JP4778605B2 - Hydrodesulfurization catalyst for diesel oil fraction - Google Patents

Hydrodesulfurization catalyst for diesel oil fraction Download PDF

Info

Publication number
JP4778605B2
JP4778605B2 JP2000156156A JP2000156156A JP4778605B2 JP 4778605 B2 JP4778605 B2 JP 4778605B2 JP 2000156156 A JP2000156156 A JP 2000156156A JP 2000156156 A JP2000156156 A JP 2000156156A JP 4778605 B2 JP4778605 B2 JP 4778605B2
Authority
JP
Japan
Prior art keywords
catalyst
mass
oil fraction
hydrodesulfurization
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000156156A
Other languages
Japanese (ja)
Other versions
JP2001334150A (en
Inventor
和浩 稲村
康之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Japan Petroleum Energy Center JPEC filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000156156A priority Critical patent/JP4778605B2/en
Publication of JP2001334150A publication Critical patent/JP2001334150A/en
Application granted granted Critical
Publication of JP4778605B2 publication Critical patent/JP4778605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は軽油留分の水素化脱硫触媒に関し、さらに詳しくは、軽油留分の深度脱硫において優れた脱硫活性を有する水素化脱硫触媒に関する。
【0002】
【従来の技術】
原油の蒸留によって得られる各種の留分やその分解によって得られる分解油には、通常、数%の硫黄化合物が含まれており、それらの油を燃料として使用した場合には、硫黄酸化物が大気中に放出され、大気汚染の原因の一つとなっている。特に、ディーゼル機関からの排ガスによる大気汚染が深刻化しており、その燃料面からの対策として、軽油留分中の硫黄分の低減が強く要望されている。実際に、日本では1997年10月から軽油中の硫黄分の規制値が500ppmに改定され、ヨーロッパでは2005年までに50ppmとする案が提示されている。
このような状況下で、軽油留分中の硫黄分を大幅に除去する深度脱硫の開発が重要視されつつあり、それは優れた活性を有する水素化脱硫触媒の開発にかかっている。
【0003】
従来より、無機酸化物担体に担持されたニッケル−モリブデン、コバルト−モリブデンについて最も多く検討されているが、活性については改良の余地があった(例えば、特開平9−929号公報、特開平9−157661号公報、特開平9−164334号公報、特開平9−187659号公報、特開2000−79343号公報)。
【0004】
【発明が解決しようとする課題】
本発明は、上記観点からなされたもので、シリカ−アルミナ及び/又はボリア−アルミナからなる担体にニッケル−モリブデン−リンを担持した脱硫活性が高い軽油留分の水素化脱硫触媒を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者らは鋭意研究の結果、シリカ−アルミナ及び/又はボリア−アルミナからなる担体にニッケル−モリブデン−リンを担持した触媒について、従来重質油の脱硫触媒で採用されていた大細孔径、大細孔容量化することにより上記本発明の目的を効果的に達成しうることを見出した。本発明はかかる知見に基づいて完成したものである。
【0006】
すなわち、本発明の要旨は下記のとおりである。
1.ボリア−アルミナからなる担体に、活性金属としてニッケル、モリブデン、及びその他の成分としてリンを担持した触媒であって、触媒の平均細孔径が80〜200Åで、かつ細孔容量が0.3〜0.8cc/gであり、20〜600Åの細孔容量に対して、50〜100Åの細孔容量が80%以下、100〜600Åの細孔容量が10%以上であることを特徴とする軽油留分の水素化脱硫触媒。
.基準で、触媒酸化物換算で、ニッケルを2〜10質量%、モリブデンを10〜40質量%及びリンを1〜5質量%担持するものである前記1に記載の軽油留分の水素化脱硫触媒。
.触媒基準で、酸化物換算で、ニッケルとモリブデンの量の和が20質量%以上である前記1又は2に記載の軽油留分の水素化脱硫触媒。
4.水溶性有機化合物を添加することにより活性金属及びリンを高分散化させて担持した触媒である前記1〜3のいずれかに記載の軽油留分の水素化脱硫触媒
5.水溶性有機化合物の添加量が、担体の質量に対して、5〜15質量%である前記1〜4のいずれかに記載の軽油留分の水素化脱硫触媒
6.水溶性有機化合物がポリエチレングリコールである前記1〜5のいずれかに記載の軽油留分の水素化脱硫触媒。
【0007】
【発明の実施の形態】
以下に本発明について詳細に説明する。
まず、本発明の軽油留分の水素化脱硫触媒(以下、単に触媒ともいう。)は、シリカ−アルミナ及び/又はボリア−アルミナからなる担体に、活性金属としてニッケル、モリブデン、及びその他の成分としてリンを担持した触媒であって、触媒の平均細孔径が80Å以上で、かつ細孔容量が0.2cc/g以上であることを特徴とする。
【0008】
上記の担体として、シリカ−アルミナ,ボリア−アルミナを単独で、あるいは二種を組み合わせて用いることができる。
本発明の触媒の平均細孔径は80Å以上で、好ましくは80〜200Å、より好ましくは100〜180Åの範囲である。80Åより小さいと、触媒の活性の低下がみられる。また、触媒強度の点から200Åを超えない方がよい。細孔容量は0.2cc/g以上で、好ましくは0.3〜0.8cc/gの範囲である。0.2cc/gより小さいと、触媒の活性の低下がみられる。触媒強度の点から0.8cc/gを超えない方がよい。
【0009】
さらに、本触媒については、20〜600Åの細孔容量に対して、50〜100Åの細孔容量が80%以下、100〜600Åの細孔容量が10%以上であるものが好ましい。上記の範囲を逸脱すると、活性金属が凝集しやすく、活性金属を安定に担持しにくくなるので好ましくない。
なお、上記の平均細孔径、細孔容量はBJH法における脱離等温線による細孔分布により求めたものである。
【0010】
本発明の触媒の活性金属の量は、触媒基準で、酸化物換算で、ニッケルを2〜10質量%、モリブデンを10〜40質量%及びリンを1〜5質量%であるのが好ましい。また、その場合ニッケルとモリブデンの量の和は20質量%以上がより好ましく、25質量%以上が特に好ましい。
【0011】
次いで、上記の本発明の触媒の製造法について説明する。
前記の担体の平均細孔径については、好ましくは90Å以上、より好ましくは100〜250Å、特に好ましくは120〜170Åの範囲のものを使用すればよい。90Åより小さいと、触媒として80Å以上のものができない可能性がある。
また、前記の担体の細孔容量については、好ましくは0.3cc/g以上、より好ましくは0.4〜0.9cc/gの範囲のものを使用すればよい。0.3cc/gより小さいと、触媒として0.2cc/g以上のものができない可能性がある。
【0012】
前記の担体に、通常ニッケル化合物、モリブデン化合物、リン化合物を含浸法で担持する。ニッケル化合物として、硝酸ニッケル,炭酸ニッケル,硫酸ニッケル等を挙げることができる。モリブデン化合物塩として、三酸化モリブデン,パラモリブデン酸アンモニウム等を挙げることができる。リン化合物として、五酸化リン,正リン酸等を挙げることができる。
【0013】
活性金属として担持するニッケル化合物、モリブデン化合物及びリン化合物を別々に含浸してもよいが、同時に行うのが効率的である。上記の各金属化合物を、ニッケル化合物は0.3〜3.6モル/リットル、モリブデン化合物は0.7〜7.0モル/リットル、リン化合物は0.1〜2.2モル/リットルの割合で純水に溶解させ、担体に吸水率と等量になるように調整後含浸する。含浸時のpHは含浸液の安定性を考慮して一般には酸性領域では1〜4、好ましくは1.5〜3.5である。また、アルカリ性領域では9〜12、好ましくは10〜11である。このpHの調整方法は特に限定されないが、硝酸,塩酸,硫酸等の無機酸、リンゴ酸,クエン酸,エチレンジアミン4酢酸等の有機酸、アンモニアなどを使用して行うことができる。
【0014】
また、含浸液には各活性金属の高分散化させるために水溶性有機化合物を添加することが好ましい。
その水溶性有機化合物として、1,3−ブタンジオール、1,4−ブタンジオール、ブタントリオール、1,2−プロパンジオール、1,2−ペンタンジオール等のジオール類;5−メチル−1−ヘキサノール、イソアミルアルコール(3−メチル−1−ブタノール)、s−イソアミルアルコール(3−メチル−2−ブタノール)、イソウンデシレンアルコール、イソオクタノール、イソペンタノール、イソゲランオール、イソヘキシルアルコール、2,4−ジメチル−1−ペンタノール、2,4,4−トリメチル−1−ペンタノール等の炭素数4以上のイソ体のアルコール;2−ヘキサノール、3−ヘキサノール等の炭素数5以上で末端の炭素以外にヒドロキシル基が結合しているアルコール;ポリエチレングリコール、トリエチレングリコール、ジエチレングリコール,ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のエーテル基含有水溶性高分子;ポリビニルアルコール等の水溶性高分子;サッカロース、グルコース等の各種糖類;メチルセルロース、水溶性でんぷん等の水溶性多糖類もしくしはその誘導体などを挙げることができ、単独でも二種類以上を混合して使用することもできる。効果の点で、ポリエチレングリコールが好ましい。
【0015】
上記の水溶性有機化合物の添加量は、担体の質量に対して、好ましくは、5〜15質量%(より好ましくは6〜10質量%)とすればよい。
含浸後、通常20〜200℃(好ましくは100〜120℃)で0.5〜15時間(好ましくは2〜7時間)乾燥させる。その後、通常200〜550℃(好ましくは250〜450℃)で1〜10時間(好ましくは2〜6時間)焼成する。
【0016】
最後に、本発明の触媒を用いて軽油留分を水素化脱硫する方法について説明する。
水素化脱硫処理を行う際には、予め安定化処理として予備硫化を行うことが望ましい。この予備硫化処理の条件は特に限定されないが、通常、予備硫化剤として、硫化水素,二硫化炭素,チオフェン,ジメチルジスルフィド等を挙げることができ、その予備硫化剤を直留軽油等に添加した油を水素とともに流通させる。処理温度200〜400℃、処理圧力常圧〜30MPaの範囲で行われる。
【0017】
水素化脱硫処理条件については、一般的には反応温度320〜380℃(好ましくは330〜370℃)、水素分圧1〜7MPa(好ましくは3〜6MPa)の範囲で行われる。
反応形式は特に限定されないが、通常は、固定床,移動床,沸騰床,懸濁床等の種々のプロセスから選択できるが、固定床が好ましい。また、原料油の流通法については、ダウンフロー、アップフローの両形式を採用することができる。
【0018】
固定床の場合の温度、圧力以外の反応条件としては、液空間速度(LHSV)は0.2〜7hr-1(好ましくは0.5〜3.5r-1)、水素/原料油比は100〜1,500Nm3 /kl(好ましくは150〜750Nm3 /kl)である。
【0019】
処理する軽油留分として、具体的には直留軽油(軽質軽油、重質軽油)、接触分解軽油,熱分解油,コーカーガスオイル,水素化処理(分解)軽油,脱硫処理軽油を挙げることができる。
本発明の触媒を使用して軽油留分を水素化脱硫を行うと、軽油留分中の硫黄分を50ppm以下にすることができ、またセタン指数も増加させることができる。
【0020】
本発明の水素化脱硫触媒は、大細孔径、大細孔容量を有するので、活性金属であるニッケル、モリブデンの担持量を増加させても、その活性金属を安定に細孔内に担持でき活性が高いと推定される。
【0021】
【実施例】
次に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によりなんら制限されるものではない。
〔触媒製造例1〕
触媒組成として、NiO−MoO3 −P2 5 が6−32−2質量%(但し、担体100g)となるように炭酸ニッケル,三酸化モリブデン、正リン酸を純水100ccに加え、加熱溶解させ、冷却後トリエチレングリコール8gを添加して、純水にて50ccに定容し、含浸液(S1)を調製した。
平均細孔径118Å、細孔容量0.75cc/gのシリカ−アルミナ成形担体100gに、含浸液(S1)を50ccをその吸水量に見合うように純水にて希釈・定容し、常圧にて含浸し、120℃で3時間乾燥後、300℃で3時間焼成し触媒Aを得た。触媒組成と物性を第1表に示す。
【0022】
〔触媒製造例2〕
触媒組成として、NiO−MoO3 −P2 5 が6−32−2質量%(但し、担体100g)となるように炭酸ニッケル,三酸化モリブデン、正リン酸を純水100ccに加え、加熱溶解させ、冷却後ポリエチレングリコール10gを添加して、純水にて50ccに定容し、含浸液(S2)を調製した。
平均細孔径136Å、細孔容量0.75cc/gのγ−アルミナ成形担体100gに、含浸液(S2)を50ccをその吸水量に見合うように純水にて希釈・定容し、常圧にて含浸し、120℃で3時間乾燥後、300℃で3時間焼成し触媒Bを得た。触媒組成と物性を第1表に示す。
【0023】
〔触媒製造例3〕
触媒組成として、NiO−MoO3 −P2 5 が6−32−2質量%(但し、担体100g)となるように炭酸ニッケル,三酸化モリブデン、正リン酸を純水100ccに加え、加熱溶解させ、冷却後トリエチレングリコール8gを添加して、純水にて50ccに定容し、含浸液(S3)を調製した。
平均細孔径96Å、細孔容量0.70cc/gのγ−アルミナ成形担体100gに、含浸液(S3)を50ccをその吸水量に見合うように純水にて希釈・定容し、常圧にて含浸し、120℃で3時間乾燥後、300℃で3時間焼成し触媒Cを得た。触媒組成と物性を第1表に示す。
【0024】
〔触媒製造例4〕
触媒組成として、NiO−MoO3 −P2 5 が6−32−2質量%(但し、担体100g)となるように炭酸ニッケル,三酸化モリブデン、正リン酸を純水100ccに加え、加熱溶解させ、冷却後トリエチレングリコール8gを添加して、純水にて50ccに定容し、含浸液(S4)を調製した。
平均細孔径100Å、細孔容量0.82cc/gのボリア−アルミナ成形担体100gに、含浸液(S4)を50ccをその吸水量に見合うように純水にて希釈・定容し、常圧にて含浸し、120℃で3時間乾燥後、300℃で3時間焼成し触媒Dを得た。触媒組成と物性を第1表に示す。
【0025】
〔触媒製造例5〕
触媒組成として、NiO−MoO3 −P2 5 が6−32−2質量%(但し、担体100g)となるように炭酸ニッケル,三酸化モリブデン、正リン酸を純水100ccに加え、加熱溶解させ、冷却後トリエチレングリコール8gを添加して、純水にて50ccに定容し、含浸液(S5)を調製した。
平均細孔径120Å、細孔容量0.74cc/gのγ−アルミナ成形担体100gに、含浸液(S5)を50ccをその吸水量に見合うように純水にて希釈・定容し、常圧にて含浸し、120℃で3時間乾燥後、300℃で3時間焼成し触媒Eを得た。触媒組成と物性を第1表に示す。
【0026】
【表1】

Figure 0004778605
【0027】
なお、触媒の平均細孔径と細孔容量については下記の方法で求めた。
窒素吸着による脱離側の等温線を用い、BJH法により直径20〜600Åの範囲を解析した。それから求められた全比表面積、全細孔容量を用いてシリンダーモデルを仮定して平均細孔径を計算した。
【0028】
軽油留分の水素化脱硫処理
参考例1、比較例1,2〕
固定床流通反応装置の反応管に各触媒A〜Cを100cc充填した。原料油は水素ガスと共に反応管の下段から導入するアップフロー形式で流通させて反応性を評価した。前処理として第2表に示す性状の原料軽油[中東系直留軽油(LGO)]を水素ガスと共に250℃、24時間流通させることにより該触媒を予備硫化した。予備硫化後、上記の原料軽油[中東系直留軽油(LGO)]を水素ガスと共に流通させて水素化脱硫処理を行った。反応温度;330℃,340℃,350℃、水素分圧;5MPaG、水素/原料油比;250Nm3/kl、LHSV;2.0hr-1の条件で実施した。第3表に生成油の硫黄分を示す。
【0029】
【表2】
Figure 0004778605
【0030】
【表3】
Figure 0004778605
【0031】
チオフェンの水素化脱硫処理
実施例1、比較例3〕
触媒D,触媒Eについて、脱硫活性のモデル反応としてチオフェンの脱硫反応を行った。予備硫化と測定は常圧流通触媒反応装置を用いた。
【0032】
まず、32〜64メッシュの試料を120℃で12時間予備乾燥させ、乾燥質量で約200mgを石英ガラス製の内径8mmの反応管に充填した。この試料に10%H2 S/H2 ガスを50cc/minの速度で流通し、1時間室温で保持した後、6℃/minの速度で400℃まで電気炉により昇温、その温度で2時間硫化した。硫化処理後、350℃で反応管に6%チオフェン/H2 ガスを流通させることにより脱硫処理を行った。触媒質量当たりの反応速度定数を算出した。結果を第4表に示す。
【0033】
【表4】
Figure 0004778605
【0034】
【発明の効果】
本発明の軽油留分の水素化脱硫触媒は従来の触媒に比べて極めて活性が高く、石油精製分野で有効に利用される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodesulfurization catalyst for a gas oil fraction, and more particularly to a hydrodesulfurization catalyst having excellent desulfurization activity in deep desulfurization of a gas oil fraction.
[0002]
[Prior art]
Various fractions obtained by distillation of crude oil and cracked oil obtained by cracking thereof usually contain several percent of sulfur compounds. When these oils are used as fuel, sulfur oxides are not contained. Released into the atmosphere, it is one of the causes of air pollution. In particular, air pollution due to exhaust gas from diesel engines has become serious, and as a countermeasure from the fuel side, reduction of sulfur content in light oil fraction is strongly demanded. In fact, the regulation value of sulfur in diesel oil has been revised to 500 ppm in October 1997 in Japan, and a proposal has been proposed in Europe for 50 ppm by 2005.
Under such circumstances, development of deep desulfurization that significantly removes sulfur content in gas oil fractions is being emphasized, and it depends on the development of hydrodesulfurization catalysts having excellent activity.
[0003]
Conventionally, most studies have been made on nickel-molybdenum and cobalt-molybdenum supported on an inorganic oxide carrier, but there is room for improvement in activity (for example, JP-A-9-929 and JP-A-9). No. 157661, JP-A-9-164334, JP-A-9-187659, JP-A 2000-79343).
[0004]
[Problems to be solved by the invention]
The present invention has been made from the above viewpoint, and provides a hydrodesulfurization catalyst for a gas oil fraction having a high desulfurization activity in which nickel-molybdenum-phosphorus is supported on a support made of silica-alumina and / or boria-alumina. It is the purpose.
[0005]
[Means for Solving the Problems]
As a result of diligent research, the present inventors have found that a catalyst having nickel-molybdenum-phosphorus supported on a carrier composed of silica-alumina and / or boria-alumina has a large pore diameter that has been conventionally used in heavy oil desulfurization catalysts, It has been found that the object of the present invention can be effectively achieved by increasing the pore volume. The present invention has been completed based on such findings.
[0006]
That is, the gist of the present invention is as follows.
1. Boria - a carrier consisting of alumina, nickel as the active metal, molybdenum, and a catalyst supporting phosphorus as other components, an average pore diameter of the catalyst is 80~200A, and pore volume from 0.3 to 0 a .8cc / g, relative to the pore volume of 20~600A, pore volume of 50~100Å 80% or less, light oil pore volume 100~600Å is characterized in that 10% or more distillate Mineral hydrodesulfurization catalyst.
2 . 2. Hydrodesulfurization catalyst for gas oil fraction as described in 1 above, on the basis of 2 to 10% by mass of nickel, 10 to 40% by mass of molybdenum and 1 to 5% by mass of phosphorus in terms of catalyst oxide .
3 . 3. The hydrodesulfurization catalyst for a light oil fraction according to 1 or 2 above, wherein the sum of the amounts of nickel and molybdenum is 20% by mass or more in terms of oxides on a catalyst basis.
4). 4. The hydrodesulfurization catalyst for a gas oil fraction according to any one of 1 to 3, which is a catalyst in which an active metal and phosphorus are highly dispersed by adding a water-soluble organic compound .
5. The hydrodesulfurization catalyst for a light oil fraction according to any one of 1 to 4 above, wherein the addition amount of the water-soluble organic compound is 5 to 15% by mass with respect to the mass of the carrier .
6). 6. The hydrodesulfurization catalyst for a gas oil fraction according to any one of 1 to 5, wherein the water-soluble organic compound is polyethylene glycol .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
First, the hydrodesulfurization catalyst (hereinafter also simply referred to as catalyst) of the gas oil fraction of the present invention is a carrier composed of silica-alumina and / or boria-alumina, nickel, molybdenum as active metals, and other components. A catalyst supporting phosphorus, wherein the catalyst has an average pore diameter of 80 mm or more and a pore volume of 0.2 cc / g or more.
[0008]
As the carrier, silica-alumina and boria-alumina can be used alone or in combination of two kinds.
The average pore diameter of the catalyst of the present invention is 80 mm or more, preferably 80 to 200 mm, more preferably 100 to 180 mm. If it is less than 80%, a decrease in the activity of the catalyst is observed. Moreover, it is better not to exceed 200 kg in terms of catalyst strength. The pore volume is 0.2 cc / g or more, preferably in the range of 0.3 to 0.8 cc / g. If it is less than 0.2 cc / g, the activity of the catalyst is reduced. From the point of catalyst strength, it is better not to exceed 0.8 cc / g.
[0009]
Further, the catalyst preferably has a pore volume of 50 to 100% and a pore volume of 100 to 600% of 10% or more with respect to a pore volume of 20 to 600%. Deviating from the above range is not preferable because the active metal tends to aggregate and it is difficult to stably carry the active metal.
In addition, said average pore diameter and pore volume are calculated | required by the pore distribution by the desorption isotherm in BJH method.
[0010]
The amount of the active metal of the catalyst of the present invention is preferably 2 to 10% by mass of nickel, 10 to 40% by mass of molybdenum, and 1 to 5% by mass of phosphorus in terms of oxides on a catalyst basis. In this case, the sum of the amounts of nickel and molybdenum is more preferably 20% by mass or more, and particularly preferably 25% by mass or more.
[0011]
Next, a method for producing the catalyst of the present invention will be described.
The average pore diameter of the carrier is preferably 90 mm or more, more preferably 100 to 250 mm, particularly preferably 120 to 170 mm. If it is smaller than 90 mm, there is a possibility that a catalyst of 80 mm or more cannot be produced.
The pore volume of the carrier is preferably 0.3 cc / g or more, more preferably 0.4 to 0.9 cc / g. If it is less than 0.3 cc / g, a catalyst of 0.2 cc / g or more may not be produced.
[0012]
Usually, a nickel compound, a molybdenum compound, and a phosphorus compound are supported on the carrier by an impregnation method. Examples of the nickel compound include nickel nitrate, nickel carbonate, nickel sulfate and the like. Examples of the molybdenum compound salt include molybdenum trioxide and ammonium paramolybdate. Examples of phosphorus compounds include phosphorus pentoxide and orthophosphoric acid.
[0013]
The nickel compound, the molybdenum compound and the phosphorus compound supported as the active metal may be impregnated separately, but it is efficient to carry out at the same time. Each metal compound is a ratio of 0.3 to 3.6 mol / liter for nickel compound, 0.7 to 7.0 mol / liter for molybdenum compound, and 0.1 to 2.2 mol / liter for phosphorus compound. Then, it is dissolved in pure water, and the carrier is impregnated after adjustment so as to have the same amount of water absorption. In consideration of the stability of the impregnating solution, the pH during impregnation is generally 1 to 4, preferably 1.5 to 3.5 in the acidic region. Moreover, it is 9-12 in an alkaline area | region, Preferably it is 10-11. The method for adjusting the pH is not particularly limited, but can be performed using an inorganic acid such as nitric acid, hydrochloric acid or sulfuric acid, an organic acid such as malic acid, citric acid or ethylenediaminetetraacetic acid, ammonia or the like.
[0014]
In addition, it is preferable to add a water-soluble organic compound to the impregnation liquid in order to highly disperse each active metal.
As the water-soluble organic compound, diols such as 1,3-butanediol, 1,4-butanediol, butanetriol, 1,2-propanediol, 1,2-pentanediol; 5-methyl-1-hexanol, Isoamyl alcohol (3-methyl-1-butanol), s-isoamyl alcohol (3-methyl-2-butanol), isoundecylene alcohol, isooctanol, isopentanol, isoguelanol, isohexyl alcohol, 2,4-dimethyl -1 -pentanol, 2,4,4-trimethyl-1-pentanol and other isomeric alcohols having 4 or more carbon atoms; 2-hexanol, 3-hexanol and other carbon atoms having 5 or more carbon atoms in addition to terminal carbon Alcohol to which the group is bonded; polyethylene glycol, triethylene glycol Ether group-containing water-soluble polymers such as alcohol, diethylene glycol, polyoxyethylene phenyl ether, polyoxyethylene octylphenyl ether; water-soluble polymers such as polyvinyl alcohol; various sugars such as saccharose and glucose; methyl cellulose, water-soluble starch, etc. These water-soluble polysaccharides or their derivatives can be mentioned, and can be used alone or in admixture of two or more. In view of the effect, polyethylene glycol is preferable.
[0015]
The amount of the water-soluble organic compound added is preferably 5 to 15% by mass (more preferably 6 to 10% by mass) with respect to the mass of the carrier.
After impregnation, it is usually dried at 20 to 200 ° C. (preferably 100 to 120 ° C.) for 0.5 to 15 hours (preferably 2 to 7 hours). Thereafter, firing is usually performed at 200 to 550 ° C. (preferably 250 to 450 ° C.) for 1 to 10 hours (preferably 2 to 6 hours).
[0016]
Finally, a method for hydrodesulfurizing a light oil fraction using the catalyst of the present invention will be described.
When performing hydrodesulfurization treatment, it is desirable to perform preliminary sulfidation as a stabilization treatment in advance. The conditions for this preliminary sulfidation treatment are not particularly limited, but normally, as the preliminary sulfidizing agent, hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide and the like can be mentioned, and the oil obtained by adding the preliminary sulfidizing agent to straight-run gas oil etc. Circulate with hydrogen. The processing temperature is 200 to 400 ° C., and the processing pressure is normal pressure to 30 MPa.
[0017]
Regarding hydrodesulfurization treatment conditions, the reaction temperature is generally 320 to 380 ° C. (preferably 330 to 370 ° C.) and the hydrogen partial pressure is 1 to 7 MPa (preferably 3 to 6 MPa).
Although the reaction mode is not particularly limited, it can be usually selected from various processes such as a fixed bed, a moving bed, a boiling bed, and a suspension bed, but a fixed bed is preferable. Moreover, about the distribution | circulation method of raw material oil, both a downflow and an upflow form can be employ | adopted.
[0018]
As reaction conditions other than temperature and pressure in the case of a fixed bed, the liquid hourly space velocity (LHSV) is 0.2 to 7 hr −1 (preferably 0.5 to 3.5 r −1 ), and the hydrogen / feed oil ratio is 100. ˜1,500 Nm 3 / kl (preferably 150 to 750 Nm 3 / kl).
[0019]
Specific examples of light oil fractions to be treated include straight-run light oil (light light oil, heavy light oil), catalytic cracking light oil, pyrolysis oil, coker gas oil, hydrotreated (cracked) light oil, and desulfurized light oil. it can.
When hydrodesulfurization is performed on a gas oil fraction using the catalyst of the present invention, the sulfur content in the gas oil fraction can be reduced to 50 ppm or less, and the cetane index can be increased.
[0020]
Since the hydrodesulfurization catalyst of the present invention has a large pore diameter and a large pore volume, the active metal can be stably supported in the pores even when the supported amounts of the active metals nickel and molybdenum are increased. Is estimated to be high.
[0021]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not restrict | limited at all by these Examples.
[Catalyst Production Example 1]
As a catalyst composition, nickel carbonate, molybdenum trioxide, and normal phosphoric acid are added to 100 cc of pure water so that NiO—MoO 3 —P 2 O 5 is 6-32-2 mass% (provided that the support is 100 g), and dissolved by heating. After cooling, 8 g of triethylene glycol was added, and the volume was adjusted to 50 cc with pure water to prepare an impregnation liquid (S1).
To 100 g of a silica-alumina molded carrier having an average pore diameter of 118 mm and a pore volume of 0.75 cc / g, 50 cc of impregnating liquid (S1) is diluted and fixed in pure water so as to match the amount of water absorbed, and is adjusted to normal pressure. And impregnated, dried at 120 ° C. for 3 hours, and calcined at 300 ° C. for 3 hours to obtain Catalyst A. The catalyst composition and physical properties are shown in Table 1.
[0022]
[Catalyst Production Example 2]
As a catalyst composition, nickel carbonate, molybdenum trioxide, and normal phosphoric acid are added to 100 cc of pure water so that NiO—MoO 3 —P 2 O 5 is 6-32-2 mass% (provided that the support is 100 g), and dissolved by heating. After cooling, 10 g of polyethylene glycol was added, and the volume was adjusted to 50 cc with pure water to prepare an impregnating solution (S2).
To 100 g of a γ-alumina molded carrier having an average pore diameter of 136 mm and a pore volume of 0.75 cc / g, 50 cc of impregnating liquid (S2) is diluted and fixed in pure water so as to match the amount of water absorbed, and is adjusted to normal pressure. And impregnated, dried at 120 ° C. for 3 hours, and calcined at 300 ° C. for 3 hours to obtain Catalyst B. The catalyst composition and physical properties are shown in Table 1.
[0023]
[Catalyst Production Example 3]
As a catalyst composition, nickel carbonate, molybdenum trioxide, and normal phosphoric acid are added to 100 cc of pure water so that NiO—MoO 3 —P 2 O 5 is 6-32-2 mass% (provided that the support is 100 g), and dissolved by heating. After cooling, 8 g of triethylene glycol was added, and the volume was adjusted to 50 cc with pure water to prepare an impregnation liquid (S3).
To 100 g of γ-alumina molded carrier having an average pore diameter of 96 mm and a pore volume of 0.70 cc / g, 50 cc of impregnating liquid (S3) is diluted and constant volume with pure water so as to match the water absorption, and the pressure is increased to normal pressure. And impregnated, dried at 120 ° C. for 3 hours, and calcined at 300 ° C. for 3 hours to obtain Catalyst C. The catalyst composition and physical properties are shown in Table 1.
[0024]
[Catalyst Production Example 4]
As a catalyst composition, nickel carbonate, molybdenum trioxide, and normal phosphoric acid are added to 100 cc of pure water so that NiO—MoO 3 —P 2 O 5 is 6-32-2 mass% (provided that the support is 100 g), and dissolved by heating. After cooling, 8 g of triethylene glycol was added, and the volume was adjusted to 50 cc with pure water to prepare an impregnation solution (S4).
To 100 g of a boria-alumina molded carrier having an average pore diameter of 100 mm and a pore volume of 0.82 cc / g, 50 cc of the impregnating liquid (S4) is diluted and fixed in pure water so as to match the amount of water absorbed, and is adjusted to normal pressure. And impregnated, dried at 120 ° C. for 3 hours, and calcined at 300 ° C. for 3 hours to obtain Catalyst D. The catalyst composition and physical properties are shown in Table 1.
[0025]
[Catalyst Production Example 5]
As a catalyst composition, nickel carbonate, molybdenum trioxide, and normal phosphoric acid are added to 100 cc of pure water so that NiO—MoO 3 —P 2 O 5 is 6-32-2 mass% (provided that the support is 100 g), and dissolved by heating. After cooling, 8 g of triethylene glycol was added, and the volume was adjusted to 50 cc with pure water to prepare an impregnation solution (S5).
To 100 g of a γ-alumina molded carrier having an average pore size of 120 mm and a pore volume of 0.74 cc / g, 50 cc of impregnating liquid (S5) is diluted and fixed in pure water so as to match the amount of water absorbed, and is adjusted to normal pressure. And impregnated, dried at 120 ° C. for 3 hours, and calcined at 300 ° C. for 3 hours to obtain Catalyst E. The catalyst composition and physical properties are shown in Table 1.
[0026]
[Table 1]
Figure 0004778605
[0027]
The average pore diameter and pore volume of the catalyst were determined by the following method.
Using the isotherm on the desorption side by nitrogen adsorption, a range of 20 to 600 mm in diameter was analyzed by the BJH method. The average pore diameter was calculated by assuming a cylinder model using the total specific surface area and the total pore volume determined from it.
[0028]
Hydrodesulfurization treatment of light oil fraction [ Reference Example 1 , Comparative Examples 1 and 2]
100 cc of each of the catalysts A to C was filled in a reaction tube of a fixed bed flow reactor. The feedstock oil was circulated in an up-flow manner introduced from the lower stage of the reaction tube together with hydrogen gas, and the reactivity was evaluated. As a pretreatment, the catalyst was presulfided by flowing a raw gas oil [Middle East straight gas oil (LGO)] having the properties shown in Table 2 together with hydrogen gas at 250 ° C. for 24 hours. After the preliminary sulfidation, the above raw gas oil [Middle East straight-run gas oil (LGO)] was circulated together with hydrogen gas to perform hydrodesulfurization treatment. Reaction temperature: 330 ° C., 340 ° C., 350 ° C., hydrogen partial pressure: 5 MPaG, hydrogen / feed oil ratio; 250 Nm 3 / kl, LHSV; 2.0 hr −1 . Table 3 shows the sulfur content of the product oil.
[0029]
[Table 2]
Figure 0004778605
[0030]
[Table 3]
Figure 0004778605
[0031]
Hydrodesulfurization treatment of thiophene [ Example 1 , Comparative Example 3]
Catalyst D and Catalyst E were subjected to thiophene desulfurization reaction as a model reaction of desulfurization activity. Presulfurization and measurement were performed using an atmospheric pressure flow catalytic reactor.
[0032]
First, a 32-64 mesh sample was pre-dried at 120 ° C. for 12 hours, and about 200 mg in dry mass was filled in a reaction tube made of quartz glass having an inner diameter of 8 mm. 10% H 2 S / H 2 gas was passed through this sample at a rate of 50 cc / min, held at room temperature for 1 hour, then heated to 400 ° C. at a rate of 6 ° C./min with an electric furnace. Sulfurized for hours. After the sulfiding treatment, desulfurization treatment was performed by flowing 6% thiophene / H 2 gas through the reaction tube at 350 ° C. The reaction rate constant per catalyst mass was calculated. The results are shown in Table 4.
[0033]
[Table 4]
Figure 0004778605
[0034]
【The invention's effect】
The hydrodesulfurization catalyst of the gas oil fraction of the present invention is extremely high in activity as compared with conventional catalysts and is effectively used in the petroleum refining field.

Claims (6)

ボリア−アルミナからなる担体に、活性金属としてニッケル、モリブデン、及びその他の成分としてリンを担持した触媒であって、触媒の平均細孔径が80〜200Åで、かつ細孔容量が0.3〜0.8cc/gであり、20〜600Åの細孔容量に対して、50〜100Åの細孔容量が80%以下、100〜600Åの細孔容量が10%以上であることを特徴とする軽油留分の水素化脱硫触媒。 Boria - a carrier consisting of alumina, nickel as the active metal, molybdenum, and a catalyst supporting phosphorus as other components, an average pore diameter of the catalyst is 80~200A, and pore volume from 0.3 to 0 a .8cc / g, relative to the pore volume of 20~600A, pore volume of 50~100Å 80% or less, light oil pore volume 100~600Å is characterized in that 10% or more distillate Mineral hydrodesulfurization catalyst. 触媒基準で、酸化物換算で、ニッケルを2〜10質量%、モリブデンを10〜40質量%及びリンを1〜5質量%担持するものである請求項1に記載の軽油留分の水素化脱硫触媒。2. The hydrodesulfurization of a gas oil fraction according to claim 1 , wherein the catalyst supports 2 to 10% by mass of nickel, 10 to 40% by mass of molybdenum, and 1 to 5% by mass of phosphorus in terms of oxides. catalyst. 触媒基準で、酸化物換算で、ニッケルとモリブデンの量の和が20質量%以上である請求項1又は2に記載の軽油留分の水素化脱硫触媒。The hydrodesulfurization catalyst for a gas oil fraction according to claim 1 or 2, wherein the sum of the amounts of nickel and molybdenum is 20% by mass or more in terms of oxides on a catalyst basis. 水溶性有機化合物を添加することにより活性金属及びリンを高分散化させて担持した触媒である請求項1〜3のいずれかに記載の軽油留分の水素化脱硫触媒 The hydrodesulfurization catalyst for a light oil fraction according to any one of claims 1 to 3, which is a catalyst in which an active metal and phosphorus are highly dispersed by adding a water-soluble organic compound . 水溶性有機化合物の添加量が、担体の質量に対して、5〜15質量%である請求項1〜4のいずれかに記載の軽油留分の水素化脱硫触媒 The hydrodesulfurization catalyst for a gas oil fraction according to any one of claims 1 to 4, wherein the addition amount of the water-soluble organic compound is 5 to 15 mass% with respect to the mass of the carrier . 水溶性有機化合物がポリエチレングリコールである請求項1〜5のいずれかに記載の軽油留分の水素化脱硫触媒。 The hydrodesulfurization catalyst for a gas oil fraction according to any one of claims 1 to 5, wherein the water-soluble organic compound is polyethylene glycol .
JP2000156156A 2000-05-26 2000-05-26 Hydrodesulfurization catalyst for diesel oil fraction Expired - Fee Related JP4778605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000156156A JP4778605B2 (en) 2000-05-26 2000-05-26 Hydrodesulfurization catalyst for diesel oil fraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000156156A JP4778605B2 (en) 2000-05-26 2000-05-26 Hydrodesulfurization catalyst for diesel oil fraction

Publications (2)

Publication Number Publication Date
JP2001334150A JP2001334150A (en) 2001-12-04
JP4778605B2 true JP4778605B2 (en) 2011-09-21

Family

ID=18660984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000156156A Expired - Fee Related JP4778605B2 (en) 2000-05-26 2000-05-26 Hydrodesulfurization catalyst for diesel oil fraction

Country Status (1)

Country Link
JP (1) JP4778605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582730A (en) * 2015-10-15 2017-04-26 中国石油化工股份有限公司 Light cycle oil hydrodesulfurization catalyst and preparation method thereof
CN106582741A (en) * 2015-10-15 2017-04-26 中国石油化工股份有限公司 Deep desulphurization catalyst and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2874837B1 (en) * 2004-09-08 2007-02-23 Inst Francais Du Petrole DOPE CATALYST AND IMPROVED PROCESS FOR TREATING HYDROCARBON LOADS
BRPI1014950B1 (en) 2009-04-21 2018-10-23 Albemarle Europe Sprl hydrotreating catalyst containing phosphorus and boron.
JP6134334B2 (en) * 2011-12-22 2017-05-24 アドバンスド・リフアイニング・テクノロジーズ・エルエルシー Silica-containing alumina support, catalyst produced therefrom and method of use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325827A3 (en) * 1988-01-29 1990-02-07 Union Oil Company Of California Ni-p-mo catalyst containing silica-alumina and hydroprocessing therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582730A (en) * 2015-10-15 2017-04-26 中国石油化工股份有限公司 Light cycle oil hydrodesulfurization catalyst and preparation method thereof
CN106582741A (en) * 2015-10-15 2017-04-26 中国石油化工股份有限公司 Deep desulphurization catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP2001334150A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP5060044B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
US8431510B2 (en) Composition useful in the catalytic hydroprocessing of hydrocarbon feedstocks, a method of making such catalyst, and a process of using such catalyst
JP5228221B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
WO2003000410A1 (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
WO2007084471A1 (en) Selective catalysts for naphtha hydrodesulfurization
CN101590433B (en) Modified aluminium oxide carrier, hydrogenation catalyst prepared thereby and preparation method
US9546327B2 (en) Process for upgrading a high endpoint gas oil containing high concentrations of thiophenes and nitrogen and providing for a reduced hydrogen consumption rate
RU2678578C2 (en) Process for preparing hydrotreating catalyst
CN105521791B (en) The preparation method of vulcanization type catalyst for selective hydrodesulfurizationof of gasoline
CN109718866B (en) Hydrofining catalyst system and application thereof, preparation method of hydrofining catalyst and hydrofining method of distillate oil
CN103773435B (en) A kind of vulcanization process of FCC gasoline catalyst for selectively hydrodesulfurizing
JP4778605B2 (en) Hydrodesulfurization catalyst for diesel oil fraction
CN109718867B (en) Hydrofining catalyst system and application thereof, preparation method of hydrofining catalyst and hydrofining method of distillate oil
JP4916370B2 (en) Process for hydrotreating diesel oil
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
RU2610869C2 (en) Hydroprocessing catalyst and methods of making and using such catalyst
CN1508224A (en) Hydrocracking after-treatment catalyst and preparing method thereof
JP4938178B2 (en) Hydrocarbon hydrotreating method
CN109772400B (en) Hydrotreating catalyst and preparation method and application thereof
JP3990676B2 (en) Hydrodesulfurization method of light oil
JP3362359B2 (en) Method for producing hydrotreating catalyst
CN113019407B (en) Hydrotreating catalyst, preparation method and application thereof
WO2024012422A1 (en) Hydrogenation catalyst, preparation method therefor, and use thereof
JP5032805B2 (en) Method for producing ultra-low sulfur kerosene with excellent hue
JP2010069466A (en) Hydrogenation catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4778605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees