JP5032805B2 - Method for producing ultra-low sulfur kerosene with excellent hue - Google Patents

Method for producing ultra-low sulfur kerosene with excellent hue Download PDF

Info

Publication number
JP5032805B2
JP5032805B2 JP2006201779A JP2006201779A JP5032805B2 JP 5032805 B2 JP5032805 B2 JP 5032805B2 JP 2006201779 A JP2006201779 A JP 2006201779A JP 2006201779 A JP2006201779 A JP 2006201779A JP 5032805 B2 JP5032805 B2 JP 5032805B2
Authority
JP
Japan
Prior art keywords
catalyst
kerosene
oil
group
hue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006201779A
Other languages
Japanese (ja)
Other versions
JP2008024888A (en
Inventor
勝久 藤田
利行 阿戸
香穂里 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ketjen Co Ltd
Original Assignee
Nippon Ketjen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ketjen Co Ltd filed Critical Nippon Ketjen Co Ltd
Priority to JP2006201779A priority Critical patent/JP5032805B2/en
Publication of JP2008024888A publication Critical patent/JP2008024888A/en
Application granted granted Critical
Publication of JP5032805B2 publication Critical patent/JP5032805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、灯油留分の水素化処理により色相に優れた超低硫黄灯油を製造する方法に関する。   The present invention relates to a method for producing an ultra-low sulfur kerosene excellent in hue by hydrogenation of a kerosene fraction.

燃料の燃焼によるSOXやPMの排出を調節し、かつ排気ガス処理触媒の性能を最適化するため、燃料、特にディーゼル燃料の硫黄含量を削減する規制はいっそう厳しくなっている。日本では、2005年にディーゼル供給原料である軽油の硫黄濃度を50質量ppm以下に下げる規制が始まり、2008年には10質量ppm以下に下げる規制が始まる予定である。灯油はそれ自体、燃料として使用されるほか、軽油のブレンド基材としても使用されることから、軽油と同じタイミングで灯油の硫黄濃度も10質量ppm以下に低減することが求められている。 Regulations to reduce the sulfur content of fuels, especially diesel fuels, have become more stringent in order to regulate SO X and PM emissions from fuel combustion and to optimize the performance of exhaust gas treatment catalysts. In Japan, regulations to reduce the sulfur concentration of diesel oil, a diesel feedstock, to 50 mass ppm or less will begin in 2005, and regulations to lower to 10 mass ppm or less will begin in 2008. Since kerosene itself is used as a fuel and also as a blend base of light oil, it is required to reduce the sulfur concentration of kerosene to 10 ppm by mass or less at the same timing as light oil.

灯油の色相はJIS K 2203によってセーボルト色が+25以上と規定されているものの、石油精製各社は独自にセーボルト色の基準を定めて品質管理をしているのが実情である。多くの石油精製会社ではセーボルト色+30以上が基準として採用されている。   Although the hue of kerosene is stipulated by JIS K 2203 as a Saybolt color of +25 or more, the actual situation is that each oil refinery company sets its own standards for Saybolt color and performs quality control. Many oil refining companies use Saybolt +30 or more as a standard.

一般に脱硫灯油は、原油中の95容量%留出温度が300℃以下の炭化水素油(いわゆる灯油留分)を1.0〜5.0MPaの圧力、270〜340℃の温度条件下で水素と共に水素化処理触媒に接触させて、処理し、製造されている。灯油の水素化処理においては生成油中の硫黄濃度低減のために反応温度を上げると、得られる生成油の色相が著しく悪化するという問題がある。灯油の脱硫処理の目標も硫黄濃度50質量ppm以下、好ましくは10質量ppm以下とされており、かつ生成油の色相を悪化させない水素化処理方法が要求されている。このような課題に対しては下記の先行技術が開示されている。   In general, desulfurized kerosene is a hydrocarbon oil with a 95 vol% distillation temperature in crude oil of 300 ° C or lower (so-called kerosene fraction) together with hydrogen under a pressure of 1.0 to 5.0 MPa and a temperature of 270 to 340 ° C. Processed and manufactured in contact with a hydrotreating catalyst. In kerosene hydrotreating, if the reaction temperature is raised to reduce the sulfur concentration in the product oil, there is a problem that the hue of the resulting product oil is significantly deteriorated. The target of kerosene desulfurization treatment is also set to a sulfur concentration of 50 ppm by mass or less, preferably 10 ppm by mass or less, and a hydroprocessing method that does not deteriorate the hue of the produced oil is required. The following prior art is disclosed with respect to such a subject.

特許文献1には、担体上に第6B族金属成分、第8族金属成分及び有機添加剤を含む触媒を用いて、95容量%留出温度450℃以下でかつ0.1質量%以上の硫黄を含む原料油を2段階で水素化処理し、200質量ppm未満の硫黄含量の生成油を得る方法が開示されている。これによれば、第6B族金属成分、第8族金属成分及び有機添加剤を含む触媒は、炭化水素油の硫黄含量を200質量ppm以下に減らすことに有効とされている。しかし、同文献には2段階での水素化処理の具体的な実施例が開示されていないほか、生成油の色相改善については一切言及されていない。   Patent Document 1 discloses that 95% by volume distillation temperature of 450 ° C. or less and 0.1% by mass or more of sulfur using a catalyst containing a Group 6B metal component, a Group 8 metal component and an organic additive on a support. Is disclosed in which a feed oil containing is hydrotreated in two stages to obtain a product oil having a sulfur content of less than 200 ppm by mass. According to this, a catalyst containing a Group 6B metal component, a Group 8 metal component, and an organic additive is effective in reducing the sulfur content of hydrocarbon oil to 200 ppm by mass or less. However, this document does not disclose a specific example of the two-stage hydrotreatment, and does not mention any improvement in the hue of the product oil.

特許文献2には、第一反応帯域に耐火性無機酸化物担体にニッケル及び/ 又はコバルトと、モリブデンと、リンとを担持し、平均細孔直径が70〜150Åである触媒を配置し、第二反応帯域以降に耐火性無機酸化物担体にニッケル及び/ 又はコバルトと、モリブデンと、リンとを担持し、平均細孔直径が該反応帯域の直前の反応帯域の触媒の平均細孔直径より20〜120Å大きい触媒を配置したことを特徴とする軽油の水素化処理方法が開示されている。同文献では軽油に一部灯油を混ぜた原料油についても言及しているが、灯油のみについては言及していない。また、生成油の色相についても一切言及されていない。   In Patent Document 2, a catalyst having nickel and / or cobalt, molybdenum and phosphorus supported on a refractory inorganic oxide support in the first reaction zone and having an average pore diameter of 70 to 150 mm is disposed. After the second reaction zone, nickel and / or cobalt, molybdenum and phosphorus are supported on the refractory inorganic oxide support, and the average pore diameter is 20 from the average pore diameter of the catalyst in the reaction zone immediately before the reaction zone. A gas oil hydrotreating method characterized in that a catalyst having a size of ~ 120 mm is arranged is disclosed. The reference also mentions a raw oil obtained by mixing a portion of kerosene with light oil, but does not mention only kerosene. In addition, there is no mention of the hue of the product oil.

特許文献3には、ディーゼル軽油を、水素化処理触媒の存在下で特定の温度、特定の圧力の条件で水素と接触させて、硫黄分0.05重量%以下かつ色相がセーボルト色値で−10を超える生成油を得る第一工程と、色相が第一工程の色相のセーボルト色値を超える生成油を得る第二工程とからなる方法に関する。これによれば、原料油を特定の条件で2段階水素化処理することにより、低硫黄分で、かつ色相および色相安定性も良好なディーゼル軽油を製造できる。しかしここでも、同文献で言及している原料油はディーゼル軽油であり、灯油留分については言及されていない。また、反応条件のうち、圧力は45〜100kg/cm2であり、さらに低圧な条件については言及していない。 Patent Document 3 discloses that diesel diesel oil is brought into contact with hydrogen in the presence of a hydrotreating catalyst at a specific temperature and a specific pressure, and has a sulfur content of 0.05% by weight or less and a hue of Saybolt color value. The present invention relates to a method comprising a first step of obtaining a product oil exceeding 10 and a second step of obtaining a product oil whose hue exceeds the Saebold color value of the hue of the first step. According to this, a diesel light oil having a low sulfur content and good hue and hue stability can be produced by subjecting the feedstock to a two-stage hydrotreatment under specific conditions. However, here too, the feedstock mentioned in the document is diesel light oil, and no mention is made of the kerosene fraction. Moreover, a pressure is 45-100 kg / cm < 2 > among reaction conditions, Furthermore, it does not mention the low pressure conditions.

特許文献4には、イオウ分が0.4重量%以下でかつ色相悪化物質を含有するセーボルト色値が−15以下の色相の悪い水素化処理油を、水素化処理触媒の存在下で水素化処理し、セーボルト色が+15以上の色相の良好な水素化処理油を得る方法が開示されている。これは、従来公知の水素化処理触媒により脱硫された色相の悪いの生成油を、従来公知の水素化処理触媒と第1段階よりも低い温度で接触させて、セーボルト色が+15以上の色相の改善された生成油を得るものである。しかしながら、硫黄濃度10質量ppm以下の超深度脱硫や、セーボルト色+30以上の高度な色相改善の方法については触れられていない。
以上、水素化脱硫を2段階で行い、硫黄濃度を減らす方法については開示されているが、生成油の硫黄濃度を10質量ppm以下に減らすと共に生成油の色相を悪化させない灯油の製造方法について開示された例はない。
特開2000−313890公報 特開2004−43579公報 特開平10−88153号公報 特開平7−102267号公報
In Patent Document 4, a hydrotreated oil having a poor hue with a sulfur content of 0.4% by weight or less and containing a hue-degrading substance of −15 or less is hydrogenated in the presence of a hydrotreating catalyst. A method is disclosed in which a hydrotreated oil having a good hue with a Saybolt color of +15 or more is obtained. This is because a product oil having a poor hue desulfurized by a conventionally known hydrotreating catalyst is brought into contact with a conventionally known hydrotreating catalyst at a temperature lower than that in the first stage, so that the Saybolt color is +15 or more. An improved product oil is obtained. However, there is no mention of an ultra-deep desulfurization with a sulfur concentration of 10 mass ppm or less or a method for advanced hue improvement of Saybolt color +30 or more.
As mentioned above, although the method of reducing sulfur concentration by performing hydrodesulfurization in two stages is disclosed, the method for producing kerosene that reduces the sulfur concentration of the produced oil to 10 mass ppm or less and does not deteriorate the hue of the produced oil is disclosed. There are no examples.
JP 2000-313890 A JP 2004-43579 A JP-A-10-88153 JP-A-7-102267

本発明の課題は、生成油の硫黄濃度を10質量ppm以下に保ちつつ、かつ色相を大幅に改善する灯油の製造方法を提供することにある。なお、本発明方法により製造される灯油は、それ自体燃料として使用されるほか、その他石油製品のブレンド基材としても使用可能ないわゆる灯油基材も包含する。   The subject of this invention is providing the manufacturing method of the kerosene which improves a hue significantly, keeping the sulfur concentration of produced | generated oil at 10 mass ppm or less. The kerosene produced by the method of the present invention is not only used as a fuel itself but also includes a so-called kerosene base material that can be used as a blend base material for petroleum products.

本発明者らは検討の結果、特定の灯油留分に対して特定の水素化処理触媒を組合せて2段階で水素化処理することにより色相に優れ、かつ超低硫黄の灯油の製造方法を見出し、本発明を完成するに至った。   As a result of the study, the present inventors have found a method for producing kerosene having excellent hue and ultra-low sulfur by combining a specific hydroprocessing catalyst with a specific kerosene fraction and performing hydroprocessing in two stages. The present invention has been completed.

即ち、本発明は、灯油の製造において、95容量%留出温度が300℃以下である灯油留分を95容量%以上含む原料油を、水素の存在下、最初に無機多孔質担体に周期表第6族金属成分、同第9族金属成分及び有機添加剤を含む水素化処理触媒(第1触媒)と接触させ、次いで無機多孔質担体に周期表第6族金属成分、同第10族金属成分及び有機添加剤を含む水素化処理触媒(第2触媒)と接触させることを特徴とする色相に優れた超低硫黄灯油の製造方法である。   That is, according to the present invention, in the production of kerosene, a raw material oil containing 95% by volume or more of a kerosene fraction having a 95% by volume distillation temperature of 300 ° C. or lower is first periodically displayed in an inorganic porous carrier in the presence of hydrogen. Contact with a hydrotreating catalyst (first catalyst) containing a Group 6 metal component, a Group 9 metal component and an organic additive, and then the Group 6 metal component and Group 10 metal of the periodic table on the inorganic porous support It is the manufacturing method of the ultra-low sulfur kerosene excellent in the hue characterized by making it contact with the hydroprocessing catalyst (2nd catalyst) containing a component and an organic additive.

また、上記の製造方法において、第2触媒の容量割合が、第1触媒と第2触媒の合計容量の10〜70容量%であることを特徴とする。
また、本発明は灯油留分の硫黄濃度を10質量ppm以下に低減させる灯油の製造方法であり、また、セーボルト色が+30以上である灯油の製造方法である。
さらに、上記の製造方法において、水素分圧が2〜5MPa、温度が270℃以上、下記式で求められるT℃以下で水素化処理を行うことを特徴とする。
T=19.6×ppH2+256
〔式中、ppH2は水素分圧(MPa)である。〕
In the above production method, the volume ratio of the second catalyst is 10 to 70% by volume of the total volume of the first catalyst and the second catalyst.
Moreover, this invention is a manufacturing method of the kerosene which reduces the sulfur concentration of a kerosene fraction to 10 mass ppm or less, and is a manufacturing method of the kerosene whose Saybolt color is +30 or more.
Further, the above-described production method is characterized in that the hydrogenation treatment is performed at a hydrogen partial pressure of 2 to 5 MPa, a temperature of 270 ° C. or more, and T ° C. or less determined by the following formula.
T = 19.6 × ppH 2 +256
[Wherein, ppH 2 is a hydrogen partial pressure (MPa). ]

本発明の灯油の製造方法を適用すれば、過度の水素を消費することなく経済的に硫黄濃度10質量ppm以下の超深度脱硫を達成しつつ、セーボルト色が+30以上の色相に優れた灯油を長期に亘り製造することが可能となる。   By applying the kerosene production method of the present invention, it is possible to economically achieve ultra-deep desulfurization with a sulfur concentration of 10 mass ppm or less without consuming excessive hydrogen, and to obtain kerosene excellent in hue with a Saybolt color of +30 or more. It becomes possible to manufacture over a long period of time.

本発明に適用される水素化処理触媒としては、特開平8−332385号、特開平8−332386号、または特開2000−313890公報等で得られる、γ−アルミナなどを主体とする無機多孔質担体に、モリブデン、タングステン、コバルト、ニッケル、リンなどを担持し、有機添加剤を含有させて、かつ、該添加剤が触媒中に残留する条件で乾燥のみされた触媒を挙げることができる。   Examples of the hydrotreating catalyst applied to the present invention include inorganic porous materials mainly composed of γ-alumina and the like obtained in JP-A-8-332385, JP-A-8-332386, or JP-A-2000-313890. Examples of the catalyst include molybdenum, tungsten, cobalt, nickel, phosphorus, etc. supported on a carrier, containing an organic additive, and dried only under the condition that the additive remains in the catalyst.

本発明においては、上記触媒のうち最初に原料油と接触させる触媒(第1触媒)は、周期表第6族金属成分と同第9族金属成分を含む触媒とし、次いで周期表第6族金属成分と同第10族金属成分を含む触媒(第2触媒)を原料油と接触させる。
第1触媒、第2触媒で使用される無機多孔質担体は、アルミナ、シリカ、シリカ−アルミナ単体や、アルミナとマグネシア、ボリア、チタニア、ジルコニア、酸化亜鉛、リン酸などの複合酸化物や、以上の化合物の混合物等が使用できるが、アルミナを主体としたものが好ましい。アルミナの形態については、α、θ、δ、κ、η、γ、χ型等の遷移アルミナ、バイヤライト(bayerite)、ジブサイト(gibbsite)、ベーマイト(boehmite)、擬ベーマイト等のアルミナ水和物などがあるが、これらの単体あるいは混合物を用いることができる。しなしながら、経済性や実用性の観点からはγ−アルミナが好ましい。
In the present invention, the catalyst (first catalyst) which is first brought into contact with the raw material oil among the above catalysts is a catalyst containing a Group 6 metal component and a Group 9 metal component of the periodic table, and then a Group 6 metal of the periodic table A catalyst containing the component and the Group 10 metal component (second catalyst) is brought into contact with the raw material oil.
Examples of the inorganic porous carrier used in the first catalyst and the second catalyst include alumina, silica, silica-alumina simple substance, composite oxides such as alumina and magnesia, boria, titania, zirconia, zinc oxide and phosphoric acid. A mixture of these compounds can be used, but those mainly composed of alumina are preferred. Regarding the form of alumina, α, θ, δ, κ, η, γ, χ type transition alumina, bayerite, gibbsite, boehmite, pseudo-boehmite, etc. These can be used alone or as a mixture. However, γ-alumina is preferred from the viewpoint of economy and practicality.

第1触媒の周期表第6族金属成分、同第9族金属成分の組合せは、モリブデン−コバルト、タングステン−コバルト、モリブデン−タングステン−コバルトが挙げられるが、活性や経済性の観点からモリブデン−コバルトが好適である。
一方、第2触媒における周期表第6族金属成分、同第10族金属成分としては、モリブデン−ニッケル、タングステン−ニッケル、モリブデン−タングステン−ニッケルが例示されるが、活性および経済性の観点からモリブデン−ニッケルの組合せが好適である。
Examples of combinations of Group 6 metal components and Group 9 metal components of the first catalyst include molybdenum-cobalt, tungsten-cobalt, and molybdenum-tungsten-cobalt. From the viewpoints of activity and economy, molybdenum-cobalt. Is preferred.
On the other hand, examples of the Group 6 metal component and Group 10 metal component in the second catalyst include molybdenum-nickel, tungsten-nickel, and molybdenum-tungsten-nickel. From the viewpoint of activity and economy, molybdenum -Nickel combinations are preferred.

第1触媒、第2触媒で使用される周期表第6族金属成分の担持量は、有機添加剤を含まない酸化物触媒に対して酸化物として5〜50質量%、好ましくは15〜30質量%である。また、周期表第9、10族金属成分も同様に酸化物として1〜10質量%、好ましくは2〜8質量%を担持する。   The supported amount of the Group 6 metal component of the periodic table used in the first catalyst and the second catalyst is 5 to 50% by mass, preferably 15 to 30% by mass as an oxide with respect to the oxide catalyst not containing an organic additive. %. Similarly, the 9th and 10th group metal components of the periodic table also carry 1 to 10% by mass, preferably 2 to 8% by mass as oxides.

第1触媒、第2触媒に含有される有機添加剤は、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール(平均分子量200〜600)、ポリビニルアルコール、グリセリン等の多価アルコールやそれらのエーテル、エステル類、グルコース、フルクトース、ガラクトース、マルトース、ラクトース、スクロース等の単糖、二糖類等、蟻酸、酢酸、蓚酸、マロン酸、コハク酸、マレイン酸、フマル酸、酒石酸、クエン酸、リンゴ酸、グルコン酸等の有機酸やそれらの塩類、またはエチレンジアミン、エチレンジアミン四酢酸(EDTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ジエチレントリアミン五酢酸(DTPA)、ニトリロ三酢酸(NTA)等の各種キレート剤などから選ばれる。これらの有機添加剤は、単独または複数の化合物を組合せて使用することも可能である。
なお、第1触媒、第2触媒に含有される有機添加剤は、上記化合物の範囲内であればそれぞれ異なる種類の化合物であっても良い。
The organic additive contained in the first catalyst and the second catalyst is a polyvalent such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol (average molecular weight 200 to 600), polyvinyl alcohol, glycerin and the like. Alcohols and their ethers, esters, glucose, fructose, galactose, maltose, lactose, sucrose and other monosaccharides, disaccharides, formic acid, acetic acid, succinic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid Acids, organic acids such as malic acid, gluconic acid and their salts, or ethylenediamine, ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), nitro B is selected from various chelating agents such as triacetic acid (NTA). These organic additives can be used alone or in combination of a plurality of compounds.
The organic additives contained in the first catalyst and the second catalyst may be different types of compounds as long as they are within the range of the above compounds.

有機添加剤の添加量は、周期表第6族金属及び同第9、10族金属の合計モル数の0.01〜3倍量であり、好ましくは、0.1〜2.5倍量である。0.01倍モル未満では触媒性能の向上効果が見られず、3倍モルを超えた場合、溶液の粘稠化により添加が困難となる。また、予備硫化時の過剰炭素析出による触媒活性の低下をもたらす。   The added amount of the organic additive is 0.01 to 3 times the total number of moles of the Group 6 metal and the Group 9 and 10 metals of the periodic table, preferably 0.1 to 2.5 times the amount. is there. When the amount is less than 0.01 moles, the effect of improving the catalyst performance is not observed. When the amount exceeds 3 moles, the addition becomes difficult due to the thickening of the solution. In addition, catalyst activity is reduced due to excess carbon deposition during presulfidation.

なお、水素化活性金属の溶液を調製する際に、液安定性や水素化活性を向上させるため、ホウ酸、硝酸、硫酸、塩酸、フッ化水素酸、リン酸等の鉱酸を添加してもよい。硫酸、ホウ酸、リン酸等の不揮発性の鉱酸を使用する場合、酸化物として酸化物触媒基準で0.5〜15質量%、好ましくは1〜10質量%の範囲で添加することができる。   When preparing hydrogenated active metal solutions, mineral acids such as boric acid, nitric acid, sulfuric acid, hydrochloric acid, hydrofluoric acid, and phosphoric acid are added to improve the liquid stability and hydrogenation activity. Also good. When using a non-volatile mineral acid such as sulfuric acid, boric acid, phosphoric acid, the oxide can be added in an amount of 0.5 to 15% by mass, preferably 1 to 10% by mass based on the oxide catalyst. .

通常、これらの第1触媒、第2触媒は反応塔に充填されるが、充填方法として、単一の反応塔の前段に第1触媒を、後段に第2触媒を充填する方法、複数の反応塔のそれぞれに第1触媒と第2触媒を分けて充填する方法などが例示できる。なお後者の方法では、第1触媒と第2触媒が同一の反応塔に充填される場合、例えば第1反応塔全体と同塔に連結された第2反応塔の前段部に第1触媒が充填され、第2反応塔の後段部に第2触媒が充填されるような場合も含まれる。
第1触媒と第2触媒の充填容量比は、第2触媒の容量割合が、第1触媒と第2触媒の合計容量の10〜70容量%、好ましくは20〜60容量%、特に好ましくは30〜50容量%である。
10容量%に満たなければ生成油の色相改善に効果が無く、70容量%を超える場合、水素消費量の増大を招くことから経済的な操業が困難となる。
Usually, the first catalyst and the second catalyst are packed in a reaction tower. As a filling method, a method in which a first catalyst is packed in a front stage of a single reaction tower and a second catalyst is packed in a rear stage, a plurality of reactions A method of packing the first catalyst and the second catalyst separately in each column can be exemplified. In the latter method, when the first catalyst and the second catalyst are packed in the same reaction tower, for example, the first catalyst is packed in the first reaction tower and the first stage of the second reaction tower connected to the same tower. In addition, a case where the second catalyst is packed in the rear stage of the second reaction column is also included.
The filling volume ratio of the first catalyst to the second catalyst is such that the volume ratio of the second catalyst is 10 to 70% by volume, preferably 20 to 60% by volume, particularly preferably 30% of the total volume of the first catalyst and the second catalyst. ~ 50% by volume.
If the amount is less than 10% by volume, there is no effect in improving the hue of the produced oil. If the amount exceeds 70% by volume, the hydrogen consumption is increased, making economical operation difficult.

本発明に適用される原料油は、硫黄分が0.1〜1.0質量%、セーボルト色が+20〜35、95容量%留出温度が300℃以下、好ましくは270℃以下を上限とする灯油留分である。灯油留分としては、直留灯油のほか、熱分解装置、水素化分解装置、留出油や残油水素化処理装置等から得られる灯油留分が利用できる。なお、95容量%留出温度が300℃を超える灯油留分でも5容量%以下の割合で原料油に混入させてもよい。   The upper limit of the raw material oil applied to the present invention is 0.1 to 1.0% by mass of sulfur, Saebold color +20 to 35, and 95% by volume distillation temperature of 300 ° C. or lower, preferably 270 ° C. or lower. It is a kerosene fraction. As kerosene fractions, in addition to straight-run kerosene, kerosene fractions obtained from thermal cracking equipment, hydrocracking equipment, distillate oil, residual oil hydrotreating equipment, and the like can be used. A kerosene fraction having a 95% by volume distillation temperature exceeding 300 ° C. may be mixed in the feedstock at a rate of 5% by volume or less.

第1触媒、第2触媒は水素化処理に用いる前に公知の方法で予備硫化して用いることが好ましい。また、水素化処理に用いる反応塔の形式は固定床、移動床、沸騰床などが挙げられるが、固定床式反応塔が好ましい。   The first catalyst and the second catalyst are preferably presulfurized and used by a known method before being used for the hydrotreatment. Examples of the reaction tower used for the hydrogenation treatment include a fixed bed, a moving bed, and a boiling bed, but a fixed bed type reaction tower is preferred.

本発明に適用される水素化処理条件は、特に限定されるものではなく、一般に適用される灯油の水素化脱硫条件、例えば水素分圧1〜6MPa、好ましくは2〜5MPa、液空間速度0.1〜10hr-1、好ましくは1〜7hr-1、水素/原料油比40〜200Nm3/kl、好ましくは50〜150Nm3/klなどが挙げられる。なお反応温度については、生成油の着色温度(生成油のセーボルト色が+30未満となる温度)によって運転上限温度が決定される。この着色温度は水素分圧の影響を強く受け、水素分圧が2〜5MPaの領域では、生成油の着色温度と水素分圧にはおおよそ以下の関係が見られることから、操業時の水素分圧より運転上限温度を推定することができる。
T=19.6×ppH2+256
〔T:着色温度(℃)、ppH2:水素分圧(MPa)〕
The hydrotreating conditions applied to the present invention are not particularly limited, and generally applied hydrodesulfurization conditions for kerosene, for example, hydrogen partial pressure of 1 to 6 MPa, preferably 2 to 5 MPa, liquid space velocity of 0. Examples include 1 to 10 hr −1 , preferably 1 to 7 hr −1 , hydrogen / feed oil ratio of 40 to 200 Nm 3 / kl, preferably 50 to 150 Nm 3 / kl. In addition, about reaction temperature, a driving | running upper limit temperature is determined by the coloring temperature of the product oil (temperature in which the Saebold color of product oil becomes less than +30). This coloring temperature is strongly influenced by the hydrogen partial pressure, and in the region where the hydrogen partial pressure is 2 to 5 MPa, the following relationship is generally found between the coloring temperature of the product oil and the hydrogen partial pressure. The operation upper limit temperature can be estimated from the pressure.
T = 19.6 × ppH 2 +256
[T: coloring temperature (° C.), ppH 2 : hydrogen partial pressure (MPa)]

なお、下限の反応温度については、270℃以上、好ましくは280℃以上が挙げられる。これは、270℃未満では脱硫反応の進行が遅く、硫黄濃度10質量ppm以下の超低硫黄灯油の製造が困難となることによる。
また、第1触媒を用いて実施される第1段階の水素化処理と第2触媒を用いて実施される第2段階の水素化処理は、上記条件の範囲内であればそれぞれ異なる条件で行ってもよい。
In addition, about the minimum reaction temperature, 270 degreeC or more, Preferably 280 degreeC or more is mentioned. This is because if the temperature is lower than 270 ° C., the desulfurization reaction proceeds slowly and it becomes difficult to produce an ultra-low sulfur kerosene having a sulfur concentration of 10 mass ppm or less.
In addition, the first-stage hydrotreating performed using the first catalyst and the second-stage hydrotreating performed using the second catalyst are performed under different conditions as long as they are within the above conditions. May be.

水素化処理された後、生成油はセパレーターで気液分離し、液状物質はストリッピングして、硫化水素等の硫黄化合物やアンモニアなどの窒素化合物等の軽質分を分離して、硫黄濃度10質量ppm以下で、かつセーボルト色が+30以上の色相良好な灯油を得る。また、脱硫性能向上、処理油色相向上のためには、高水素分圧、高水素流量条件で水素化処理することが好ましく、このことは本発明においても同様である。   After the hydrogenation treatment, the product oil is gas-liquid separated with a separator, and the liquid substance is stripped to separate light components such as sulfur compounds such as hydrogen sulfide and nitrogen compounds such as ammonia, and the sulfur concentration is 10 mass. A kerosene having a good hue with a ppm or less and a Saybolt color of +30 or more is obtained. In order to improve the desulfurization performance and the color of the treated oil, it is preferable to perform a hydrogenation treatment under conditions of a high hydrogen partial pressure and a high hydrogen flow rate, and this also applies to the present invention.

以下実施例を説明し本発明の効果を明らかにするが、これらは本発明を限定するものではない。   EXAMPLES Examples will be described below to clarify the effects of the present invention, but these do not limit the present invention.

〔実施例1〕
(1)第1触媒の調製
三酸化モリブデン313g、炭酸コバルト90gと、85%リン酸68g、ポリエチレングリコール(#200)146g(モリブデンおよびコバルトに対して0.25倍モル)を水に溶解して得られた含浸液を、γ−アルミナ成形担体1kgに含浸した後、100℃で16時間乾燥することで第1触媒として使用するCoO−MoO3系触媒(MoO3=22質量%、CoO=4質量%、P25=3質量%)を調製した。
[Example 1]
(1) Preparation of the first catalyst 313 g of molybdenum trioxide, 90 g of cobalt carbonate, 68 g of 85% phosphoric acid, and 146 g of polyethylene glycol (# 200) (0.25 mol per mol of molybdenum and cobalt) were dissolved in water. The impregnating solution thus obtained was impregnated into 1 kg of a γ-alumina molded carrier, and then dried at 100 ° C. for 16 hours to be used as a first catalyst, a CoO—MoO 3 catalyst (MoO 3 = 22% by mass, CoO = 4). Mass%, P 2 O 5 = 3 mass%).

(2)第2触媒の調製
三酸化モリブデン324g、炭酸ニッケル111gと、85%リン酸143g、ジエチレングリコール81g(モリブデンおよびニッケルに対して0.25倍モル)を水に溶解して得られた含浸液を、γ−アルミナ成形担体1kgに含浸した後、100℃で16時間乾燥することで第2触媒として使用するNiO−MoO3系触媒(MoO3=22質量%、NiO=4質量%、P25=6質量%)を調製した。
(2) Preparation of second catalyst Impregnating solution obtained by dissolving 324 g of molybdenum trioxide, 111 g of nickel carbonate, 143 g of 85% phosphoric acid, and 81 g of diethylene glycol (0.25 moles with respect to molybdenum and nickel) in water. Is impregnated in 1 kg of a γ-alumina molded carrier, and dried at 100 ° C. for 16 hours to be used as a second catalyst. NiO—MoO 3 -based catalyst (MoO 3 = 22 mass%, NiO = 4 mass%, P 2 O 5 = 6% by mass) was prepared.

(3)触媒の充填及び水素化処理
固定床流通式反応装置に、上記CoO−MoO3系触媒とNiO−MoO3系触媒を7:3の容量割合で、CoO−MoO3系触媒を前段に、NiO−MoO3系触媒を後段にそれぞれ充填した。
次に、灯油留分(硫黄濃度:0.26質量%、95容量%留出温度265℃)にジメチルジスルフィドを硫黄分として2.5質量%加えた硫化油で予備硫化を行った。
次いで、原料油として、硫黄分0.33質量%、セーボルト色+24の灯油留分を通油して水素化処理試験を行った。
(3) Catalyst filling and hydrogenation treatment In a fixed bed flow reactor, the CoO-MoO 3 catalyst and the NiO-MoO 3 catalyst at a volume ratio of 7: 3, and the CoO-MoO 3 catalyst in the previous stage The NiO—MoO 3 catalyst was packed in the subsequent stage.
Next, preliminary sulfidation was performed with a sulfurized oil obtained by adding dimethyl disulfide as a sulfur content to a kerosene fraction (sulfur concentration: 0.26 mass%, 95 vol% distillation temperature 265 ° C) as a sulfur content.
Next, as a raw material oil, a hydrogenation test was conducted by passing a kerosene fraction having a sulfur content of 0.33 mass% and a Saybolt color +24.

水素化処理の反応条件は、前段及び後段ともに水素圧力4.0MPa、水素/油比100Nm3/kl、液空間速度7.0hr-1とし、硫黄濃度7質量ppmの生成油が得られるように反応温度を調整した。
試験開始後、触媒性能の安定した14日後の試験結果を表2に示す。なお、生成油の硫黄濃度、セーボルト色の分析は、原料油と同じ分析方法、装置を用いて実施した。
The reaction conditions of the hydrotreatment are such that the hydrogen pressure is 4.0 MPa, the hydrogen / oil ratio is 100 Nm 3 / kl, the liquid space velocity is 7.0 hr −1, and the product oil having a sulfur concentration of 7 mass ppm is obtained in both the first and second stages. The reaction temperature was adjusted.
Table 2 shows the test results 14 days after the start of the test when the catalyst performance was stable. The sulfur concentration and Saybolt color of the product oil were analyzed using the same analysis method and apparatus as the raw material oil.

〔比較例1〕
固定床流通式反応装置に、実施例1と同じCoO−MoO3系触媒のみを充填し、実施例1と同様の水素化処理試験を実施した。結果を表2に示す。
[Comparative Example 1]
A fixed bed flow reactor was filled with only the same CoO—MoO 3 catalyst as in Example 1, and the same hydrotreating test as in Example 1 was performed. The results are shown in Table 2.

Figure 0005032805
Figure 0005032805

Figure 0005032805
Figure 0005032805

表2より、本発明に基づく実施例1では比較例1に比べ、同一の超深度脱硫を実施してもセーボルト色が+30以上の非常に良好な色相の灯油が得られることが分かった。更に、実施例1は比較例1よりも6℃低温で超深度脱硫を達成していることから、本発明の方法を用いることで従来方法に比べて長期に亘り色相に優れた超低硫黄灯油の製造が可能となることが分かる。   From Table 2, it was found that in Example 1 based on the present invention, kerosene having a very good hue with a Saybolt color of +30 or more was obtained even when the same ultra-deep desulfurization was carried out as compared with Comparative Example 1. Furthermore, since Example 1 achieves ultra-deep desulfurization at a temperature 6 ° C. lower than that of Comparative Example 1, using the method of the present invention, an ultra-low sulfur kerosene excellent in hue over a long period of time compared to the conventional method. It can be seen that the production of

Claims (4)

灯油の製造において、95容量%留出温度が300℃以下である灯油留分を95容量%以上含む原料油を、水素の存在下、最初に無機多孔質担体に周期表第6族金属成分、同第9族金属成分及び多価アルコールを含む水素化処理触媒(第1触媒)と接触させ、
次いで無機多孔質担体に周期表第6族金属成分、同第10族金属成分及び多価アルコールを含む水素化処理触媒(第2触媒)と接触させ、
ここで第2触媒の容量割合が、第1触媒と第2触媒の合計容量の30〜50容量%であることを特徴とする色相に優れた超低硫黄灯油の製造方法。
In the production of kerosene, a feedstock containing 95% by volume or more of a kerosene fraction having a 95% by volume distillation temperature of 300 ° C. or lower is first added to the inorganic porous carrier in the presence of hydrogen, and a periodic table Group 6 metal component; Contacting with a hydrotreating catalyst (first catalyst) comprising a Group 9 metal component and a polyhydric alcohol ;
Next, the inorganic porous carrier is contacted with a hydrotreating catalyst (second catalyst) containing a Group 6 metal component, a Group 10 metal component and a polyhydric alcohol in the periodic table,
Here, the volume ratio of the second catalyst is 30 to 50 % by volume of the total capacity of the first catalyst and the second catalyst. A method for producing an ultra-low sulfur kerosene excellent in hue.
灯油留分の硫黄濃度を10質量ppm以下に低減させる請求項記載の灯油の製造方法。 Method for producing a kerosene of claim 1 wherein for reducing the sulfur concentration of the kerosene fraction below 10 mass ppm. 灯油のセーボルト色が+30以上である請求項1又は2のいずれか1項に記載の灯油の製造方法。 The method for producing kerosene according to any one of claims 1 and 2 , wherein the kerosene has a Saybolt color of +30 or more. 水素分圧が2〜5MPa、温度が270℃以上、下記式で求められるT℃以下で水素化処理を行うことを特徴とする請求項1〜のいずれか1項に記載の灯油の製造方法。
T=19.6×ppH2+256
〔式中、ppH2は水素分圧(MPa)である。〕
The method for producing kerosene according to any one of claims 1 to 3 , wherein the hydrogenation treatment is performed at a hydrogen partial pressure of 2 to 5 MPa, a temperature of 270 ° C or more, and T ° C or less determined by the following formula. .
T = 19.6 × ppH 2 +256
[Wherein, ppH 2 is a hydrogen partial pressure (MPa). ]
JP2006201779A 2006-07-25 2006-07-25 Method for producing ultra-low sulfur kerosene with excellent hue Active JP5032805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006201779A JP5032805B2 (en) 2006-07-25 2006-07-25 Method for producing ultra-low sulfur kerosene with excellent hue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006201779A JP5032805B2 (en) 2006-07-25 2006-07-25 Method for producing ultra-low sulfur kerosene with excellent hue

Publications (2)

Publication Number Publication Date
JP2008024888A JP2008024888A (en) 2008-02-07
JP5032805B2 true JP5032805B2 (en) 2012-09-26

Family

ID=39115861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201779A Active JP5032805B2 (en) 2006-07-25 2006-07-25 Method for producing ultra-low sulfur kerosene with excellent hue

Country Status (1)

Country Link
JP (1) JP5032805B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2771827C (en) * 2009-08-24 2017-11-28 Albemarle Europe Sprl Solutions and catalysts comprising group vi metal, group viii metal, and phosphorus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001284027A1 (en) * 2000-09-04 2002-03-22 Akzo Nobel N.V. Process for effecting ultra-deep hds of hydrocarbon feedstocks
JP2004137353A (en) * 2002-10-17 2004-05-13 Idemitsu Kosan Co Ltd Method for hydrodesulfurization of gas oil and gas oil composition obtained by the method
JP2004182745A (en) * 2002-11-29 2004-07-02 Idemitsu Kosan Co Ltd Low-sulfur kerosene having improved oxidation stability and method for producing the same

Also Published As

Publication number Publication date
JP2008024888A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US10399070B2 (en) Catalyst containing γ-valerolactone and/or the hydrolysis products thereof, and use thereof in a hydroprocessing and/or hydrocracking method
US11097258B2 (en) Catalyst made from an organic compound and use thereof in a hydroprocessing and/or hydrocracking method
US10464054B2 (en) Catalyst based on γ-ketovaleric acid and use thereof in a hydrotreatment and/or hydrocracking process
JP5060044B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
US20060249429A1 (en) Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same
JP4740544B2 (en) Selective hydrodesulfurization of naphtha stream
CN103773435B (en) A kind of vulcanization process of FCC gasoline catalyst for selectively hydrodesulfurizing
JP5032805B2 (en) Method for producing ultra-low sulfur kerosene with excellent hue
KR101514954B1 (en) Process for producing gasoline base and gasoline
JP4969754B2 (en) Hydrodesulfurization method for gas oil fraction and reactor for hydrodesulfurization
JP4576334B2 (en) Hydrotreating process for diesel oil fraction
US10828627B2 (en) Catalyst containing 2-acetylbutyrolactone and/or the hydrolysis products thereof, and use thereof in a hydrotreatment and/or hydrocracking process
JP2005255995A (en) Preparation process of petroleum fraction
JP2003183676A (en) Method for producing low-sulfur gasoline
JP4101545B2 (en) Desulfurization method for catalytic cracking gasoline
CN101173184B (en) Selective hydrogenation desulfurization method for bastard gasoline
US20230294081A1 (en) Trimetallic catalyst made from nickel, molybdenum and tungsten and use thereof in a hydrotreatment and/or hydrocracking process
JP4778605B2 (en) Hydrodesulfurization catalyst for diesel oil fraction
JP4938178B2 (en) Hydrocarbon hydrotreating method
JP3955990B2 (en) Ultra-deep desulfurization method for diesel oil fraction
JP2008266420A (en) Method for hydrogenating gas oil
JP4486329B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for gasoline fraction
JP5016331B2 (en) Production method of ultra-deep desulfurized diesel oil
JP2009203476A (en) Catalyst and method for hydrodesulfurizing gasoline fraction
CN108003932B (en) Method for producing gasoline product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent or registration of utility model

Ref document number: 5032805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250