JP4282118B2 - Hydrodesulfurization method of light oil - Google Patents

Hydrodesulfurization method of light oil Download PDF

Info

Publication number
JP4282118B2
JP4282118B2 JP28291398A JP28291398A JP4282118B2 JP 4282118 B2 JP4282118 B2 JP 4282118B2 JP 28291398 A JP28291398 A JP 28291398A JP 28291398 A JP28291398 A JP 28291398A JP 4282118 B2 JP4282118 B2 JP 4282118B2
Authority
JP
Japan
Prior art keywords
catalyst
weight
oil
hydrodesulfurization
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28291398A
Other languages
Japanese (ja)
Other versions
JP2000109860A (en
Inventor
重人 畑中
修 定兼
英 壱岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP28291398A priority Critical patent/JP4282118B2/en
Publication of JP2000109860A publication Critical patent/JP2000109860A/en
Application granted granted Critical
Publication of JP4282118B2 publication Critical patent/JP4282118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、硫黄を含有する石油系炭化水素の軽油留分を水素化脱硫する際に特定の工程の組合せ、反応装置構成、触媒、かつ特定の反応条件で軽油を超深度脱硫する方法、及びその方法により得た、優れた性状の軽油に関する。
【0002】
【従来の技術】
原油の蒸留によって得られる直留軽油や重油の分解によって得られる分解軽油は硫黄化合物を含んでおり、その量は硫黄として1〜3重量%である。硫黄化合物を含む軽油をディーゼル燃料として使用するとSOxとして大気中に排出され環境を汚染する。そのため通常これら軽油は水素化脱硫処理され硫黄化合物を除去した後に燃料として使用される。ディーゼル燃料に含まれる硫黄分の量はJIS規格でその許容値が0. 05重量%以下と定められており、この値を達成するために大型のいわゆる深度脱硫装置が建設され使用されている。さらに今後、排気ガス中のNOxを還元処理する浄化触媒をディーゼル車に搭載したり、排気ガスの一部を循環再使用(EGR)するためにはさらに硫黄分の量を低下させる技術、すなわち超深度脱硫技術が必要であるといわれている。
【0003】
従来、軽油の脱硫にはアルミナ担体にコバルトあるいはニッケルとモリブデンを担持した触媒が使用されてきた。しかしながら、この従来触媒では4−メチルジベンゾチオフェンや4, 6−ジメチルジベンゾチオフェンが脱硫され難く、脱硫された製品の硫黄含有量が0. 05重量%あるいはそれ以下のレベルまで脱硫するためには反応温度や圧力を非常に高くしなければならず、装置の建設コストや運転コストが極めて大きくなるという問題点がある。
これら難脱硫性の硫黄化合物に対して脱硫活性を高める方法として、触媒の担体にリンやホウ素を含有させた触媒(特開昭52−13503号)やゼオライトを担体に加えた触媒(特開平7−197039)などが報告されている。これらの触媒にはブレンシュテッド酸点が存在し、(ジ)メチルジベンゾチオフェンのメチル基を異性化したりフェニル基を水素化する能力が高く、4−メチルジベンゾチオフェンや4, 6−ジメチルジベンゾチオフェンの脱硫に対して高い活性を示す。
【0004】
しかし、これらの高性能触媒も0. 05重量%程度のレベルまでのいわゆる深度脱硫を想定して研究されたもので、さらに低い、例えば0. 005重量%といったレベルまでの超深度水素化脱硫に関する研究に用いられたことはなく、実際本発明者らの研究によっても、これら触媒を従来のプロセスに組み合わせて使用しただけでは0. 005重量%というレベルまでの脱硫はほとんど不可能であることがわかった。反応装置の面から深度脱硫を達成する研究もなされている。例えば、特開平5−78670には反応条件の異なる2段階の反応によって色相を悪化させることなく深度脱硫を行う方法が提案されており、同じ2段階の反応プロセスでも特開平5−202369では、第二反応器の空間速度を第一反応器の空間速度よりも遅くするプロセスが提案されている。また、特開平6−25677では、第二反応器の温度を第一反応器の温度よりも低くするプロセスが提案されている。
【0005】
しかしながら前述の新規高性能触媒には大きな問題点がある。すなわち、アルキルベンゾチオフェン類や4−あるいは6−位置にアルキル置換基を持たないジベンゾチオフェン類、例えばジベンゾチオフェン、1−、2−または3−メチルベンゾチオフェン等に対しては、触媒の担体にリンやゼオライトを担体に加えた触媒は、従来から使用されてきたアルミナ担体にコバルトとモリブデンを担持した触媒より脱硫活性が低い欠点がある(F. van Looijら, Applied Catalysis A: General 170, 1-12 (1998) )。すなわち、種々の硫黄化合物が含まれる石油の軽油留分の脱硫には必ずしも有効とはいえない。また、ブレンシュテッド酸点が存在するため、製品が着色しやすく、オレフィンを含む原料を使用する場合や350℃以上の高温で反応に用いた場合はチオールやスルフィドが生成して脱硫率が低下してしまう場合もある。さらにブレンシュテッド酸点でオレフィン成分が重合してコーク析出し、触媒の失活が速いという大きな問題点がある。原料油にオレフィンが含まれていない場合でも、硫黄化合物が脱硫される場合にはオレフィンを生成するのでコークの析出の原因となる。このことは、チオフェンを通油した場合のコーキング速度がオレフィンや芳香族を通油した場合のコーキング速度の10倍にも達することからも理解できる (Catalysis Review, 24, (3), 343 (1982))。
また前述の装置面の改善からの提案にしても、反応条件の異なる2段階の反応によって色相を悪化させることなく深度脱硫を行う方法は、色相の改善には効果があるものの深度脱硫をさらに進める効果はほとんどなく、0. 005重量%というレベルまでの脱硫は全く考慮されておらず、超深度脱硫への対応として提案されたプロセスとは言い難い。
【0006】
【発明が解決しようとする課題】
本発明の目的は、前記従来の問題点を解決し、従来に比べてはるかに硫黄含有分を少なくし、又着色を少なくした軽油と、その軽油を得るための超深度脱硫方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは前記の課題を解決するため、鋭意研究した結果、特定の工程の組合せ、及び装置構成、特定の反応条件、特定の触媒を用いることにより軽油を超深度脱硫する方法を見出し、本発明を完成するに至った。
【0008】
本発明は、硫黄を含有する石油系炭化水素の軽油留分を水素化脱硫する際に、第一工程で水素化脱硫した後に、第二工程でさらに第一工程よりも高圧で水素化脱硫する水素化脱硫方法である。
又、本発明は、上記方法により得た、硫黄分0.001重量%以下で、セイボルトカラー+20以上の軽油である。
本発明のその他の具体的態様と、その作用を以下に詳記する。
【0009】
本発明は、水素化脱硫を進めるに当たって、まず、第一工程で軽油中に含まれる硫黄化合物の内、アルキルベンゾチオフェン類と4−あるいは6−位置にアルキル置換基を持たないジベンゾチオフェン類の脱硫をほぼ完全に達成することが、重要なポイントである。特に、第一工程で硫黄分が0. 05重量%以下になるように脱硫すると、アルキルベンゾチオフェン類と4−あるいは6−位置にアルキル置換基を持たないジベンゾチオフェン類の脱硫率は99重量%以上となり、本発明の効果を最大限に発揮することができる。
第一工程の反応条件は従来の深度脱硫の反応条件である、温度320〜380℃、圧力4〜7MPa、LHSV0. 5〜3h-1、水素/ 油比500〜2000scfbの範囲が適切である。さらに好ましくは、温度330〜360℃、圧力4〜7MPa、LHSV1. 0〜2h-1、水素/ 油比1000〜2000scfbの範囲である。本発明でいうところの反応圧力とは、反応器内の全圧力のことである。
触媒としては通常の水素化脱硫触媒、すなわち多孔質担体にコバルトまたはニッケルとモリブデンまたはタングステンを担持した触媒が使用できる。好ましくは、アルミナを主成分とする多孔質担体にコバルトとモリブデンを担持した触媒を使用すると、アルキルベンゾチオフェン類と4−あるいは6−位置にアルキル置換基を持たないジベンゾチオフェン類の脱硫速度が速く有利である。この触媒は、4−メチルジベンゾチオフェンや4, 6−ジメチルジベンゾチオフェンに対する脱硫活性は、格別には、高い訳ではないが、それでもこれら難脱硫性の硫黄化合物もその90重量%以上を脱硫することができる。第一工程で使用する水素は硫化水素を含まない水素を使用してもよいが、第二工程出口にて分離回収した硫化水素を含む水素を使用しても良い。
【0010】
第一工程で水素化脱硫された留出油には、絶対量としては少量ではあるが4−メチルジベンゾチオフェンや4, 6−ジメチルジベンゾチオフェンといった難脱硫性の硫黄化合物が含まれており、これらの硫黄化合物は第二工程でさらに脱硫される。ここで、本発明の最大の特徴的は、第二工程では第一工程よりもさらに高圧で水素化脱硫することである。本発明者らが鋭意検討した結果、超深度脱硫を達成するためには反応器全圧を高くすることが好ましく、さらに1工程の高圧反応よりは、2工程で水素化脱硫し、かつ第二工程の圧力を第一工程よりも高くすると脱硫反応が促進されるうえ、色相にも優れた生成油が得られることを見出した。2段工程を採用する利点は、易脱硫性の硫黄化合物と難脱硫性の硫黄化合物それぞれに最適な触媒及び反応条件が提供できることや、第二工程入り口の水素分圧や硫化水素濃度を自由に設計・制御することができることである。
【0011】
第二工程における好ましい反応条件は、温度320〜380℃、圧力10〜15MPa、LHSV0. 5〜2h-1、水素/ 油比1000〜5000scfbであり、さらに好ましくは、温度330〜360℃、圧力10〜15MPa、LHSV0. 5〜2h-1、水素/ 油比1000〜3000scfbの範囲である。特に反応圧力に関しては高めに設定する方が脱硫率や色相の点で良好な結果をもたらす。反応温度はなるべく低めに設定する方が色相の改善効果が大きく、第一工程よりも低温に設定することも可能である。
【0012】
第二工程の反応圧力を第一工程よりも高くするという点は本発明の大きな特徴である。従来技術では、製品の着色を防止するために2段工程を採用しているものもあるが、これらは前述の通り、反応温度や接触時間にのみ着目されたもので、反応圧力に関しては全く注意が払われていなかった。これは、第一工程から第二工程へ原料および水素ガスを連続的に供給するためで、本発明においては、連続的に供給しても良いが、一度ガス成分と液成分を分離して、第二工程では硫化水素をほとんど含まない新たな水素ガスを供給することにより硫化水素の水素化脱硫に対する反応阻害効果を取り除くことができる。
【0013】
2段工程を採用している従来技術の第二工程の反応圧力は3〜7MPaを採用しているが、本発明では好ましい反応圧力を10〜15MPaと限定しており、従来全く試みられることのなかった圧力条件下で水素化脱硫反応を実施する。そのため、従来技術では不安が残った、製品の着色の問題が完全に解決され、硫黄分が0. 005重量%以下でありながら、製品の色相はセイボルトカラーで0以上であり、実際には+20を超える優れた製品が得られる場合がほとんどである。さらに、10〜15MPaという圧力を採用しているため、従来技術よりも低温で反応を進めることができ、原料軽油留分中に含まれている芳香族炭化水素の水素化反応を熱力学的平衡上有利に進行させることができる。そのため、本発明で得られる製品中の芳香族炭化水素の含有率は従来技術よりも極めて低く、ディーゼル燃料として使用する際に黒煙の排出の少ない良質の製品を製造することができる。このように、本発明は従来技術と全く異なるものであり、それは従来技術では、得らる製品が硫黄分0. 05重量%、セイボルトカラーで0程度であったものが、本発明では硫黄分0. 005重量%以下、セイボルトカラーで+20以上と優れていることからも明らかである。
【0014】
第二工程にも通常の脱硫触媒が使用できるが、4−メチルジベンゾチオフェンや4, 6−ジメチルジベンゾチオフェンに対する脱硫活性が高い触媒を使用する方が好ましく、例えばアルミナ85〜99重量%とゼオライト1〜15重量%とを含む多孔質担体にニッケルとモリブデンを担持した触媒が使用できる。アルミナとゼオライトとの割合は、さらに好ましくはアルミナが90〜97重量%、ゼオライトが3〜10重量%である。ただし、この触媒は副反応としてチオールやスルフィドおよび着色物質を生成する特徴がある。そのため、第二工程の触媒の内、入り口部分から40〜80容量%にアルミナ85〜99重量%とゼオライト1〜15重量%とを含む多孔質担体にニッケルとモリブデンを担持した触媒を充填し、それに続く残りの部分にアルミナを主成分とする多孔質担体にコバルトまたはニッケルとモリブデンを担持した触媒を使用すると、ゼオライト含有触媒によって副生したチオールやスルフィドおよび着色物質が後段の触媒で水素化処理されて低硫黄分で色相に優れた軽油が製造できる。
【0015】
第二工程では、使用する水素ガスの水素純度が65容量%以上であり、かつ硫化水素濃度が0. 05容量%以下であることが望ましい。さらに好ましくは、水素純度が70容量%以上であり、かつ硫化水素濃度が0. 01容量%以下である。これは硫化水素の触媒活性点への吸着による脱硫反応阻害を防止するためと、チオールやスルフィドの副生を極力抑制するためである。この水素としては、水素製造装置やガソリンの改質装置で製造された硫化水素を含まない未使用の水素を使用してもよいし、第一あるいは第二工程出口で分離された水素をアミン吸収装置により硫化水素を除去して使用してもよい。
【0016】
以上の工程を繰り返し使用し、さらに反応条件を、圧力10MPa以上、反応温度320〜360℃、水素/ 油比2000〜5000scfbで、触媒を第一工程で使用する触媒がアルミナを主成分とする多孔質担体にコバルトとモリブデンを担持した触媒であり、第二工程の入り口部分で使用する触媒がアルミナ85〜99重量%とゼオライト1〜15重量%とを含む多孔質担体にニッケルとモリブデンを担持した触媒であり、かつ第二工程の全触媒に対する割合が40〜80容量%であり、第二工程の出口部分の触媒がアルミナを主成分とする多孔質担体にコバルトまたはニッケルとモリブデンを担持した触媒とすることにより、硫黄分が0.001重量%以下でかつセイボルトカラーがほとんど+30近くすることもできる。
【0017】
本発明に使用する触媒に担持する活性金属量は、通常の軽油の脱硫触媒に採用されている量を採用することができる。すなわち担体の重量を100重量部として(ゼオライト含めた重量)、CoあるいはNiは酸化物換算で1〜10重量部、好ましくは3〜6重量部であり、Moは酸化物換算で10〜30重量部、好ましくは15〜25重量部である。金属量は少ないと活性が不足し、また触媒の失活速度が大きくなる。一方、多すぎても活性が飽和してしまい不経済である。
【0018】
本発明の第二工程にはアルミナ85〜99重量%とゼオライト1〜15重量%とを含む担体にニッケルとモリブデンを担持した触媒を一部使用するとよいが、この場合ゼオライトとしてはA型ゼオライト、X型ゼオライト、Y型ゼオライト、L型ゼオライト、MFI型ゼオライト、モルデナイト等が使用できる。中でも、Y型ゼオライトを脱アルミニウムして熱安定を高めたUSY型ゼオライトが最も好ましい。これらゼオライトはイオン交換してブレンシュテッド酸点を発現させるが、プロトン、アルカリ土類金属、希土類金属等でイオン交換することができる。
ゼオライトはアルミナのゲルに混合して成形して焼成してもよいし、成形したアルミナ担体にバインダーを用いて付着させてもよい。
【0019】
各水素化域の触媒として、脱硫活性等を改善するために少量の各種改質成分を加えた触媒を使用してもさしつかえない。たとえば、燐を加えると金属の分散が良くなるとともにブレンシュテッド酸点が増加するため、難脱硫性の4−メチルジベンゾチオフェンや4, 6−ジメチルジベンゾチオフェンの脱硫活性が向上するので、第二工程の入り口部分の触媒に加えると効果がある場合がある。一方、カリウムやマグネシウムの添加はブレンシュテッド酸点を減少させチオールやスルフィドの生成を抑制するので、第二工程の出口部分の触媒に加えると効果がある場合がある。
【0020】
本発明が適用できる軽油は、直留軽油、接触分解軽油、熱分解軽油等の沸点範囲200〜380℃の留分である。本発明は沸点のさらに高い減圧軽油の脱硫にも有効である。
原料油に含まれる硫黄分の量は特に限定されないが、通常の直留軽油の場合は1〜2重量%程度である。生成油の硫黄分の量は必要に応じて任意に定めることができ、反応温度、圧力、液空間速度等の反応条件を最適化することにより必要とされる脱硫率を達成できる。
本発明で脱硫された軽油は、軽油自動車用レギュラーあるいはプレミアムディーゼル燃料として使用できる。また、A重油等に混合して使用することもできる。
【0021】
本発明の第一および第二の各工程では、従来から知られているいかなる様式の反応器、例えば固定床、移動床いずれでも良く、ダウンフロー式、アップフロー式いずれでもよい。これらの中で最も適しているのは、固定床ダウンフロー式反応器である。これは従来から軽油の脱硫に用いられている反応器様式であるため、従来の装置をそのまま使用することができる。反応器は通常1反応器を複数の触媒ベットに分けたものが使用できる。1および2の各工程は通常反応器は1器づつであるが、必要に応じて複数の反応器を直列あるいは並列に設置したものを使用してもさしつかえない。反応器内は液体と気体が共存するいわゆるトリクルベットであるため、各触媒ベットの上には液体を均一に分散させるディストリビューターを設置することが望ましい。また発熱状況により、クウェンチ水素を最適な場所で導入して発熱を制御してもよい。実際の装置には、押し出し成形した触媒が使用され、触媒は従来の方法によって反応器にソック充填またはデンス充填される。触媒を予備硫化した後、水素とともに加熱した原料油を触媒を充填した反応器に通油する。使用済の触媒は通常の焼成再生処理によって繰り返し使用しても差し支えない。
【0022】
【実施例】
本発明を実施例によりさらに詳細に説明する。
実施例1
第一工程として、内径1インチの固定床ダウンフロー式反応器の反応管にγ−アルミナ担体100重量部に対してコバルト5 重量部(CoO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を300ml充填した。この触媒をジメチルジスルフィドを含む直留灯油(硫黄分3重量%)を用いて300℃、5MPa、LHSV1h-1、水素/ 油比1000scfbの条件下で、4時間、予備硫化した後、中東系の直留軽油(沸点230〜360℃、硫黄分1. 30重量%)を水素と共に、温度340℃、圧力5MPa、LHSV1h-1、水素/ 油比1000scfbの条件で通油して脱硫した。生成油の硫黄分は0. 048重量%であった。
さらに第二工程として、内径1インチの、固定床ダウンフロー式反応器の反応管の上層部にγ−アルミナ97重量%とプロトン交換USY型ゼオライト3重量%とを含む担体にニッケル3重量部(NiO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を200ml充填し、下層部にはγ−アルミナ担体にコバルト5 重量部(CoO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を100ml充填した。この触媒をジメチルジスルフィドを含む直留灯油(硫黄分3重量%)を用いて300℃、12MPa、LHSV1h-1、水素/ 油比1000scfbの条件下で、4 時間、予備硫化した後、第一反応器の生成油を水素と共に、温度335℃、圧力12MPa、LHSV1h-1、水素/ 油比2000scfbの条件で通油して脱硫した。生成油の硫黄分は0. 004重量%、色はセイボルトカラー(JISK−2580)で+22の軽油を製造した。
【0023】
実施例2
実施例1の触媒に替えて、第一反応器および第二反応器にγ−アルミナ担体100重量部に対してニッケル5 重量部(NiO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒をそれぞれ300mlづつ充填した。この両反応器の触媒を実施例1と同様に予備硫化し、実施例1の軽油を用いて、温度350℃、圧力6MPa、LHSV1h-1、水素/ 油比1000scfbの条件で水素と共に通油して脱硫した。第一反応器生成油の硫黄分は0. 041重量%であった。
第一反応器生成油をさらに第二反応器で実施例1と同一条件で脱硫し、硫黄分0. 005重量%、色はセイボルトカラーで+24の軽油を製造した。
【0024】
実施例3
中東系の直留軽油(沸点224〜368℃、硫黄分1. 41重量%)80容量%と、接触分解軽油(沸点212〜345℃、硫黄分0. 23重量%)10容量%と、直脱分解軽油(沸点181〜346℃、硫黄分0. 08重量%)10容量%とを混合した。
この混合軽油を実施例1と同一の触媒を同量充填した第一反応器で、水素と共に、温度350℃、圧力3MPa、LHSV2h-1、水素/ 油比1000scfbの条件で通油して脱硫した。生成油の硫黄分は0. 13重量%であった。
さらに第二反応器として、内径1インチの反応管の上層部にアモルファスシリカアルミナ90重量%とプロトン交換USY型ゼオライト10重量%とを含む担体にニッケル4重量部(NiO換算)とタングステン20重量部(WO3 換算)を担持した触媒を200ml充填し、下層部にはγ−アルミナ担体にコバルト5 重量部(CoO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を100ml充填した。この触媒をジメチルジスルフィドを含む直留灯油(硫黄分3重量%)を用いて300℃、12MPa、LHSV1h-1、水素/ 油比1000scfbの条件下で、4 時間、予備硫化した後、前述の脱硫軽油と水素を温度350℃、圧力12MPa、LHSV1h-1、水素/ 油比2000scfbの条件で通油して脱硫した。生成油の硫黄分は0. 005重量%、色はセイボルトカラーで+20の軽油を製造した。
【0025】
比較例1
実施例1で使用した反応管に、γ−アルミナ97重量%とプロトン交換USY型ゼオライト3重量%とを含む担体にニッケル3重量部(NiO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を600ml充填した。ジメチルジスルフィドを含む直留灯油(硫黄分3重量%)を用いて300℃、5MPa、LHSV1h-1、水素/ 油比1000scfbの条件下で、4 時間、予備硫化した後、実施例1で使用した軽油を温度340℃、圧力10MPa、LHSV0. 5h-1、水素/ 油比2000scfbの条件で通油して脱硫した。生成油の硫黄分は0. 024重量%であり、色はセイボルトカラーで−10であった。
【0026】
比較例2
実施例1で使用した反応管に、γ−アルミナ担体100重量部に対してコバルト5 重量部(CoO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を600ml充填した。この触媒を比較例1と同様に予備硫化し、実施例1の軽油を通油して比較例1と同一条件で脱硫した。生成油の硫黄分は0. 029重量%であり、色はセイボルトカラーで+15であった。
【0027】
比較例3
比較例1の触媒に実施例3の混合軽油を通油して水素化脱硫した。反応条件は温度360℃、圧力10MPa、LHSV0. 5h-1、水素/ 油比2000scfbである。生成油の硫黄分は0. 013重量%であり、色はセイボルトカラーで−15であった。
【0028】
比較例4
実施例1と同様の原料油、触媒、反応条件にて第一反応器で脱硫した。この生成油を実施例1と同様の触媒を充填した第二反応器で、第一反応器の生成油を水素と共に、温度320℃、圧力5MPa、LHSV0. 5h-1、水素/ 油比2000scfbの条件で通油して脱硫した。生成油の硫黄分は0. 024重量%、色はセイボルトカラーで+10であった。
【0029】
【発明の効果】
硫黄を含有する石油系炭化水素の軽油留分の水素化脱硫を行う際に、本発明を採用することにより低硫黄分( 硫黄分含有量0.005重量%以下) で色相にも優れた軽油が製造できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for ultra-deep desulfurization of diesel oil under specific reaction combinations, reactor configuration, catalyst, and specific reaction conditions when hydrodesulfurizing a petroleum hydrocarbon gas oil fraction containing sulfur, and The present invention relates to a light oil having excellent properties obtained by the method.
[0002]
[Prior art]
A straight-run gas oil obtained by distillation of crude oil or a cracked gas oil obtained by cracking heavy oil contains a sulfur compound, and the amount thereof is 1 to 3% by weight as sulfur. When diesel oil containing sulfur compounds is used as diesel fuel, it is discharged into the atmosphere as SOx and pollutes the environment. Therefore, these light oils are usually used as fuel after hydrodesulfurization treatment to remove sulfur compounds. The amount of sulfur contained in diesel fuel is stipulated in the JIS standard as an allowable value of 0.05% by weight or less, and a large so-called deep desulfurization apparatus has been constructed and used to achieve this value. In the future, in order to install a purification catalyst that reduces NOx in exhaust gas in diesel vehicles and to recycle (EGR) part of the exhaust gas, a technology that further reduces the sulfur content, It is said that deep desulfurization technology is necessary.
[0003]
Conventionally, a catalyst in which cobalt or nickel and molybdenum are supported on an alumina carrier has been used for desulfurization of light oil. However, with this conventional catalyst, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene are not easily desulfurized, and in order to desulfurize the sulfur content of the desulfurized product to a level of 0.05% by weight or less, a reaction is required. There is a problem that the temperature and pressure must be very high, and the construction cost and operating cost of the apparatus become extremely high.
As a method for enhancing the desulfurization activity for these difficult desulfurization sulfur compounds, a catalyst in which phosphorus or boron is contained in a catalyst carrier (Japanese Patent Laid-Open No. 52-13503) or a catalyst in which a zeolite is added to a carrier (Japanese Patent Laid-Open No. 7-1993) -197039) has been reported. These catalysts have Bronsted acid sites and have a high ability to isomerize the methyl group of (di) methyldibenzothiophene or to hydrogenate the phenyl group. 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene High activity against desulfurization.
[0004]
However, these high-performance catalysts were also studied on the assumption of so-called deep desulfurization up to a level of about 0.05% by weight, and are related to ultra-depth hydrodesulfurization down to a lower level, for example, 0.005% by weight. It has never been used for research, and in fact, it has been found by the present inventors that desulfurization to a level of 0.005% by weight is almost impossible only by using these catalysts in combination with conventional processes. all right. Research has also been done to achieve deep desulfurization from the standpoint of the reactor. For example, Japanese Patent Laid-Open No. 5-78670 proposes a method of performing deep desulfurization without deteriorating the hue by a two-stage reaction with different reaction conditions. In the same two-stage reaction process, Japanese Patent Laid-Open No. 5-202369 describes A process has been proposed in which the space velocity of the two reactors is slower than the space velocity of the first reactor. Japanese Patent Application Laid-Open No. 6-256777 proposes a process in which the temperature of the second reactor is made lower than the temperature of the first reactor.
[0005]
However, the above-mentioned new high performance catalyst has a big problem. That is, for alkylbenzothiophenes and dibenzothiophenes that do not have an alkyl substituent at the 4- or 6-position, such as dibenzothiophene, 1-, 2-, or 3-methylbenzothiophene, phosphorus is used as the catalyst support. And zeolite-supported catalysts have the disadvantage that their desulfurization activity is lower than that of conventionally supported alumina supports on cobalt and molybdenum (F. van Looij et al., Applied Catalysis A: General 170, 1- 12 (1998)). In other words, it is not necessarily effective for desulfurization of petroleum gas oil fractions containing various sulfur compounds. In addition, because of the presence of Brensted acid sites, products are easy to color, and when using raw materials containing olefins or when used in reactions at temperatures higher than 350 ° C, thiols and sulfides are produced and the desulfurization rate decreases. There is also a case where it ends up. Further, the olefin component is polymerized at the Bronsted acid point and coke is precipitated, which causes a serious problem that the deactivation of the catalyst is fast. Even when the olefin is not contained in the feed oil, if the sulfur compound is desulfurized, olefin is produced, which causes coke precipitation. This can be understood from the fact that the coking speed when thiophene is passed is 10 times the coking speed when olefin or aromatic is passed (Catalysis Review, 24, (3), 343 (1982 )).
Moreover, even if the proposal is based on the improvement of the above-described apparatus, the method of performing the deep desulfurization without deteriorating the hue by the two-stage reaction with different reaction conditions is effective in improving the hue, but further promotes the deep desulfurization. There is almost no effect, desulfurization to the level of 0.005% by weight is not considered at all, and it is difficult to say that the process has been proposed as a response to ultra-deep desulfurization.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned conventional problems, and to provide a light oil having a much lower sulfur content and less coloring than the conventional one, and an ultra-deep desulfurization method for obtaining the light oil. It is in.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found a method for ultra-deep desulfurization of light oil by using a specific combination of steps and apparatus configuration, specific reaction conditions, and a specific catalyst, The present invention has been completed.
[0008]
In the present invention, when hydrodesulfurizing a petroleum hydrocarbon gas oil fraction containing sulfur, hydrodesulfurization is performed at a higher pressure than the first step after the hydrodesulfurization in the first step. This is a hydrodesulfurization method.
Further, the present invention is a light oil having a sulfur content of 0.001% by weight or less and a Saybolt color +20 or more obtained by the above method.
Other specific embodiments of the present invention and the operation thereof will be described in detail below.
[0009]
In proceeding with hydrodesulfurization, the present invention first desulfurizes alkylbenzothiophenes and dibenzothiophenes having no alkyl substituent at the 4- or 6-position among the sulfur compounds contained in the gas oil in the first step. It is an important point to achieve almost completely. In particular, when desulfurization is performed so that the sulfur content is 0.05% by weight or less in the first step, the desulfurization rate of alkylbenzothiophenes and dibenzothiophenes having no alkyl substituent at the 4- or 6-position is 99% by weight. Thus, the effects of the present invention can be maximized.
The reaction conditions of the first step are the conventional deep desulfurization reaction conditions of temperature 320 to 380 ° C., pressure 4 to 7 MPa, LHSV 0.5 to 3 h −1 , and hydrogen / oil ratio 500 to 2000 scfb. More preferably, the temperature ranges from 330 to 360 ° C., the pressure ranges from 4 to 7 MPa, the LHSV ranges from 1.0 to 2 h −1 , and the hydrogen / oil ratio ranges from 1000 to 2000 scfb. The reaction pressure as used in the field of this invention is the total pressure in a reactor.
As the catalyst, an ordinary hydrodesulfurization catalyst, that is, a catalyst in which cobalt or nickel and molybdenum or tungsten are supported on a porous carrier can be used. Preferably, when a catalyst having cobalt and molybdenum supported on a porous carrier mainly composed of alumina is used, the desulfurization rate of alkylbenzothiophenes and dibenzothiophenes having no alkyl substituent at the 4- or 6-position is high. It is advantageous. This catalyst is not particularly high in desulfurization activity for 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene, but it still desulfurizes 90% by weight or more of these hardly desulfurized sulfur compounds. Can do. Hydrogen that does not contain hydrogen sulfide may be used as the hydrogen used in the first step, but hydrogen that contains hydrogen sulfide separated and recovered at the outlet of the second step may be used.
[0010]
The distillate oil hydrodesulfurized in the first step contains hardly desulfurizable sulfur compounds such as 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene, although the absolute amount is small. This sulfur compound is further desulfurized in the second step. Here, the greatest characteristic of the present invention is that hydrodesulfurization is performed in the second step at a higher pressure than in the first step. As a result of intensive studies by the present inventors, it is preferable to increase the total pressure in the reactor in order to achieve ultra-deep desulfurization. It has been found that when the pressure in the process is higher than that in the first process, the desulfurization reaction is promoted and a product oil excellent in hue can be obtained. The advantage of adopting the two-stage process is that it can provide the optimum catalyst and reaction conditions for each of the easily desulfurized sulfur compound and the hardly desulfurized sulfur compound, and freely adjust the hydrogen partial pressure and hydrogen sulfide concentration at the second process inlet. It can be designed and controlled.
[0011]
Preferred reaction conditions in the second step are a temperature of 320 to 380 ° C., a pressure of 10 to 15 MPa, LHSV 0.5 to 2 h −1 , a hydrogen / oil ratio of 1000 to 5000 scfb, and more preferably a temperature of 330 to 360 ° C. and a pressure of 10 -15 MPa, LHSV 0.5-2 h -1 , hydrogen / oil ratio 1000-3000 scfb. In particular, when the reaction pressure is set higher, better results are obtained in terms of desulfurization rate and hue. Setting the reaction temperature as low as possible has a greater effect of improving the hue, and can be set at a lower temperature than in the first step.
[0012]
The point that the reaction pressure in the second step is higher than that in the first step is a great feature of the present invention. Some of the conventional technologies employ a two-stage process to prevent product coloring, but as mentioned above, these focus only on the reaction temperature and contact time. Was not paid. This is to continuously supply the raw material and hydrogen gas from the first step to the second step, and in the present invention, it may be continuously supplied, but once the gas component and liquid component are separated, In the second step, the reaction inhibiting effect on hydrodesulfurization of hydrogen sulfide can be removed by supplying new hydrogen gas containing almost no hydrogen sulfide.
[0013]
Although the reaction pressure in the second step of the prior art that employs a two-stage process employs 3 to 7 MPa, in the present invention, the preferred reaction pressure is limited to 10 to 15 MPa, which has never been attempted before. The hydrodesulfurization reaction is carried out under pressure conditions that did not exist. Therefore, the problem of coloring of the product, which remained uneasy with the prior art, has been completely solved, and the hue of the product is 0 or more in Saybolt color while the sulfur content is 0.005% by weight or less. In most cases, excellent products exceeding +20 are obtained. Furthermore, since a pressure of 10 to 15 MPa is adopted, the reaction can proceed at a temperature lower than that of the prior art, and the hydrogenation reaction of aromatic hydrocarbons contained in the feed gas oil fraction is thermodynamically balanced. It is possible to proceed advantageously. Therefore, the aromatic hydrocarbon content in the product obtained by the present invention is much lower than that of the prior art, and a high-quality product with less black smoke emission can be produced when used as a diesel fuel. In this way, the present invention is completely different from the prior art. In the prior art, the product obtained was 0.05% by weight of sulfur and about 0 for Saybolt color. It is also clear from the fact that the minute is 0.005% by weight or less, and the Seybolt color is +20 or more.
[0014]
A normal desulfurization catalyst can also be used in the second step, but it is preferable to use a catalyst having a high desulfurization activity for 4-methyldibenzothiophene or 4,6-dimethyldibenzothiophene. For example, 85 to 99% by weight of alumina and zeolite 1 A catalyst in which nickel and molybdenum are supported on a porous carrier containing ˜15% by weight can be used. The ratio of alumina to zeolite is more preferably 90 to 97% by weight for alumina and 3 to 10% by weight for zeolite. However, this catalyst is characterized by producing thiols, sulfides and colored substances as side reactions. Therefore, among the catalysts in the second step, a catalyst in which nickel and molybdenum are supported on a porous carrier containing 85 to 99% by weight of alumina and 1 to 15% by weight of zeolite in 40 to 80% by volume from the inlet portion, When the catalyst that supports cobalt or nickel and molybdenum on the porous support mainly composed of alumina is used in the remaining part, thiols, sulfides, and colored substances by-produced by the zeolite-containing catalyst are hydrotreated by the latter catalyst. Thus, a light oil having a low sulfur content and an excellent hue can be produced.
[0015]
In the second step, it is desirable that the hydrogen gas used has a hydrogen purity of 65% by volume or more and a hydrogen sulfide concentration of 0.05% by volume or less. More preferably, the hydrogen purity is 70% by volume or more and the hydrogen sulfide concentration is 0.01% by volume or less. This is to prevent desulfurization reaction inhibition due to adsorption of hydrogen sulfide to the catalyst active site and to suppress by-product formation of thiol and sulfide as much as possible. As this hydrogen, it is possible to use unused hydrogen that does not contain hydrogen sulfide produced by a hydrogen production device or a gasoline reforming device, or absorbs hydrogen separated at the first or second step outlet as an amine. You may use it, removing hydrogen sulfide with an apparatus.
[0016]
The above steps are used repeatedly, and the reaction conditions are a pressure of 10 MPa or more, a reaction temperature of 320 to 360 ° C., a hydrogen / oil ratio of 2000 to 5000 scfb, and the catalyst used in the first step is a porous material mainly composed of alumina. A catalyst in which cobalt and molybdenum are supported on a porous support, and nickel and molybdenum are supported on a porous support in which the catalyst used at the entrance of the second step contains 85 to 99% by weight of alumina and 1 to 15% by weight of zeolite. Catalyst having a ratio of 40 to 80% by volume with respect to the total catalyst in the second step, and a catalyst in which the catalyst at the outlet of the second step carries cobalt or nickel and molybdenum on a porous carrier mainly composed of alumina. By doing so, the sulfur content can be 0.001% by weight or less and the Seybolt color can be almost +30.
[0017]
The amount of the active metal supported on the catalyst used in the present invention may be the amount employed for a normal light oil desulfurization catalyst. That is, assuming that the weight of the carrier is 100 parts by weight (weight including zeolite), Co or Ni is 1 to 10 parts by weight, preferably 3 to 6 parts by weight in terms of oxide, and Mo is 10 to 30 parts by weight in terms of oxide. Parts, preferably 15 to 25 parts by weight. If the amount of metal is small, the activity is insufficient and the deactivation rate of the catalyst is increased. On the other hand, if too much, the activity is saturated, which is uneconomical.
[0018]
In the second step of the present invention, a catalyst in which nickel and molybdenum are supported on a support containing 85 to 99% by weight of alumina and 1 to 15% by weight of zeolite is preferably used. X-type zeolite, Y-type zeolite, L-type zeolite, MFI-type zeolite, mordenite and the like can be used. Among them, USY type zeolite obtained by dealumination of Y type zeolite to improve thermal stability is most preferable. These zeolites are ion-exchanged to develop Bronsted acid sites, but can be ion-exchanged with protons, alkaline earth metals, rare earth metals, and the like.
Zeolite may be mixed with alumina gel, molded and fired, or may be adhered to the molded alumina support using a binder.
[0019]
As a catalyst in each hydrogenation zone, a catalyst with a small amount of various reforming components added to improve the desulfurization activity or the like may be used. For example, when phosphorus is added, the dispersion of the metal is improved and the Bronsted acid point is increased, so that the desulfurization activity of hardly desulfurizable 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene is improved. It may be effective if added to the catalyst at the entrance of the process. On the other hand, the addition of potassium or magnesium reduces the Bronsted acid point and suppresses the formation of thiols and sulfides, so it may be effective when added to the catalyst at the outlet portion of the second step.
[0020]
The light oil to which the present invention can be applied is a fraction having a boiling point range of 200 to 380 ° C. such as straight-run light oil, catalytic cracking light oil, and pyrolysis light oil. The present invention is also effective for desulfurization of vacuum gas oil having a higher boiling point.
The amount of sulfur contained in the feed oil is not particularly limited, but is about 1 to 2% by weight in the case of ordinary straight-run gas oil. The amount of sulfur in the product oil can be arbitrarily determined as necessary, and the required desulfurization rate can be achieved by optimizing reaction conditions such as reaction temperature, pressure, liquid space velocity and the like.
The light oil desulfurized in the present invention can be used as a regular or premium diesel fuel for light oil vehicles. It can also be used by mixing with A heavy oil or the like.
[0021]
In each of the first and second steps of the present invention, any conventionally known type of reactor, such as a fixed bed or a moving bed, may be used, and either a downflow type or an upflow type may be used. Most suitable among these are fixed bed downflow reactors. Since this is a reactor type conventionally used for desulfurization of light oil, a conventional apparatus can be used as it is. A reactor in which one reactor is usually divided into a plurality of catalyst beds can be used. Each of the steps 1 and 2 usually has one reactor, but a plurality of reactors installed in series or in parallel may be used if necessary. Since the reactor is a so-called trickle bed in which liquid and gas coexist, it is desirable to install a distributor that uniformly disperses the liquid on each catalyst bed. Depending on the heat generation situation, quench hydrogen may be introduced at an optimal location to control the heat generation. In an actual apparatus, an extruded catalyst is used, and the catalyst is socked or densely charged into the reactor by conventional methods. After presulfiding the catalyst, the raw material oil heated together with hydrogen is passed through a reactor filled with the catalyst. The spent catalyst may be used repeatedly by ordinary calcination regeneration treatment.
[0022]
【Example】
The invention is explained in more detail by means of examples.
Example 1
As a first step, 5 parts by weight of cobalt (CoO equivalent) and 20 parts by weight of molybdenum (MoO 3 equivalent) are supported on 100 parts by weight of γ-alumina support in the reaction tube of a fixed bed down flow reactor having an inner diameter of 1 inch. 300 ml of the catalyst prepared was charged. This catalyst was presulfided for 4 hours under conditions of 300 ° C., 5 MPa, LHSV1h −1 , hydrogen / oil ratio of 1000 scfb using straight-run kerosene containing dimethyl disulfide (sulfur content: 3% by weight). Straight-run gas oil (boiling point 230-360 ° C., sulfur content 1.30 wt%) was desulfurized by passing it with hydrogen under the conditions of temperature 340 ° C., pressure 5 MPa, LHSV 1 h −1 , hydrogen / oil ratio 1000 scfb. The sulfur content of the product oil was 0.048% by weight.
Furthermore, as a second step, 3 parts by weight of nickel (3 parts by weight of nickel on a carrier containing 97% by weight of γ-alumina and 3% by weight of proton-exchanged USY zeolite in the upper layer of a reaction tube of a fixed bed downflow reactor having an inner diameter of 1 inch ( 200 ml of a catalyst supporting NiO equivalent) and 20 parts by weight of molybdenum (MoO 3 equivalent) is filled, and the lower part is 5 parts by weight of cobalt (CoO equivalent) and 20 parts by weight of molybdenum (MoO 3 equivalent) on the γ-alumina carrier. 100 ml of the supported catalyst was charged. This catalyst was presulfided for 4 hours under the conditions of 300 ° C, 12 MPa, LHSV 1 h -1 , hydrogen / oil ratio 1000 scfb using straight-run kerosene containing dimethyl disulfide (sulfur content 3 wt%), then the first reaction The oil produced in the vessel was desulfurized with hydrogen under conditions of a temperature of 335 ° C., a pressure of 12 MPa, LHSV 1 h −1 , and a hydrogen / oil ratio of 2000 scfb. The oil produced had a sulfur content of 0.004% by weight and a color of Saybolt color (JISK-2580) and +22 light oil.
[0023]
Example 2
Instead of the catalyst of Example 1, 5 parts by weight of nickel (converted to NiO) and 20 parts by weight of molybdenum (converted to MoO 3 ) were loaded on the first reactor and the second reactor with respect to 100 parts by weight of the γ-alumina support. Each 300 ml of catalyst was charged. The catalyst of both reactors was presulfided in the same manner as in Example 1 and passed with hydrogen under the conditions of temperature 350 ° C., pressure 6 MPa, LHSV 1 h −1 , hydrogen / oil ratio 1000 scfb using the light oil of Example 1. And desulfurized. The sulfur content of the first reactor product oil was 0.041% by weight.
The first reactor product oil was further desulfurized in the second reactor under the same conditions as in Example 1 to produce a diesel oil with a sulfur content of 0.005% by weight and a color of Saybolt color +24.
[0024]
Example 3
80% by volume of Middle Eastern straight oil (boiling point 224-368 ° C, sulfur content 1.41% by weight) and 10% by volume of catalytic cracking gas oil (boiling point 212-345 ° C, sulfur content 0.23% by weight) 10% by volume of decracked light oil (boiling point: 181 to 346 ° C., sulfur content: 0.08% by weight) was mixed.
This mixed gas oil was desulfurized in a first reactor filled with the same amount of the same catalyst as in Example 1 together with hydrogen under conditions of a temperature of 350 ° C., a pressure of 3 MPa, LHSV 2 h −1 , and a hydrogen / oil ratio of 1000 scfb. . The sulfur content of the product oil was 0.13% by weight.
Furthermore, as a second reactor, 4 parts by weight of nickel (in terms of NiO) and 20 parts by weight of tungsten are formed on a carrier containing 90% by weight of amorphous silica alumina and 10% by weight of proton exchanged USY zeolite in the upper layer of a 1-inch inner diameter reaction tube. 200 ml of the catalyst carrying (WO 3 equivalent) was filled, and the lower layer was filled with 100 ml of the catalyst carrying 5 parts by weight of cobalt (CoO equivalent) and 20 parts by weight of molybdenum (MoO 3 equivalent) on the γ-alumina carrier. This catalyst was presulfurized for 4 hours under conditions of 300 ° C., 12 MPa, LHSV 1 h −1 , hydrogen / oil ratio 1000 scfb using straight-run kerosene containing dimethyl disulfide (sulfur content 3% by weight), and then the above-mentioned desulfurization Gas oil and hydrogen were desulfurized by passing oil under conditions of a temperature of 350 ° C., a pressure of 12 MPa, LHSV 1 h −1 , and a hydrogen / oil ratio of 2000 scfb. The resulting oil produced a diesel oil with a sulfur content of 0.005% by weight and a color of Saybolt +20.
[0025]
Comparative Example 1
In the reaction tube used in Example 1, 3 parts by weight of nickel (converted to NiO) and 20 parts by weight of molybdenum (converted to MoO 3 ) were supported on a carrier containing 97% by weight of γ-alumina and 3% by weight of proton-exchanged USY zeolite. 600 ml of the prepared catalyst was charged. Used in Example 1 after presulfiding for 4 hours under conditions of 300 ° C., 5 MPa, LHSV 1 h −1 , hydrogen / oil ratio 1000 scfb using straight-run kerosene (sulfur content 3 wt%) containing dimethyl disulfide The light oil was desulfurized by passing it under conditions of a temperature of 340 ° C., a pressure of 10 MPa, LHSV of 0.5 h −1 , and a hydrogen / oil ratio of 2000 scfb. The sulfur content of the product oil was 0.024% by weight, and the color was Saybolt color −10.
[0026]
Comparative Example 2
The reaction tube used in Example 1 was charged with 600 ml of a catalyst supporting 5 parts by weight of cobalt (in terms of CoO) and 20 parts by weight of molybdenum (in terms of MoO 3 ) with respect to 100 parts by weight of the γ-alumina support. This catalyst was presulfided in the same manner as in Comparative Example 1, the diesel oil of Example 1 was passed through, and desulfurized under the same conditions as in Comparative Example 1. The sulfur content of the product oil was 0.029% by weight and the color was +15 in Saybolt color.
[0027]
Comparative Example 3
The mixed light oil of Example 3 was passed through the catalyst of Comparative Example 1 and hydrodesulfurized. The reaction conditions are a temperature of 360 ° C., a pressure of 10 MPa, LHSV 0.5 h −1 , and a hydrogen / oil ratio of 2000 scfb. The sulfur content of the product oil was 0.013% by weight, and the color was -15 in Saybolt color.
[0028]
Comparative Example 4
Desulfurization was performed in the first reactor using the same raw material oil, catalyst, and reaction conditions as in Example 1. This product oil is a second reactor filled with the same catalyst as in Example 1, and the product oil of the first reactor together with hydrogen has a temperature of 320 ° C., a pressure of 5 MPa, an LHSV of 0.5 h −1 , and a hydrogen / oil ratio of 2000 scfb. The oil was passed under conditions to desulfurize. The product oil had a sulfur content of 0.024% by weight and a color of Saybolt color of +10.
[0029]
【The invention's effect】
When hydrodesulfurization of diesel oil fractions of petroleum-based hydrocarbons containing sulfur, by adopting the present invention, light oil with low sulfur content (sulfur content 0.005% by weight or less) and excellent hue Can be manufactured.

Claims (3)

硫黄を含有する石油系炭化水素の軽油留分を水素化脱硫する際に、第一工程の水素化脱硫により原料油の硫黄分を0.05重量%以下とした後に、第二工程でさらに第一工程よりも高圧で水素化脱硫して、硫黄分0.005重量%以下で、セイボルトカラー+20以上の軽油を得る、軽油の水素化脱硫方法であって、第一工程の水素化脱硫の反応条件が、温度320〜380℃、圧力4〜7MPa、LHSV0. 5〜3h-1、水素/ 油比500〜2000scfbであり、第二工程の水素化脱硫の反応条件が、温度320〜380℃、圧力10〜15MPa、LHSV0. 5〜2h-1、水素/ 油比1000〜5000scfbである、軽油の水素化脱硫方法。 When hydrodesulfurizing a petroleum hydrocarbon gas oil fraction containing sulfur, the sulfur content of the feedstock oil is reduced to 0.05% by weight or less by hydrodesulfurization in the first step, and further in the second step. A hydrodesulfurization method for light oil, in which hydrodesulfurization is performed at a pressure higher than that in one step to obtain a diesel oil having a sulfur content of 0.005% by weight or less and a Saybolt color +20 or more , The reaction conditions are a temperature of 320 to 380 ° C., a pressure of 4 to 7 MPa, an LHSV of 0.5 to 3 h −1, a hydrogen / oil ratio of 500 to 2000 scfb, and the reaction conditions of the hydrodesulfurization in the second step are temperatures of 320 to 380 ° C. pressure 10~15MPa, LHSV0. 5~2h-1, hydrogen / oil ratio 1000~5000scfb Ru der hydrodesulfurization process of light oil. 第一工程の水素化脱硫で使用する触媒が、アルミナを主成分とする多孔質担体にコバルトとモリブデンを担持した触媒であり、第二工程の水素化脱硫で使用する触媒は、入り口部分で使用する触媒がアルミナ85〜99重量%とゼオライト1〜15重量%とを含む多孔質担体にニッケルとモリブデンを担持した触媒であり、かつ第二工程の全触媒に対する割合が40〜80容量%であり、第二工程の出口部分の触媒がアルミナを主成分とする多孔質担体にコバルトまたはニッケルとモリブデンを担持した触媒である、請求項1に記載の軽油の水素化脱硫方法。The catalyst used in hydrodesulfurization in the first step is a catalyst in which cobalt and molybdenum are supported on a porous support mainly composed of alumina, and the catalyst used in hydrodesulfurization in the second step is used at the entrance. The catalyst to be used is a catalyst in which nickel and molybdenum are supported on a porous carrier containing 85 to 99% by weight of alumina and 1 to 15% by weight of zeolite, and the ratio to the total catalyst in the second step is 40 to 80% by volume. The method for hydrodesulfurizing gas oil according to claim 1 , wherein the catalyst at the outlet of the second step is a catalyst in which cobalt or nickel and molybdenum are supported on a porous carrier mainly composed of alumina. 第二工程の水素化脱硫で使用する水素ガスの水素純度が65容量%以上であり、かつ硫化水素濃度が0.05容量%以下である、請求項1または2に記載の軽油の水素化脱硫方法。The hydrodesulfurization of gas oil according to claim 1 or 2, wherein the hydrogen purity of the hydrogen gas used in the hydrodesulfurization in the second step is 65 vol% or more and the hydrogen sulfide concentration is 0.05 vol% or less. Method.
JP28291398A 1998-10-05 1998-10-05 Hydrodesulfurization method of light oil Expired - Fee Related JP4282118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28291398A JP4282118B2 (en) 1998-10-05 1998-10-05 Hydrodesulfurization method of light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28291398A JP4282118B2 (en) 1998-10-05 1998-10-05 Hydrodesulfurization method of light oil

Publications (2)

Publication Number Publication Date
JP2000109860A JP2000109860A (en) 2000-04-18
JP4282118B2 true JP4282118B2 (en) 2009-06-17

Family

ID=17658744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28291398A Expired - Fee Related JP4282118B2 (en) 1998-10-05 1998-10-05 Hydrodesulfurization method of light oil

Country Status (1)

Country Link
JP (1) JP4282118B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1334166B1 (en) * 2000-04-20 2017-11-29 ExxonMobil Research and Engineering Company Production of low sulfur distillates
WO2002010314A1 (en) * 2000-07-28 2002-02-07 Japan Energy Corporation Process for super deep desulfurization of light oil fraction
JP5016331B2 (en) * 2000-07-28 2012-09-05 Jx日鉱日石エネルギー株式会社 Production method of ultra-deep desulfurized diesel oil
JP2002146365A (en) * 2000-11-13 2002-05-22 Kashima Oil Co Ltd Method for producing desulfurized light oil and the resultant light oil
JP4216624B2 (en) * 2002-03-20 2009-01-28 出光興産株式会社 Method for producing deep desulfurized diesel oil
JP4916370B2 (en) * 2007-04-18 2012-04-11 コスモ石油株式会社 Process for hydrotreating diesel oil
SG174338A1 (en) * 2009-03-13 2011-11-28 Jx Nippon Oil & Energy Corp Process for producing low-sulfur gas-oil fraction, and low-sulfur gas oil
JP5730006B2 (en) 2010-12-24 2015-06-03 昭和シェル石油株式会社 Light oil composition

Also Published As

Publication number Publication date
JP2000109860A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP3871449B2 (en) Hydrodesulfurization method of light oil
JP3868128B2 (en) Gas oil hydrodesulfurization apparatus and method
JP4590259B2 (en) Multistage hydrodesulfurization of cracked naphtha stream in a stacked bed reactor
JP4233154B2 (en) Hydrodesulfurization method of light oil
WO2005065823A1 (en) Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
JPH1192772A (en) Hydrodesulfurization process for catalytic cracking gasoline, and gasoline
KR100202205B1 (en) Process for desulfurizing catalytically cracked gasoline
AU2003220318B2 (en) Selective hydrodesulfurization of naphtha streams
JP4282118B2 (en) Hydrodesulfurization method of light oil
US7288181B2 (en) Producing low sulfur naphtha products through improved olefin isomerization
EP1682636B1 (en) Nitrogen removal from olefinic naphtha feedstreams to improve hydrodesulfurization versus olefin saturation selectivity
JP2003183676A (en) Method for producing low-sulfur gasoline
AU2004261971A1 (en) Process to manufacture low sulfur fuels
JP3744698B2 (en) Process for hydrogenating polycyclic aromatic hydrocarbons
JP2004504477A (en) How to upgrade hydrocarbons
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
US20050032629A1 (en) Catalyst system to manufacture low sulfur fuels
US20070068849A1 (en) Lead-free gasoline composition and method for production thereof
US20050023190A1 (en) Process to manufacture low sulfur fuels
EP1663485A2 (en) A catalyst system and its use in manufacturing low sulfur fuels
JPH0547594B2 (en)
JPH05431B2 (en)
JPH1088153A (en) Production of low-sulfur diesel light oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees