JP2000109860A - Light oil and hydrodesulfurization process - Google Patents

Light oil and hydrodesulfurization process

Info

Publication number
JP2000109860A
JP2000109860A JP10282913A JP28291398A JP2000109860A JP 2000109860 A JP2000109860 A JP 2000109860A JP 10282913 A JP10282913 A JP 10282913A JP 28291398 A JP28291398 A JP 28291398A JP 2000109860 A JP2000109860 A JP 2000109860A
Authority
JP
Japan
Prior art keywords
catalyst
oil
weight
hydrogen
hydrodesulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10282913A
Other languages
Japanese (ja)
Other versions
JP4282118B2 (en
Inventor
Shigeto Hatanaka
重人 畑中
Osamu Sadakane
修 定兼
Suguru Iki
英 壱岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mitsubishi Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mitsubishi Oil Corp filed Critical Nippon Mitsubishi Oil Corp
Priority to JP28291398A priority Critical patent/JP4282118B2/en
Publication of JP2000109860A publication Critical patent/JP2000109860A/en
Application granted granted Critical
Publication of JP4282118B2 publication Critical patent/JP4282118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a light oil having a sulfur content reduced and an excellent color hue, by performing hydrodesulfurization at the first process and thereafter additionally performing hydrodesulfurization at the second process under a press. higher than that of the first process. SOLUTION: A light oil distillate of a sulfur-contg. petroleum hydrocarbon is hydrodesulfurized under the first process reaction condition at a temp. of 320-380 deg.C, a press. of 4-7 MPa, an LHSV of 0.5-3 h-1 and a hydrogen/oil ratio of 500-2,000 scfb to make a sulfur content in the raw material oil 0.05 wt.% or less. Successively, the resulting material is hydrodesulfurized under the second process reaction condition at a temp. of 320-380 deg.C, a press. of 10-15 MPa, an LHSV of 0.5-2 h-1 and a hydrogen/oil ratio of 1,000-5,000 scfb to give a light oil product with a sulfur content of 0.001 wt.% or less and a Saybolt color of +20 OAT higher. A catalyst in the first process is pref. a catalyst in which Co or Mo is supported on an alumina carrier, and a catalyst in the second process is, as for the inlet part, a catalyst pref. in which Ni and Mo are supported on an alumina/zeolite carrier, and as for the outlet part, is a catalyst pref. in which either Co or Ni and Mo are supported on an alumina carrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硫黄を含有する石
油系炭化水素の軽油留分を水素化脱硫する際に特定の工
程の組合せ、反応装置構成、触媒、かつ特定の反応条件
で軽油を超深度脱硫する方法、及びその方法により得
た、優れた性状の軽油に関する。
BACKGROUND OF THE INVENTION The present invention relates to a process for hydrogas desulfurization of a gas oil fraction of petroleum hydrocarbon containing sulfur, a combination of specific processes, a reactor configuration, a catalyst, and gas oil under specific reaction conditions. The present invention relates to a method for ultra-depth desulfurization and light oil having excellent properties obtained by the method.

【0002】[0002]

【従来の技術】原油の蒸留によって得られる直留軽油や
重油の分解によって得られる分解軽油は硫黄化合物を含
んでおり、その量は硫黄として1〜3重量%である。硫
黄化合物を含む軽油をディーゼル燃料として使用すると
SOxとして大気中に排出され環境を汚染する。そのた
め通常これら軽油は水素化脱硫処理され硫黄化合物を除
去した後に燃料として使用される。ディーゼル燃料に含
まれる硫黄分の量はJIS規格でその許容値が0. 05
重量%以下と定められており、この値を達成するために
大型のいわゆる深度脱硫装置が建設され使用されてい
る。さらに今後、排気ガス中のNOxを還元処理する浄
化触媒をディーゼル車に搭載したり、排気ガスの一部を
循環再使用(EGR)するためにはさらに硫黄分の量を
低下させる技術、すなわち超深度脱硫技術が必要である
といわれている。
2. Description of the Related Art Straight-run gas oil obtained by distillation of crude oil and cracked gas oil obtained by cracking heavy oil contain a sulfur compound, and its amount is 1 to 3% by weight as sulfur. When light oil containing a sulfur compound is used as a diesel fuel, it is discharged into the atmosphere as SOx and pollutes the environment. Therefore, these gas oils are usually used as fuel after hydrodesulfurization treatment to remove sulfur compounds. The allowable amount of sulfur contained in diesel fuel is 0.05 according to JIS standards.
In order to achieve this value, large so-called deep desulfurization units have been constructed and used. In the future, in order to mount a purification catalyst for reducing NOx in exhaust gas on diesel vehicles and to recycle part of exhaust gas (EGR), a technology to further reduce the amount of sulfur, ie, super It is said that deep desulfurization technology is necessary.

【0003】従来、軽油の脱硫にはアルミナ担体にコバ
ルトあるいはニッケルとモリブデンを担持した触媒が使
用されてきた。しかしながら、この従来触媒では4−メ
チルジベンゾチオフェンや4, 6−ジメチルジベンゾチ
オフェンが脱硫され難く、脱硫された製品の硫黄含有量
が0. 05重量%あるいはそれ以下のレベルまで脱硫す
るためには反応温度や圧力を非常に高くしなければなら
ず、装置の建設コストや運転コストが極めて大きくなる
という問題点がある。これら難脱硫性の硫黄化合物に対
して脱硫活性を高める方法として、触媒の担体にリンや
ホウ素を含有させた触媒(特開昭52−13503号)
やゼオライトを担体に加えた触媒(特開平7−1970
39)などが報告されている。これらの触媒にはブレン
シュテッド酸点が存在し、(ジ)メチルジベンゾチオフ
ェンのメチル基を異性化したりフェニル基を水素化する
能力が高く、4−メチルジベンゾチオフェンや4, 6−
ジメチルジベンゾチオフェンの脱硫に対して高い活性を
示す。
[0003] Conventionally, a catalyst in which cobalt or nickel and molybdenum are supported on an alumina carrier has been used for the desulfurization of light oil. However, with this conventional catalyst, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene are difficult to desulfurize, and the desulfurized product requires a sulfur content of 0.05% by weight or less to desulfurize it. There is a problem that the temperature and pressure must be extremely high, and the construction cost and operation cost of the device become extremely large. As a method for increasing the desulfurization activity of these difficult-to-desulfurize sulfur compounds, a catalyst in which phosphorus or boron is contained in a catalyst carrier (Japanese Patent Laid-Open No. 52-13503).
And zeolite added to a carrier (Japanese Patent Laid-Open No. 7- 1970)
39) have been reported. These catalysts have Brönsted acid sites and have a high ability to isomerize the methyl group of (di) methyldibenzothiophene or hydrogenate the phenyl group, such as 4-methyldibenzothiophene and 4,6-
High activity against desulfurization of dimethyldibenzothiophene.

【0004】しかし、これらの高性能触媒も0. 05重
量%程度のレベルまでのいわゆる深度脱硫を想定して研
究されたもので、さらに低い、例えば0. 005重量%
といったレベルまでの超深度水素化脱硫に関する研究に
用いられたことはなく、実際本発明者らの研究によって
も、これら触媒を従来のプロセスに組み合わせて使用し
ただけでは0. 005重量%というレベルまでの脱硫は
ほとんど不可能であることがわかった。反応装置の面か
ら深度脱硫を達成する研究もなされている。例えば、特
開平5−78670には反応条件の異なる2段階の反応
によって色相を悪化させることなく深度脱硫を行う方法
が提案されており、同じ2段階の反応プロセスでも特開
平5−202369では、第二反応器の空間速度を第一
反応器の空間速度よりも遅くするプロセスが提案されて
いる。また、特開平6−25677では、第二反応器の
温度を第一反応器の温度よりも低くするプロセスが提案
されている。
However, these high-performance catalysts have also been studied on the assumption of so-called deep desulfurization up to a level of about 0.05% by weight, and are even lower, for example, 0.005% by weight.
It has never been used in research on ultra-deep hydrodesulfurization up to such a level, and in fact, according to the research conducted by the present inventors, it is possible to obtain a level of only 0.005% by weight by using these catalysts in combination with the conventional process. It turned out that desulfurization was almost impossible. Research has been conducted to achieve deep desulfurization from the aspect of a reactor. For example, Japanese Patent Application Laid-Open No. 5-78670 proposes a method of performing depth desulfurization without deteriorating the hue by a two-step reaction under different reaction conditions. A process has been proposed in which the space velocity of the two reactors is lower than the space velocity of the first reactor. Japanese Patent Application Laid-Open No. 6-25677 proposes a process in which the temperature of the second reactor is lower than the temperature of the first reactor.

【0005】しかしながら前述の新規高性能触媒には大
きな問題点がある。すなわち、アルキルベンゾチオフェ
ン類や4−あるいは6−位置にアルキル置換基を持たな
いジベンゾチオフェン類、例えばジベンゾチオフェン、
1−、2−または3−メチルベンゾチオフェン等に対し
ては、触媒の担体にリンやゼオライトを担体に加えた触
媒は、従来から使用されてきたアルミナ担体にコバルト
とモリブデンを担持した触媒より脱硫活性が低い欠点が
ある(F. van Looijら, Applied Catalysis A:General
170, 1-12 (1998) )。すなわち、種々の硫黄化合物が
含まれる石油の軽油留分の脱硫には必ずしも有効とはい
えない。また、ブレンシュテッド酸点が存在するため、
製品が着色しやすく、オレフィンを含む原料を使用する
場合や350℃以上の高温で反応に用いた場合はチオー
ルやスルフィドが生成して脱硫率が低下してしまう場合
もある。さらにブレンシュテッド酸点でオレフィン成分
が重合してコーク析出し、触媒の失活が速いという大き
な問題点がある。原料油にオレフィンが含まれていない
場合でも、硫黄化合物が脱硫される場合にはオレフィン
を生成するのでコークの析出の原因となる。このこと
は、チオフェンを通油した場合のコーキング速度がオレ
フィンや芳香族を通油した場合のコーキング速度の10
倍にも達することからも理解できる (Catalysis Revie
w, 24, (3), 343(1982))。また前述の装置面の改善から
の提案にしても、反応条件の異なる2段階の反応によっ
て色相を悪化させることなく深度脱硫を行う方法は、色
相の改善には効果があるものの深度脱硫をさらに進める
効果はほとんどなく、0. 005重量%というレベルま
での脱硫は全く考慮されておらず、超深度脱硫への対応
として提案されたプロセスとは言い難い。
However, the above-mentioned new high-performance catalyst has a serious problem. That is, alkylbenzothiophenes and dibenzothiophenes having no alkyl substituent at the 4- or 6-position, such as dibenzothiophene,
For 1-, 2- or 3-methylbenzothiophene and the like, the catalyst obtained by adding phosphorus or zeolite to the carrier of the catalyst is desulfurized more than the conventionally used catalyst which supported cobalt and molybdenum on an alumina carrier. Low activity (F. van Looij et al., Applied Catalysis A: General
170, 1-12 (1998)). That is, it is not necessarily effective for desulfurization of petroleum gas oil fractions containing various sulfur compounds. Also, because of the presence of Bronsted acid sites,
When the product is easily colored and a raw material containing an olefin is used, or when used for a reaction at a high temperature of 350 ° C. or higher, thiol or sulfide may be generated to lower the desulfurization rate in some cases. Further, there is a large problem that the olefin component is polymerized at the Bronsted acid point to precipitate coke, and the catalyst is quickly deactivated. Even when the feedstock oil does not contain olefins, if sulfur compounds are desulfurized, olefins are produced, which causes coke to precipitate. This indicates that the coking rate when thiophene was passed was 10 times lower than that when olefins and aromatics were passed.
(Catalysis Revie
w, 24, (3), 343 (1982)). Further, even in the proposal from the improvement of the above-described apparatus, the method of performing the depth desulfurization without deteriorating the hue by the two-stage reaction under different reaction conditions is effective for the improvement of the hue, but further advances the depth desulfurization. There is almost no effect, and desulfurization to a level of 0.005% by weight is not considered at all, and it is hard to say that the process has been proposed as a measure for ultra-deep desulfurization.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前記
従来の問題点を解決し、従来に比べてはるかに硫黄含有
分を少なくし、又着色を少なくした軽油と、その軽油を
得るための超深度脱硫方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional problems and to obtain a light oil having a much lower sulfur content and a lower coloration as compared with the prior art, and to obtain the light oil. To provide an ultra-deep desulfurization method.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記の課題
を解決するため、鋭意研究した結果、特定の工程の組合
せ、及び装置構成、特定の反応条件、特定の触媒を用い
ることにより軽油を超深度脱硫する方法を見出し、本発
明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, by using a specific combination of steps, an apparatus configuration, a specific reaction condition, and a specific catalyst, the light oil is used. And found a method for ultra-depth desulfurization, and completed the present invention.

【0008】本発明は、硫黄を含有する石油系炭化水素
の軽油留分を水素化脱硫する際に、第一工程で水素化脱
硫した後に、第二工程でさらに第一工程よりも高圧で水
素化脱硫する水素化脱硫方法である。又、本発明は、上
記方法により得た、硫黄分0.001重量%以下で、セ
イボルトカラー+20以上の軽油である。本発明のその
他の具体的態様と、その作用を以下に詳記する。
According to the present invention, when hydrodesulfurizing a gas oil fraction of a petroleum hydrocarbon containing sulfur, after hydrodesulfurization in the first step, hydrogen is further applied in the second step at a higher pressure than in the first step. This is a hydrodesulfurization method for hydrodesulfurization. Further, the present invention is a light oil obtained by the above method and having a sulfur content of 0.001% by weight or less and a Saybolt color of +20 or more. Other specific embodiments of the present invention and the operation thereof will be described in detail below.

【0009】本発明は、水素化脱硫を進めるに当たっ
て、まず、第一工程で軽油中に含まれる硫黄化合物の
内、アルキルベンゾチオフェン類と4−あるいは6−位
置にアルキル置換基を持たないジベンゾチオフェン類の
脱硫をほぼ完全に達成することが、重要なポイントであ
る。特に、第一工程で硫黄分が0. 05重量%以下にな
るように脱硫すると、アルキルベンゾチオフェン類と4
−あるいは6−位置にアルキル置換基を持たないジベン
ゾチオフェン類の脱硫率は99重量%以上となり、本発
明の効果を最大限に発揮することができる。第一工程の
反応条件は従来の深度脱硫の反応条件である、温度32
0〜380℃、圧力4〜7MPa、LHSV0. 5〜3
-1、水素/ 油比500〜2000scfbの範囲が適
切である。さらに好ましくは、温度330〜360℃、
圧力4〜7MPa、LHSV1. 0〜2h-1、水素/ 油
比1000〜2000scfbの範囲である。本発明で
いうところの反応圧力とは、反応器内の全圧力のことで
ある。触媒としては通常の水素化脱硫触媒、すなわち多
孔質担体にコバルトまたはニッケルとモリブデンまたは
タングステンを担持した触媒が使用できる。好ましく
は、アルミナを主成分とする多孔質担体にコバルトとモ
リブデンを担持した触媒を使用すると、アルキルベンゾ
チオフェン類と4−あるいは6−位置にアルキル置換基
を持たないジベンゾチオフェン類の脱硫速度が速く有利
である。この触媒は、4−メチルジベンゾチオフェンや
4, 6−ジメチルジベンゾチオフェンに対する脱硫活性
は、格別には、高い訳ではないが、それでもこれら難脱
硫性の硫黄化合物もその90重量%以上を脱硫すること
ができる。第一工程で使用する水素は硫化水素を含まな
い水素を使用してもよいが、第二工程出口にて分離回収
した硫化水素を含む水素を使用しても良い。
In the present invention, in the course of hydrodesulfurization, first, among the sulfur compounds contained in the gas oil in the first step, alkylbenzothiophenes and dibenzothiophene having no alkyl substituent at the 4- or 6-position. It is important to achieve almost complete desulfurization of this type. In particular, when desulfurization is performed in the first step so that the sulfur content is 0.05% by weight or less, alkylbenzothiophenes and
The desulfurization rate of dibenzothiophenes having no alkyl substituent at the-or 6-position is 99% by weight or more, and the effects of the present invention can be maximized. The reaction conditions in the first step are the same as those used in conventional deep desulfurization, and the temperature is 32.
0-380 ° C, pressure 4-7MPa, LHSV 0.5-3
A range of h -1 and a hydrogen / oil ratio of 500 to 2000 scfb is appropriate. More preferably, the temperature is 330 to 360 ° C,
The pressure ranges from 4 to 7 MPa, the LHSV ranges from 1.0 to 2 h -1 , and the hydrogen / oil ratio ranges from 1000 to 2000 scfb. The reaction pressure in the present invention refers to the total pressure in the reactor. As the catalyst, an ordinary hydrodesulfurization catalyst, that is, a catalyst in which cobalt or nickel and molybdenum or tungsten are supported on a porous carrier can be used. Preferably, when a catalyst in which cobalt and molybdenum are supported on a porous carrier mainly composed of alumina is used, the desulfurization rate of alkylbenzothiophenes and dibenzothiophenes having no alkyl substituent at the 4- or 6-position is high. It is advantageous. This catalyst does not have a particularly high desulfurization activity for 4-methyldibenzothiophene or 4,6-dimethyldibenzothiophene, but it still desulfurizes at least 90% by weight of these hardly desulfurizable sulfur compounds. Can be. As the hydrogen used in the first step, hydrogen not containing hydrogen sulfide may be used, or hydrogen containing hydrogen sulfide separated and recovered at the outlet of the second step may be used.

【0010】第一工程で水素化脱硫された留出油には、
絶対量としては少量ではあるが4−メチルジベンゾチオ
フェンや4, 6−ジメチルジベンゾチオフェンといった
難脱硫性の硫黄化合物が含まれており、これらの硫黄化
合物は第二工程でさらに脱硫される。ここで、本発明の
最大の特徴的は、第二工程では第一工程よりもさらに高
圧で水素化脱硫することである。本発明者らが鋭意検討
した結果、超深度脱硫を達成するためには反応器全圧を
高くすることが好ましく、さらに1工程の高圧反応より
は、2工程で水素化脱硫し、かつ第二工程の圧力を第一
工程よりも高くすると脱硫反応が促進されるうえ、色相
にも優れた生成油が得られることを見出した。2段工程
を採用する利点は、易脱硫性の硫黄化合物と難脱硫性の
硫黄化合物それぞれに最適な触媒及び反応条件が提供で
きることや、第二工程入り口の水素分圧や硫化水素濃度
を自由に設計・制御することができることである。
The distillate oil hydrodesulfurized in the first step includes:
Although the absolute amount is small, it contains hardly desulfurizable sulfur compounds such as 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene, and these sulfur compounds are further desulfurized in the second step. Here, the most characteristic feature of the present invention is that hydrodesulfurization is performed at a higher pressure in the second step than in the first step. As a result of intensive studies by the present inventors, it is preferable to increase the total pressure of the reactor in order to achieve ultra-depth desulfurization. It has been found that when the pressure in the step is higher than that in the first step, the desulfurization reaction is accelerated and a product oil having excellent hue can be obtained. The advantages of the two-step process are that it can provide the most suitable catalysts and reaction conditions for each of the easily desulfurized sulfur compound and the hardly desulfurized sulfur compound, and can freely control the hydrogen partial pressure and hydrogen sulfide concentration at the entrance of the second step. It can be designed and controlled.

【0011】第二工程における好ましい反応条件は、温
度320〜380℃、圧力10〜15MPa、LHSV
0. 5〜2h-1、水素/ 油比1000〜5000scf
bであり、さらに好ましくは、温度330〜360℃、
圧力10〜15MPa、LHSV0. 5〜2h-1、水素
/ 油比1000〜3000scfbの範囲である。特に
反応圧力に関しては高めに設定する方が脱硫率や色相の
点で良好な結果をもたらす。反応温度はなるべく低めに
設定する方が色相の改善効果が大きく、第一工程よりも
低温に設定することも可能である。
The preferred reaction conditions in the second step are as follows: temperature 320-380 ° C., pressure 10-15 MPa, LHSV
0.5-2 h -1 , hydrogen / oil ratio 1000-5000 scf
b, more preferably, a temperature of 330 to 360 ° C.,
Pressure 10-15 MPa, LHSV 0.5-2 h -1 , hydrogen
/ Oil ratio is in the range of 1000-3000 scfb. In particular, setting the reaction pressure to a higher value gives better results in terms of desulfurization rate and hue. When the reaction temperature is set as low as possible, the effect of improving the hue is greater, and the reaction temperature can be set lower than in the first step.

【0012】第二工程の反応圧力を第一工程よりも高く
するという点は本発明の大きな特徴である。従来技術で
は、製品の着色を防止するために2段工程を採用してい
るものもあるが、これらは前述の通り、反応温度や接触
時間にのみ着目されたもので、反応圧力に関しては全く
注意が払われていなかった。これは、第一工程から第二
工程へ原料および水素ガスを連続的に供給するためで、
本発明においては、連続的に供給しても良いが、一度ガ
ス成分と液成分を分離して、第二工程では硫化水素をほ
とんど含まない新たな水素ガスを供給することにより硫
化水素の水素化脱硫に対する反応阻害効果を取り除くこ
とができる。
The fact that the reaction pressure in the second step is higher than that in the first step is a major feature of the present invention. In the prior art, there are some which employ a two-step process in order to prevent coloring of the product. However, as mentioned above, these are focused only on the reaction temperature and the contact time, and the reaction pressure is very careful. Was not paid. This is to supply the raw material and hydrogen gas continuously from the first step to the second step,
In the present invention, the hydrogen sulfide may be continuously supplied, but once the gas component and the liquid component are separated, and in the second step, a new hydrogen gas containing almost no hydrogen sulfide is supplied to hydrogenate the hydrogen sulfide. The reaction inhibition effect on desulfurization can be eliminated.

【0013】2段工程を採用している従来技術の第二工
程の反応圧力は3〜7MPaを採用しているが、本発明
では好ましい反応圧力を10〜15MPaと限定してお
り、従来全く試みられることのなかった圧力条件下で水
素化脱硫反応を実施する。そのため、従来技術では不安
が残った、製品の着色の問題が完全に解決され、硫黄分
が0. 005重量%以下でありながら、製品の色相はセ
イボルトカラーで0以上であり、実際には+20を超え
る優れた製品が得られる場合がほとんどである。さら
に、10〜15MPaという圧力を採用しているため、
従来技術よりも低温で反応を進めることができ、原料軽
油留分中に含まれている芳香族炭化水素の水素化反応を
熱力学的平衡上有利に進行させることができる。そのた
め、本発明で得られる製品中の芳香族炭化水素の含有率
は従来技術よりも極めて低く、ディーゼル燃料として使
用する際に黒煙の排出の少ない良質の製品を製造するこ
とができる。このように、本発明は従来技術と全く異な
るものであり、それは従来技術では、得らる製品が硫黄
分0. 05重量%、セイボルトカラーで0程度であった
ものが、本発明では硫黄分0. 005重量%以下、セイ
ボルトカラーで+20以上と優れていることからも明ら
かである。
Although the reaction pressure in the second step of the prior art employing a two-step process is 3 to 7 MPa, the preferred reaction pressure is limited to 10 to 15 MPa in the present invention. The hydrodesulfurization reaction is carried out under pressure conditions that have not been achieved. Therefore, the problem of the coloring of the product, which was uneasy in the prior art, was completely solved, and the hue of the product was 0 or more in Saybolt color while the sulfur content was less than 0.005% by weight. In most cases, excellent products exceeding +20 can be obtained. Furthermore, because a pressure of 10 to 15 MPa is adopted,
The reaction can proceed at a lower temperature than in the prior art, and the hydrogenation reaction of aromatic hydrocarbons contained in the feed gas oil fraction can proceed advantageously on thermodynamic equilibrium. Therefore, the content of the aromatic hydrocarbon in the product obtained by the present invention is extremely lower than that of the conventional technology, and a high-quality product with less black smoke emission when used as a diesel fuel can be produced. As described above, the present invention is completely different from the prior art. In the prior art, the product obtained had a sulfur content of 0.05% by weight and a Saybolt color of about 0. It is also evident from the fact that the content is less than 0.005% by weight and the Saybolt color is as excellent as +20 or more.

【0014】第二工程にも通常の脱硫触媒が使用できる
が、4−メチルジベンゾチオフェンや4, 6−ジメチル
ジベンゾチオフェンに対する脱硫活性が高い触媒を使用
する方が好ましく、例えばアルミナ85〜99重量%と
ゼオライト1〜15重量%とを含む多孔質担体にニッケ
ルとモリブデンを担持した触媒が使用できる。アルミナ
とゼオライトとの割合は、さらに好ましくはアルミナが
90〜97重量%、ゼオライトが3〜10重量%であ
る。ただし、この触媒は副反応としてチオールやスルフ
ィドおよび着色物質を生成する特徴がある。そのため、
第二工程の触媒の内、入り口部分から40〜80容量%
にアルミナ85〜99重量%とゼオライト1〜15重量
%とを含む多孔質担体にニッケルとモリブデンを担持し
た触媒を充填し、それに続く残りの部分にアルミナを主
成分とする多孔質担体にコバルトまたはニッケルとモリ
ブデンを担持した触媒を使用すると、ゼオライト含有触
媒によって副生したチオールやスルフィドおよび着色物
質が後段の触媒で水素化処理されて低硫黄分で色相に優
れた軽油が製造できる。
Although a usual desulfurization catalyst can be used in the second step, it is preferable to use a catalyst having a high desulfurization activity for 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene, for example, 85 to 99% by weight of alumina. And a catalyst in which nickel and molybdenum are supported on a porous carrier containing 1% to 15% by weight of zeolite. More preferably, the ratio of alumina to zeolite is 90 to 97% by weight of alumina and 3 to 10% by weight of zeolite. However, this catalyst is characterized in that thiols, sulfides and coloring substances are produced as side reactions. for that reason,
40 to 80% by volume from the entrance of the catalyst in the second step
Is filled with a catalyst in which nickel and molybdenum are supported on a porous support containing 85 to 99% by weight of alumina and 1 to 15% by weight of zeolite. When a catalyst supporting nickel and molybdenum is used, thiols, sulfides, and coloring substances by-produced by the zeolite-containing catalyst are hydrogenated by the subsequent catalyst, so that light oil having a low sulfur content and excellent hue can be produced.

【0015】第二工程では、使用する水素ガスの水素純
度が65容量%以上であり、かつ硫化水素濃度が0. 0
5容量%以下であることが望ましい。さらに好ましく
は、水素純度が70容量%以上であり、かつ硫化水素濃
度が0. 01容量%以下である。これは硫化水素の触媒
活性点への吸着による脱硫反応阻害を防止するためと、
チオールやスルフィドの副生を極力抑制するためであ
る。この水素としては、水素製造装置やガソリンの改質
装置で製造された硫化水素を含まない未使用の水素を使
用してもよいし、第一あるいは第二工程出口で分離され
た水素をアミン吸収装置により硫化水素を除去して使用
してもよい。
In the second step, the hydrogen gas used has a hydrogen purity of 65% by volume or more and a hydrogen sulfide concentration of 0.0%.
It is desirable that the content be 5% by volume or less. More preferably, the hydrogen purity is 70% by volume or more and the hydrogen sulfide concentration is 0.01% by volume or less. This is to prevent the inhibition of the desulfurization reaction due to the adsorption of hydrogen sulfide to the catalytic active site,
This is for minimizing thiol and sulfide by-products. As this hydrogen, unused hydrogen not containing hydrogen sulfide produced in a hydrogen production device or a gasoline reforming device may be used, or hydrogen separated at the first or second step outlet may be subjected to amine absorption. It may be used after removing hydrogen sulfide by an apparatus.

【0016】以上の工程を繰り返し使用し、さらに反応
条件を、圧力10MPa以上、反応温度320〜360
℃、水素/ 油比2000〜5000scfbで、触媒を
第一工程で使用する触媒がアルミナを主成分とする多孔
質担体にコバルトとモリブデンを担持した触媒であり、
第二工程の入り口部分で使用する触媒がアルミナ85〜
99重量%とゼオライト1〜15重量%とを含む多孔質
担体にニッケルとモリブデンを担持した触媒であり、か
つ第二工程の全触媒に対する割合が40〜80容量%で
あり、第二工程の出口部分の触媒がアルミナを主成分と
する多孔質担体にコバルトまたはニッケルとモリブデン
を担持した触媒とすることにより、硫黄分が0.001
重量%以下でかつセイボルトカラーがほとんど+30近
くすることもできる。
The above steps are repeatedly used, and the reaction conditions are set to a pressure of 10 MPa or more and a reaction temperature of 320 to 360.
C., a hydrogen / oil ratio of 2000 to 5000 scfb, wherein the catalyst used in the first step is a catalyst in which cobalt and molybdenum are supported on a porous carrier mainly composed of alumina,
The catalyst used at the entrance of the second step is alumina 85-85.
A catalyst comprising nickel and molybdenum supported on a porous carrier containing 99% by weight and 1 to 15% by weight of zeolite, wherein the ratio of the second step to the total catalyst is 40 to 80% by volume; By using a catalyst in which cobalt or nickel and molybdenum are supported on a porous carrier whose main component is alumina, the sulfur content is 0.001.
% Or less and the Saybolt color can be almost +30.

【0017】本発明に使用する触媒に担持する活性金属
量は、通常の軽油の脱硫触媒に採用されている量を採用
することができる。すなわち担体の重量を100重量部
として(ゼオライト含めた重量)、CoあるいはNiは
酸化物換算で1〜10重量部、好ましくは3〜6重量部
であり、Moは酸化物換算で10〜30重量部、好まし
くは15〜25重量部である。金属量は少ないと活性が
不足し、また触媒の失活速度が大きくなる。一方、多す
ぎても活性が飽和してしまい不経済である。
The amount of the active metal supported on the catalyst used in the present invention may be the amount used in a general diesel fuel desulfurization catalyst. That is, assuming that the weight of the carrier is 100 parts by weight (weight including zeolite), Co or Ni is 1 to 10 parts by weight, preferably 3 to 6 parts by weight in terms of oxide, and Mo is 10 to 30 parts by weight in terms of oxide. Parts, preferably 15 to 25 parts by weight. When the amount of metal is small, the activity becomes insufficient, and the deactivation rate of the catalyst increases. On the other hand, if it is too much, the activity is saturated, which is uneconomical.

【0018】本発明の第二工程にはアルミナ85〜99
重量%とゼオライト1〜15重量%とを含む担体にニッ
ケルとモリブデンを担持した触媒を一部使用するとよい
が、この場合ゼオライトとしてはA型ゼオライト、X型
ゼオライト、Y型ゼオライト、L型ゼオライト、MFI
型ゼオライト、モルデナイト等が使用できる。中でも、
Y型ゼオライトを脱アルミニウムして熱安定を高めたU
SY型ゼオライトが最も好ましい。これらゼオライトは
イオン交換してブレンシュテッド酸点を発現させるが、
プロトン、アルカリ土類金属、希土類金属等でイオン交
換することができる。ゼオライトはアルミナのゲルに混
合して成形して焼成してもよいし、成形したアルミナ担
体にバインダーを用いて付着させてもよい。
In the second step of the present invention, alumina 85 to 99 is used.
It is preferable to use a catalyst in which nickel and molybdenum are supported on a carrier containing 1% to 15% by weight of zeolite. In this case, the zeolite may be A-type zeolite, X-type zeolite, Y-type zeolite, L-type zeolite, MFI
Zeolite, mordenite and the like can be used. Among them,
U with dealuminated Y-type zeolite to improve thermal stability
SY-type zeolites are most preferred. These zeolites undergo ion exchange to develop Bronsted acid sites,
Ion exchange can be performed with protons, alkaline earth metals, rare earth metals, and the like. The zeolite may be mixed with an alumina gel, molded and calcined, or may be attached to the molded alumina carrier using a binder.

【0019】各水素化域の触媒として、脱硫活性等を改
善するために少量の各種改質成分を加えた触媒を使用し
てもさしつかえない。たとえば、燐を加えると金属の分
散が良くなるとともにブレンシュテッド酸点が増加する
ため、難脱硫性の4−メチルジベンゾチオフェンや4,
6−ジメチルジベンゾチオフェンの脱硫活性が向上する
ので、第二工程の入り口部分の触媒に加えると効果があ
る場合がある。一方、カリウムやマグネシウムの添加は
ブレンシュテッド酸点を減少させチオールやスルフィド
の生成を抑制するので、第二工程の出口部分の触媒に加
えると効果がある場合がある。
As a catalyst in each hydrogenation zone, a catalyst to which small amounts of various reforming components are added in order to improve desulfurization activity and the like may be used. For example, the addition of phosphorus improves the dispersion of the metal and increases the Bronsted acid sites, so that 4-methyldibenzothiophene and 4,4
Since the desulfurization activity of 6-dimethyldibenzothiophene is improved, it may be effective when added to the catalyst at the entrance of the second step. On the other hand, the addition of potassium or magnesium reduces the Bronsted acid point and suppresses the production of thiols and sulfides, and thus may be effective when added to the catalyst at the outlet of the second step.

【0020】本発明が適用できる軽油は、直留軽油、接
触分解軽油、熱分解軽油等の沸点範囲200〜380℃
の留分である。本発明は沸点のさらに高い減圧軽油の脱
硫にも有効である。原料油に含まれる硫黄分の量は特に
限定されないが、通常の直留軽油の場合は1〜2重量%
程度である。生成油の硫黄分の量は必要に応じて任意に
定めることができ、反応温度、圧力、液空間速度等の反
応条件を最適化することにより必要とされる脱硫率を達
成できる。本発明で脱硫された軽油は、軽油自動車用レ
ギュラーあるいはプレミアムディーゼル燃料として使用
できる。また、A重油等に混合して使用することもでき
る。
The light oil to which the present invention can be applied is a straight-run gas oil, a catalytic cracking gas oil, a pyrolysis gas oil, etc., having a boiling point range of 200 to 380 ° C.
It is a fraction. The present invention is also effective for desulfurization of vacuum oil having a higher boiling point. The amount of sulfur contained in the feedstock is not particularly limited, but in the case of ordinary straight-run gas oil, it is 1-2% by weight.
It is about. The amount of sulfur in the produced oil can be arbitrarily determined as needed, and the required desulfurization rate can be achieved by optimizing reaction conditions such as reaction temperature, pressure, and liquid hourly space velocity. The light oil desulfurized by the present invention can be used as a regular or premium diesel fuel for light oil vehicles. It can also be used by mixing with heavy oil A or the like.

【0021】本発明の第一および第二の各工程では、従
来から知られているいかなる様式の反応器、例えば固定
床、移動床いずれでも良く、ダウンフロー式、アップフ
ロー式いずれでもよい。これらの中で最も適しているの
は、固定床ダウンフロー式反応器である。これは従来か
ら軽油の脱硫に用いられている反応器様式であるため、
従来の装置をそのまま使用することができる。反応器は
通常1反応器を複数の触媒ベットに分けたものが使用で
きる。1および2の各工程は通常反応器は1器づつであ
るが、必要に応じて複数の反応器を直列あるいは並列に
設置したものを使用してもさしつかえない。反応器内は
液体と気体が共存するいわゆるトリクルベットであるた
め、各触媒ベットの上には液体を均一に分散させるディ
ストリビューターを設置することが望ましい。また発熱
状況により、クウェンチ水素を最適な場所で導入して発
熱を制御してもよい。実際の装置には、押し出し成形し
た触媒が使用され、触媒は従来の方法によって反応器に
ソック充填またはデンス充填される。触媒を予備硫化し
た後、水素とともに加熱した原料油を触媒を充填した反
応器に通油する。使用済の触媒は通常の焼成再生処理に
よって繰り返し使用しても差し支えない。
In each of the first and second steps of the present invention, a reactor of any type conventionally known, for example, any of a fixed bed and a moving bed may be used, and a down flow type and an up flow type may be used. The most suitable of these is a fixed bed down-flow reactor. Since this is a reactor type conventionally used for gas oil desulfurization,
Conventional devices can be used as they are. In general, a reactor in which one reactor is divided into a plurality of catalyst beds can be used. In each of the steps 1 and 2, the number of reactors is usually one. However, if necessary, a plurality of reactors may be used in series or in parallel. Since the inside of the reactor is a so-called trickle bed in which liquid and gas coexist, it is desirable to provide a distributor for uniformly dispersing the liquid on each catalyst bed. Further, depending on the heat generation state, quench hydrogen may be introduced at an optimum place to control the heat generation. In actual equipment, an extruded catalyst is used, and the catalyst is sock-filled or dense-filled in a conventional manner. After pre-sulfurizing the catalyst, the feed oil heated with hydrogen is passed through a reactor filled with the catalyst. The used catalyst may be used repeatedly by normal calcination and regeneration treatment.

【0022】[0022]

【実施例】本発明を実施例によりさらに詳細に説明す
る。 実施例1 第一工程として、内径1インチの固定床ダウンフロー式
反応器の反応管にγ−アルミナ担体100重量部に対し
てコバルト5 重量部(CoO換算)とモリブデン20重
量部(MoO3 換算)を担持した触媒を300ml充填
した。この触媒をジメチルジスルフィドを含む直留灯油
(硫黄分3重量%)を用いて300℃、5MPa、LH
SV1h-1、水素/ 油比1000scfbの条件下で、
4時間、予備硫化した後、中東系の直留軽油(沸点23
0〜360℃、硫黄分1. 30重量%)を水素と共に、
温度340℃、圧力5MPa、LHSV1h-1、水素/
油比1000scfbの条件で通油して脱硫した。生成
油の硫黄分は0. 048重量%であった。さらに第二工
程として、内径1インチの、固定床ダウンフロー式反応
器の反応管の上層部にγ−アルミナ97重量%とプロト
ン交換USY型ゼオライト3重量%とを含む担体にニッ
ケル3重量部(NiO換算)とモリブデン20重量部
(MoO3 換算)を担持した触媒を200ml充填し、
下層部にはγ−アルミナ担体にコバルト5 重量部(Co
O換算)とモリブデン20重量部(MoO3 換算)を担
持した触媒を100ml充填した。この触媒をジメチル
ジスルフィドを含む直留灯油(硫黄分3重量%)を用い
て300℃、12MPa、LHSV1h-1、水素/ 油比
1000scfbの条件下で、4 時間、予備硫化した
後、第一反応器の生成油を水素と共に、温度335℃、
圧力12MPa、LHSV1h-1、水素/油比2000
scfbの条件で通油して脱硫した。生成油の硫黄分は
0. 004重量%、色はセイボルトカラー(JISK−
2580)で+22の軽油を製造した。
EXAMPLES The present invention will be described in more detail with reference to Examples. Example 1 As a first step, 5 parts by weight of cobalt (in terms of CoO) and 20 parts by weight of molybdenum (in terms of MoO 3 ) were added to 100 parts by weight of γ-alumina carrier in a reaction tube of a fixed-bed down-flow reactor having an inner diameter of 1 inch. ) Was loaded in an amount of 300 ml. This catalyst was prepared by using a straight-run kerosene containing dimethyl disulfide (sulfur content: 3% by weight) at 300 ° C., 5 MPa, LH
Under the conditions of SV1h -1 and a hydrogen / oil ratio of 1000 scfb,
After pre-sulfurization for 4 hours, a Middle Eastern straight-run gas oil (boiling point 23
0-360 ° C, sulfur content 1.30% by weight) with hydrogen
Temperature 340 ° C, pressure 5MPa, LHSV1h -1 , hydrogen /
Oil was passed under the condition of an oil ratio of 1000 scfb to perform desulfurization. The sulfur content of the produced oil was 0.048% by weight. Further, as a second step, a carrier containing 97% by weight of γ-alumina and 3% by weight of proton-exchanged USY zeolite in the upper layer of the reaction tube of a fixed-bed down-flow type reactor having an inner diameter of 1 inch and 3 parts by weight of nickel ( 200 ml of a catalyst supporting NiO) and 20 parts by weight of molybdenum (MoO 3 ) were filled,
In the lower part, 5 parts by weight of cobalt (Co
100 ml of a catalyst carrying 20 parts by weight of molybdenum (in terms of MoO 3 ) and 20 parts by weight (in terms of MoO 3 ). This catalyst was pre-sulfided for 4 hours under the conditions of 300 ° C., 12 MPa, LHSV 1 h −1 , and hydrogen / oil ratio of 1,000 scfb using a straight-run kerosene containing dimethyl disulfide (sulfur content: 3% by weight), followed by a first reaction. The oil produced in the vessel together with hydrogen was at a temperature of 335 ° C.
Pressure 12MPa, LHSV1h -1 , hydrogen / oil ratio 2000
Desulfurization was performed by passing oil under the condition of scfb. The sulfur content of the produced oil is 0.004% by weight, and the color is Saybolt Color (JISK-
2580) to produce a +22 light oil.

【0023】実施例2 実施例1の触媒に替えて、第一反応器および第二反応器
にγ−アルミナ担体100重量部に対してニッケル5 重
量部(NiO換算)とモリブデン20重量部(MoO3
換算)を担持した触媒をそれぞれ300mlづつ充填し
た。この両反応器の触媒を実施例1と同様に予備硫化
し、実施例1の軽油を用いて、温度350℃、圧力6M
Pa、LHSV1h-1、水素/ 油比1000scfbの
条件で水素と共に通油して脱硫した。第一反応器生成油
の硫黄分は0. 041重量%であった。第一反応器生成
油をさらに第二反応器で実施例1と同一条件で脱硫し、
硫黄分0. 005重量%、色はセイボルトカラーで+2
4の軽油を製造した。
Example 2 Instead of the catalyst of Example 1, 5 parts by weight of nickel (in terms of NiO) and 20 parts by weight of molybdenum (MoO) were used in the first and second reactors per 100 parts by weight of the γ-alumina carrier. Three
(Converted) were loaded in 300 ml portions. The catalysts of both reactors were presulfurized in the same manner as in Example 1, and the gas oil of Example 1 was used at a temperature of 350 ° C. and a pressure of 6M.
Desulfurization was performed by passing oil along with hydrogen under the conditions of Pa, LHSV 1 h -1 , and a hydrogen / oil ratio of 1000 scfb. The sulfur content of the first reactor produced oil was 0.041% by weight. The oil produced in the first reactor is further desulfurized in the second reactor under the same conditions as in Example 1,
Sulfur content 0.005% by weight, color is Saybolt color +2
No. 4 light oil was produced.

【0024】実施例3 中東系の直留軽油(沸点224〜368℃、硫黄分1.
41重量%)80容量%と、接触分解軽油(沸点212
〜345℃、硫黄分0. 23重量%)10容量%と、直
脱分解軽油(沸点181〜346℃、硫黄分0. 08重
量%)10容量%とを混合した。この混合軽油を実施例
1と同一の触媒を同量充填した第一反応器で、水素と共
に、温度350℃、圧力3MPa、LHSV2h-1、水
素/ 油比1000scfbの条件で通油して脱硫した。
生成油の硫黄分は0. 13重量%であった。さらに第二
反応器として、内径1インチの反応管の上層部にアモル
ファスシリカアルミナ90重量%とプロトン交換USY
型ゼオライト10重量%とを含む担体にニッケル4重量
部(NiO換算)とタングステン20重量部(WO3
算)を担持した触媒を200ml充填し、下層部にはγ
−アルミナ担体にコバルト5重量部(CoO換算)とモ
リブデン20重量部(MoO3 換算)を担持した触媒を
100ml充填した。この触媒をジメチルジスルフィド
を含む直留灯油(硫黄分3重量%)を用いて300℃、
12MPa、LHSV1h-1、水素/ 油比1000sc
fbの条件下で、4 時間、予備硫化した後、前述の脱硫
軽油と水素を温度350℃、圧力12MPa、LHSV
1h-1、水素/ 油比2000scfbの条件で通油して
脱硫した。生成油の硫黄分は0. 005重量%、色はセ
イボルトカラーで+20の軽油を製造した。
Example 3 Middle Eastern straight-run gas oil (boiling point: 224 to 368 ° C., sulfur content: 1.
41% by weight) and 80% by volume of catalytic cracking gas oil (boiling point 212
The mixture was mixed with 10% by volume (-345 ° C, 0.23% by weight of sulfur) and 10% by volume of directly decomposed gas oil (boiling point: 181-346 ° C, 0.08% by weight of sulfur). This mixed gas oil was desulfurized in a first reactor filled with the same amount of the same catalyst as in Example 1 by passing it along with hydrogen under the conditions of a temperature of 350 ° C., a pressure of 3 MPa, a LHSV of 2 h −1 , and a hydrogen / oil ratio of 1000 scfb. .
The sulfur content of the produced oil was 0.13% by weight. Further, as a second reactor, 90% by weight of amorphous silica alumina and proton exchange USY
Nickel 4 parts by weight of a carrier comprising a mold zeolite 10 wt% (NiO conversion) and tungsten 20 parts by weight (WO 3 equivalent) supporting a catalyst and 200ml filling, the lower part γ
- Cobalt 5 parts by weight of alumina support (CoO conversion) and molybdenum 20 parts by weight of (MoO 3 conversion) supporting a catalyst and 100ml filled. This catalyst was heated to 300 ° C. using straight-run kerosene containing dimethyl disulfide (3% by weight of sulfur).
12MPa, LHSV1h- 1 , hydrogen / oil ratio 1000sc
After presulfurizing for 4 hours under the condition of fb, the desulfurized gas oil and hydrogen were heated at 350 ° C., pressure 12 MPa, LHSV
Desulfurization was performed by passing the oil under the conditions of 1 h -1 and a hydrogen / oil ratio of 2000 scfb. A gas oil having a sulfur content of 0.005% by weight and a color of +20 in Saybolt color was produced.

【0025】比較例1 実施例1で使用した反応管に、γ−アルミナ97重量%
とプロトン交換USY型ゼオライト3重量%とを含む担
体にニッケル3重量部(NiO換算)とモリブデン20
重量部(MoO3 換算)を担持した触媒を600ml充
填した。ジメチルジスルフィドを含む直留灯油(硫黄分
3重量%)を用いて300℃、5MPa、LHSV1h
-1、水素/ 油比1000scfbの条件下で、4 時間、
予備硫化した後、実施例1で使用した軽油を温度340
℃、圧力10MPa、LHSV0. 5h-1、水素/ 油比
2000scfbの条件で通油して脱硫した。生成油の
硫黄分は0. 024重量%であり、色はセイボルトカラ
ーで−10であった。
Comparative Example 1 97% by weight of γ-alumina was added to the reaction tube used in Example 1.
3 parts by weight (in terms of NiO) of nickel and 3 parts by weight of molybdenum 20
The catalyst supporting 600 parts by weight (in terms of MoO 3 ) was filled with 600 ml. 300 ° C., 5 MPa, LHSV 1 h using straight-run kerosene containing dimethyl disulfide (sulfur content: 3% by weight)
-1 under a hydrogen / oil ratio of 1000 scfb for 4 hours,
After pre-sulfurization, the light oil used in Example 1 was heated to a temperature of 340.
Desulfurization was carried out by passing oil at a temperature of 10 ° C., a pressure of 10 MPa, an LHSV of 0.5 h −1 , and a hydrogen / oil ratio of 2000 scfb. The sulfur content of the produced oil was 0.024% by weight, and the color was -10 in Saybolt color.

【0026】比較例2 実施例1で使用した反応管に、γ−アルミナ担体100
重量部に対してコバルト5 重量部(CoO換算)とモリ
ブデン20重量部(MoO3 換算)を担持した触媒を6
00ml充填した。この触媒を比較例1と同様に予備硫
化し、実施例1の軽油を通油して比較例1と同一条件で
脱硫した。生成油の硫黄分は0. 029重量%であり、
色はセイボルトカラーで+15であった。
Comparative Example 2 A γ-alumina carrier 100 was added to the reaction tube used in Example 1.
6 parts by weight of a catalyst supporting 5 parts by weight of cobalt (in terms of CoO) and 20 parts by weight of molybdenum (in terms of MoO 3 ) per part by weight.
00 ml was filled. This catalyst was pre-sulfurized in the same manner as in Comparative Example 1, passed through the light oil of Example 1, and desulfurized under the same conditions as in Comparative Example 1. The sulfur content of the produced oil was 0.029% by weight,
The color was +15 in Saybolt color.

【0027】比較例3 比較例1の触媒に実施例3の混合軽油を通油して水素化
脱硫した。反応条件は温度360℃、圧力10MPa、
LHSV0. 5h-1、水素/ 油比2000scfbであ
る。生成油の硫黄分は0. 013重量%であり、色はセ
イボルトカラーで−15であった。
Comparative Example 3 The mixed gas oil of Example 3 was passed through the catalyst of Comparative Example 1 for hydrodesulfurization. The reaction conditions were a temperature of 360 ° C., a pressure of 10 MPa,
The LHSV is 0.5 h -1 and the hydrogen / oil ratio is 2000 scfb. The sulfur content of the produced oil was 0.013% by weight, and the color was -15 in Saybolt color.

【0028】比較例4 実施例1と同様の原料油、触媒、反応条件にて第一反応
器で脱硫した。この生成油を実施例1と同様の触媒を充
填した第二反応器で、第一反応器の生成油を水素と共
に、温度320℃、圧力5MPa、LHSV0. 5
-1、水素/ 油比2000scfbの条件で通油して脱
硫した。生成油の硫黄分は0. 024重量%、色はセイ
ボルトカラーで+10であった。
Comparative Example 4 Desulfurization was carried out in the first reactor under the same starting oil, catalyst and reaction conditions as in Example 1. In a second reactor filled with the produced oil and the same catalyst as in Example 1, the produced oil in the first reactor was mixed with hydrogen at a temperature of 320 ° C., a pressure of 5 MPa, and an LHSV of 0.5.
The oil was passed under a condition of h -1 and a hydrogen / oil ratio of 2000 scfb to perform desulfurization. The sulfur content of the produced oil was 0.024% by weight, and the color was +10 in Saybolt color.

【0029】[0029]

【発明の効果】硫黄を含有する石油系炭化水素の軽油留
分の水素化脱硫を行う際に、本発明を採用することによ
り低硫黄分( 硫黄分含有量0.005重量%以下) で色
相にも優れた軽油が製造できる。
According to the present invention, when performing hydrodesulfurization of a gas oil fraction of a sulfur-containing petroleum hydrocarbon, a low sulfur content (sulfur content 0.005% by weight or less) and a hue. Excellent light oil can be produced.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA03 AA15 BA01A BA01B BA07A BA07B BC59A BC59B BC67A BC67B BC68A BC68B CC02 DA06 EA18 EC22Y ZA05B 4H029 CA00 DA00 DA09  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4G069 AA03 AA15 BA01A BA01B BA07A BA07B BC59A BC59B BC67A BC67B BC68A BC68B CC02 DA06 EA18 EC22Y ZA05B 4H029 CA00 DA00 DA09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 硫黄分0.005重量%以下で、セイボ
ルトカラー+20以上の軽油。
1. A light oil having a sulfur content of 0.005% by weight or less and a Saybolt color +20 or more.
【請求項2】 硫黄分0.001重量%以下で、セイボ
ルトカラー+20以上の軽油。
2. A light oil having a sulfur content of 0.001% by weight or less and a Saybolt color +20 or more.
【請求項3】 硫黄を含有する石油系炭化水素の軽油留
分を水素化脱硫する際に、第一工程で水素化脱硫した後
に、第二工程でさらに第一工程よりも高圧で水素化脱硫
する、軽油の水素化脱硫方法。
3. When hydrodesulfurizing a gas oil fraction of a petroleum hydrocarbon containing sulfur, after hydrodesulfurization in a first step, hydrodesulfurization is performed in a second step at a higher pressure than in the first step. The method for hydrodesulfurization of gas oil.
【請求項4】 第一工程の水素化脱硫により原料油の硫
黄分を0. 05重量%以下とした後に、第二工程でさら
に第一工程よりも高圧で水素化脱硫する、請求項3記載
の軽油の水素化脱硫方法。
4. The method according to claim 3, wherein the sulfur content of the feed oil is reduced to 0.05% by weight or less by the hydrodesulfurization in the first step, and then the hydrodesulfurization is further performed in the second step at a higher pressure than in the first step. Method of hydrodesulfurization of diesel oil.
【請求項5】 第一工程の反応条件が、温度320〜3
80℃、圧力4〜7MPa、LHSV0. 5〜3h-1
水素/ 油比500〜2000scfbであり、第二工程
の反応条件が、温度320〜380℃、圧力10〜15
MPa、LHSV0. 5〜2h-1、水素/ 油比1000
〜5000scfbである、請求項3又は4記載の軽油
の水素化脱硫方法。
5. The reaction condition of the first step is a temperature of 320 to 3
80 ° C., pressure 4 to 7 MPa, LHSV 0.5 to 3 h −1 ,
The hydrogen / oil ratio is 500-2000 scfb, and the reaction conditions in the second step are as follows: temperature 320-380 ° C., pressure 10-15.
MPa, LHSV 0.5-2h -1 , hydrogen / oil ratio 1000
The method for hydrodesulfurization of gas oil according to claim 3 or 4, wherein the amount is from 5000 scfb.
【請求項6】 第一工程で使用する触媒が、アルミナを
主成分とする多孔質担体にコバルトとモリブデンを担持
した触媒であり、第二工程の入り口部分で使用する触媒
がアルミナ85〜99重量%とゼオライト1〜15重量
%とを含む多孔質担体にニッケルとモリブデンを担持し
た触媒であり、かつ第二工程の全触媒に対する割合が4
0〜80容量%であり、第二工程の出口部分の触媒がア
ルミナを主成分とする多孔質担体にコバルトまたはニッ
ケルとモリブデンを担持した触媒である、請求項3〜5
記載の軽油の水素化脱硫方法。
6. The catalyst used in the first step is a catalyst in which cobalt and molybdenum are supported on a porous carrier mainly composed of alumina, and the catalyst used at the entrance of the second step is 85 to 99% by weight of alumina. % Nickel and molybdenum on a porous carrier containing 1% to 15% by weight of zeolite and a ratio of 4 to the total catalyst in the second step.
The catalyst at the outlet of the second step is a catalyst in which cobalt or nickel and molybdenum are supported on a porous carrier mainly composed of alumina.
The method for hydrodesulfurization of light oil according to the above.
【請求項7】 第二工程で使用する水素ガスの水素純度
が65容量%以上であり、かつ硫化水素濃度が0. 05
容量%以下である、請求項3〜5記載の軽油の水素化脱
硫方法。
7. The hydrogen gas used in the second step has a hydrogen purity of 65% by volume or more and a hydrogen sulfide concentration of 0.05%.
The method for hydrodesulfurization of gas oil according to claim 3, which is not more than% by volume.
JP28291398A 1998-10-05 1998-10-05 Hydrodesulfurization method of light oil Expired - Fee Related JP4282118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28291398A JP4282118B2 (en) 1998-10-05 1998-10-05 Hydrodesulfurization method of light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28291398A JP4282118B2 (en) 1998-10-05 1998-10-05 Hydrodesulfurization method of light oil

Publications (2)

Publication Number Publication Date
JP2000109860A true JP2000109860A (en) 2000-04-18
JP4282118B2 JP4282118B2 (en) 2009-06-17

Family

ID=17658744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28291398A Expired - Fee Related JP4282118B2 (en) 1998-10-05 1998-10-05 Hydrodesulfurization method of light oil

Country Status (1)

Country Link
JP (1) JP4282118B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010314A1 (en) * 2000-07-28 2002-02-07 Japan Energy Corporation Process for super deep desulfurization of light oil fraction
JP2002146365A (en) * 2000-11-13 2002-05-22 Kashima Oil Co Ltd Method for producing desulfurized light oil and the resultant light oil
JP2003531274A (en) * 2000-04-20 2003-10-21 エクソンモービル リサーチ アンド エンジニアリング カンパニー Production of low sulfur distillate
JP2003342587A (en) * 2002-03-20 2003-12-03 Idemitsu Kosan Co Ltd Method for producing deep-desulfurized light oil
JP2007146184A (en) * 2000-07-28 2007-06-14 Japan Energy Corp Super-depth desulfurization process of gas oil fraction
JP2008266420A (en) * 2007-04-18 2008-11-06 Cosmo Oil Co Ltd Method for hydrogenating gas oil
WO2010103838A1 (en) * 2009-03-13 2010-09-16 新日本石油株式会社 Process for producing low-sulfur gas-oil base, and low-sulfur gas oil
EP2468841A1 (en) 2010-12-24 2012-06-27 Shell Internationale Research Maatschappij B.V. Diesel oil composition containing fluorenes and acenaphthylenes

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531274A (en) * 2000-04-20 2003-10-21 エクソンモービル リサーチ アンド エンジニアリング カンパニー Production of low sulfur distillate
WO2002010314A1 (en) * 2000-07-28 2002-02-07 Japan Energy Corporation Process for super deep desulfurization of light oil fraction
JP2007146184A (en) * 2000-07-28 2007-06-14 Japan Energy Corp Super-depth desulfurization process of gas oil fraction
JP2002146365A (en) * 2000-11-13 2002-05-22 Kashima Oil Co Ltd Method for producing desulfurized light oil and the resultant light oil
JP2003342587A (en) * 2002-03-20 2003-12-03 Idemitsu Kosan Co Ltd Method for producing deep-desulfurized light oil
JP2008266420A (en) * 2007-04-18 2008-11-06 Cosmo Oil Co Ltd Method for hydrogenating gas oil
WO2010103838A1 (en) * 2009-03-13 2010-09-16 新日本石油株式会社 Process for producing low-sulfur gas-oil base, and low-sulfur gas oil
JPWO2010103838A1 (en) * 2009-03-13 2012-09-13 Jx日鉱日石エネルギー株式会社 Method for producing low sulfur gas oil base and low sulfur gas oil
JP5417329B2 (en) * 2009-03-13 2014-02-12 Jx日鉱日石エネルギー株式会社 Method for producing low sulfur gas oil base and low sulfur gas oil
US9416323B2 (en) 2009-03-13 2016-08-16 Jx Nippon Oil & Energy Corporation Process for producing low-sulfur gas oil fraction, and low-sulfur gas oil
EP2468841A1 (en) 2010-12-24 2012-06-27 Shell Internationale Research Maatschappij B.V. Diesel oil composition containing fluorenes and acenaphthylenes
US8920629B2 (en) 2010-12-24 2014-12-30 Shell Oil Company Diesel oil composition

Also Published As

Publication number Publication date
JP4282118B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP3868128B2 (en) Gas oil hydrodesulfurization apparatus and method
JP3871449B2 (en) Hydrodesulfurization method of light oil
US6334948B1 (en) Process for producing gasoline with a low sulphur content
US8128809B2 (en) Ring opening process
EP1506270B1 (en) Multi-stage hydrodesulfurization of cracked naphtha streams with a stacked bed reactor
JP4233154B2 (en) Hydrodesulfurization method of light oil
US7220352B2 (en) Selective hydrodesulfurization of naphtha streams
JPH10505127A (en) Gasoline reforming method
US7288181B2 (en) Producing low sulfur naphtha products through improved olefin isomerization
KR100362299B1 (en) Desulfurization Method of Catalytic Gasoline
JP4282118B2 (en) Hydrodesulfurization method of light oil
JP2003183676A (en) Method for producing low-sulfur gasoline
US20050023191A1 (en) Process to manufacture low sulfur fuels
US20050032629A1 (en) Catalyst system to manufacture low sulfur fuels
JP3744698B2 (en) Process for hydrogenating polycyclic aromatic hydrocarbons
CA2616979C (en) Ring opening process
US20050023190A1 (en) Process to manufacture low sulfur fuels
EP1663485A2 (en) A catalyst system and its use in manufacturing low sulfur fuels
JPH08333582A (en) Desulfurization of catalytically cracked gasoline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees