JP4101545B2 - Desulfurization method for catalytic cracking gasoline - Google Patents

Desulfurization method for catalytic cracking gasoline Download PDF

Info

Publication number
JP4101545B2
JP4101545B2 JP2002092273A JP2002092273A JP4101545B2 JP 4101545 B2 JP4101545 B2 JP 4101545B2 JP 2002092273 A JP2002092273 A JP 2002092273A JP 2002092273 A JP2002092273 A JP 2002092273A JP 4101545 B2 JP4101545 B2 JP 4101545B2
Authority
JP
Japan
Prior art keywords
metal
catalyst
group
carboxylic acid
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002092273A
Other languages
Japanese (ja)
Other versions
JP2003286493A (en
Inventor
重人 畑中
英太郎 守田
英 壱岐
宗慶 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2002092273A priority Critical patent/JP4101545B2/en
Publication of JP2003286493A publication Critical patent/JP2003286493A/en
Application granted granted Critical
Publication of JP4101545B2 publication Critical patent/JP4101545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、硫黄分を含有する接触分解ガソリンを水素化脱硫する方法において、特定の触媒と特定の反応条件を組み合せることにより、水素化脱硫の際に併発するオレフィンの水素化反応を抑制し、オクタン価の低下を最小限にとどめることができる接触分解ガソリンの脱硫方法に関する。またこの方法により得られる低硫黄ガソリン基材、さらには他のガソリン基材を混合してなる低硫黄ガソリンに関する。
【0002】
【従来の技術】
接触分解ガソリンは、流動接触分解(FCC)装置で生産されるガソリン留分であり、LPGが分別され、かつサイクルオイルより重質な留分を実質的に含まない、主要沸点領域が30〜250℃のいわゆる全留分FCCガソリンと呼ばれるものである。接触分解ガソリンは、通常オレフィンを20〜40容量%含有するためオクタン価も高く、しかも製品ガソリンへの混合比率も大きい重要なガソリン基材である。接触分解ガソリンは減圧軽油や常圧残油を流動接触分解装置で接触分解して製造されるが、この製造工程でこれら重質油に含まれる硫黄分も様々な反応を受けて軽質化するため、接触分解ガソリン中には硫黄化合物が含有するという特徴がある。
【0003】
接触分解ガソリンの硫黄分を低く抑えるために、通常、減圧軽油や常圧残油を水素化脱硫した後、接触分解の原料油として用いるのが一般的である。しかし、これらの重質油の水素化脱硫装置は高温・高圧の装置であり、環境対策のための相次ぐ規制値強化に対応して新設、増設、能力強化を図ることはコスト的にも大変な負担となる。
【0004】
接触分解ガソリンに含まれている硫黄化合物は、比較的低温・低圧の装置で水素化脱硫ができるため、接触分解ガソリンを直接水素化脱硫できれば設備投資が比較的安価であるばかりでなく、運転費用も重質油の水素化脱硫よりも小さくて済むという利点がある。
【0005】
【発明が解決しようとする課題】
しかし、接触分解ガソリンを従来の技術、例えばナフサの水素化脱硫装置で水素化脱硫すると接触分解ガソリン中に含まれているオレフィンが水素化され、オクタン価が低下してしまうという問題点がある。この問題を解決するための方法として、例えば、原料油を蒸留によって軽質留分と重質留分に分けてそれぞれを別々の条件で水素化脱硫する方法(米国特許第4990242号)、MoとCoの担持量および担体の表面積を制御した触媒を用いる方法(特表2000−505358号)、ゼオライト触媒と組み合わせてオクタン価の低下を防止する方法(米国特許第5352354号)、一定の前処理を施した触媒を使用する方法(米国特許第4149965号)などの種々の方法が提案されている。しかし、これら技術には問題点も多く、その性能はオクタン価の低下を十分防止できるとは言い難い。
【0006】
【課題を解決するための手段】
本発明は前記の問題点を解決し、オレフィンの水素化反応を抑制しつつ、かつ効率良く水素化脱硫反応を進行させる方法を提供することを目的とする。
本発明者らは前記の目的を達成するため鋭意研究を重ねた結果、硫黄分を含有する接触分解ガソリンを水素化脱硫する方法において、特定な触媒と特定反応条件を組み合せることにより、水素化脱硫の際に併発するオレフィンの水素化反応を抑制し、オクタン価の低下を最小限にとどめることができることを見いだし、本発明を完成するに至ったものである。
【0007】
すなわち、本発明は、硫黄含有量が200質量ppm以下で、かつオレフィンを10容量%以上含有する接触分解ガソリンを、多孔質担体に活性金属として周期律表第6族金属および第8族金属を、並びに第8族金属に対して0.5〜5倍モルの有機カルボン酸を担持させた触媒の存在下に、温度200〜350℃、圧力0.5〜3MPa、LHSV2〜10h-1および水素油比100〜600NL/Lの反応条件にて、脱硫率が95%以下で、かつオレフィンの水素化率が40%以下となるように水素化脱硫することを特徴とする接触分解ガソリンの脱硫方法に関する。
【0008】
触媒としては、多孔質担体に活性金属として周期律表第6族金属および第8族金属を担持させた後、250℃より低い温度で乾燥させ、次いで第8族金属に対して0.5〜5倍モルの有機カルボン酸を担持させた触媒であることが好ましい。
【0009】
有機カルボン酸としては、含窒素カルボン酸であることが好ましく、特にニトリロ3酢酸、エチレンジアミン4酢酸またはシクロヘキサンジアミン4酢酸が好ましい。
また有機カルボン酸としては、アルコキシカルボン酸であることが好ましい。
【0010】
触媒は、有機カルボン酸の融点より50℃から100℃高い温度で加熱処理した後に反応器に充填し、200℃以上の温度で予備硫化して活性化することが好ましい。
また触媒は、250℃以上の加熱処理あるいは焼成処理を施すことなく反応器に充填し、200℃以上の温度で予備硫化して活性化することが好ましい。
【0011】
水素化脱硫の反応条件としては、温度220〜300℃、圧力1〜2MPa、水素油比200〜400NL/Lの範囲であることが好ましい。
【0012】
また本発明は、前記脱硫方法により得られる低硫黄ガソリン基材に関する。
さらに本発明は、前記ガソリン基材と他の非含酸素ガソリン基材を混合してなる硫黄分が10質量ppm以下で、かつオレフィン分の割合が10容量%以上である低硫黄ガソリンに関する。
【0013】
【発明の実施の形態】
以下、本発明について詳述する。
本発明において、原料油として用いられる接触分解ガソリンとしては、沸点領域が通常30〜250℃のものを用いることができるが、硫黄含有量が200質量ppm以下で、かつオレフィンを10容量%以上含有する接触分解ガソリンであることが必要である。オレフィン含有率は高いほど本発明の特徴が活かせるので好ましく、例えば10〜50容量%のものが用いられる。一方、硫黄含有量は200質量ppm以下でないと本発明の効果を十分発揮することができない。これは、接触分解ガソリン中のオレフィンの内70%以上は分岐オレフィンであり、この分岐オレフィンの水素化反応は脱硫によって生じる硫化水素によって促進されるためである。つまり、原料油の硫黄分が多いと硫化水素濃度が高くなり、オレフィンの水素化が促進されてしまうので、本発明の特徴を活かすことができなくなる。
【0014】
本発明においては、接触分解ガソリンとして、全留分ガソリンを使用してもよいし、オレフィンの水素化を抑制するために硫黄分の少ない軽質留分ガソリンを蒸留分離した重質留分ガソリンのみを使用してもよい。また、前記接触分解ガソリンに、熱分解ガソリンやその他のガソリン基材を混合して用いることもできる。この場合、混合する他の基材は30容量%以下が好ましい。
【0015】
本発明において用いられる触媒は、多孔質担体に活性金属として周期律表第6族の金属および第8族の金属を担持させ、並びに第8族の金属に対して0.5〜5倍モルの有機カルボン酸を担持させた触媒である。
第8族の金属としては、Co、Ni等が挙げられ、第6族の金属としてはMo、Wが挙げられる。金属担持量は特に制限はないが、担体に対する金属量として、第8族金属が2〜5質量%、第6族金属が5〜15質量%である。
【0016】
担体としては、アルミナ、シリカアルミナ、チタニア、ジルコニア、シリカ等の多孔質担体が使用できる。またこれらに、リン、ホウ素、アルカリ金属、アルカリ土類金属を含む担体も使用できる。これらの担体構成成分は単独成分でも良く、複数の成分で構成されていても良い。
【0017】
担体に活性金属および有機カルボン酸を担持する方法については特に限定されるものではなく、また担持の順序についても特に制限はない。例えば、6族金属の化合物および8族金属の化合物を溶媒に溶解した含浸液に担体を含浸させて、6族金属と8族金属を同時に含浸担持させた後、有機カルボン酸を含浸担持させても良く、また6族金属の化合物を溶媒に溶解した含浸液に担体を含浸させて、6族金属を先に担持した後に、8族金属の化合物と有機カルボン酸とを含む含浸液を用いて8族金属と有機カルボン酸を担持させても良い。有機カルボン酸は金属と同時に担持させも良いが、6族金属および8族金属を含浸担持させた後、250℃より低い温度で乾燥させ、次いで有機カルボン酸を含浸担持させるのが好ましい。
含浸担持の際に用いることのできる6族金属の化合物および8族金属の化合物としては、例えば硝酸塩、炭酸塩、アンモニウム塩、金属酸化物などを例示することができる。
【0018】
有機カルボン酸としては、コハク酸、リンゴ酸、マロン酸等の有機カルボン酸を用いることができるが、含窒素カルボン酸を使用するとさらにオレフィンの水素化活性を効果的に低下させたまま脱硫活性を向上させることができるので好ましい。含窒素カルボン酸としては、ニトリロ3酢酸、エチレンジアミン4酢酸、シクロヘキサンジアミン4酢酸等が使用できる。また、メトキシ酢酸、エトキシ酢酸のようなアルコキシカルボン酸の使用も効果的である。さらにアルコールや多価アルコールを含浸液に共存させたり、金属を担持させた触媒に加えてもよい。また、リンは担体に含まれていても良いし、金属とともに担持しても良い。
【0019】
触媒は、焼成処理をした後に予備硫化して使用することもできるが、触媒を、使用した有機カルボン酸の融点より50℃から100℃高い温度で加熱処理した後に反応器に充填し、200℃以上の温度で予備硫化して活性化するとさらに選択性が高くなる。これは、第8族金属の分散度が高められ、オレフィンの水素化活性点が減少するためと思われる。さらに本発明の効果を十分発揮するためには、触媒を250℃以上の加熱処理や焼成処理を施すことなく反応器に充填し、200℃以上の温度で予備硫化して使用することが好ましい。これは、高温で処理すると第8族金属の分散が不良となり、脱硫活性点が減少して逆にオレフィンの水素化活性点が増加するためである。ただし、含窒素カルボン酸の場合はキレート作用により担持された時に第8族金属が既に安定的に分散化されているので、過熱操作を施すことなく直ちに予備硫化して反応に使用することができる。
【0020】
本発明における水素化脱硫は、温度200〜350℃、圧力0.5〜3MPa、LHSV2〜10h-1および水素油比100〜600NL/Lの反応条件にて行うことが必要である。好ましくは、温度220〜300℃、圧力1〜2MPa、水素油比200〜400NL/Lの範囲である。
反応装置としては特に限定はなく、一般的な固定床下降流式のもの以外にも、流動床式、あるいは上昇流式の装置を使用することができる。本発明は、特開平9−40972号に示されるような2段脱硫装置に適用することも可能である。
【0021】
本発明においては、前記特定の触媒を使用し、前記特定の反応条件にて水素化脱硫を行うものであるが、脱硫率は95%以下とする。好ましくは70〜90%である。脱硫率が95%を超えると、オレフィンの水素化が進むため、本発明の特徴であるオレフィンの水素化率が40%以下を達成することができなくなる。
【0022】
本発明の方法により接触分解ガソリンを脱硫して得られる低硫黄ガソリン基材は、原料接触分解ガソリンの硫黄分が低い場合や2段脱硫装置の場合はチオールの含有量が小さくなるのでスイートニングは不要であるが、通常はチオールを含有している場合が多いので、スウィートニングをすることが好ましい。
【0023】
本発明の接触分解ガソリンの脱硫方法により得られる低硫黄ガソリン基材は単独で製品ガソリンとして使用することもできるが、通常は他のガソリン基材と混合して製品ガソリンとするのが好ましい。他のガソリン基材としては、各種のものが使用でき、例えば、脱硫した直留ガソリン、熱分解ガソリン、接触改質ガソリン、異性化ガソリン、アルキル化ガソリン、接触改質ガソリンから芳香族炭化水素を抜いた残分(スルフォランラフィネート)等が挙げられる。接触分解ガソリン以外のガソリン基材として、リサーチ法オクタン価が95以上である接触改質ガソリンを使用するのが好ましく、製品ガソリン中に占める割合が20〜50容量%となるようにするとよい。この場合、本発明の低硫黄ガソリン基材の混合割合は60容量%以下が好ましい。本発明の低硫黄ガソリン基材と他のガソリン基材の混合により、硫黄分10質量ppm以下でかつオレフィン分の割合が10容量%以上であるオクタン価の高い良質の低硫黄製品ガソリンが容易に得られる。
【0024】
【実施例】
以下に本発明を実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。
【0025】
(実施例1)
モリブデン酸アンモニウム((NH46Mo724・4H2O)150gに水330mlを加えて加熱溶解し、さらに融点130℃のLDリンゴ酸(C465)57gを添加した。この水溶液に塩基性炭酸ニッケル(NiCO3・2Ni(OH)2・4H2O)69g(リンゴ酸/Ni=1モル/モル)を加えて含浸液を得た。
次に表面積327m2、細孔容積0.68ml/gのアルミナ担体500g(1/16インチ柱状押出し成形品)にポアフィリング法で含浸液を含浸させ、金属およびLDリンゴ酸を担持させた後、100℃で減圧乾燥した。得られた触媒の一部を550℃で焼成し、金属担持量を測定したところNiO=5.1質量%、MoO3=14.8質量%であった。
さらに空気中で220℃に加熱した触媒50gを固定床下降流式ベンチ反応装置に充填し、5容量%の硫化水素を含む水素気流中で温度を徐々に300℃まで上昇させて4時間予備硫化した。温度を230℃まで降温し、15℃密度0.731g/cm3、沸点27〜196℃、オクタン価91.7、硫黄分120質量ppm、オレフィン分38容量%の接触分解ガソリンを通油して、温度230℃、圧力2MPa、LHSV5h-1、水素/原料油比170NL/Lの反応条件下に水素化脱硫を行った。水素化脱硫処理により、硫黄分は18質量ppm(脱硫率85%)となり、リサーチオクタン価は88.0(オレフィン分水素化率33.1%)となった。
【0026】
(実施例2)
モリブデン酸アンモニウム((NH46Mo724・4H2O)150gに水330mlを加えて加熱溶解し、さらにエチレンジアミン4酢酸(C101682)232gを添加した。この水溶液に硝酸コバルト(Co(NO32・6H2O)116g(エチレンジアミン4酢酸/Co=2モル/モル)を加えて含浸液を得た。
次に実施例1で用いたアルミナ担体500gにポアフィリング法で含浸液を含浸させ、金属およびエチレンジアミン4酢酸を担持させた後、100℃で減圧乾燥した。得られた触媒の一部を550℃で焼成し、金属担持量を測定したところCoO=5.0質量%、MoO3=15.1質量%であった。
100℃で減圧乾燥した触媒を用いて、実施例1と同じ接触分解ガソリンを同条件で水素化脱硫処理したところ、硫黄分が16質量ppm(脱硫率87%)で、リサーチオクタン価が88.6(オレフィン分水素化率28.2%)の脱硫ガソリンを得た。
【0027】
(実施例3)
モリブデン酸アンモニウム((NH46Mo724・4H2O)150gに水330mlを加えて加熱溶解し、さらにメトキシ酢酸(C363)36g(メトキシ酢酸/Co=1モル/モル)を添加した。この水溶液に硝酸コバルト(Co(NO32・6H2O)116gを加えて含浸液を得た。
次に実施例1で用いたアルミナ担体500gにポアフィリング法で含浸液を含浸させ、金属およびメトキシ酢酸を担持させた後、100℃で減圧乾燥した。得られた触媒の一部を550℃で焼成し、金属担持量を測定したところCoO=4.9質量%、MoO3=14.8質量%であった。
100℃で減圧乾燥した触媒を用いて、実施例1と同じ接触分解ガソリンを同条件で水素化脱硫処理したところ、硫黄分が20質量ppm(脱硫率83%)で、リサーチオクタン価が89.0(オレフィン分水素化率24.6%)の脱硫ガソリンを得た。
【0028】
(比較例1)
実施例1においてLDリンゴ酸を使用しない以外は実施例1と同様の方法で触媒を調製した。得られた触媒を550℃で焼成処理して金属担持量を測定したところNiO=5.2質量%、MoO3=15.3質量%であった。
550℃で焼成処理した触媒を用いて、実施例1と同じ接触分解ガソリンを同条件で水素化脱硫処理したところ、硫黄分が22質量ppm(脱硫率83%)で、リサーチオクタン価が86.6(オレフィン分水素化率43.7%)の脱硫ガソリンを得た。
【0029】
【発明の効果】
本発明の接触分解ガソリンの脱硫方法によれば、効率良く水素化脱硫でき、かつオレフィンの水素化反応を抑えられるのでオクタン価の低下も小さい低硫黄ガソリン基材を製造することができる。
[0001]
[Industrial application fields]
In the hydrodesulfurization method of catalytic cracking gasoline containing sulfur, the present invention suppresses the hydrogenation reaction of olefins that occur simultaneously during hydrodesulfurization by combining a specific catalyst and specific reaction conditions. Further, the present invention relates to a method for desulfurizing catalytic cracked gasoline that can minimize a decrease in octane number. The present invention also relates to a low sulfur gasoline base material obtained by this method, and further to a low sulfur gasoline obtained by mixing other gasoline base materials.
[0002]
[Prior art]
Catalytic cracking gasoline is a gasoline fraction produced in a fluid catalytic cracking (FCC) unit, which has a main boiling point range of 30 to 250 ° C., in which LPG is fractionated and substantially free of a heavier fraction than cycle oil. Is called so-called all-fraction FCC gasoline. Catalytically cracked gasoline usually contains 20 to 40% by volume of olefin, so that it has a high octane number and is an important gasoline base material with a large mixing ratio with the product gasoline. Catalytic cracked gasoline is produced by catalytic cracking of vacuum gas oil and atmospheric residual oil using a fluid catalytic cracking device, and the sulfur content in these heavy oils is lightened by various reactions during this production process. The catalytically cracked gasoline is characterized by containing a sulfur compound.
[0003]
In order to keep the sulfur content of catalytic cracked gasoline low, it is common to use vacuum gas oil or atmospheric residual oil as a feedstock for catalytic cracking after hydrodesulfurization. However, these hydrodesulfurization equipment for heavy oil is a high-temperature and high-pressure equipment, and it is difficult in terms of cost to newly install, expand, and increase capacity in response to the ever-increasing regulation values for environmental measures. It becomes a burden.
[0004]
Sulfur compounds contained in catalytic cracking gasoline can be hydrodesulfurized with relatively low-temperature and low-pressure equipment, so if catalytic cracking gasoline is directly hydrodesulfurized, not only is the capital investment relatively low, but the operating costs are also low. Has the advantage of being smaller than the hydrodesulfurization of heavy oil.
[0005]
[Problems to be solved by the invention]
However, when hydrocracking catalytically cracked gasoline with conventional techniques such as naphtha hydrodesulfurization equipment, there is a problem that the olefin contained in the catalytically cracked gasoline is hydrogenated and the octane number decreases. As a method for solving this problem, for example, a method in which raw oil is divided into a light fraction and a heavy fraction by distillation and hydrodesulfurized under different conditions (US Pat. No. 4,990,242), Mo and Co Using a catalyst in which the amount of supported carbon and the surface area of the support are controlled (Japanese Patent Publication No. 2000-505358), a method of preventing a decrease in octane number in combination with a zeolite catalyst (US Pat. No. 5,352,354), and a certain pretreatment. Various methods such as a method using a catalyst (US Pat. No. 4,149,965) have been proposed. However, these technologies have many problems, and it is difficult to say that their performance can sufficiently prevent the octane number from decreasing.
[0006]
[Means for Solving the Problems]
An object of the present invention is to solve the above-mentioned problems and to provide a method for efficiently proceeding a hydrodesulfurization reaction while suppressing an olefin hydrogenation reaction.
As a result of intensive research to achieve the above-mentioned object, the present inventors have conducted hydrogenation by combining a specific catalyst and specific reaction conditions in a method for hydrodesulfurizing catalytic cracking gasoline containing sulfur. The inventors have found that the hydrogenation reaction of olefins that occurs simultaneously with desulfurization can be suppressed and the decrease in octane number can be minimized, and the present invention has been completed.
[0007]
That is, the present invention relates to catalytic cracked gasoline having a sulfur content of 200 ppm by mass or less and containing 10% by volume or more of olefin as a porous carrier with Group 6 metal and Group 8 metal in the periodic table as an active metal. , And in the presence of a catalyst supporting 0.5 to 5 moles of organic carboxylic acid relative to the Group 8 metal, temperature 200 to 350 ° C., pressure 0.5 to 3 MPa, LHSV 2 to 10 h −1 and hydrogen A method for desulfurizing catalytic cracking gasoline, characterized in that hydrodesulfurization is performed so that the desulfurization rate is 95% or less and the olefin hydrogenation rate is 40% or less under reaction conditions of an oil ratio of 100 to 600 NL / L. About.
[0008]
As a catalyst, after supporting a group 6 metal and a group 8 metal of the periodic table as an active metal on a porous support, drying is performed at a temperature lower than 250 ° C., and then 0.5 to A catalyst supporting 5 times mole of organic carboxylic acid is preferable.
[0009]
The organic carboxylic acid is preferably a nitrogen-containing carboxylic acid, and particularly preferably nitrilotriacetic acid, ethylenediaminetetraacetic acid or cyclohexanediaminetetraacetic acid.
The organic carboxylic acid is preferably an alkoxycarboxylic acid.
[0010]
It is preferable that the catalyst is heat-treated at a temperature higher by 50 to 100 ° C. than the melting point of the organic carboxylic acid, then charged into the reactor, and pre-sulfided at a temperature of 200 ° C. or higher to be activated.
The catalyst is preferably filled in the reactor without being subjected to a heat treatment or a baking treatment at 250 ° C. or higher, and activated by presulfiding at a temperature of 200 ° C. or higher.
[0011]
The reaction conditions for hydrodesulfurization are preferably a temperature of 220 to 300 ° C., a pressure of 1 to 2 MPa, and a hydrogen oil ratio of 200 to 400 NL / L.
[0012]
Moreover, this invention relates to the low sulfur gasoline base material obtained by the said desulfurization method.
Furthermore, the present invention relates to a low-sulfur gasoline having a sulfur content obtained by mixing the gasoline base material with another non-oxygen-containing gasoline base material of 10 ppm by mass or less and an olefin content of 10% by volume or more.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, as the catalytic cracking gasoline used as the raw material oil, those having a boiling range of usually 30 to 250 ° C. can be used, but the sulfur content is 200 ppm by mass or less and the olefin is contained by 10 vol% or more. It is necessary to be catalytic cracking gasoline. A higher olefin content is preferable because the features of the present invention can be utilized. For example, a olefin content of 10-50% by volume is used. On the other hand, unless the sulfur content is 200 mass ppm or less, the effects of the present invention cannot be sufficiently exhibited. This is because 70% or more of the olefins in the catalytic cracked gasoline are branched olefins, and the hydrogenation reaction of the branched olefins is promoted by hydrogen sulfide generated by desulfurization. That is, if the sulfur content of the raw material oil is large, the hydrogen sulfide concentration increases and the hydrogenation of the olefin is promoted, so that the features of the present invention cannot be utilized.
[0014]
In the present invention, all fraction gasoline may be used as catalytic cracking gasoline, or only heavy fraction gasoline obtained by distilling and separating light fraction gasoline with low sulfur content in order to suppress hydrogenation of olefins. May be used. Further, the catalytic cracking gasoline can be used by mixing pyrolysis gasoline and other gasoline base materials. In this case, the other base material to be mixed is preferably 30% by volume or less.
[0015]
In the catalyst used in the present invention, a porous carrier carries a group 6 metal and a group 8 metal as active metals on the porous support, and 0.5 to 5 times moles of the group 8 metal. A catalyst carrying an organic carboxylic acid.
Examples of the Group 8 metal include Co and Ni, and examples of the Group 6 metal include Mo and W. The amount of metal supported is not particularly limited, but the amount of metal relative to the carrier is 2 to 5% by mass of the Group 8 metal and 5 to 15% by mass of the Group 6 metal.
[0016]
As the carrier, a porous carrier such as alumina, silica alumina, titania, zirconia, or silica can be used. Moreover, the support | carrier containing phosphorus, boron, an alkali metal, and an alkaline-earth metal can also be used for these. These carrier components may be a single component or may be composed of a plurality of components.
[0017]
The method for supporting the active metal and the organic carboxylic acid on the carrier is not particularly limited, and the order of loading is not particularly limited. For example, an impregnating solution obtained by dissolving a group 6 metal compound and a group 8 metal compound in a solvent is impregnated with a carrier, and a group 6 metal and a group 8 metal are impregnated and supported simultaneously, and then an organic carboxylic acid is impregnated and supported. Alternatively, after impregnating a carrier in an impregnating solution obtained by dissolving a Group 6 metal compound in a solvent and supporting the Group 6 metal first, an impregnating solution containing a Group 8 metal compound and an organic carboxylic acid is used. A Group 8 metal and an organic carboxylic acid may be supported. The organic carboxylic acid may be supported at the same time as the metal, but it is preferable to impregnate and support the Group 6 metal and the Group 8 metal, then dry at a temperature lower than 250 ° C., and then impregnate the organic carboxylic acid.
Examples of Group 6 metal compounds and Group 8 metal compounds that can be used for impregnation support include nitrates, carbonates, ammonium salts, metal oxides, and the like.
[0018]
As the organic carboxylic acid, organic carboxylic acids such as succinic acid, malic acid and malonic acid can be used. However, when nitrogen-containing carboxylic acid is used, desulfurization activity is further reduced while effectively reducing the olefin hydrogenation activity. Since it can improve, it is preferable. As the nitrogen-containing carboxylic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid, cyclohexanediaminetetraacetic acid or the like can be used. The use of alkoxycarboxylic acids such as methoxyacetic acid and ethoxyacetic acid is also effective. Further, alcohol or polyhydric alcohol may be coexisted in the impregnating solution or added to a catalyst supporting a metal. Moreover, phosphorus may be contained in the carrier, or may be supported together with the metal.
[0019]
The catalyst can be used after pre-sulfiding after calcination, but the catalyst is heat-treated at a temperature 50 to 100 ° C. higher than the melting point of the organic carboxylic acid used, and then charged into the reactor to 200 ° C. Selectivity is further enhanced by presulfiding and activating at the above temperature. This is presumably because the dispersity of the Group 8 metal is increased and the hydrogenation active point of the olefin is decreased. Furthermore, in order to sufficiently exhibit the effects of the present invention, it is preferable to use the catalyst after filling the reactor without heating or baking at 250 ° C. or higher and presulfiding at a temperature of 200 ° C. or higher. This is because when the treatment is carried out at a high temperature, the dispersion of the Group 8 metal becomes poor, the desulfurization active sites decrease, and conversely the olefin hydrogenation active sites increase. However, in the case of a nitrogen-containing carboxylic acid, the Group 8 metal is already stably dispersed when it is supported by a chelating action, so that it can be immediately pre-sulfided and used for the reaction without superheating operation. .
[0020]
The hydrodesulfurization in the present invention needs to be performed under reaction conditions of a temperature of 200 to 350 ° C., a pressure of 0.5 to 3 MPa, LHSV 2 to 10 h −1, and a hydrogen oil ratio of 100 to 600 NL / L. Preferably, the temperature is 220 to 300 ° C., the pressure is 1 to 2 MPa, and the hydrogen oil ratio is 200 to 400 NL / L.
The reaction apparatus is not particularly limited, and a fluidized bed type or an upflow type apparatus can be used in addition to a general fixed bed downflow type. The present invention can also be applied to a two-stage desulfurization apparatus as disclosed in JP-A-9-40972.
[0021]
In the present invention, hydrodesulfurization is performed using the specific catalyst under the specific reaction conditions, and the desulfurization rate is 95% or less. Preferably it is 70 to 90%. When the desulfurization rate exceeds 95%, olefin hydrogenation proceeds, and the olefin hydrogenation rate, which is a feature of the present invention, cannot be achieved below 40%.
[0022]
The low sulfur gasoline base material obtained by desulfurizing catalytic cracking gasoline by the method of the present invention has a low thiol content in the case of low sulfur content in the raw catalytic cracking gasoline or in the case of a two-stage desulfurization apparatus, so sweetening Although unnecessary, it usually contains thiols, so it is preferable to perform sweetening.
[0023]
The low-sulfur gasoline base material obtained by the method for desulfurizing catalytic cracking gasoline of the present invention can be used alone as product gasoline, but it is usually preferable to mix with other gasoline base materials to make product gasoline. Various other gasoline base materials can be used, for example, aromatic hydrocarbons from desulfurized straight-run gasoline, pyrolysis gasoline, catalytic reformed gasoline, isomerized gasoline, alkylated gasoline, and catalytic reformed gasoline. For example, a residual residue (sulfolan raffinate) may be used. As a gasoline base other than catalytically cracked gasoline, it is preferable to use catalytic reformed gasoline having a research octane number of 95 or more, and the proportion in the product gasoline may be 20 to 50% by volume. In this case, the mixing ratio of the low sulfur gasoline base material of the present invention is preferably 60% by volume or less. By mixing the low-sulfur gasoline base material of the present invention with another gasoline base material, a high-quality low-sulfur product gasoline having a high octane number having a sulfur content of 10 ppm by mass or less and an olefin content of 10% by volume or more can be easily obtained. It is done.
[0024]
【Example】
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
[0025]
Example 1
To 150 g of ammonium molybdate ((NH 4 ) 6 Mo 7 O 24 · 4H 2 O), 330 ml of water was added and dissolved by heating, and then 57 g of LD malic acid (C 4 H 6 O 5 ) having a melting point of 130 ° C. was added. To this aqueous solution, 69 g of basic nickel carbonate (NiCO 3 .2Ni (OH) 2 .4H 2 O) (malic acid / Ni = 1 mol / mol) was added to obtain an impregnation solution.
Next, after impregnating the impregnating solution with 500 g of an alumina carrier having a surface area of 327 m 2 and a pore volume of 0.68 ml / g (1/16 inch columnar extruded product) by the pore filling method and supporting the metal and LD malic acid, It dried under reduced pressure at 100 degreeC. A part of the obtained catalyst was calcined at 550 ° C. and the amount of supported metal was measured. As a result, NiO = 5.1% by mass and MoO 3 = 14.8% by mass.
Further, 50 g of catalyst heated to 220 ° C. in air was charged into a fixed bed downflow bench reactor, and the temperature was gradually raised to 300 ° C. in a hydrogen stream containing 5% by volume of hydrogen sulfide, and pre-sulfided for 4 hours. did. The temperature was lowered to 230 ° C., 15 ° C. density 0.731 g / cm 3 , boiling point 27 to 196 ° C., octane number 91.7, sulfur content 120 mass ppm, olefin content 38 vol%, and catalytically cracked gasoline was passed through. Hydrodesulfurization was performed under the reaction conditions of a temperature of 230 ° C., a pressure of 2 MPa, LHSV 5 h −1 , and a hydrogen / feed oil ratio of 170 NL / L. By the hydrodesulfurization treatment, the sulfur content was 18 ppm by mass (desulfurization rate 85%), and the research octane number was 88.0 (olefin hydrogenation rate 33.1%).
[0026]
(Example 2)
To 150 g of ammonium molybdate ((NH 4 ) 6 Mo 7 O 24 · 4H 2 O), 330 ml of water was added and dissolved by heating. Further, 232 g of ethylenediaminetetraacetic acid (C 10 H 16 O 8 N 2 ) was added. 116 g of cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) (ethylenediaminetetraacetic acid / Co = 2 mol / mol) was added to this aqueous solution to obtain an impregnation solution.
Next, 500 g of the alumina carrier used in Example 1 was impregnated with an impregnating solution by a pore filling method to support metal and ethylenediaminetetraacetic acid, and then dried at 100 ° C. under reduced pressure. A part of the obtained catalyst was calcined at 550 ° C. and the amount of supported metal was measured to be CoO = 5.0 mass% and MoO 3 = 15.1 mass%.
The same catalytically cracked gasoline as in Example 1 was hydrodesulfurized under the same conditions using a catalyst dried under reduced pressure at 100 ° C., the sulfur content was 16 mass ppm (desulfurization rate 87%), and the research octane number was 88.6. A desulfurized gasoline having an olefin hydrogenation rate of 28.2% was obtained.
[0027]
(Example 3)
To 150 g of ammonium molybdate ((NH 4 ) 6 Mo 7 O 24 · 4H 2 O), 330 ml of water was added and dissolved by heating. Further, 36 g of methoxyacetic acid (C 3 H 6 O 3 ) (methoxyacetic acid / Co = 1 mol / Mol) was added. 116 g of cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) was added to this aqueous solution to obtain an impregnation solution.
Next, 500 g of the alumina carrier used in Example 1 was impregnated with an impregnating solution by a pore filling method to support metal and methoxyacetic acid, and then dried at 100 ° C. under reduced pressure. A part of the obtained catalyst was calcined at 550 ° C., and the amount of supported metal was measured to be CoO = 4.9% by mass and MoO 3 = 14.8% by mass.
Using the catalyst dried under reduced pressure at 100 ° C., the same catalytic cracking gasoline as in Example 1 was hydrodesulfurized under the same conditions. As a result, the sulfur content was 20 ppm by mass (desulfurization rate 83%) and the research octane number was 89.0. A desulfurized gasoline having an olefin hydrogenation rate of 24.6% was obtained.
[0028]
(Comparative Example 1)
A catalyst was prepared in the same manner as in Example 1 except that LD malic acid was not used in Example 1. The obtained catalyst was calcined at 550 ° C., and the amount of supported metal was measured. As a result, NiO = 5.2 mass% and MoO 3 = 15.3 mass%.
The same catalytically cracked gasoline as in Example 1 was hydrodesulfurized under the same conditions using the catalyst calcined at 550 ° C., and the sulfur content was 22 mass ppm (desulfurization rate 83%) and the research octane number was 86.6. A desulfurized gasoline having an olefin hydrogenation rate of 43.7% was obtained.
[0029]
【The invention's effect】
According to the method for desulfurizing catalytic cracked gasoline of the present invention, a low-sulfur gasoline base material that can efficiently hydrodesulfurize and suppress the hydrogenation reaction of an olefin can be produced.

Claims (8)

硫黄含有量が200質量ppm以下で、かつオレフィンを10容量%以上含有する接触分解ガソリンを、多孔質担体に活性金属として周期律表第6族金属および第8族金属を、並びに第8族金属に対して0.5〜5倍モルの有機カルボン酸を担持させた触媒の存在下に、温度200〜350℃、圧力0.5〜3MPa、LHSV2〜10h−1および水素油比100〜600NL/Lの反応条件にて、脱硫率が95%以下で、かつオレフィンの水素化率が40%以下となるように水素化脱硫することを特徴とする接触分解ガソリンの脱硫方法。Catalytic cracked gasoline having a sulfur content of 200 ppm by mass or less and containing 10% by volume or more of olefins, Group 6 metal and Group 8 metal in the periodic table as an active metal in the porous carrier, and Group 8 metal In the presence of a catalyst carrying 0.5 to 5 moles of an organic carboxylic acid, a temperature of 200 to 350 ° C., a pressure of 0.5 to 3 MPa, LHSV 2 to 10 h −1 and a hydrogen oil ratio of 100 to 600 NL / A method for desulfurizing catalytic cracking gasoline, characterized in that hydrodesulfurization is performed so that the desulfurization rate is 95% or less and the olefin hydrogenation rate is 40% or less under the reaction conditions of L. 触媒が、多孔質担体に活性金属として周期律表第6族金属および第8族金属を担持させた後、250℃より低い温度で乾燥させ、次いで第8族金属に対して0.5〜5倍モルの有機カルボン酸を担持させた触媒であることを特徴とする請求項1に記載の脱硫方法。  The catalyst supports the Group 6 metal and Group 8 metal of the periodic table as active metals on the porous support, and then dried at a temperature lower than 250 ° C., and then 0.5 to 5 with respect to the Group 8 metal. The desulfurization method according to claim 1, wherein the desulfurization method is a catalyst supporting a double mole of organic carboxylic acid. 有機カルボン酸が含窒素カルボン酸であることを特徴とする請求項1または2に記載の脱硫方法。  The desulfurization method according to claim 1 or 2, wherein the organic carboxylic acid is a nitrogen-containing carboxylic acid. 有機カルボン酸がニトリロ3酢酸、エチレンジアミン4酢酸またはシクロヘキサンジアミン4酢酸であることを特徴とする請求項1〜3のいずれかの項に記載の脱硫方法。  The desulfurization method according to any one of claims 1 to 3, wherein the organic carboxylic acid is nitrilotriacetic acid, ethylenediaminetetraacetic acid or cyclohexanediaminetetraacetic acid. 有機カルボン酸がアルコキシカルボン酸であることを特徴とする請求項1または2に記載の脱硫方法。  The desulfurization method according to claim 1 or 2, wherein the organic carboxylic acid is an alkoxycarboxylic acid. 触媒を有機カルボン酸の融点より50℃から100℃高い温度で加熱処理した後に反応器に充填し、200℃以上の温度で予備硫化して活性化することを特徴とする請求項1〜5のいずれかの項に記載の脱硫方法。  The catalyst according to claim 1, wherein the catalyst is heat-treated at a temperature 50 ° C. to 100 ° C. higher than the melting point of the organic carboxylic acid, charged in a reactor, and pre-sulfided at a temperature of 200 ° C. or more to activate. The desulfurization method according to any one of the items. 触媒を250℃以上の加熱処理あるいは焼成処理を施すことなく反応器に充填し、200℃以上の温度で予備硫化して活性化することを特徴とする請求項1〜6のいずれかの項に記載の脱硫方法。  The catalyst according to any one of claims 1 to 6, wherein the catalyst is charged into a reactor without being subjected to a heat treatment or a calcination treatment at 250 ° C or higher, and activated by presulfiding at a temperature of 200 ° C or higher. The desulfurization method described. 反応条件が、温度220〜300℃、圧力1〜2MPa、水素油比200〜400NL/Lの範囲であることを特徴とする請求項1〜7のいずれかの項に記載の脱硫方法。  The desulfurization method according to any one of claims 1 to 7, wherein the reaction conditions are a temperature of 220 to 300 ° C, a pressure of 1 to 2 MPa, and a hydrogen oil ratio of 200 to 400 NL / L.
JP2002092273A 2002-03-28 2002-03-28 Desulfurization method for catalytic cracking gasoline Expired - Lifetime JP4101545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092273A JP4101545B2 (en) 2002-03-28 2002-03-28 Desulfurization method for catalytic cracking gasoline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092273A JP4101545B2 (en) 2002-03-28 2002-03-28 Desulfurization method for catalytic cracking gasoline

Publications (2)

Publication Number Publication Date
JP2003286493A JP2003286493A (en) 2003-10-10
JP4101545B2 true JP4101545B2 (en) 2008-06-18

Family

ID=29237148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092273A Expired - Lifetime JP4101545B2 (en) 2002-03-28 2002-03-28 Desulfurization method for catalytic cracking gasoline

Country Status (1)

Country Link
JP (1) JP4101545B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482653B2 (en) 2004-05-19 2010-06-16 独立行政法人産業技術総合研究所 Hydrocracking catalyst for catalytic cracking gasoline
CN101374598B (en) * 2006-01-17 2014-05-28 埃克森美孚研究工程公司 Selective catalysts having high temperature alumina supports for naphtha hydrodesulfurization
ES2616331T3 (en) * 2006-01-17 2017-06-12 Exxonmobil Research And Engineering Company Selective catalysts for hydrodesulfurization of naphtha
CN104250563B (en) * 2006-01-17 2017-04-12 埃克森美孚研究工程公司 Selective catalysts for naphtha hydrodesulfurization
US8216958B2 (en) * 2006-01-17 2012-07-10 Exxonmobil Research And Engineering Company Selective catalysts having silica supports for naphtha hydrodesulfurization
JP5431656B2 (en) * 2007-06-06 2014-03-05 出光興産株式会社 Method for producing desulfurized heavy cracked gasoline
US9132421B2 (en) * 2009-11-09 2015-09-15 Shell Oil Company Composition useful in the hydroprocessing of a hydrocarbon feedstock

Also Published As

Publication number Publication date
JP2003286493A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP5544090B2 (en) Selective catalyst with high temperature alumina support for naphtha hydrodesulfurization
JP2684120B2 (en) Method for adsorbing sulfur species from propylene / propane using renewable adsorbents
JP3729621B2 (en) Hydrocracking method for catalytic cracking gasoline and gasoline
CA2636177A1 (en) Selective catalysts having silica supports for naphtha hydrodesulfurization
JP4590259B2 (en) Multistage hydrodesulfurization of cracked naphtha stream in a stacked bed reactor
JP2004230383A (en) Partially caulked catalyst for use in hydrogen treatment of distillation fraction containing sulfur compound and olefin
DK2084246T3 (en) PROCEDURES FOR HYDROGEN PROCESSING BULK GROUP VIII / VIB METAL CATALOGS
EP1498177B1 (en) hydrodesulfurization process for gasoline fractions
JP4101545B2 (en) Desulfurization method for catalytic cracking gasoline
JP5123635B2 (en) Method for producing gasoline base material and gasoline
JP3378402B2 (en) Desulfurization method of catalytic cracking gasoline
JP4767169B2 (en) Nitrogen removal from olefinic naphtha feed streams to improve hydrodesulfurization selectivity for olefin saturation
JPH11319567A (en) Hydrodesulfurization catalyst
JP4929311B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for gasoline fraction
WO2001074973A1 (en) Process for hydrodesulfurization of light oil fraction
JP2000109860A (en) Light oil and hydrodesulfurization process
JP4486329B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for gasoline fraction
JP4486330B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for gasoline fraction
JP3955990B2 (en) Ultra-deep desulfurization method for diesel oil fraction
JP3450940B2 (en) Desulfurization method of catalytic cracking gasoline
TW202327725A (en) Grading system and application of hydrogenation catalyst and grading method of hydrogenation catalyst
JP2001062304A (en) Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil
JP5016331B2 (en) Production method of ultra-deep desulfurized diesel oil
JPH09137172A (en) Desulfurizing method for catalytic cracking gasoline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250