水素化処理する際に、該炭化水素油中の硫黄分及び窒素分を従来のこの種の触媒を使用する場合よりも低減することができ、しかも優れた活性を有する触媒及びその製造方法と、この触媒を用いる水素化処理方法とに関する。   The present invention relates to a hydrotreating catalyst for hydrocarbon oil, a method for producing the same, and a hydrotreating method for hydrocarbon oil using the catalyst, and more particularly to a hydrocarbon oil, particularly a light oil fraction such as vacuum gas oil. When hydrotreating the catalyst, the sulfur content and nitrogen content in the hydrocarbon oil can be reduced as compared with the conventional use of this type of catalyst, and the catalyst has an excellent activity, and a method for producing the same. And a hydrotreating method using this catalyst.

原油を常圧蒸留装置により処理して得られた常圧残油や、常圧残油をさらに減圧蒸留装置で処理することにより得られる減圧軽油、減圧残油等の重質油には多量の硫黄化合物が含有されている。これらの重質油を脱硫処理することなく燃料として用いた場合には、硫黄酸化物(SOx)が大気中に排出される。   There is a large amount of heavy oil such as atmospheric residue obtained by treating crude oil with an atmospheric distillation device, heavy oil such as vacuum gas oil and vacuum residue obtained by further treating atmospheric residue with a vacuum distillation device. Contains sulfur compounds. When these heavy oils are used as fuel without being desulfurized, sulfur oxides (SOx) are discharged into the atmosphere.

そこで従来、原油から種々の石油製品を製造する工程の一つとして、間接脱硫装置や直接脱硫装置による重質油留分の水素化脱硫処理が取り入れられ、硫黄化合物の除去が可能となった。重質油中の硫黄化合物を除去することを目的とする水素化脱硫触媒は、周期律表第VIA族のモリブデン、タングステン、第VIII属のコバルト、ニッケルを活性発現成分とし、これらをアルミナ、マグネシア、シリカ、チタニア等の無機酸化物担体に担持させたものが開発されている。
近年、地球環境問題に対する意識が高まり、各種燃料油品質に対する規制も厳しくなっている。主要なガソリン基材の原料油である減圧軽油についてもその硫黄分をさらに低減する脱硫技術の開発が待望されている。減圧軽油中の硫黄分の低減化技術として、通常、水素化脱硫装置の運転条件、例えば、反応温度、液空間速度等を苛酷にすることが考えられる。
しかし、反応温度を上げると、触媒上に炭素質が析出して触媒の活性が急速に低下し(以下、コーク劣化と記す)、また液空間速度を下げると、脱硫能は向上するものの、精製処理能力が低下するため設備の規模を拡張する必要が生じる。
従って、運転条件を苛酷にすることなく、減圧軽油の超深度脱硫を達成し得る最良の方法は、優れた脱硫活性を有し、かつ炭素質の析出を抑制できる触媒を開発することである。
Therefore, conventionally, hydrodesulfurization treatment of heavy oil fractions by indirect desulfurization equipment and direct desulfurization equipment has been incorporated as one of the processes for producing various petroleum products from crude oil, and sulfur compounds can be removed. The hydrodesulfurization catalyst for the purpose of removing sulfur compounds in heavy oils is composed of molybdenum, tungsten, tungsten of group VIII, cobalt and nickel of the periodic table as active active ingredients, which are alumina, magnesia. Those supported on an inorganic oxide carrier such as silica and titania have been developed.
In recent years, awareness of global environmental issues has increased and regulations on the quality of various fuel oils have become stricter. The development of desulfurization technology that further reduces the sulfur content of vacuum gas oil, which is a major gasoline base stock, is awaited. As a technique for reducing the sulfur content in vacuum gas oil, it is usually considered that the operating conditions of the hydrodesulfurization apparatus, for example, the reaction temperature, the liquid space velocity, etc. are made severe.
However, when the reaction temperature is increased, carbonaceous matter is deposited on the catalyst and the activity of the catalyst is rapidly reduced (hereinafter referred to as coke deterioration). Since the processing capacity decreases, it is necessary to expand the scale of the facility.
Therefore, the best way to achieve ultra-deep desulfurization of vacuum gas oil without harsh operating conditions is to develop a catalyst that has excellent desulfurization activity and can suppress carbonaceous deposition.

近年、活性金属の種類、活性金属の含浸方法、触媒担体の改良、触媒の細孔構造制御、活性化法等について多くの検討が多方面において進められており、高性能な脱硫触媒の開発成果が報告され、知られている。   In recent years, many studies have been conducted on the types of active metals, impregnation methods of active metals, improvement of catalyst support, control of pore structure of catalysts, activation methods, etc. Is reported and known.

例えば、アルミナやシリカ担体に、錯化剤として含窒素配位子を有する有機化合物と、活性金属とからなる溶液を含浸し、200℃以下で乾燥する方法が知られている(特許文献1参照)。   For example, a method is known in which an alumina or silica carrier is impregnated with a solution comprising an organic compound having a nitrogen-containing ligand as a complexing agent and an active metal and dried at 200 ° C. or lower (see Patent Document 1). ).

また、γ−アルミナ担体に、周期律表第8族金属(以下、単に「8族金属」と記す)化合物と周期律表第6族金属(以下、単に「6族金属」と記す)化合物と、リン酸を含む含浸溶液に、さらにジオールまたはエーテルを添加して得られた含浸溶液を含浸し、これを200℃以下で乾燥させることを特徴とする方法が知られている(特許文献2参照)。   Further, on the γ-alumina support, a Group 8 metal (hereinafter simply referred to as “Group 8 metal”) compound and a Group 6 metal (hereinafter simply referred to as “Group 6 metal”) compound of the Periodic Table; Further, there is known a method characterized by impregnating an impregnating solution containing phosphoric acid with an impregnating solution obtained by further adding a diol or ether and drying the impregnating solution at 200 ° C. or lower (see Patent Document 2). ).

また、担体に6族金属化合物、リン成分、8族金属化合物、クエン酸からなる溶液を含浸し、その後焼成を行う発明が知られている(特許文献3参照)。   Further, an invention is known in which a carrier is impregnated with a solution composed of a Group 6 metal compound, a phosphorus component, a Group 8 metal compound, and citric acid, and then fired (see Patent Document 3).

更に、酸化物担体に、6族金属化合物、8族金属化合物、リン酸からなる溶液を担持し、200℃以下で乾燥させた触媒を得、それに特定の化学式で示される有機酸の溶液を担持し、200℃以下で乾燥する方法が知られている(特許文献4参照)。   Furthermore, a catalyst comprising a group 6 metal compound, a group 8 metal compound, and phosphoric acid is supported on an oxide carrier to obtain a catalyst dried at 200 ° C. or lower, and a solution of an organic acid represented by a specific chemical formula is supported on the catalyst. And the method of drying at 200 degrees C or less is known (refer patent document 4).

一方、有機酸を二度用いて含浸させる触媒の製造方法についても知られている。
例えば、酸化物担体に、6族金属化合物、8族金属化合物、有機酸、リン酸からなる溶液を含浸し、200℃以下で乾燥させた触媒を得、さらに有機酸の溶液を含浸し、200℃以下で乾燥する方法が知られている(特許文献5参照)。
On the other hand, a method for producing a catalyst in which an organic acid is impregnated twice is also known.
For example, an oxide carrier is impregnated with a solution consisting of a Group 6 metal compound, a Group 8 metal compound, an organic acid, and phosphoric acid to obtain a catalyst dried at 200 ° C. or lower, and further impregnated with an organic acid solution. A method of drying at a temperature of 0 ° C. or lower is known (see Patent Document 5).

加えて、8族金属化合物と、6族金属のヘテロポリ酸を無機酸化物支持体に含浸させ、乾燥させて触媒を製造する技術も知られている(特許文献6参照)。   In addition, a technique for manufacturing a catalyst by impregnating an inorganic oxide support with a Group 8 metal compound and a heteropolyacid of a Group 6 metal and drying it is also known (see Patent Document 6).

また、酸化物担体に、モリブデン、タングステン、8族金属化合物、メルカプトカルボン酸、リン酸からなる溶液を含浸させる触媒の製造方法が知られている(特許文献7参照)。
この方法は、メルカプトカルボン酸と、モリブデン、タングステン、8族金属化合物との配位化合物を形成させて、触媒担体上に高分散させることを主目的としている。
しかし、この方法では、モリブデン、タングステンが担体上で高分散化されてしまい、後述する本発明のような二硫化モリブデンの積層化が困難となり、脱硫活性点として特に有効なCoMoS相やNiMoS相のタイプII(二硫化モリブデンの2層目以上のエッジ部に存在するCo,Ni活性点を指し、タイプIは二硫化モリブデンの1層目のエッジ部に存在するCo,Ni活性点を指し、タイプIIよりも活性が低い)の形成はないと推測される。
しかも、メルカプトカルボン酸は、硫黄を含んでおり、8族金属(Co,Ni)の近傍に存在したり、配位化を形成したりすると、脱硫活性点(CoMoS相,NiMoS相)とならずに、不活性なCo98種やNi32種となる可能性がある。
Further, a method for producing a catalyst is known in which an oxide carrier is impregnated with a solution comprising molybdenum, tungsten, a group 8 metal compound, mercaptocarboxylic acid, and phosphoric acid (see Patent Document 7).
The main purpose of this method is to form a coordination compound of mercaptocarboxylic acid and molybdenum, tungsten, or a group 8 metal compound and highly disperse it on the catalyst support.
However, in this method, molybdenum and tungsten are highly dispersed on the support, making it difficult to laminate molybdenum disulfide as in the present invention described later. Type II (refers to Co, Ni active points present at the edge of the second layer or more of molybdenum disulfide, Type I refers to Co, Ni active points present at the edge of the first layer of molybdenum disulfide, type It is speculated that there is no formation of (lower activity than II).
Moreover, the mercaptocarboxylic acid contains sulfur, and if it exists in the vicinity of the group 8 metal (Co, Ni) or forms a coordination, it does not become a desulfurization active site (CoMoS phase, NiMoS phase). In addition, there is a possibility of becoming inactive Co 9 S 8 species or Ni 3 S 2 species.

また、有機酸を添加し、二硫化モリブデンを積層化し、脱硫性能を高めていることが知られている(特許文献8参照)が、この触媒ではコーク劣化の面に関して更なる改良が求められる。   Further, it is known that organic acid is added and molybdenum disulfide is laminated to improve desulfurization performance (see Patent Document 8). However, this catalyst is required to further improve the coke deterioration.

リチウムに関して、酸化リチウムを含有させた担体に水素化活性金属を担持させた触媒を用いて水素化分解を行うと、沈殿物を増加することなく優れた転化率が得られることが知られている(特許文献9参照)が、この触媒では脱硫活性のさらなる改良が求められる。   Regarding lithium, it is known that when a hydrogenolysis is carried out using a catalyst in which a hydrogenation active metal is supported on a carrier containing lithium oxide, an excellent conversion rate can be obtained without increasing the precipitate. (See Patent Document 9) However, this catalyst requires further improvement in desulfurization activity.

また、TPD測定による全ブレンステッド酸量が50μmol/g以上の触媒担体にアルカリ金属、アルカリ土類金属を添加し、水素化活性金属を担持した触媒が知られている(特許文献10参照)。この触媒もコーク劣化の抑制に対してさらなる改良が求められる。   Further, a catalyst is known in which an alkali metal or an alkaline earth metal is added to a catalyst carrier having a total Brnsted acid amount of 50 μmol / g or more by TPD measurement to carry a hydrogenation active metal (see Patent Document 10). This catalyst is also required to be further improved to suppress coke deterioration.

また、リチウムを添加して酸量を制御している触媒も知られている(特許文献11参照)が、この触媒も脱硫活性向上に対してさらなる改良が求められる。   Further, a catalyst in which the amount of acid is controlled by adding lithium is also known (see Patent Document 11), but this catalyst is also required to be further improved to improve the desulfurization activity.

以上の触媒は、減圧軽油に対する脱硫性能が不十分である、触媒寿命が短い等の課題を有している。このようなことから、現在、運転条件を苛酷にせずに減圧軽油の高度な脱硫を実現することができる従来よりも脱硫活性が高く、かつ触媒寿命の長い触媒を開発することが要求されている。   The above catalysts have problems such as insufficient desulfurization performance with respect to vacuum gas oil and short catalyst life. For this reason, it is currently required to develop a catalyst having higher desulfurization activity and longer catalyst life than the conventional one that can realize advanced desulfurization of vacuum gas oil without harsh operating conditions. .

特開昭61−114737号公報JP 61-114737 A 特許第2900771号明細書Japanese Patent No. 2900771 特許第2832033号明細書Japanese Patent No. 2832033 特開平4−244238号公報JP-A-4-244238 特開平6−339635号公報JP-A-6-339635 特開平6−31176号公報JP-A-6-31176 特開平1−228552号公報JP-A-1-228552 特開2003−299960号公報JP 2003-299960 A 特開平7−256106号公報JP-A-7-256106 特開2000−8050号公報JP 2000-8050 A 特開2003−103175号公報JP 2003-103175 A

本発明の目的は、コーク劣化による触媒活性の低下が少なく、炭化水素油、とりわけ減圧軽油などの軽油留分中の硫黄化合物を長期間にわたり、高い効率で除去することができる水素化脱硫触媒を提供すること、さらには該水素化脱硫触媒の製造方法および該水素化脱硫触媒を用いた減圧軽油の水素化脱硫法を提供することにある。   An object of the present invention is to provide a hydrodesulfurization catalyst that is less likely to reduce catalyst activity due to coke degradation and can remove sulfur compounds in hydrocarbon oils, particularly gas oil fractions such as vacuum gas oil, over a long period of time and with high efficiency. It is another object of the present invention to provide a method for producing the hydrodesulfurization catalyst and a hydrodesulfurization method for vacuum gas oil using the hydrodesulfurization catalyst.

本発明者らは、上記目的を達成するために検討を行ったところ、周期律表第6族金属化合物、第8族金属化合物、有機酸、リン、リチウムを所定量含有する触媒であり、少なくとも6族金属化合物、8族金属化合物、有機酸を含む溶液を含浸させ、200℃以下の温度で乾燥することによって、不活性なコバルト、ニッケル種を形成せずに高活性な脱硫活性点(CoMoS相、NiMoS相等)を高度に制御でき、さらに触媒の酸性質を好適な値に制御できたためコーク析出も抑制できた。これらの結果として、脱硫反応が効率的に進行するため、反応条件を苛酷にせずに減圧軽油などの炭化水素油の高度な脱硫を容易に達成することができる高性能脱硫触媒を得ることができるとの知見を得た。
即ち、本発明によれば、以下に示す炭化水素油の水素化触媒、この触媒の製造方法、及び炭化水素油の水素化処理方法により上記目的が達成された。
1.周期律表第6族金属から選ばれた少なくとも1種を10〜30質量%、周期律表第8族金属から選ばれた少なくとも1種を1〜15質量%、炭素を2〜14質量%、リチウムを0.05〜1質量%、リンを0.8〜8質量%含み、このリン原子のエレクトロンプローブ・マイクロアナリシス(EPMA)装置により、中心線を通る断面幅方向の線分析により得られるリン原子の分布が下記の式(1)を満足することを特徴とする炭化水素油の水素化処理触媒。なお、上記質量%は、触媒基準、酸化物換算である。

S=exp(0.04×Iave.+0.013×Imax.−0.143×Imin.)≦1 ・・・式(1)

(式(1)において、Imax.はEPMA線分析によるリン原子の濃度測定値の最大値であり、Imin.はEPMA線分析によるリン原子の濃度測定値の最小値であり、Iave.はEPMA線分析によるリン原子の濃度測定値の平均値である。)
2.比表面積110〜300m2/g、細孔容積0.35〜0.6m1/g、平均細孔直径65〜180Åであることを特徴とする上記1に記載の炭化水素油の水素化処理触媒。
3.マイクロカロリメトリー法にて測定した100〜200kJ/molのアンモニア吸着熱を発する酸点を、触媒1g当り、270〜380μmolの範囲で有していることを特徴とする上記1または2に記載の炭化水素油の水素化処理触媒。
4.触媒が、予備硫化後において、透過型電子顕微鏡により観察される二硫化モリブデン相の積層数の平均値が2.5〜5であることを特徴とする上記1〜3のいずれかに記載の炭化水素油の水素化処理触媒。
5.比表面積160〜500m2/g、細孔容積0.55〜0.9m1/g、平均細孔直径60〜150Åである無機酸化物担体上に、周期律表第8族金属から選ばれた少なくとも1種を含む化合物、周期律表第6族金属から選ばれた少なくとも1種を含む化合物、有機酸、リン、リチウムを含有する溶液を用い、触媒基準、酸化物換算で周期律第6族金属を10〜30質量%、周期律表第8族金属を1〜15質量%、リチウム0.05〜1質量%、炭素を2〜14質量%、リンを0.8〜8質量%となるように担持させ、200℃以下で乾燥させることを特徴とする上記1〜4のいずれかに記載の炭化水素油の水素化処理触媒の製造方法。
6.比表面積160〜500m2/g、細孔容積0.55〜0.9m1/g、平均細孔直径60〜150Åであるリンを触媒基準、酸化物換算で0.8〜8質量%含む無機酸化物担体上に、周期律表第8族金属から選ばれた少なくとも1種を含む化合物、周期律表第6族金属から選ばれた少なくとも1種を含む化合物、有機酸、およびリチウムを含有する溶液を用い、触媒基準、酸化物換算で周期律第6族金属を10〜30質量%、周期律表第8族金属を1〜15質量%、リチウム0.05〜1質量%、炭素を2〜14質量%となるように担持させ、200℃以下で乾燥させることを特徴とする上記1〜4のいずれかに記載の炭化水素油の水素化処理触媒の製造方法。
7.前記リンを含む無機酸化物担体が、無機酸化物担体の原料とリンの原料とを混練する混練法により調製されたことを特徴とする上記6に記載の炭化水素油の水素化処理触媒の製造方法
8.上記1〜4のいずれかに記載の触媒の存在下、水素分圧3〜8MPa、温度300〜420℃、液空間速度0.3〜5hr-1の条件で、炭化水素油留分の接触反応を行うことを特徴とする炭化水素油の水素化処理方法。
The inventors of the present invention have studied to achieve the above object, and found that the catalyst contains a predetermined amount of Group 6 metal compound, Group 8 metal compound, organic acid, phosphorus, lithium in the periodic table, and at least By impregnating a solution containing a Group 6 metal compound, a Group 8 metal compound and an organic acid and drying at a temperature of 200 ° C. or less, a highly active desulfurization active site (CoMoS) is formed without forming inert cobalt and nickel species. Phase, NiMoS phase, etc.) can be controlled to a high degree, and the acidity of the catalyst can be controlled to a suitable value, so that coke deposition can be suppressed. As a result, since the desulfurization reaction proceeds efficiently, it is possible to obtain a high-performance desulfurization catalyst that can easily achieve advanced desulfurization of hydrocarbon oil such as vacuum gas oil without making the reaction conditions severe. And gained knowledge.
That is, according to the present invention, the above object has been achieved by the following hydrocarbon oil hydrogenation catalyst, a method for producing the catalyst, and a hydrocarbon oil hydrotreating method.
1. 10 to 30% by mass of at least one selected from Group 6 metals of the periodic table, 1 to 15% by mass of at least one selected from Group 8 metals of the periodic table, 2 to 14% by mass of carbon, Phosphorus obtained by line analysis in the cross-sectional width direction passing through the center line using an electron probe microanalysis (EPMA) apparatus of this phosphorus atom containing 0.05 to 1% by mass of lithium and 0.8 to 8% by mass of phosphorus A hydrocarbon oil hydrotreating catalyst characterized in that the distribution of atoms satisfies the following formula (1): In addition, the said mass% is a catalyst reference | standard and oxide conversion.

S = exp (0.04 × Iave. + 0.013 × Imax.−0.143 × Imin.) ≦ 1 Equation (1)

(In Formula (1), Imax. Is the maximum value of the phosphorus atom concentration measured by EPMA line analysis, Imin. Is the minimum value of the phosphorus atom concentration measured value by EPMA line analysis, and Iave. Is the EPMA line. (This is the average value of phosphorus atom concentration measured by analysis.)
2. 2. The hydrocarbon oil hydrotreating catalyst according to 1 above, having a specific surface area of 110 to 300 m 2 / g, a pore volume of 0.35 to 0.6 m1 / g, and an average pore diameter of 65 to 180 mm.
3. 3. The hydrocarbon according to the above 1 or 2, characterized in that it has an acid point which generates an ammonia adsorption heat of 100 to 200 kJ / mol measured by a microcalorimetry method in a range of 270 to 380 μmol per 1 g of the catalyst. Oil hydrotreating catalyst.
4). The carbonization according to any one of 1 to 3 above, wherein the catalyst has an average number of laminated molybdenum disulfide phases of 2.5 to 5 observed by a transmission electron microscope after preliminary sulfidation. Hydrogen oil hydrotreating catalyst.
5. On an inorganic oxide support having a specific surface area of 160 to 500 m 2 / g, a pore volume of 0.55 to 0.9 m1 / g, and an average pore diameter of 60 to 150 mm, at least selected from Group 8 metals of the periodic table A compound containing at least one kind selected from a compound containing at least one selected from the group 6 metals in the periodic table, a solution containing an organic acid, phosphorus and lithium, based on the catalyst standard and oxide conversion, and a group 6 metal in the periodic table To 10 to 30% by mass, 1 to 15% by mass of Group 8 metal of the periodic table, 0.05 to 1% by mass of lithium, 2 to 14% by mass of carbon, and 0.8 to 8% by mass of phosphorus. The method for producing a hydrocarbon oil hydrotreating catalyst according to any one of the above 1 to 4, wherein the catalyst is dried at 200 ° C. or lower.
6). Inorganic oxidation containing phosphorus having a specific surface area of 160 to 500 m 2 / g, a pore volume of 0.55 to 0.9 m1 / g, and an average pore diameter of 60 to 150 mm on a catalyst basis, 0.8 to 8% by mass in terms of oxide A solution containing a compound containing at least one selected from Group 8 metals of the periodic table, a compound containing at least one selected from Group 6 metals of the periodic table, an organic acid, and lithium on a physical support , 10-30% by mass of periodic group 6 metal in terms of oxide, 1-15% by mass of group 8 metal in the periodic table, 0.05-1% by mass of lithium, 2% of carbon The method for producing a hydrocarbon oil hydrotreating catalyst according to any one of the above 1 to 4, wherein the catalyst is supported so as to be 14% by mass and dried at 200 ° C or lower.
7). 7. The hydrocarbon oil hydrotreating catalyst according to the above 6, wherein the phosphorus-containing inorganic oxide support is prepared by a kneading method in which an inorganic oxide support raw material and a phosphorus raw material are kneaded. Method 8. In the presence of the catalyst according to any one of 1 to 4 above, a catalytic reaction of a hydrocarbon oil fraction under conditions of a hydrogen partial pressure of 3 to 8 MPa, a temperature of 300 to 420 ° C., and a liquid space velocity of 0.3 to 5 hr −1. Hydrocarbon oil hydrotreating method characterized by performing.

本発明によれば、上記6族金属および8族金属を活性金属とする特定の組成、特定の物性の触媒を用いて、コーク劣化による触媒活性の低下が少なく、炭化水素油、なかでも減圧軽油などの軽油留分中の硫黄化合物を長期間にわたり、高い効率で除去することができる。   According to the present invention, a catalyst having a specific composition and a specific physical property using the group 6 metal and the group 8 metal as an active metal is used, and a decrease in catalytic activity due to coke deterioration is small. The sulfur compound in the gas oil fraction such as can be removed with high efficiency over a long period of time.

本発明は、広く炭化水素油を処理対象油とすることができるが、減圧軽油などの軽油留分の処理に好適に適用することができる。
本発明を好適に適用できる原料油の代表的な性状例として、沸点範囲が150〜550℃、硫黄分が5質量%以下のものが挙げられる。
The present invention can widely use hydrocarbon oils as processing target oils, but can be suitably applied to the processing of light oil fractions such as vacuum gas oils.
Typical examples of the properties of the feedstock to which the present invention can be suitably applied include those having a boiling range of 150 to 550 ° C. and a sulfur content of 5% by mass or less.

本発明の触媒においては、アルミナ、シリカ、ジルコニア、チタニア、ボリア、等の各種の無機酸化物担体を用いることができるが、中でもアルミナ担体が主成分である無機酸化物担体が好ましい。アルミナ担体の製造方法は、特に限定されず、通常の方法を採用することができる。すなわち、水溶性のアルミニウム化合物、例えばアルミニウムの硫酸塩、硝酸塩あるいは塩化物をアンモニアのような塩基で中和するか、またはアルカリ金属アルミン酸塩を酸性アルミニウム塩または酸で中和するなどして、生成したアルミニウムヒドロゲルまたはヒドロゾルを洗浄、熟成、成形、乾燥、焼成等の一般的な処方を施し、製造することができる。また本発明の触媒においては無機担体中に所定量のリン酸化物を含んでいる無機酸化物担体を使用することもでき、アルミナを主成分とした無機酸化物にリン化合物を含有させた担体が特に好ましく用いることができる。
このリン含有アルミナ担体の製造方法は、特に調製方法を規定するものではなく、平衡吸着法、共沈法、混練法等により製造することができるが、脱硫活性の高い触媒が得られる点で、特に混練法によることが好ましい。その際、リン酸化物の原料は水溶液であることが好ましい。
本発明の触媒で使用するリン酸化物の原料としては、種々の化合物を使用することができ、例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸が挙げられるがオルトリン酸が好ましい。
In the catalyst of the present invention, various inorganic oxide carriers such as alumina, silica, zirconia, titania, boria and the like can be used, and among them, an inorganic oxide carrier whose main component is an alumina carrier is preferable. The production method of the alumina carrier is not particularly limited, and a normal method can be adopted. That is, by neutralizing a water-soluble aluminum compound such as aluminum sulfate, nitrate or chloride with a base such as ammonia, or neutralizing an alkali metal aluminate with an acidic aluminum salt or acid, etc. The produced aluminum hydrogel or hydrosol can be produced by applying a general formulation such as washing, aging, molding, drying, and baking. In the catalyst of the present invention, an inorganic oxide carrier containing a predetermined amount of phosphorus oxide in the inorganic carrier can also be used, and a carrier containing a phosphorus compound in an inorganic oxide mainly composed of alumina is used. It can be particularly preferably used.
The method for producing this phosphorus-containing alumina carrier is not particularly defined as a preparation method, and can be produced by an equilibrium adsorption method, a coprecipitation method, a kneading method, etc., but a catalyst having a high desulfurization activity can be obtained. It is particularly preferable to use a kneading method. In that case, it is preferable that the raw material of phosphorus oxide is aqueous solution.
Various compounds can be used as a raw material for the phosphorous oxide used in the catalyst of the present invention. Examples thereof include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid. preferable.

触媒として好適な構造物性を有する担体を得るには、沈殿剤や中和剤などを添加してアルミナゲルを作る際のpH、これら薬剤の濃度、時間、温度等を適宜調整すればよく、例えば、ゲル生成の際のpHを酸性側で行えば、比表面積が大きくなる。本発明では、pHは約4〜8、温度は約15〜90℃の範囲内とすることが好ましい。   In order to obtain a carrier having structural properties suitable as a catalyst, a pH when making an alumina gel by adding a precipitating agent, a neutralizing agent, etc., the concentration, time, temperature, etc. of these agents may be appropriately adjusted. If the pH during gel formation is on the acidic side, the specific surface area increases. In the present invention, it is preferable that the pH is about 4 to 8 and the temperature is about 15 to 90 ° C.

ゲル生成後に、熟成、不純物の洗浄除去、脱水乾燥を行う。熟成はpH4〜9、15〜90℃で1〜25時間の範囲で行うことが好ましい。これら熟成条件の範囲内であれば、アルミナゲル中の不純物が除去し易く、アルミナゲルの表面積が大きくなる。
また脱水乾燥は、アルミナゲルになるべく熱を加えずに、含有水分量を調整することにより行う。例えば、約15〜90℃、約0.01〜2MPaでの自然濾過、吸引濾過、加圧濾過等による方法で脱水乾燥し、脱水乾燥後の含有水分量が約60〜90質量%となるようにすることが好ましい。アルミナゲルに余分な熱を加えずに含有水分量を調整することで、担体の表面構造の制御が可能となり、触媒の水素化脱硫活性を向上させることができる。
After the gel is formed, aging, cleaning and removing impurities, and dehydration drying are performed. Aging is preferably carried out at a pH of 4 to 9, 15 to 90 ° C. for 1 to 25 hours. Within the range of these aging conditions, impurities in the alumina gel can be easily removed, and the surface area of the alumina gel increases.
The dehydration drying is performed by adjusting the water content without applying heat to the alumina gel. For example, it is dehydrated and dried by a method such as natural filtration at about 15 to 90 ° C. and about 0.01 to 2 MPa, suction filtration, pressure filtration, etc., so that the water content after dehydration drying is about 60 to 90% by mass. It is preferable to make it. By adjusting the water content without applying extra heat to the alumina gel, the surface structure of the support can be controlled and the hydrodesulfurization activity of the catalyst can be improved.

脱水乾燥後に担体の成形を行う。成形方法は特に限定されず、押出成形、打錠成形あるいは油中造粒等の一般的な方法を用いることができる。なお成形時の圧力や速度を調整することによっても、担体の構造物性である細孔容積や細孔分布等を制御することができる。   The carrier is formed after dehydration and drying. The molding method is not particularly limited, and a general method such as extrusion molding, tableting molding, or granulation in oil can be used. The pore volume and pore distribution, which are structural physical properties of the carrier, can also be controlled by adjusting the pressure and speed during molding.

担体の形状は重質油留分の触媒層の流通を考慮し、円柱状、三葉柱状、四葉柱状、ダンベル柱状あるいはリング状のペレット形状であることが望ましいが、反応条件下で触媒層の圧力損失(圧力差)が小さい形状が選ばれる。同様にこのペレット径は反応条件下で触媒層の前後で圧力損失が大きくならないように1〜2mmの範囲にあることが望ましい。なおペレット径とは、ペレットの形状が円柱であるもの以外は、その最も太い部分の断面の長径で表す。   The shape of the support is preferably cylindrical, trilobal, quadrilobal, dumbbell, or ring-shaped pellets in consideration of the distribution of the heavy oil fraction catalyst layer. A shape with a small pressure loss (pressure difference) is selected. Similarly, the pellet diameter is preferably in the range of 1 to 2 mm so that pressure loss does not increase before and after the catalyst layer under the reaction conditions. In addition, a pellet diameter is represented by the long diameter of the cross section of the thickest part except what the shape of a pellet is a cylinder.

成形後、常温〜150℃で3〜24時間乾燥し、引き続き200〜600℃で3〜24時間焼成することにより、担体を得ることができる。   After molding, the support can be obtained by drying at room temperature to 150 ° C. for 3 to 24 hours, and subsequently firing at 200 to 600 ° C. for 3 to 24 hours.

本発明の触媒は、後述するように、無機酸化物担体に活性成分を担持させた後は、200℃以下で乾燥するだけで調製するため、後述する触媒の機械的特性(側面破壊強度や最密充填かさ密度等)は無機酸化物担体の焼成で得ることとなるが、担体の焼成は、その機械的強度、比表面積、細孔容積、平均細孔径と言った特性を勘案して、400℃〜700℃で0.5〜10時間で行なうのが好ましく、特に好ましくは500℃〜630℃で2時間〜5時間である。乾燥の温度及び時間が上記範囲であれば、触媒は十分な機械強度を得ることができ、比表面積、細孔容積、平均細孔径も適切であり、高脱硫活性の触媒を得ることができる。しかも無駄なく経済的に上記効果が得られる。   As described later, the catalyst of the present invention is prepared by simply drying at 200 ° C. or lower after an active ingredient is supported on an inorganic oxide carrier. Close-packed bulk density, etc.) can be obtained by firing an inorganic oxide support. The support is fired in consideration of its mechanical strength, specific surface area, pore volume, average pore diameter, and the like. It is preferable to carry out at a temperature of from 700 ° C. to 700 ° C. for 0.5 to 10 hours, particularly preferably from 500 ° C. to 630 ° C. for 2 hours to 5 hours. When the drying temperature and time are within the above ranges, the catalyst can obtain sufficient mechanical strength, and the specific surface area, pore volume and average pore diameter are also appropriate, and a catalyst with high desulfurization activity can be obtained. In addition, the above effects can be obtained economically without waste.

無機酸化物担体の比表面積、細孔容積、平均細孔直径は、炭化水素油に対する水素化脱硫活性の高い触媒にするために、比表面積が160〜500m2/g、好ましくは175〜450m2/g、細孔容積が0.55〜0.9ml/g、好ましくは0.65〜0.8ml/g、平均細孔直径が60〜150Å、好ましくは65〜110Åであることが極めて好ましい。 The specific surface area of the inorganic oxide support, pore volume, average pore diameter, in order to high hydrodesulfurization activity for hydrocarbon oils catalysts, specific surface area of 160~500m 2 / g, preferably 175~450M 2 / G, a pore volume of 0.55 to 0.9 ml / g, preferably 0.65 to 0.8 ml / g, and an average pore diameter of 60 to 150 mm, preferably 65 to 110 mm.

この理由は次の通りである。
含浸溶液中で6族金属と8族金属は錯体(6族金属はリン酸と配位してヘテロポリ酸、8族金属は有機酸と配位して有機金属錯体)を形成していると考えられるため、担体の比表面積が160m2/g以上であれば、含浸の際、錯体の高分散化が容易となり、その結果、得られる触媒を硫化した際、上記の活性点(CoMoS相、NiMoS相等)形成の精密な制御が可能になると推測される。
比表面積が500m2/g以下であれば、細孔直径が極端に小さくならないため、硫黄化合物が触媒細孔内へ拡散可能であり、脱硫活性の低下を防ぐことができるため好ましい。
The reason is as follows.
In the impregnating solution, the group 6 metal and the group 8 metal are considered to form a complex (the group 6 metal is coordinated with phosphoric acid to form a heteropolyacid, and the group 8 metal is coordinated to an organic acid to form an organometallic complex). Therefore, if the specific surface area of the support is 160 m 2 / g or more, it becomes easy to highly disperse the complex during impregnation, and as a result, when the resulting catalyst is sulfided, the above active sites (CoMoS phase, NiMoS) Presumably, precise control of the formation will be possible.
A specific surface area of 500 m 2 / g or less is preferable because the pore diameter does not become extremely small, so that the sulfur compound can diffuse into the catalyst pores and the desulfurization activity can be prevented from being lowered.

細孔容積が0.55ml/g以上であれば、通常の含浸法で触媒を調製する場合、細孔容積内に入り込む溶媒が十分であり、活性金属化合物の溶解性を損なうことなく、金属の高分散性を維持できるため好ましく、細孔容積が0.9ml/g以下であれば比表面積が極端に小さくならないため、活性金属の分散性を維持できるため、好ましい。   If the pore volume is 0.55 ml / g or more, when preparing the catalyst by the usual impregnation method, the solvent that enters the pore volume is sufficient, and the solubility of the active metal compound is not impaired. It is preferable because high dispersibility can be maintained, and a pore volume of 0.9 ml / g or less is preferable because the specific surface area does not become extremely small and the dispersibility of the active metal can be maintained.

平均細孔直径が60Å以上であれば、硫黄化合物の触媒細孔内への拡散性を損なわないため高脱硫活性を維持できる。平均細孔径が150Å以下であれば、活性金属を高分散させるために必要な触媒の比表面積を維持できるため、脱硫活性の高い触媒となる。また、上記の平均細孔径の条件を満たす細孔の有効数を増加させるために、触媒の細孔分布すなわち平均細孔径±15Åの細孔を有する細孔の割合は20〜90%、好ましくは35〜85%とする。20%以上であれば炭化水素油の脱硫に関係しない細孔が増加せず、その結果、脱硫活性が大幅に低下することがないため好ましい。90%以下であれば、脱硫される化合物が特定の化合物に限定されず、満遍なく脱硫することができるため好ましい。   When the average pore diameter is 60 mm or more, high desulphurization activity can be maintained because the diffusibility of the sulfur compound into the catalyst pores is not impaired. If the average pore diameter is 150 mm or less, the specific surface area of the catalyst necessary for highly dispersing the active metal can be maintained, and therefore the catalyst has a high desulfurization activity. In order to increase the effective number of pores satisfying the above average pore diameter condition, the pore distribution of the catalyst, that is, the ratio of pores having an average pore diameter of ± 15 mm is preferably 20 to 90%, preferably 35 to 85%. If it is 20% or more, pores not related to desulfurization of hydrocarbon oil do not increase, and as a result, desulfurization activity does not significantly decrease, which is preferable. If it is 90% or less, the compound to be desulfurized is not limited to a specific compound and is preferable because it can be uniformly desulfurized.

また、後述する6族金属、8金属の分散性を向上させるために、上記担体にリン酸化物を担持しても良い。担持させるリン酸化物の原料としては、担体調製時と同様なものが好ましく、例えばオルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸が挙げられ、オルトリン酸が好ましい。また、リン化合物を担持させる方法としては、担体にこれらのリン化合物原料を含浸させる方法がある。
なお、担持させるリン酸化物の量は、担体調製時に使用したリン酸化物の量を含めた合計量が、触媒基準、酸化物換算で0.8〜8質量%の範囲になるようにする。例えば、担体を、無機酸化物とリン酸化物とを混練法で調製した場合は、混練法に使用するリン酸化物の一部を担持用のリン酸化物に使用する。また、活性金属に対しては、例えばモリブテンを用いる場合は、リン酸化物とモリブテンとの質量比〔(P25)/(MoO3)〕の値で、好ましくは0.01〜1.5、より好ましくは0.05〜1、更に好ましくは0.1〜0.5である。この質量比が0.01以上であれば、CoとMoの一体化が図れること、また硫化後、二硫化モリブテンの積層化が図れることの2点から、最終的に脱硫活性点と考えられるCoMoS相、NiMoS相のタイプIIが得られ易く、高活性な触媒となり易く、好ましい。1.5以下であれば、触媒の表面積及び細孔容積の大幅な減少がなく、触媒の活性が低下しないこと、および余分な酸量が増加せず、炭素析出が抑制できるため、活性劣化を引き起こしにくくなるため、好ましい。
Moreover, in order to improve the dispersibility of the group 6 metal and the 8 metal, which will be described later, a phosphor oxide may be supported on the carrier. As the raw material for the phosphorus oxide to be supported, the same materials as those used for preparing the carrier are preferable. Examples thereof include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid, and orthophosphoric acid is preferred. In addition, as a method of supporting the phosphorus compound, there is a method of impregnating a carrier with these phosphorus compound raw materials.
The amount of phosphorus oxide to be supported is such that the total amount including the amount of phosphorus oxide used at the time of preparing the carrier is in the range of 0.8 to 8% by mass in terms of catalyst and oxide. For example, when the carrier is prepared by kneading an inorganic oxide and a phosphorous oxide, a part of the phosphorous oxide used in the kneading method is used for the supporting phosphorous oxide. In addition, for example, when molybdenum is used for the active metal, the mass ratio of phosphorus oxide to molybdenum ([(P 2 O 5 ) / (MoO 3 )]), preferably 0.01 to 1. 5, more preferably 0.05 to 1, and still more preferably 0.1 to 0.5. If this mass ratio is 0.01 or more, CoMoS can be integrated with Co and Mo, and after sulfiding, lamination of molybdenum disulfide can be achieved. Phase, NiMoS phase type II is easily obtained, and a highly active catalyst is easily obtained. If it is 1.5 or less, there is no significant decrease in the surface area and pore volume of the catalyst, the activity of the catalyst does not decrease, and the amount of excess acid does not increase, and carbon deposition can be suppressed. This is preferable because it is difficult to cause.

本発明の触媒に含有させる6族金属は、モリブデン、タングステンが好ましく、モリブデンが特に好ましい。
6族金属の含有量は、触媒基準、酸化物換算で、10〜30質量%、好ましくは16〜28質量%である。
10質量%以上であれば6族金属に起因する効果を十分に発現させることが可能であり、30質量%以下であれば6族金属の含浸(担持)工程で6族金属化合物の凝集を生じることなく、6族金属を効率的に分散することができるため好ましい。
The Group 6 metal contained in the catalyst of the present invention is preferably molybdenum or tungsten, and particularly preferably molybdenum.
The content of the Group 6 metal is 10 to 30% by mass, preferably 16 to 28% by mass in terms of catalyst and oxide.
If it is 10% by mass or more, the effect due to the Group 6 metal can be sufficiently exhibited, and if it is 30% by mass or less, the Group 6 metal compound is aggregated in the impregnation (supporting) process of the Group 6 metal. Without any problem, because the Group 6 metal can be efficiently dispersed.

8族金属は、コバルト、ニッケルが好ましい。
8族金属の含有量は、触媒基準、酸化物換算で、1〜15質量%、好ましくは3〜8質量%である。
1質量%以上であれば、8族金属に帰属する活性点を十分に得ることができ、15質量%以下であれば、8族金属の含有(担持)工程で8族金属化合物の凝集を生じることなく、8族金属の分散性を維持することに加え、不活性なコバルト、ニッケル種であるCo98種、Ni32種の前駆体であるCoO種、NiO種等や、担体の格子内に取り込まれたCoスピネル種、Niスピネル種等の生成を抑制することが考えられるため、好ましい。
The group 8 metal is preferably cobalt or nickel.
The content of the group 8 metal is 1 to 15% by mass, preferably 3 to 8% by mass in terms of catalyst and oxide.
If it is 1% by mass or more, the active sites belonging to the group 8 metal can be sufficiently obtained, and if it is 15% by mass or less, the group 8 metal compound is aggregated in the step of containing (supporting) the group 8 metal. In addition to maintaining the dispersibility of the Group 8 metal, inert cobalt, Co 9 S 8 species that are nickel species, CoO species that are precursors of Ni 3 S 2 species, NiO species, and the like, It is preferable to suppress the generation of Co spinel species, Ni spinel species, and the like incorporated in the lattice.

8族金属、6族金属の上記した含有量において、8族金属と6族金属の最適質量比は、好ましくは、酸化物換算で、〔8族金属〕/〔8族金属+6族金属〕(質量比)の値で、0.1〜0.25である。
この値が上記範囲であると、脱硫の活性点と考えられるCoMoS相、NiMoS相等が生成して脱硫活性が向上し、しかも上記の不活性なコバルト、ニッケル種(Co98種、Ni32種)の生成が僅かであり、触媒活性の低下が実質上起こらない。
In the above-described contents of the Group 8 metal and the Group 6 metal, the optimum mass ratio between the Group 8 metal and the Group 6 metal is preferably [Group 8 metal] / [Group 8 metal + Group 6 metal] (in terms of oxide) ( The mass ratio is 0.1 to 0.25.
When this value is in the above range, a CoMoS phase, NiMoS phase, etc., which are considered as active sites for desulfurization, are generated to improve the desulfurization activity, and the above-described inert cobalt, nickel species (Co 9 S 8 species, Ni 3 S 2 type) is generated little and the catalytic activity is not substantially reduced.

リンの含有量は、触媒基準、酸化物換算で、0.8〜8質量%、好ましくは1〜6質量%、より好ましくは1.2〜5質量%である。リンは担体調製時に含有させてもよいし、担体を調製した後、含浸法等により担持してもよい。リン含有量は、担体調製時に含有される量、担体調製後に担持される量の合計である。
0.8質量%以上であれば、6族金属が予備硫化工程で高分散なMoS2相が形成することができ、上記の脱硫活性点を十分に配置できると推測される。特に、前述した予備硫化後の触媒に二硫化モリブデンの層を、平均積層数で2.5〜5となるように形成するためには、0.8質量%以上とすることが好ましい。一方、8質量%以下であれば、過剰なリンが被毒物質として脱硫活性点を被覆することがないと推測され、好ましい。
The phosphorus content is 0.8 to 8% by mass, preferably 1 to 6% by mass, and more preferably 1.2 to 5% by mass in terms of catalyst and oxide. Phosphorus may be contained at the time of preparing the carrier, or may be supported by an impregnation method or the like after the carrier is prepared. The phosphorus content is the sum of the amount contained during carrier preparation and the amount supported after carrier preparation.
If it is 0.8 mass% or more, it is estimated that a highly dispersed MoS 2 phase can be formed in the group 6 metal in the preliminary sulfidation step, and the above desulfurization active sites can be sufficiently arranged. In particular, in order to form the molybdenum disulfide layer on the catalyst after the preliminary sulfidation so that the average number of layers is 2.5 to 5, the content is preferably 0.8% by mass or more. On the other hand, if it is 8 mass% or less, it is estimated that excess phosphorus does not cover a desulfurization active site as a poisonous substance, which is preferable.

本発明では触媒の酸性質を制御するために塩基性元素を使用する。塩基性元素としては、アルカリ金属およびアルカリ土類金属が好ましく、より好ましくはアルカリ金属、特にリチウムが好ましい。本発明ではリチウムを用いることとし、その担持量は、触媒を基準として酸化物換算で表示して、好ましくは0.05〜1質量%である。上記範囲のリチウム担持量にすることで所望の酸性質、酸量に制御することができ、高い活性を維持した状態でコーク劣化が起こり難い触媒が得られる。   In the present invention, a basic element is used to control the acid properties of the catalyst. The basic element is preferably an alkali metal or alkaline earth metal, more preferably an alkali metal, particularly lithium. In the present invention, lithium is used, and the supported amount is preferably 0.05 to 1% by mass in terms of oxide based on the catalyst. By making the amount of lithium supported in the above range, it is possible to control the desired acid properties and the amount of acid, and it is possible to obtain a catalyst in which coke deterioration hardly occurs while maintaining high activity.

炭素の含有量は、触媒基準、元素換算で、2〜14質量%、好ましくは3〜10質量%である。
この炭素は、有機酸、好ましくはクエン酸由来の炭素であって、2質量%以上であれば、触媒表面上で8族金属と有機酸とが錯体化合物を十分に形成できるため、予備硫化工程において錯体化されていない8族金属が6族金属の硫化に先立って硫化されることがないため、脱硫活性点(CoMoS相、NiMoS相等)を十分に形成することができ、不活性なコバルト、ニッケル種であるCo98種、Ni32種等を形成しないと推測されるため好ましい。
14質量%以下であれば、触媒表面上で8族金属が有機酸と十分に錯体化合物を形成し、予備硫化工程において多くの上記脱硫活性点を得ることができとともに、過剰な炭素が被毒物質として脱硫活性点を被覆し活性低下を引き起こさないため好ましい。
The carbon content is 2 to 14% by mass, preferably 3 to 10% by mass in terms of catalyst and element.
This carbon is derived from an organic acid, preferably citric acid, and if it is 2% by mass or more, the group 8 metal and the organic acid can sufficiently form a complex compound on the catalyst surface. Since the uncomplexed group 8 metal is not sulfided prior to the sulfidation of the group 6 metal, desulfurization active sites (CoMoS phase, NiMoS phase, etc.) can be sufficiently formed, and inactive cobalt, It is presumed that nickel species such as Co 9 S 8 species and Ni 3 S 2 species are not formed.
If it is 14% by mass or less, the group 8 metal can sufficiently form a complex compound with the organic acid on the catalyst surface, and many of the above desulfurization active sites can be obtained in the preliminary sulfidation process, and excess carbon is poisoned. It is preferable because it covers a desulfurization active site as a substance and does not cause a decrease in activity.

なお、金属の担持量に関して、「触媒を基準として酸化物換算で表示する」とは、触媒中に含まれる全ての金属種の質量を金属それぞれの酸化物として算出し、その合計質量で各金属の酸化物質量を割った値(質量%表示)で表示することを意味する。なお、アルミニウムは3価、モリブデンは6価、ニッケル、コバルトは2価、そしてリチウムは1価の金属として求めた。また、金属担持量の測定方法は、触媒を混酸に溶解した後、ICP分光法(誘導結合高周波プラズマ分光法)により分析し、触媒基準の金属酸化物換算で表示した。   Regarding the amount of metal supported, “display in terms of oxide based on the catalyst” means that the mass of all metal species contained in the catalyst is calculated as the oxide of each metal, and the total mass of each metal It means to display with the value (mass% display) which divided the oxide mass of. Aluminum was trivalent, molybdenum was hexavalent, nickel and cobalt were bivalent, and lithium was monovalent metal. The amount of metal supported was measured by ICP spectroscopy (inductively coupled high-frequency plasma spectroscopy) after dissolving the catalyst in a mixed acid and displayed in terms of catalyst-based metal oxide.

本発明の触媒は、炭化水素油、なかでも減圧軽油などの軽油留分に対する水素化脱硫活性を高めるために、上記の組成を有すると共に、その比表面積、細孔容積及び平均細孔径が、以下の値であることが必要である。
比表面積(窒素吸着法(BET法)で測定した比表面積)は、110〜300m2/gである。
110m2/g以上であれば、触媒表面上で、錯体を形成していると考えられる6族金属と8族金属が、十分に高分散化しており、その結果、硫化処理することで、上記の活性点形成の精密制御が可能となると推察される。300m2/g以下であれば、細孔直径が極端に小さくなることがないため、水素化処理の際、硫黄化合物の触媒細孔内への拡散を維持可能であり好ましい。
The catalyst of the present invention has the above composition in order to increase the hydrodesulfurization activity for hydrocarbon oils, particularly gas oil fractions such as vacuum gas oil, and the specific surface area, pore volume and average pore diameter are as follows: Must be the value of.
The specific surface area (specific surface area measured by the nitrogen adsorption method (BET method)) is 110 to 300 m 2 / g.
If it is 110 m 2 / g or more, the group 6 metal and group 8 metal considered to form a complex are sufficiently highly dispersed on the catalyst surface. It is inferred that precise control of the active site formation becomes possible. If it is 300 m 2 / g or less, the pore diameter does not become extremely small, so that it is possible to maintain the diffusion of the sulfur compound into the catalyst pores during the hydrotreatment.

水銀圧入法で測定した細孔容積は、0.35〜0.6m1/g、好ましくは0.38〜0.55m1/gである。0.35m1/g以上であれば、水素化処理の際、硫黄化合物の触媒細孔内での拡散に有効であり、0.6m1/g以下であれば、触媒の比表面積が極端に小さくなることがなく、活性金属の分散性を低下させないため好ましい。   The pore volume measured by the mercury intrusion method is 0.35 to 0.6 m1 / g, preferably 0.38 to 0.55 m1 / g. If it is 0.35 m1 / g or more, it is effective for the diffusion of sulfur compounds in the catalyst pores during the hydrogenation treatment, and if it is 0.6 m1 / g or less, the specific surface area of the catalyst becomes extremely small. This is preferable because the dispersibility of the active metal is not lowered.

水銀圧入法で測定した細孔分布での平均細孔直径は、65〜180Å、好ましくは70〜145Åである。65Å以上であれば、反応物質が細孔内に拡散し易いため、脱硫反応が効率的に進行し、180Å以下であれば、触媒の有効比表面積を維持できるため好ましい。
また、上記の細孔条件を満たす細孔の有効数を多くするために、触媒の細孔径分布、すなわち平均細孔径±15Åの細孔径を有する細孔の割合は、40%以上、好ましくは50%以上、更に好ましくは60%以上である。40%以上では炭化水素油の脱硫に関係しない細孔が増加せず、その結果、脱硫活性が大幅に低下することがないため好ましい。
The average pore diameter in the pore distribution measured by mercury porosimetry is 65 to 180 mm, preferably 70 to 145 mm. If it is 65 mm or more, the reactants easily diffuse into the pores, so that the desulfurization reaction proceeds efficiently, and if it is 180 mm or less, the effective specific surface area of the catalyst can be maintained.
Further, in order to increase the effective number of pores satisfying the above pore conditions, the pore size distribution of the catalyst, that is, the proportion of pores having an average pore size of ± 15 mm is 40% or more, preferably 50 % Or more, more preferably 60% or more. If it is 40% or more, pores not related to desulfurization of hydrocarbon oil do not increase, and as a result, desulfurization activity does not decrease significantly, which is preferable.

本発明の触媒はリン原子の分散状態が制御されている。触媒の断面を一方の表面から中心を通り、反対側の表面までリン原子のEPMA線分析を行った時、下記式(1)で示されるリン原子の分散状態を示したS値が1以下、好ましくは0.8以下、更に好ましくは0.6以下である。S値が小さいほどリン原子の分布が均一に制御されていることを示し、S値が1以下の場合、リン酸化物の触媒中での分布均一性が保たれているため、活性金属の触媒表面横方向への分散性が向上し、脱硫活性を向上でき好ましい。
なお、式(1)において、Imax.はEPMA線分析によるリン原子の濃度測定値の最大値であり、Imin.はEPMA線分析によるリン原子の濃度測定値の最小値である。また、Iave.はEPMA線分析によるリン原子の濃度測定値の平均値である。
S=exp(0.04×Iave.+0.013×Imax.−0.143×Imin.)≦1 ・・・式(1)
In the catalyst of the present invention, the dispersion state of phosphorus atoms is controlled. When the EPMA line analysis of the phosphorus atom was performed from one surface to the opposite surface through the cross section of the catalyst, the S value indicating the dispersion state of the phosphorus atom represented by the following formula (1) was 1 or less, Preferably it is 0.8 or less, More preferably, it is 0.6 or less. The smaller the S value, the more uniformly the distribution of phosphorus atoms is controlled. When the S value is 1 or less, the distribution uniformity of the phosphorus oxide in the catalyst is maintained. Dispersibility in the lateral direction of the surface is improved, and desulfurization activity can be improved.
In Formula (1), Imax. Is the maximum value of the measured concentration of phosphorus atoms by EPMA line analysis, and Imin. Is the minimum value of the measured concentration of phosphorus atoms by EPMA line analysis. Iave. Is the average value of phosphorus atom concentration measured by EPMA line analysis.
S = exp (0.04 × Iave. + 0.013 × Imax.−0.143 × Imin.) ≦ 1 Equation (1)

本発明の触媒は、マイクロカロリメトリー法にて100〜200KJ/molのアンモニア吸着熱を発する酸点を、触媒1g当り、270〜380μmol、好ましくは290〜380μmolの範囲で有していることが好ましい。アンモニアが触媒表面の酸点に吸着する際に発生する吸着熱は、酸点の酸性質によって変化する。この吸着熱が100〜200KJ/molである酸点を、上記範囲で有する触媒は減圧軽油の水素化脱硫反応における活性点が十分であり、かつ経時劣化が非常に少なく、しかもコーク生成を抑制できる。該酸点が270μmol/g以上であれば触媒活性を十分に発揮でき、380μmol/g以下であれば所望のコーク生成を抑制できる。   It is preferable that the catalyst of the present invention has an acid point that generates an ammonia adsorption heat of 100 to 200 KJ / mol by a microcalorimetry method in a range of 270 to 380 μmol, preferably 290 to 380 μmol, per 1 g of the catalyst. The heat of adsorption generated when ammonia is adsorbed on the acid sites on the catalyst surface varies depending on the acid properties of the acid sites. A catalyst having an acid point with an adsorption heat of 100 to 200 KJ / mol in the above range has a sufficient active site in hydrodesulfurization reaction of vacuum gas oil, has very little deterioration with time, and can suppress coke formation. . When the acid point is 270 μmol / g or more, the catalyst activity can be sufficiently exerted, and when it is 380 μmol / g or less, desired coke formation can be suppressed.

また、本発明の触媒は、硫化処理した後に、透過型電子顕微鏡で観察した場合における二硫化モリブデン層の積層数の平均値が2.5〜5であるものが好ましい。
すなわち、この二硫化モリブデンの層は、無機酸化物担体上に形成されて、触媒の接触面積を大きくする役割をなすと共に、該層内にCoMoS相、NiMoS相等の活性点が形成されるが、積層数の平均値が2.5以上の触媒では、高活性なCoMoS相やNiMoS相のタイプIIの割合が多くなり、高活性を発現し、5以下であれば、高活性なCoMoS相やNiMoS相のタイプIIを形成しつつ、活性点の絶対数も維持可能でとなるため、高活性を示す。
The catalyst of the present invention preferably has an average value of the number of laminated molybdenum disulfide layers of 2.5 to 5 when observed with a transmission electron microscope after sulfiding.
That is, this molybdenum disulfide layer is formed on the inorganic oxide support and serves to increase the contact area of the catalyst, and active points such as a CoMoS phase and a NiMoS phase are formed in the layer. In a catalyst having an average value of 2.5 or more, the proportion of type II of highly active CoMoS phase or NiMoS phase is increased to express high activity, and if it is 5 or less, highly active CoMoS phase or NiMoS. Since the absolute number of active points can be maintained while forming phase type II, high activity is exhibited.

以上の特性を有する本発明の触媒を得るには、以下に説明する本発明の方法によることが好ましい。すなわち、前記した成分からなり、前記した物性を有する無機酸化物担体に、前記した6族金属の少なくとも1種を含む化合物、前記した8族金属の少なくとも1種を含む化合物、有機酸、リチウム、リン酸を含有する溶液を用い、6族金属、8族金属、リン、リチウム、炭素を上記した含有量となるように担持し、乾燥する方法による。   In order to obtain the catalyst of the present invention having the above characteristics, it is preferable to use the method of the present invention described below. That is, an inorganic oxide carrier comprising the above-described components and having the above-described physical properties, a compound containing at least one group 6 metal, a compound containing at least one group 8 metal, an organic acid, lithium, By using a solution containing phosphoric acid, a group 6 metal, a group 8 metal, phosphorus, lithium, and carbon are supported so as to have the above-described contents and dried.

上記の含浸溶液中に使用する6族金属を含む化合物としては、三酸化モリブデン、モリブドリン酸、モリブデン酸アンモニウム、モリブデン酸等が挙げられ、好ましくは三酸化モリブデン、モリブドリン酸である。
これらの化合物の上記含浸溶液中への添加量は、得られる触媒中に上記した範囲内で6族金属が含有される量とする。
Examples of the compound containing a Group 6 metal used in the impregnation solution include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like, and preferably molybdenum trioxide and molybdophosphoric acid.
The amount of these compounds added to the impregnation solution is such that the Group 6 metal is contained in the resulting catalyst within the above-described range.

8族金属を含む化合物としては、炭酸コバルト、炭酸ニッケル、クエン酸コバルト化合物、クエン酸ニッケル化合物、硝酸コバルト6水和物、硝酸ニッケル6水和物等が挙げられ、好ましくは炭酸コバルト、炭酸ニッケル、クエン酸コバルト化合物、クエン酸ニッケル化合物である。特に好ましくは、炭酸コバルト、炭酸ニッケルに比べて分解速度が遅いクエン酸コバルト化合物、クエン酸ニッケル化合物である。
すなわち、分解速度が速いと、二硫化モリブデンの層とは別に、コバルトやニッケルが独自の層を形成してしまい、高活性なCoMoS相やNiMoS相の形成が不十分となるのに対し、分解速度が遅いと、二硫化モリブデンのリム−エッジ部分に、高活性なこれらの相を十分に形成することができる。
Examples of the compound containing a group 8 metal include cobalt carbonate, nickel carbonate, cobalt citrate compound, nickel citrate compound, cobalt nitrate hexahydrate, nickel nitrate hexahydrate, and preferably cobalt carbonate and nickel carbonate. , Cobalt citrate compounds and nickel citrate compounds. Particularly preferred are cobalt citrate compounds and nickel citrate compounds, which have a lower decomposition rate than cobalt carbonate and nickel carbonate.
That is, when the decomposition rate is high, apart from the molybdenum disulfide layer, cobalt or nickel forms a unique layer, and the formation of a highly active CoMoS phase or NiMoS phase becomes insufficient. When the speed is low, these highly active phases can be sufficiently formed at the rim-edge portion of molybdenum disulfide.

上記のクエン酸コバルトとしては、クエン酸第一コバルト(Co3(C6572)、クエン酸水素コバルト(CoHC657)、クエン酸コバルトオキシ塩(Co3(C6572・CoO)等が挙げられ、クエン酸ニッケルとしては、クエン酸第一ニッケル(Ni3(C6572)、クエン酸水素ニッケル(NiHC657)、クエン酸ニッケルオキシ塩(Ni3(C6572・NiO)等が挙げられる。
これらコバルトとニッケルのクエン酸化合物の製法は、例えば、コバルトの場合、クエン酸の水溶液に炭酸コバルトを溶かすことにより得られる。このような製法で得られたクエン酸化合物の水分を、除去しないで、そのまま、触媒調製に用いてもかまわない。
これらの化合物の上記含浸溶液中への添加量は、得られる触媒中に上記した範囲内で8族金属が含有される量とする。
As cobalt citrate, cobalt citrate (Co 3 (C 6 H 5 O 7 ) 2 ), cobalt hydrogen citrate (CoHC 6 H 5 O 7 ), cobalt citrate oxysalt (Co 3 (C 6 H 5 O 7 ) 2 .CoO) and the like, and nickel citrate includes nickel citrate (Ni 3 (C 6 H 5 O 7 ) 2 ), nickel hydrogen citrate (NiHC 6 H 5 O) 7 ), nickel citrate oxysalt (Ni 3 (C 6 H 5 O 7 ) 2 .NiO) and the like.
For example, in the case of cobalt, this method of producing a citric acid compound of cobalt and nickel can be obtained by dissolving cobalt carbonate in an aqueous solution of citric acid. You may use for the catalyst preparation as it is, without removing the water | moisture content of the citric acid compound obtained by such a manufacturing method.
The amount of these compounds added to the impregnation solution is such that the group 8 metal is contained within the above-described range in the resulting catalyst.

有機酸としては、クエン酸1水和物、無水クエン酸、イソクエン酸、リンゴ酸、酒石酸、シュウ酸、コハク酸、グルタル酸、アジピン酸、安息香酸、フタル酸、イソフタル酸、サリチル酸、マロン酸等が挙げられ、好ましくはクエン酸1水和物である。これらの有機酸は、硫黄を実質的に含まない化合物を使用することが重要である。
有機酸としてクエン酸を使用する場合は、クエン酸単独でもよいし、上記したコバルトやニッケル(8族金属)とのクエン酸化合物であってもよい。
有機酸の添加量は、特に制限はないが、得られる触媒中に前記の炭素含有量で炭素が残る量とすることが重要であり、また8族金属に対し、モル比で、有機酸/8族金属=0.2〜1.2とすることが好ましい。このモル比が0.2〜1.2の範囲であれば、8族金属に帰属する活性点が十分に得られ、しかも、含浸液が低粘度であるので、担持工程に時間を要しない。
なお、8族金属のクエン酸化合物を用いる場合、有機酸量が不足する時は、有機酸をさらに添加する。
Organic acids include citric acid monohydrate, anhydrous citric acid, isocitric acid, malic acid, tartaric acid, oxalic acid, succinic acid, glutaric acid, adipic acid, benzoic acid, phthalic acid, isophthalic acid, salicylic acid, malonic acid, etc. And citric acid monohydrate is preferred. It is important that these organic acids use compounds that are substantially free of sulfur.
When citric acid is used as the organic acid, citric acid alone or a citric acid compound with cobalt or nickel (group 8 metal) described above may be used.
The addition amount of the organic acid is not particularly limited, but it is important that the amount of carbon remaining in the obtained catalyst is such that the carbon remains, and the organic acid / It is preferable to set it as group 8 metal = 0.2-1.2. If this molar ratio is in the range of 0.2 to 1.2, the active sites attributed to the Group 8 metal can be obtained sufficiently, and the impregnating liquid has a low viscosity, so that no time is required for the supporting step.
When a group 8 metal citrate compound is used, an organic acid is further added when the amount of the organic acid is insufficient.

含浸液によりリン酸化物を添加するには、種々の化合物が使用することができる。具体的には、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸、ポリリン酸等が挙げられ、特にオルトリン酸が好ましい。また、6族金属との化合物であるモリブドリン酸を用いることもできるし、リン化合物と合わせて使用することもできる。   Various compounds can be used to add the phosphorus oxide by the impregnation liquid. Specific examples include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, polyphosphoric acid, and orthophosphoric acid is particularly preferable. Moreover, molybdophosphoric acid which is a compound with a group 6 metal can also be used, and it can also be used together with a phosphorus compound.

リチウムとしては、種々のものを用いることができる。具体例として、水酸化リチウム、硝酸リチウム、シュウ酸リチウム、硫酸リチウム、塩化リチウム、炭酸リチウム、酢酸リチウム等が挙げられるが水酸化リチウム、硝酸リチウム、酢酸リチウムが好ましい。   Various types of lithium can be used. Specific examples include lithium hydroxide, lithium nitrate, lithium oxalate, lithium sulfate, lithium chloride, lithium carbonate, and lithium acetate, with lithium hydroxide, lithium nitrate, and lithium acetate being preferred.

一方リチウムの担持方法により、調製された触媒の脱硫活性およびコーク劣化が大きく影響される。含浸法が、触媒表面上の酸量、酸性質を効率よく制御することができるので好ましい。
活性金属及びリチウムはいずれの順序で担持してもよい。すなわち、活性金属とリチウムを同時に担持してもよいし、リチウムを担持後に乾燥・焼成して金属酸化物とした後、活性金属を担持してもよい。
特に好ましくは、活性金属およびリチウムのいずれも含浸法で担持する方法であるが、その際も、活性金属およびリチウムを同時に含浸してもよいし、個々に含浸してもよい。また、個々に含浸する場合、含浸する順序はリチウムを先に含浸し、乾燥・焼成して金属酸化物とした後、活性金属を含浸する。
On the other hand, the desulfurization activity and coke deterioration of the prepared catalyst are greatly affected by the lithium loading method. The impregnation method is preferable because the acid amount and acid properties on the catalyst surface can be efficiently controlled.
The active metal and lithium may be supported in any order. That is, the active metal and lithium may be supported simultaneously, or the active metal may be supported after the lithium is supported and then dried and fired to form a metal oxide.
Particularly preferred is a method in which both of the active metal and lithium are supported by the impregnation method. In this case, the active metal and lithium may be impregnated simultaneously or individually. Moreover, when impregnating individually, the impregnation order is impregnated with lithium first, dried and fired to obtain a metal oxide, and then impregnated with an active metal.

なお、上記の6族金属の化合物や、8族金属の化合物が含浸溶液に十分に溶解しない場合には、これらの化合物と共に、酸(硝酸、有機酸《クエン酸、リンゴ酸、酒石酸等》)を使用してもよく、好ましくは有機酸の使用であり、有機酸を用いる場合は、得られる触媒中に、この有機酸による炭素が残存することもあるため、触媒中の炭素含有量が上記範囲内となるようにすることが重要である。   If the above Group 6 metal compound or Group 8 metal compound is not sufficiently dissolved in the impregnation solution, an acid (nitric acid, organic acid << citric acid, malic acid, tartaric acid, etc. >>) together with these compounds May be used, preferably an organic acid is used. When an organic acid is used, carbon from the organic acid may remain in the resulting catalyst. It is important to be within range.

上記の含浸溶液において、上記の各成分を溶解させるために用いる溶媒は、水である。
溶媒の使用量は、少なすぎれば、担体を充分に含浸することができず、多すぎれば、溶解した活性金属が担体上に含浸せず、含浸溶液容器のへりなどに付着してしまい、所望の担持量が得られないため、担体100gに対して、活性金属の担体への含浸量は50〜90gであり、好ましくは60〜85gである。
In the above impregnation solution, the solvent used for dissolving each of the above components is water.
If the amount of the solvent used is too small, the support cannot be sufficiently impregnated, and if it is too large, the dissolved active metal does not impregnate on the support and adheres to the edge of the impregnation solution container. Therefore, the impregnation amount of the active metal into the carrier is 50 to 90 g, preferably 60 to 85 g, with respect to 100 g of the carrier.

上記溶媒に上記各成分を溶解させて含浸溶液を調製するが、このときの温度は、0℃を超え100℃以下の温度がよく、この範囲内の温度であれば、上記溶媒に上記各成分を良好に溶解させることができる。   The above components are dissolved in the solvent to prepare an impregnation solution. The temperature at this time is preferably higher than 0 ° C. and not higher than 100 ° C. If the temperature is within this range, the components are added to the solvent. Can be dissolved well.

上記含浸溶液のpHは5未満が好ましい。5以上だと水酸イオンが増え、有機酸と8族金属との間の配位能力が弱まり、8族金属の錯体形成が抑制される。その結果、脱硫活性点(CoMoS相、NiMoS相)の数を大幅に増加させることができない。   The pH of the impregnating solution is preferably less than 5. When it is 5 or more, hydroxide ions increase, the coordination ability between the organic acid and the group 8 metal is weakened, and complex formation of the group 8 metal is suppressed. As a result, the number of desulfurization active points (CoMoS phase, NiMoS phase) cannot be increased significantly.

このようにして調製した含浸溶液に、上記の無機酸化物担体を含浸させて、これら溶液中の上記の各成分を上記の無機酸化物担体に担持させる。
含浸条件は、種々の条件を採ることができるが、通常、含浸温度は、好ましくは5℃〜100℃未満、より好ましくは10〜50℃、さらに好ましくは15〜30℃であり、含浸時間は、好ましくは30分〜3時間、より好ましくは30分〜2時間、さらに好ましくは30分〜1時間である。なお、温度が高すぎると、含浸中に乾燥が起こり、分散度が偏ってしまうため好ましくない。また、含浸中は、攪拌することが好ましい。
The impregnating solution thus prepared is impregnated with the inorganic oxide carrier, and the components in the solution are supported on the inorganic oxide carrier.
Various conditions can be adopted as the impregnation conditions. Usually, the impregnation temperature is preferably 5 ° C. to less than 100 ° C., more preferably 10 to 50 ° C., further preferably 15 to 30 ° C., and the impregnation time is The reaction time is preferably 30 minutes to 3 hours, more preferably 30 minutes to 2 hours, and even more preferably 30 minutes to 1 hour. An excessively high temperature is not preferable because drying occurs during impregnation and the degree of dispersion becomes uneven. Moreover, it is preferable to stir during the impregnation.

溶液含浸担持後、常温〜80℃、窒素気流中、空気気流中、あるいは真空中で、水分を(LOI《Loss on ignition》50%以下となるように) 除去し、この後、空気気流中、窒素気流中、あるいは真空中で、200℃以下、好ましくは80〜200℃で3時間〜24時間、より好ましくは100〜150℃で5〜20時間の乾燥を行う。
乾燥を、200℃以下の温度で行うと、金属と錯体化していると思われる有機酸が触媒表面から離脱しないため、得られる触媒を硫化処理することにより上記の活性点(CoMoS相、NiMoS相等)形成の精密制御が可能となり、不活性なコバルト、ニッケル種であるCo98種、Ni32種等の形成を抑制できる。また、二硫化モリブデンの平均積層数を2.5以上にすることもできると推測されるため、好ましい。
After the impregnation with the solution, water is removed (so that LOI << Loss on ignition >> is 50% or less) at room temperature to 80 ° C, in a nitrogen stream, in an air stream, or in a vacuum. In a nitrogen stream or in vacuum, drying is performed at 200 ° C. or less, preferably 80 to 200 ° C. for 3 hours to 24 hours, more preferably 100 to 150 ° C. for 5 to 20 hours.
When drying is performed at a temperature of 200 ° C. or lower, an organic acid that is considered to be complexed with a metal does not leave the surface of the catalyst. Therefore, the resulting catalyst is subjected to sulfidation treatment to obtain the above active sites (CoMoS phase, NiMoS phase, etc.). ) The formation can be precisely controlled, and the formation of inert cobalt, nickel species such as Co 9 S 8 species and Ni 3 S 2 species can be suppressed. Moreover, since it is estimated that the average lamination number of molybdenum disulfide can also be 2.5 or more, it is preferable.

なお、本発明において、触媒の形状は、特に限定されず、通常、この種の触媒に用いられている種々の形状、例えば、円柱状、三葉型、四葉型等を採用することができる。触媒の大きさは、通常、直径が約1〜2mm、長さ約2〜5mmが好ましい。
触媒の機械的強度は、側面破壊強度(SCS《Side crush strength》)で2lbs/mm以上が好ましい。SCSをそのようにすることにより、反応装置に充填した触媒が破壊され、反応装置内で差圧が発生し、水素化処理運転の続行が不可能となることが避けられる。
触媒の最密充填かさ密度(CBD:Compacted Bulk Density)は、0.6〜1.2g/mlが好ましい。
また、触媒中の活性金属の分布状態は、触媒中で活性金属が均一に分布しているユニフォーム型が好ましい。
In the present invention, the shape of the catalyst is not particularly limited, and various shapes usually used for this type of catalyst, for example, a cylindrical shape, a trilobal type, a four-leaf type, and the like can be adopted. The size of the catalyst is usually preferably about 1 to 2 mm in diameter and about 2 to 5 mm in length.
The mechanical strength of the catalyst is preferably 2 lbs / mm or more in terms of side surface breaking strength (SCS << Side crash strength >>). By doing so, it is avoided that the catalyst charged in the reactor is destroyed, a differential pressure is generated in the reactor, and the hydration operation cannot be continued.
The close-packed bulk density (CBD) of the catalyst is preferably 0.6 to 1.2 g / ml.
The distribution state of the active metal in the catalyst is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.

本発明の水素化処理方法は、水素分圧3〜8MPa、300〜420℃、及び液空間速度約0.3〜5hr-1の条件で、以上の触媒と硫黄化合物を含む炭化水素油、なかでも減圧軽油などの軽油留分とを接触させて脱硫を行い、該炭化水素油中の難脱硫性硫黄化合物を含む硫黄化合物を減少する方法である。本発明の方法で得られる生成油は、従来技術によるよりもより硫黄分及び窒素分を少なくすることができる。 The hydrotreating method of the present invention is a hydrocarbon oil containing the above catalyst and sulfur compound under the conditions of a hydrogen partial pressure of 3 to 8 MPa, 300 to 420 ° C., and a liquid space velocity of about 0.3 to 5 hr −1. However, it is a method of reducing sulfur compounds including a hardly desulfurizable sulfur compound in the hydrocarbon oil by desulfurization by contacting with a light oil fraction such as vacuum gas oil. The product oil obtained by the process of the present invention can be less sulfur and nitrogen than by the prior art.

本発明の水素化処理方法を商業規模で行うには、本発明の触媒の固定床、移動床、あるいは流動床式の触媒層を反応装置内に形成し、この反応装置内に原料油を導入し、上記の条件下で水素化反応を行えばよい。
最も一般的には、固定床式触媒層を反応装置内に形成し、原料油を反応装置の上部に導入し、固定床を下から上に通過させ、反応装置の上部から生成物を流出させるものである。
また、本発明の触媒を、単独の反応装置に充填して行う一段の水素化処理方法であってもよいし、幾つかの反応装置に充填して行う多段連続水素化処理方法であってもよい。
In order to carry out the hydrotreating method of the present invention on a commercial scale, a fixed bed, moving bed or fluidized bed type catalyst layer of the catalyst of the present invention is formed in the reactor, and the feedstock is introduced into the reactor. The hydrogenation reaction may be performed under the above conditions.
Most commonly, a fixed bed catalyst layer is formed in the reactor, feedstock is introduced into the top of the reactor, the fixed bed is passed from bottom to top, and the product is drained from the top of the reactor. Is.
Further, it may be a one-stage hydrotreating method in which the catalyst of the present invention is filled in a single reactor, or a multi-stage continuous hydrotreating method in which several reactors are filled. Good.

なお、本発明の触媒は、使用前に(すなわち、本発明の水素化処理方法を行うのに先立って)、反応装置中で、例えば硫化処理して活性化する。この硫化処理は、200〜400℃、好ましくは250〜350℃、常圧あるいはそれ以上の水素分圧の水素雰囲気下で、硫黄化合物を含む石油蒸留物、それにジメチルジスルファイドや二硫化炭素等の硫化剤を加えたもの、あるいは硫化水素を用いて行う。
この硫化処理により、本発明の触媒は、前述したように、平均積層数で2.5〜5の二硫化モリブデンの層を形成し、この二硫化モリブデンのリム−エッジ部分に、高活性なCoMoS相やNiMoS相の活性点を形成することとなる。
Note that the catalyst of the present invention is activated by, for example, sulfiding in a reaction apparatus before use (that is, prior to performing the hydrotreating method of the present invention). This sulfidation treatment is carried out at 200 to 400 ° C., preferably 250 to 350 ° C. under a hydrogen atmosphere of normal pressure or higher, and a petroleum distillate containing sulfur compounds, dimethyl disulfide, carbon disulfide, etc. It is carried out using a material added with a sulfurizing agent or hydrogen sulfide.
By this sulfidation treatment, the catalyst of the present invention forms a molybdenum disulfide layer having an average number of layers of 2.5 to 5 as described above, and a highly active CoMoS is formed on the rim-edge portion of the molybdenum disulfide. The active point of the phase or NiMoS phase is formed.

〔触媒の調製〕
実施例1
硝酸リチウム0.37gをイオン交換水41gに溶解させ、ナス型フラスコ中でアルミナペレット(比表面積318m2/g、細孔容積0.71ml/g、平均細孔径71Å)50gに滴下した後、室温5時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中500℃で約4時間焼成し、リチウム担持アルミナ担体を得た。更にイオン交換水33gにモリブドリン酸29.8g、炭酸コバルト7.7g、オルトリン酸3.8gおよびクエン酸1水和物8.4gを溶解させた。この水溶液の全てをナス型フラスコ中で、先ほどのリチウム担持アルミナに滴下した後、室温で5時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Aを得た。
(Preparation of catalyst)
Example 1
After 0.37 g of lithium nitrate was dissolved in 41 g of ion-exchanged water and dropped into 50 g of alumina pellets (specific surface area of 318 m 2 / g, pore volume of 0.71 ml / g, average pore diameter of 71 kg) in an eggplant type flask, Soaked for 5 hours. Then, it air-dried in nitrogen stream for 5 hours, and baked at 500 degreeC for about 4 hours in the muffle furnace, and obtained the lithium carrying | support alumina support | carrier. Further, 29.8 g of molybdophosphoric acid, 7.7 g of cobalt carbonate, 3.8 g of orthophosphoric acid, and 8.4 g of citric acid monohydrate were dissolved in 33 g of ion-exchanged water. All of this aqueous solution was dropped into the lithium-supported alumina in the eggplant-shaped flask and then immersed for 5 hours at room temperature. Thereafter, it was air-dried in a nitrogen stream for 5 hours and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain Catalyst A.

実施例2
アルミナゲル中にオルトリン酸水溶液を添加し、P25含有量(担体換算)4.4質量%、比表面積315m2/g、細孔容積0.7ml/g、平均細孔径71Åの性状を有するリン含有アルミナ担体を調製した。
次にこのリン含有アルミナ担体50gに、硝酸リチウム0.36gをイオン交換水41gに溶解させた水溶液を滴下した後、室温3時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中500℃で4時間焼成し、リチウム担持リン原子含有アルミナ担体を得た。更にこのリチウム担持リン含有アルミナ担体に、モリブドリン酸28.1g、炭酸コバルト7.2gおよびクエン酸1水和物8.1gをイオン交換水41gに溶解させた水溶液を滴下した後、室温で3時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中120℃で16時間乾燥させ、触媒Bを得た。
Example 2
An aqueous orthophosphoric acid solution was added to the alumina gel, and the properties of P 2 O 5 content (support equivalent) 4.4 mass%, specific surface area 315 m 2 / g, pore volume 0.7 ml / g, and average pore diameter 71 mm were obtained. A phosphorus-containing alumina support having was prepared.
Next, an aqueous solution in which 0.36 g of lithium nitrate was dissolved in 41 g of ion-exchanged water was dropped into 50 g of this phosphorus-containing alumina carrier, and then immersed for 3 hours at room temperature. Then, it air-dried in nitrogen stream for 5 hours, and baked at 500 degreeC for 4 hours in the muffle furnace, and obtained the lithium carrying | support phosphorus atom containing alumina support | carrier. Further, an aqueous solution prepared by dissolving 28.1 g of molybdophosphoric acid, 7.2 g of cobalt carbonate and 8.1 g of citric acid monohydrate in 41 g of ion-exchanged water was added dropwise to this lithium-supporting phosphorus-containing alumina carrier, and then at room temperature for 3 hours. Soaked. Then, it air-dried in nitrogen stream for 5 hours, and was dried at 120 degreeC in the muffle furnace for 16 hours, and the catalyst B was obtained.

実施例3
オルトリン酸3.8gをイオン交換水41gに溶解させ、ナス型フラスコ中で、比表面積318m2/g、細孔容積0.71ml/g、平均細孔径71Åのアルミナペレット50gに滴下した後、室温24時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中500℃で4時間焼成し、リン含有アルミナ担体を調製した。このリン含有アルミナ担体50gに硝酸リチウム0.36gをイオン交換水38gに溶解させた水溶液を滴下した後、室温3時間浸漬した。その後、窒素気流中で5時間風乾し、マッフル炉中500℃で4時間焼成し、リチウム担持リン含有アルミナ担体を得た。更にこのリチウム担持リン含有アルミナ担体に、モリブドリン酸28.1g、炭酸コバルト7.2gおよびクエン酸1水和物8.1gをイオン交換水41gに溶解させた水溶液を滴下した後、室温で3時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中120℃で16時間乾燥させ、触媒Cを得た。
Example 3
3.8 g of orthophosphoric acid was dissolved in 41 g of ion-exchanged water and dropped into 50 g of alumina pellets having a specific surface area of 318 m 2 / g, a pore volume of 0.71 ml / g and an average pore diameter of 71 kg in an eggplant type flask, Soaked for 24 hours. Then, it air-dried in nitrogen stream for 5 hours, and baked at 500 degreeC for 4 hours in the muffle furnace, and prepared the phosphorus containing alumina support | carrier. An aqueous solution in which 0.36 g of lithium nitrate was dissolved in 38 g of ion-exchanged water was added dropwise to 50 g of this phosphorus-containing alumina carrier, and then immersed for 3 hours at room temperature. Then, it air-dried in nitrogen stream for 5 hours, and baked at 500 degreeC in the muffle furnace for 4 hours, and obtained lithium carrying | support phosphorus containing alumina support | carrier. Further, an aqueous solution prepared by dissolving 28.1 g of molybdophosphoric acid, 7.2 g of cobalt carbonate and 8.1 g of citric acid monohydrate in 41 g of ion-exchanged water was added dropwise to this lithium-supporting phosphorus-containing alumina carrier, and then at room temperature for 3 hours. Soaked. Then, it air-dried in nitrogen stream for 5 hours, and was dried at 120 degreeC in the muffle furnace for 16 hours, and the catalyst C was obtained.

実施例4
硝酸リチウム量を2.96gにする以外は、全て実施例1と同様に調製して、触媒Dを得た。
Example 4
Except that the amount of lithium nitrate was 2.96 g, everything was prepared in the same manner as in Example 1 to obtain Catalyst D.

実施例5
硝酸リチウム0.3gをイオン交換水37gに溶解させ、ナス型フラスコ中でアルミナペレット(比表面積191m2/g、細孔容積0.71ml/g、平均細孔径102Å)50gに滴下した後、室温5時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中500℃で約4時間焼成し、リチウム担持アルミナ担体を得た。更にイオン交換水30gにモリブドリン酸21.5g、炭酸コバルト5.1g、オルトリン酸2.8gおよびクエン酸1水和物6.6gを溶解させた。この水溶液の全てをナス型フラスコ中で、先ほどのリチウム担持アルミナに滴下した後、室温で5時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Eを得た。
Example 5
0.3 g of lithium nitrate was dissolved in 37 g of ion-exchanged water and dropped into 50 g of alumina pellets (specific surface area 191 m 2 / g, pore volume 0.71 ml / g, average pore diameter 102 mm) in an eggplant type flask. Soaked for 5 hours. Then, it air-dried in nitrogen stream for 5 hours, and baked at 500 degreeC for about 4 hours in the muffle furnace, and obtained the lithium carrying | support alumina support | carrier. Further, 21.5 g of molybdophosphoric acid, 5.1 g of cobalt carbonate, 2.8 g of orthophosphoric acid, and 6.6 g of citric acid monohydrate were dissolved in 30 g of ion-exchanged water. All of this aqueous solution was dropped into the lithium-supported alumina in the eggplant-shaped flask and then immersed for 5 hours at room temperature. Then, it air-dried for 5 hours in nitrogen stream, and it was made to dry at 120 degreeC in a muffle furnace for about 16 hours, and the catalyst E was obtained.

比較例1
硝酸リチウム0.37gをイオン交換水41gに溶解させ、ナス型フラスコ中で、実施例1で用いたアルミナペレット50gに滴下した後、室温5時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中500℃で4時間焼成し、リチウム担持アルミナ担体を得た。更にイオン交換水33.0gにモリブドリン酸29.81g、炭酸コバルト7.68g、オルトリン酸3.8gおよびクエン酸1水和物8.40gを溶解させた。この水溶液の全てをナス型フラスコ中で、先ほどのリチウム担持アルミナに滴下した後、室温で10分間浸漬した。この後、窒素気流中で1時間風乾し、マッフル炉中120℃で1時間乾燥させ、触媒aを得た。
Comparative Example 1
0.37 g of lithium nitrate was dissolved in 41 g of ion-exchanged water, dropped in 50 g of alumina pellets used in Example 1 in an eggplant type flask, and then immersed for 5 hours at room temperature. Then, it air-dried in nitrogen stream for 5 hours, and baked at 500 degreeC for 4 hours in the muffle furnace, and obtained the lithium carrying | support alumina support | carrier. Furthermore, 29.81 g of molybdophosphoric acid, 7.68 g of cobalt carbonate, 3.8 g of orthophosphoric acid, and 8.40 g of citric acid monohydrate were dissolved in 33.0 g of ion-exchanged water. All of this aqueous solution was dropped into the lithium-supported alumina in the eggplant-shaped flask and then immersed for 10 minutes at room temperature. Then, it air-dried for 1 hour in nitrogen stream, and it was made to dry at 120 degreeC in a muffle furnace for 1 hour, and the catalyst a was obtained.

比較例2
ナス型フラスコ中で、実施例1で用いたアルミナペレット50gに、イオン交換水41gにモリブドリン酸21.5g、炭酸コバルト5.1g、オルトリン酸2.9gおよびクエン酸1水和物6.6gを溶解させた。この水溶液の全てをナス型フラスコ中で、アルミナに滴下した後、室温で5時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒bを得た。
Comparative Example 2
In an eggplant-shaped flask, 50 g of the alumina pellets used in Example 1, 41 g of ion-exchanged water, 21.5 g of molybdophosphoric acid, 5.1 g of cobalt carbonate, 2.9 g of orthophosphoric acid, and 6.6 g of citric acid monohydrate. Dissolved. All of this aqueous solution was dropped into alumina in an eggplant-shaped flask and then immersed at room temperature for 5 hours. Then, it air-dried for 5 hours in nitrogen stream, and it was made to dry at 120 degreeC in a muffle furnace for about 16 hours, and the catalyst b was obtained.

比較例3
硝酸リチウム0.37gをイオン交換水41gに溶解させ、ナス型フラスコ中で実施例1で用いたアルミナペレット50gに滴下した後、室温5時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中500℃で4時間焼成し、リチウム担持アルミナ担体を得た。更に、イオン交換水33gにモリブドリン酸23.5g、炭酸コバルト5.6g、オルトリン酸3.2gを溶解させた。この水溶液の全てをナス型フラスコ中で、アルミナに滴下した後、室温で5時間浸漬した。この後、窒素気流中で5時間風乾し、マッフル炉中120℃で約16時間乾燥し、触媒cを得た。
Comparative Example 3
0.37 g of lithium nitrate was dissolved in 41 g of ion-exchanged water, dropped in 50 g of alumina pellets used in Example 1 in an eggplant type flask, and then immersed for 5 hours at room temperature. Then, it air-dried in nitrogen stream for 5 hours, and baked at 500 degreeC for 4 hours in the muffle furnace, and obtained the lithium carrying | support alumina support | carrier. Furthermore, 23.5 g of molybdophosphoric acid, 5.6 g of cobalt carbonate, and 3.2 g of orthophosphoric acid were dissolved in 33 g of ion-exchanged water. All of this aqueous solution was dropped into alumina in an eggplant-shaped flask and then immersed at room temperature for 5 hours. Then, it air-dried in nitrogen stream for 5 hours, and dried at 120 degreeC in the muffle furnace for about 16 hours, and the catalyst c was obtained.

〔触媒の性状〕
実施例1〜5及び比較例1〜3で得た触媒の化学性状を表1に、500℃で4時間焼成後の物理性状および、EPMAによる線分析により求めたS値、マイクロカロリメトリー法にて測定した100〜200kJ/molのアンモニア吸着熱を発する酸点の量(触媒1g当たり)と触媒の構造物性とを併せて表2に示す。
なお、これらの性状を分析する方法等を以下に示す。
[Catalyst properties]
The chemical properties of the catalysts obtained in Examples 1 to 5 and Comparative Examples 1 to 3 are shown in Table 1, with physical properties after calcining at 500 ° C. for 4 hours, and S values obtained by EPMA line analysis, using a microcalorimetric method. Table 2 shows the amounts of acid sites (per 1 g of the catalyst) that generate ammonia adsorption heat of 100 to 200 kJ / mol and the structural properties of the catalyst.
A method for analyzing these properties is shown below.

〔化学性状、物理性状の分析〕
・炭素質量は、触媒を乳鉢にて粉砕した後、(株)柳本株式会社製、CHN分析計(MT−5)を用い、950℃で燃焼させ、燃焼生成ガスを差動熱伝導度計で測定した。
・リン原子の分布状態の指標となるS値はエレクトロンプローブマイクロアナリシス(EPMA:日本電子(株)製JXA−8200)を用いて、触媒の断面を一方の表面から中心を通り、反対側の表面までリン原子のEPMA線分析を以下の条件で行った。
1.試料作成
触媒試料をMMA樹脂に包埋し、切削法により、平滑な触媒断面を得た後、表面にカーボン蒸着をした。
2.測定条件
測定は加速電圧15kV、照射電流1×10-7アンペア、データ点数250点。
・比表面積は、触媒を400℃で1時間真空脱気した後、日本ベル(株)製の表面積測定装置(BELSORP28)を用い窒素吸着法(BET法)で測定し、細孔容積と平均細孔径は同様に処理した触媒につき(株)島津製作所製AUTOPORE−9520を用い水銀圧入法で測定した。
・二硫化モリブデン層の積層数は、透過型電子顕微鏡(TEM:日本電子(株)製JEM−2010)を用いて、次の要領で測定した。
1.触媒を流通式反応管に詰め、室温で窒素気流中に5分間保持し、雰囲気ガスをH2S(5容量%)/H2に切替え、速度5℃/minで昇温し、400℃に達した後、1時間保持した。その後、同雰囲気下で200℃まで降温し、雰囲気ガスを窒素に切替え、常温まで降温し、硫化処理を終了した。
2.この硫化処理後の触媒をメノウ乳鉢で粉砕した。
3.粉砕した触媒の少量をアセトン中に分散させた。
4.得られた懸濁液をマイクログリッド上に滴下し、室温で乾燥して試料とした。
5.試料をTEMの測定部にセットし、加速電圧200kVで測定した。直接倍率は20万倍で、5視野を測定した。
6.写真を200万倍になるように引き延ばし(サイズ16.8cm×16.8cm)、写真上で目視できる二硫化モリブデン層の積層数を測り取った。
・マイクロカロリメトリー法は、試料(ここでは触媒)を所定量、吸着管に充填し、所定温度のもとアンモニアガスを一定量のパルスで導入し、試料に吸着させ、この吸着の際に生じる吸着熱を測定し、酸強度、酸量を特定する方法である。ここで、吸着熱は酸強度を、吸着量(導入量)は酸量に相当する。
本発明において、測定を行ったマイクロカロリメトリー法の測定条件は、次のとおりである。
即ち、測定装置として、東京理工(株)製、高温熱測定法表面解析装置CSA−450Gを使用し、触媒(試料)を400℃で4時間真空乾燥させた後、恒温槽の温度を150℃とし、アンモニアガスを導入して吸着熱をTian-Calvet型熱量計を用いて測定した。
[Analysis of chemical and physical properties]
-The carbon mass was combusted at 950 ° C using a CHN analyzer (MT-5) manufactured by Yanagimoto Co., Ltd. after grinding the catalyst in a mortar, and the combustion product gas was measured with a differential thermal conductivity meter. It was measured.
The S value, which is an index of the distribution state of phosphorus atoms, is obtained by using an electron probe microanalysis (EPMA: JXA-8200 manufactured by JEOL Ltd.), passing the cross section of the catalyst from one surface to the center, and the opposite surface. Until now, EPMA line analysis of phosphorus atoms was performed under the following conditions.
1. Sample preparation A catalyst sample was embedded in MMA resin, and after a smooth catalyst cross section was obtained by a cutting method, carbon deposition was performed on the surface.
2. Measurement conditions Measurement is acceleration voltage 15 kV, irradiation current 1 × 10 −7 ampere, data points 250 points.
The specific surface area was measured by a nitrogen adsorption method (BET method) using a surface area measuring device (BELSORP28) manufactured by Nippon Bell Co., Ltd. after vacuum degassing of the catalyst at 400 ° C. for 1 hour. The pore diameter was measured by mercury porosimetry using AUTOPORE-9520 manufactured by Shimadzu Corporation for the catalyst treated in the same manner.
-The lamination | stacking number of the molybdenum disulfide layer was measured in the following way using the transmission electron microscope (TEM: JEOL Co., Ltd. product JEM-2010).
1. The catalyst is packed in a flow-type reaction tube, kept in a nitrogen stream at room temperature for 5 minutes, the atmospheric gas is switched to H 2 S (5% by volume) / H 2 , the temperature is increased at a rate of 5 ° C./min, and the temperature reaches 400 ° C. After reaching, it was held for 1 hour. Thereafter, the temperature was lowered to 200 ° C. under the same atmosphere, the atmosphere gas was switched to nitrogen, the temperature was lowered to room temperature, and the sulfiding treatment was completed.
2. The catalyst after the sulfurization treatment was pulverized in an agate mortar.
3. A small amount of the ground catalyst was dispersed in acetone.
4). The obtained suspension was dropped on a microgrid and dried at room temperature to prepare a sample.
5. The sample was set in the measurement part of TEM and measured at an acceleration voltage of 200 kV. The direct magnification was 200,000 times and 5 fields of view were measured.
6). The photograph was stretched to 2 million times (size: 16.8 cm × 16.8 cm), and the number of laminated molybdenum disulfide layers visible on the photograph was measured.
・ In the microcalorimetry method, a predetermined amount of sample (here, catalyst) is filled in an adsorption tube, ammonia gas is introduced in a certain amount of pulses at a predetermined temperature and adsorbed on the sample, and the adsorption that occurs during this adsorption It is a method of measuring heat and specifying acid strength and acid amount. Here, the heat of adsorption corresponds to the acid strength, and the adsorption amount (introduction amount) corresponds to the acid amount.
In the present invention, the measurement conditions of the microcalorimetry method in which the measurement was performed are as follows.
That is, as a measuring device, a surface analysis device CSA-450G manufactured by Tokyo Riko Co., Ltd. was used, and the catalyst (sample) was vacuum-dried at 400 ° C. for 4 hours. Then, ammonia gas was introduced and the heat of adsorption was measured using a Tian-Calvet calorimeter.

Figure 2006306974
Figure 2006306974

Figure 2006306974
Figure 2006306974

〔減圧軽油の水素化処理反応〕
以上の実施例1〜5及び比較例1〜3で得た触媒の水素化脱硫活性を、原料油に減圧軽油を用い、下記に示す方法で評価した。
先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の条件で前処理した。
次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上部より導入して、下記の条件で脱硫反応を進行させ、生成油とガスの混合流体を、反応装置の下部より流出させ、気液分離器で生成油を分離した。
[Hydrolysis reaction of vacuum gas oil]
The hydrodesulfurization activity of the catalysts obtained in Examples 1 to 5 and Comparative Examples 1 to 3 was evaluated by the following method using vacuum gas oil as the raw material oil.
First, the catalyst was filled into a high-pressure flow reactor to form a fixed bed catalyst layer, and pretreated under the following conditions.
Next, a mixed fluid of the raw material oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the upper part of the reactor, and the desulfurization reaction proceeds under the following conditions. The product oil was separated by a gas-liquid separator.

触媒の前処理条件:
圧力(水素分圧);4.9MPa
硫化剤;上記の〔減圧軽油の水素化処理反応〕における原料油(アラビアンライト減圧軽油)
温度 ;290℃で15hr維持、次いで320℃で15hr維持のステップ昇温(昇温速度は25℃/hr)
Catalyst pretreatment conditions:
Pressure (hydrogen partial pressure); 4.9 MPa
Sulfurizing agent; feedstock oil (Arabyanlite vacuum gas oil) in [Hydrolysis reaction of vacuum gas oil]
Temperature: Step temperature rise of 290 ° C. for 15 hours and then 320 ° C. for 15 hours (temperature rise rate is 25 ° C./hr)

脱硫反応条件:
反応温度 ;360℃
圧力(水素分圧);4.9MPa
液空間速度 ;0.66hr-1
水素/オイル比 ;500m3(normal)/Kl
Desulfurization reaction conditions:
Reaction temperature: 360 ° C
Pressure (hydrogen partial pressure); 4.9 MPa
Liquid space velocity; 0.66 hr -1
Hydrogen / oil ratio: 500 m 3 (normal) / Kl

原料油の性状:
油種 ;アラビアンライト減圧軽油
比重(15/4℃);0.9185
蒸留性状 ;初留点が349.0℃、50%点が449.0℃、
90%点が529.0℃、終点が566.0℃
硫黄成分 ;2.80質量%
窒素成分 ;0.065質量%
流動点 ;35℃アスファルテン;<100ppm
アニリン点 ;82℃
Raw oil properties:
Oil type: Arabian light vacuum gas oil Specific gravity (15/4 ° C); 0.9185
Distillation properties: initial boiling point 349.0 ° C, 50% point 449.0 ° C,
90% point is 529.0 ° C, end point is 566.0 ° C
Sulfur component: 2.80% by mass
Nitrogen component: 0.065% by mass
Pour point: 35 ° C. asphaltene; <100 ppm
Aniline point: 82 ° C

脱硫活性については、以下の方法で解析した。
360℃で反応装置を運転し、20日経過した時点で生成油を採取し、生成油中の硫黄分と原料油の硫黄分および液空間速度から、脱硫反応速度定数(ks)を求めた。このks値の求め方を以下に示す。
生成油の硫黄分(Sp)の減少量に対して、1.5次の反応次数を得る反応速度式の定数を脱硫反応速度定数(ks)とする。
なお、脱硫反応速度定数が高い程、触媒活性が優れていることを示している。
脱硫反応速度定数=2×〔1/(Sp)0.5−1/(Sf)0.5〕×(LHSV)
式中、Sf:原料油中の硫黄分(質量%)
Sp:反応生成油中の硫黄分(質量%)
LHSV:液空間速度(hr-1
脱硫比活性(%)=各脱硫反応速度定数/比較触媒aの脱硫反応速度定数×100
The desulfurization activity was analyzed by the following method.
The reaction apparatus was operated at 360 ° C., and the product oil was sampled when 20 days passed, and the desulfurization reaction rate constant (ks) was determined from the sulfur content in the product oil, the sulfur content of the raw material oil, and the liquid space velocity. The method for obtaining this ks value is shown below.
The constant of the reaction rate equation for obtaining a reaction order of 1.5 with respect to the reduction amount of the sulfur content (Sp) of the produced oil is defined as a desulfurization reaction rate constant (ks).
The higher the desulfurization reaction rate constant, the better the catalytic activity.
Desulfurization reaction rate constant = 2 × [1 / (Sp) 0.5 −1 / (Sf) 0.5 ] × (LHSV)
In formula, Sf: Sulfur content (mass%) in raw material oil
Sp: Sulfur content (mass%) in reaction product oil
LHSV: Liquid space velocity (hr -1 )
Desulfurization specific activity (%) = desulfurization reaction rate constant / desulfurization reaction rate constant of comparative catalyst a × 100

原料油並びに生成油の硫黄濃度の分析はニューリー(株)社製、X線硫黄分析計(RX−610SA)で求めた。なお、反応速度定数が高い程、触媒の水素化脱硫活性が優れていることを示す。
触媒A、B、C、D、E、b、cの評価結果を、触媒aの反応速度定数を100とした場合の相対値で表3に示す。
Analysis of the sulfur concentration of the raw material oil and the product oil was obtained with an X-ray sulfur analyzer (RX-610SA) manufactured by Newly Corporation. In addition, it shows that the hydrodesulfurization activity of a catalyst is excellent, so that reaction rate constant is high.
The evaluation results of the catalysts A, B, C, D, E, b and c are shown in Table 3 as relative values when the reaction rate constant of the catalyst a is 100.

Figure 2006306974
Figure 2006306974

表3から明らかなように、本発明の製造法による触媒A〜触媒Eは、優れた脱硫性能を有することが判る。   As is apparent from Table 3, it can be seen that Catalyst A to Catalyst E produced by the production method of the present invention have excellent desulfurization performance.

Claims (8)

周期律表第6族金属から選ばれた少なくとも1種を10〜30質量%、周期律表第8族金属から選ばれた少なくとも1種を1〜15質量%、炭素を2〜14質量%、リチウムを0.05〜1質量%、リンを0.8〜8質量%含み、このリン原子のエレクトロンプローブ・マイクロアナリシス(EPMA)装置により、中心線を通る断面幅方向の線分析により得られるリン原子の分布が下記の式(1)を満足することを特徴とする炭化水素油の水素化処理触媒。なお、上記質量%は、触媒基準、酸化物換算である。

S=exp(0.04×Iave.+0.013×Imax.−0.143×Imin.)≦1 ・・・式(1)

(式(1)において、Imax.はEPMA線分析によるリン原子の濃度測定値の最大値であり、Imin.はEPMA線分析によるリン原子の濃度測定値の最小値であり、Iave.はEPMA線分析によるリン原子の濃度測定値の平均値である。)
10 to 30% by mass of at least one selected from Group 6 metals of the periodic table, 1 to 15% by mass of at least one selected from Group 8 metals of the periodic table, 2 to 14% by mass of carbon, Phosphorus obtained by line analysis in the cross-sectional width direction passing through the center line using an electron probe microanalysis (EPMA) apparatus of this phosphorus atom containing 0.05 to 1% by mass of lithium and 0.8 to 8% by mass of phosphorus A hydrocarbon oil hydrotreating catalyst characterized in that the distribution of atoms satisfies the following formula (1): In addition, the said mass% is a catalyst reference | standard and oxide conversion.

S = exp (0.04 × Iave. + 0.013 × Imax.−0.143 × Imin.) ≦ 1 Equation (1)

(In Formula (1), Imax. Is the maximum value of the phosphorus atom concentration measured by EPMA line analysis, Imin. Is the minimum value of the phosphorus atom concentration measured value by EPMA line analysis, and Iave. Is the EPMA line. (This is the average value of phosphorus atom concentration measured by analysis.)
比表面積110〜300m2/g、細孔容積0.35〜0.6m1/g、平均細孔直径65〜180Åであることを特徴とする請求項1に記載の炭化水素油の水素化処理触媒。 2. The hydrotreating catalyst for hydrocarbon oil according to claim 1, having a specific surface area of 110 to 300 m 2 / g, a pore volume of 0.35 to 0.6 m1 / g, and an average pore diameter of 65 to 180 mm. . マイクロカロリメトリー法にて測定した100〜200kJ/molのアンモニア吸着熱を発する酸点を、触媒1g当り、270〜380μmolの範囲で有していることを特徴とする請求項1または2に記載の炭化水素油の水素化処理触媒。   3. The carbonization according to claim 1, which has an acid point which generates an ammonia adsorption heat of 100 to 200 kJ / mol measured by a microcalorimetry method in a range of 270 to 380 μmol per 1 g of the catalyst. Hydrogen oil hydrotreating catalyst. 触媒が、予備硫化後において、透過型電子顕微鏡により観察される二硫化モリブデン相の積層数の平均値が2.5〜5であることを特徴とする請求項1〜3のいずれかに記載の炭化水素油の水素化処理触媒。   4. The catalyst according to claim 1, wherein the catalyst has an average number of laminated molybdenum disulfide phases of 2.5 to 5 observed with a transmission electron microscope after preliminary sulfidation. Hydrocarbon oil hydrotreating catalyst. 比表面積160〜500m2/g、細孔容積0.55〜0.9m1/g、平均細孔直径60〜150Åである無機酸化物担体上に、周期律表第8族金属から選ばれた少なくとも1種を含む化合物、周期律表第6族金属から選ばれた少なくとも1種を含む化合物、有機酸、リン、リチウムを含有する溶液を用い、触媒基準、酸化物換算で周期律第6族金属を10〜30質量%、周期律表第8族金属を1〜15質量%、リチウム0.05〜1質量%、炭素を2〜14質量%、リンを0.8〜8質量%となるように担持させ、200℃以下で乾燥させることを特徴とする請求項1〜4のいずれかに記載の炭化水素油の水素化処理触媒の製造方法。 On an inorganic oxide support having a specific surface area of 160 to 500 m 2 / g, a pore volume of 0.55 to 0.9 m1 / g, and an average pore diameter of 60 to 150 mm, at least selected from Group 8 metals of the periodic table A compound containing at least one kind selected from a compound containing at least one selected from the group 6 metals in the periodic table, a solution containing an organic acid, phosphorus and lithium, based on the catalyst standard and oxide conversion, and a group 6 metal in the periodic table To 10 to 30% by mass, 1 to 15% by mass of Group 8 metal of the periodic table, 0.05 to 1% by mass of lithium, 2 to 14% by mass of carbon, and 0.8 to 8% by mass of phosphorus. 5. The method for producing a hydrocarbon oil hydrotreating catalyst according to claim 1, wherein the catalyst is dried at 200 ° C. or less. 比表面積160〜500m2/g、細孔容積0.55〜0.9m1/g、平均細孔直径60〜150Åであるリンを触媒基準、酸化物換算で0.8〜8質量%含む無機酸化物担体上に、周期律表第8族金属から選ばれた少なくとも1種を含む化合物、周期律表第6族金属から選ばれた少なくとも1種を含む化合物、有機酸、およびリチウムを含有する溶液を用い、触媒基準、酸化物換算で周期律第6族金属を10〜30質量%、周期律表第8族金属を1〜15質量%、リチウム0.05〜1質量%、炭素を2〜14質量%となるように担持させ、200℃以下で乾燥させることを特徴とする請求項1〜4のいずれかに記載の炭化水素油の水素化処理触媒の製造方法。 Inorganic oxidation containing phosphorus having a specific surface area of 160 to 500 m 2 / g, a pore volume of 0.55 to 0.9 m1 / g, and an average pore diameter of 60 to 150 mm on a catalyst basis, 0.8 to 8% by mass in terms of oxide A solution containing a compound containing at least one selected from Group 8 metals of the periodic table, a compound containing at least one selected from Group 6 metals of the periodic table, an organic acid, and lithium on a physical support , 10-30% by mass of periodic group 6 metal in terms of oxide, 1-15% by mass of group 8 metal in the periodic table, 0.05-1% by mass of lithium, 2% of carbon The method for producing a hydrocarbon oil hydrotreating catalyst according to any one of claims 1 to 4, wherein the catalyst is supported at 14 mass% and dried at 200 ° C or lower. 前記リンを含む無機酸化物担体が、無機酸化物担体の原料とリンの原料とを混練する混練法により調製されたことを特徴とする請求項6に記載の炭化水素油の水素化処理触媒の製造方法。   The hydrocarbon oil hydrotreating catalyst according to claim 6, wherein the inorganic oxide carrier containing phosphorus is prepared by a kneading method in which a raw material of an inorganic oxide carrier and a raw material of phosphorus are kneaded. Production method. 請求項1〜4のいずれかに記載の触媒の存在下、水素分圧3〜8MPa、温度300〜420℃、液空間速度0.3〜5hr-1の条件で、炭化水素油留分の接触反応を行うことを特徴とする炭化水素油の水素化処理方法。 Contact of hydrocarbon oil fraction in the presence of the catalyst according to any one of claims 1 to 4 under conditions of a hydrogen partial pressure of 3 to 8 MPa, a temperature of 300 to 420 ° C, and a liquid space velocity of 0.3 to 5 hr -1. A method for hydrotreating a hydrocarbon oil, characterized by carrying out a reaction.
JP2005130224A 2005-04-27 2005-04-27 Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil Pending JP2006306974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005130224A JP2006306974A (en) 2005-04-27 2005-04-27 Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005130224A JP2006306974A (en) 2005-04-27 2005-04-27 Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil

Publications (1)

Publication Number Publication Date
JP2006306974A true JP2006306974A (en) 2006-11-09

Family

ID=37474233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130224A Pending JP2006306974A (en) 2005-04-27 2005-04-27 Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP2006306974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059636A1 (en) 2006-11-13 2008-05-22 Olympus Medical Systems Corp. Endoscope insertion shape analyzing system, and observation system for living body
JP2009202119A (en) * 2008-02-28 2009-09-10 Nippon Oil Corp Method for producing regenerated hydrotreatment catalyst and method for producing petroleum product
JP2010531224A (en) * 2007-06-25 2010-09-24 イエフペ Method for preparing hydrotreating catalyst by impregnation with phosphorus-containing compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006156A1 (en) * 2001-07-10 2003-01-23 Japan Energy Corporation Hydro-refining catalyst, carrier for use therein and method for production thereof
JP2003103175A (en) * 2001-09-28 2003-04-08 Petroleum Energy Center Hydrogenating desulfurization catalyst of heavy oil, producing method thereof and hydrogenating desulfurization method of heavy oil using the same
JP2003299960A (en) * 2001-06-20 2003-10-21 Cosmo Oil Co Ltd Hydrogenation treatment catalyst and method for light oil, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299960A (en) * 2001-06-20 2003-10-21 Cosmo Oil Co Ltd Hydrogenation treatment catalyst and method for light oil, and manufacturing method therefor
WO2003006156A1 (en) * 2001-07-10 2003-01-23 Japan Energy Corporation Hydro-refining catalyst, carrier for use therein and method for production thereof
JP2003103175A (en) * 2001-09-28 2003-04-08 Petroleum Energy Center Hydrogenating desulfurization catalyst of heavy oil, producing method thereof and hydrogenating desulfurization method of heavy oil using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059636A1 (en) 2006-11-13 2008-05-22 Olympus Medical Systems Corp. Endoscope insertion shape analyzing system, and observation system for living body
JP2010531224A (en) * 2007-06-25 2010-09-24 イエフペ Method for preparing hydrotreating catalyst by impregnation with phosphorus-containing compound
JP2009202119A (en) * 2008-02-28 2009-09-10 Nippon Oil Corp Method for producing regenerated hydrotreatment catalyst and method for producing petroleum product

Similar Documents

Publication Publication Date Title
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
US9987622B2 (en) Hydrodesulfurization catalyst for diesel oil and hydrotreating method for diesel oil
JP5228221B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
KR102277834B1 (en) Process for preparing a hydrotreating catalyst
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP4519719B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
JP5815321B2 (en) Hydrocarbon oil hydrotreating catalyst, hydrocarbon oil hydrotreating catalyst production method, and hydrocarbon oil hydrotreating method
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4047044B2 (en) Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil
JP2006306974A (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP2008290030A (en) Hydroprocessing catalyst and method of hydroprocessing vacuum-distilled gas oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619