JP3744698B2 - Process for hydrogenating polycyclic aromatic hydrocarbons - Google Patents
Process for hydrogenating polycyclic aromatic hydrocarbons Download PDFInfo
- Publication number
- JP3744698B2 JP3744698B2 JP28282198A JP28282198A JP3744698B2 JP 3744698 B2 JP3744698 B2 JP 3744698B2 JP 28282198 A JP28282198 A JP 28282198A JP 28282198 A JP28282198 A JP 28282198A JP 3744698 B2 JP3744698 B2 JP 3744698B2
- Authority
- JP
- Japan
- Prior art keywords
- aromatic hydrocarbons
- weight
- catalyst
- light
- heavy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、多環芳香族炭化水素を含有する石油留分を水素化処理する際に特定の水素化処理工程の組み合わせ、特定の触媒、かつ特定の水素化処理条件を用いることにより多環芳香族炭化水素を効率よく水素化する方法に関する。
【0002】
【従来の技術】
原油の蒸留によって得られる直留軽油や減圧軽油あるいは重油の分解によって得られる分解軽油等は多環芳香族炭化水素を含んでおり、その量は直留軽油で10重量%程度である。多環芳香族炭化水素としては2環の(アルキル)ナフタレン、3環の(アルキル)アントラセン、(アルキル)フェナントレン等が挙げられる。多環芳香族炭化水素を多く含む軽油をディーゼル燃料として使用するとパティキュレートの排出量が増加し環境を汚染する。そのため通常これら軽油は水素化処理され多環芳香族炭化水素の一部を水素化した後に燃料として使用される。しかしディーゼルエンジンから排出されるパティキュレートをさらに減少する必要が叫ばれており、そのためにはディーゼル燃料油中の多環芳香族炭化水素の量をさらに低減する必要があるといわれているが、そのための具体的手段が見出されなかった。
【0003】
従来、多環芳香族炭化水素の水素化処理にはアルミナ等の多孔質担体にコバルトあるいはニッケルとモリブデンあるいはタングステンを担持した触媒が使用されてきた。しかしながら、この従来触媒では3環以上の芳香族炭化水素が水素化され難く、十分水素化するためには接触時間を大きくしたり圧力を非常に高くしなければならず、装置の建設コストや運転コストが極めて大きくなるという問題点があった。例えば、フェナントレンは部分水素化されテトラヒドロフェナントレンあるいはオクタヒドロフェナントレンには容易に水素化されるが、芳香環の全てを水素化するのは難しい。パティキュレートを低減するためには完全に芳香環を水素化するのが望ましい。
【0004】
軽油の水素化処理に関しては、硫黄分の水素化脱硫を中心に研究が進められ数々の提案がなされている。例えば、難脱硫性の硫黄化合物に対して脱硫活性を高める方法として、触媒の担体にリンやホウ素を含有させた触媒(特開昭52−13503号)やゼオライトを担体に加えた触媒(特開平7−197039)などが報告されている。これらの触媒にはブレンシュテッド酸点が存在し、(ジ)メチルジベンゾチオフェンのメチル基を異性化したりフェニル基を水素化する能力が高く、4−メチルジベンゾチオフェンや4, 6−ジメチルジベンゾチオフェンの脱硫に対して高い活性を示す。
【0005】
しかしながら、上記の担体にリンやホウ素あるいはゼオライトを担体に加えた触媒は、アルキルベンゾチオフェン類や4−あるいは6−位置にアルキル置換基を持たないジベンゾチオフェン類、例えばジベンゾチオフェン、1−、2−または3−メチルベンゾチオフェン等に対する脱硫活性が、従来から使用されてきたアルミナ担体にコバルトとモリブデンを担持した触媒より劣る欠点がある(F. van Looijら, Applied Catalysis A: General 170, 1-12 (1998) )。又、ブレンシュテッド酸点が存在するため、製品が着色しやすく、オレフィンを含む原料を使用する場合や350℃以上の高温で反応に用いた場合はチオールやスルフィドが生成して脱硫率が低下する欠点もある。さらにブレンシュテッド酸点でオレフィン成分が重合してコーク析出し、触媒の失活が速いという大きな問題点もある。上記触媒を用いた場合は特に、原料油にオレフィンが含まれていない場合でも、硫黄化合物が脱硫される場合にはオレフィンを生成するのでコークの析出の原因となる。このことは、チオフェンを通油した場合のコーキング速度がオレフィンや芳香族を通油した場合のコーキング速度の10倍にも達することから理解できる(Catalysis Review, 24, (3), 343 (1982)) 。
【0006】
上記の各触媒を用いても0. 05重量%あるいはそれ以下のレベルまで脱硫するのは難しく、方法及び反応装置の面から深度脱硫を達成する研究もなされている。例えば、特開平7−102266には反応条件の異なる2段階の反応によって色相を悪化させることなく深度脱硫を行う方法が提案されており、また特開平5−311179には蒸留によって脱硫の容易な軽質留分と脱硫し難い重質留分に分離し、それぞれを別々に水添脱硫後それぞれの生成物を一体化して深度脱硫を達成する方法が提案されている。しかしながら、反応条件の異なる2段階の反応によって色相を悪化させることなく深度脱硫を行う方法は色相の改善には効果があるものの深度脱硫をさらに進める効果はほとんどなく、蒸留によって脱硫の容易な軽質留分と脱硫し難い重質留分に分離し、それぞれを別々に水添脱硫後それぞれの生成物を一体化して深度脱硫を達成する方法にしても脱硫し難い重質留分に対しては高温・高圧を要するなど問題点が多い。
いずれにしろ、従来技術はいずれも、優れた性状の軽油を得るために、硫黄含有化合物の水素化脱硫を目指すものであり、本発明のごとき、多環式芳香族炭化水素の水素化反応に着目して軽油の多環成分の水素化処理を行なうものでなく、更には、パーティキュレートの減少を図るために多環芳香族炭化水素の水素化を図るものではない。
【0007】
【発明が解決しようとする課題】
本発明の目的は、前記従来の問題点を解決し、沸点200〜400℃の石油留分中に含まれる多環芳香族炭化水素を効率的に水素化する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは前記の課題を解決するため、鋭意研究した結果、特定の工程の組合せ、装置構成、触媒、反応条件を用いることにより多環芳香族炭化水素を効率よく水素化する方法を見出し本発明を完成するに至った。
本発明は、第一に、多環芳香族炭化水素を含む沸点200〜400℃の石油系炭化水素の留分を水素化処理する際に、蒸留によって分離された軽質分中に含まれる3環以上の芳香族炭化水素が1重量%以下であり、かつ重質分中に含まれる2環芳香族炭化水素が1重量%以下となるように、蒸留により2環芳香族炭化水素を含む軽質分と3環以上の芳香族炭化水素を含む重質分とに分離し、軽質分と重質分をそれぞれ独立した工程で水素化処理した後に軽質分と重質分を混合することを含む多環芳香族炭化水素の水素化方法に関する。
第2に、本発明は、軽質分および重質分あるいはそれらのいずれか一方をそれぞれ独立した反応器で水素化処理した後に軽質分と重質分を混合することを含む、前記第1の発明の多環芳香族炭化水素の水素化方法に関する。
第3に、本発明は、蒸留により軽質分と重質分とを分離する際のカット温度が330〜350℃である、前記第1または第2の発明の多環芳香族炭化水素の水素化方法に関する。
第4に、本発明は、軽質分の水素化処理に際して、使用する触媒の担体が、アルミナ、アモルファスシリカアルミナ、ゼオライトのいずれかあるいはこれらの混合物であり、この担体上にコバルト及び/又はニッケルとモリブデンを担持した触媒を使用し、軽質分に対する水素化処理の反応条件が、温度320〜380℃、圧力5〜7 MPa 、 LHSV 0 . 5〜3 h -1 、水素 / 油比1000〜3000 scfb である、前記第1〜第3のいずれかの発明の多環芳香族炭化水素の水素化方法に関する。
第5に、本発明は、重質分中の硫黄含有量を500 wtppm 以下とした後に、多孔質担体の上に白金、ロジウムまたはパラジウムを担持した触媒を使用し、重質分に対する水素化処理の反応条件が、温度200〜300℃、圧力1〜5 MPa 、 LHSV 0 . 5〜3 h -1 、水素 / 油比1000〜5000 scfb である、前記第1〜第4のいずれかの発明の多環芳香族炭化水素の水素化方法に関する。
第6に、本発明は、重質分の水素化処理に際して、使用する触媒の担体が、アルミナ、アモルファスシリカアルミナ、ゼオライトのいずれかあるいはこれらの混合物であり、この担体上にコバルト及び/又はニッケルとモリブデンを担持した触媒を使用し、重質分に対する水素化処理の反応条件が、温度320〜360℃、圧力7〜15 MPa 、 LHSV 0 . 5〜3 h -1 、水素 / 油比2000〜5000 scfb である、前記第1〜第4のいずれかの発明の多環芳香族炭化水素の水素化方法に関する。
又、本発明の課題を解決するための手段に関して、本発明の具体的態様とその作用を以下に詳述する。
【0009】
【発明の実施の形態と作用】
本発明は、水素化処理に当たってまず水素化処理しようとする多環芳香族炭化水素を含む沸点200〜400℃の石油留分を蒸留により2環芳香族炭化水素を含む軽質分と3環以上の芳香族炭化水素を含む重質分とに分離し、軽質分と重質分をそれぞれ独立した反応器で水素化処理した後に軽質分と重質分を混合して製品化する点に特徴を有する。蒸留による軽質分と重質分とのカット温度は、好ましくは300〜350℃であり、さらに好ましくは330〜350℃である。これはアントラセンの沸点が342℃であり、フェナントレンの沸点が339℃であるため、330〜350℃でカットすれば水素化されにくい3環以上の芳香族炭化水素を重質分として、水素化されやすい2環芳香族炭化水素を含む軽質分から、分離できるからである。これを組成の面からみると、蒸留によって分離された軽質分中に含まれる3環以上の芳香族炭化水素が1重量%以下であり、かつ重質分中に含まれる2環芳香族炭化水素が1重量%以下となるように蒸留分離すると、その後の水素化反応を軽質分と重質分で独立して反応条件を設定できる本発明の特徴を十分発揮でき、高い水素化率を達成することができる。蒸留は通常の常圧多段式連続蒸留装置が使用でき、2環芳香族炭化水素を含む軽質分と3環以上の芳香族炭化水素を含む重質分との分離性能を勘案して蒸留段数を設定する。
【0010】
蒸留で分離された2環芳香族炭化水素を含む軽質分は比較的緩やかな反応条件で水素化処理することができる。触媒としては、例えばアルミナ担体にコバルト及び/又はニッケルとモリブデンを担持した触媒を使用し、温度320〜380℃、圧力3〜20MPa、LHSV0. 5〜3h-1、水素/ 油比1000〜5000scfbの条件の中から目標とする水素化率により設定できる。さらに好ましくは、温度320〜380℃、圧力5〜7MPa、LHSV0.5〜3h-1、水素/ 油比1000〜3000scfbの条件である。
【0011】
蒸留で分離された3環以上の環芳香族炭化水素を含む重質分は軽質分の水素化反応よりも高圧で水素化処理する必要がある。
触媒としては、アルミナを主成分とする多孔質担体にコバルト及び/又はニッケルとモリブデンを担持した触媒を使用してもよいが、さらに水素化活性の高い触媒、例えばアルミナ85〜99重量%とゼオライト1〜15重量%とを含む担体にニッケルとモリブデンを担持した触媒やアルミナまたはアモルファスシリカアルミナ85〜99重量%とゼオライト1〜20重量%とを含む担体にニッケルとタングステンを担持した触媒を使用して水素化率を高めることもできる。これらの触媒の場合反応条件は、温度320〜380℃、圧力3〜20MPa、LHSV0. 5〜3h-1、水素/ 油比1000〜5000scfbの条件の中から目標とする水素化率により設定できるが、軽質分の水素化よりも高圧、高接触時間の条件を設定する必要がある。さらに好ましい反応条件は、温度320〜360℃、圧力7〜15MPa、LHSV0. 5〜3h-1、水素/ 油比2000〜5000scfbである。また、圧力を10MPa以上とすると色相にも大変すぐれた生成油が得られる。
高圧装置は大型化するのが難しく、大型化のためにはコストの増加が避けられない。本発明では、水素化が難しい3環以上の芳香族炭化水素を分離した後に高圧下で水素化するので、全留分を高圧処理する場合に比べて装置の建設コストが極めて節約できる特徴がある。
【0012】
また、触媒として多孔質担体の上に白金、ロジウムまたはパラジウム等の貴金属を担持した触媒を使用することもできる。貴金属触媒を使用する場合は、この条件よりさらに低温、低圧で反応することができる。これらの貴金属を担持した触媒を使用する場合、好ましい重質分に対する水素化処理の反応条件は、温度200〜300℃、圧力1〜5MPa、LHSV0. 5〜3h-1、水素/ 油比1000〜5000scfbである。
ただし、貴金属触媒は硫黄の被毒を受けるので、硫黄分を含む原料油を処理する場合には、脱硫反応器を前段に設置する必要がある。
【0013】
反応温度については、芳香族の水素化反応に関しては、高温ほど反応の平行の面から水素化反応には不利となるため極端な高温での反応は避けるべきである。重質分の水素化反応は進行し難いので、必要に応じて並列または直列に配置した複数の反応器を使用してもよい。この場合、1段目の反応器出口水素ガス中に含まれている硫化水素をアミン吸収装置などにより分離するか、一部水素を系外に抜き出して代わりに新しい水素を導入するかして硫化水素濃度を低下させると2段めでの水素化反応が容易となる。1段目の反応で500ppm以下に硫黄分が低減できれば、2段目の水素化工程で白金、パラジウム等の貴金属触媒を使用することもできる。軽質分に関しても、必要に応じて第二反応器を設置して水素化処理をさらに進めてもよい。
貴金属触媒は特に重質分の水素化に対して有効で、全留分の水素化反応に高価な貴金属触媒を使用する必要は必ずしもなく、特定の重質留分に使用するのみで十分水素化が進行するのは本発明の重要な特徴である。原料油の脱硫処理は、全留分を脱硫した後に蒸留して軟質分と重質分に分離し、重質分を貴金属触媒で処理しても良いし、蒸留後に重質分のみを脱硫してから貴金属触媒により水素化しても良い。
【0014】
こうして十分に低芳香族化された重質分は軽質分と混合され製品化することができる。重質分は軽質分の混合は蒸留で分離した際の比率で混合してもよいし、必要に応じて混合割合を変えて製品の蒸留性状を調整することもできる。他の脱硫装置で製造された軽油と混合して製品化することも可能である。これら混合により製品化する際に必要に応じて、潤滑性向上剤、セタン価向上剤、清浄剤を配合できるのは当然のことである。
【0015】
こうして十分に低芳香族化された軽質分と重質分は混合され製品化することができる。軽質分と重質分の混合は蒸留で分離した際の比率で混合してもよいし、必要に応じて混合割合を変えて製品の蒸留性状を調整することもできる。他の水素化装置で処理された軽油留分と混合して製品化することも可能である。これら混合により製品化する際に必要に応じて、潤滑性向上剤、セタン価向上剤、清浄剤を配合できるのは当然のことである。
【0016】
本発明に使用する触媒に担持する活性金属量は、通常の軽油の水素化処理触媒に採用されている量を採用することができる。すなわち担体の重量を100重量部として(ゼオライト含めた重量)、CoあるいはNiは酸化物換算で1〜10重量部、好ましくは3〜6重量部であり、Moは酸化物換算で10〜30重量部、好ましくは15〜25重量部である。金属量は少ないと活性が不足し、また触媒の失活速度が大きくなる。一方、多すぎても活性が飽和してしまい不経済である。
ゼオライト1〜15重量%を含む担体にニッケルとモリブデンを担持した触媒を使用する場合、ゼオライトとしてはA型ゼオライト、X型ゼオライト、Y型ゼオライト、L型ゼオライト、MFI型ゼオライト、モルデナイト等が使用できる。中でも、Y型ゼオライトを脱アルミニウムして熱安定を高めたUSY型ゼオライトが最も好ましい。これらゼオライトはイオン交換してブレンシュテッド酸点を発現させるが、プロトン、アルカリ土類金属、希土類金属等でイオン交換することができる。
【0017】
ゼオライトはアルミナのゲルに混合して成形して焼成してもよいし、成形したアルミナ担体にバインダーを用いて付着させてもよい。
各水素触媒の活性等を改善するために少量の各種改質成分を加えた触媒を使用してもさしつかえない。たとえば、燐を加えると金属の分散が良くなるとともにブレンシュテッド酸点が増加するため、水素化活性が向上する場合がある。一方、カリウムやマグネシウムの添加はブレンシュテッド酸点を減少させチオールやスルフィドの生成を抑制するので、各反応器の出口付近の触媒に加え、スウィートノング効果を期待することができる。
【0018】
本発明が適用できる原料油は、直留(減圧)軽油、接触分解(減圧)軽油、熱分解(減圧)軽油等の沸点範囲が200〜400℃であり、かつ2環芳香族炭化水素および3環以上の芳香族炭化水素を含有するの石油留分である。本発明は沸点の400℃よりもさらに高い減圧軽油の水素化処理にも有効である。
原料油に含まれる芳香族炭化水素の量は特に限定されないが、通常の直留軽油の場合は10重量%程度である。生成油の芳香族炭化水素の量は必要に応じて任意に定めることができ、反応温度、圧力、液空間速度等の反応条件を最適化することにより必要とされる水素化率を達成できる。
また、硫黄化合物や窒素化合物を含む原料油を使用することもできる。この場合、芳香族の水素化と同時に水素化脱硫を達成して、低硫黄な製品を製造することができる。
本発明で水素化された軽油は、軽油自動車用レギュラーあるいはプレミアムディーゼル燃料として使用できる。また、A重油等に混合して使用することもできる。
【0019】
本発明の反応条件としては、温度320〜380℃、圧力3〜20MPa、LHSV0. 5〜3h-1、水素/ 油比1000〜5000scfbの条件の中から目標とする水素化率により設定できる。
【0020】
本発明に使用する反応器は、従来から知られているいかなる様式の反応器、例えば固定床、移動床いずれでも良く、ダウンフロー式、アップフロー式いずれでもよい。これらの中で最も適しているのは、固定床ダウンフロー式反応器である。これは従来から石油留分の水素化処理に用いられている反応器様式であるため、従来の装置をそのまま使用することができる。反応器は、通常軽質分および重質分用の各1反応器を複数の触媒ベットに分けたものが使用できる。本発明の水素化処理条件では液体と気体が共存するいわゆるトリクルベットであるため、各触媒ベットの上には液体を均一に分散させるディストリビューターを設置することが望ましい。また発熱状況により、クウェンチ水素を最適な場所で導入して発熱を制御してもよい。実際の装置には、押し出し成形した触媒が使用され、触媒は従来の方法によって反応器にソック充填またはデンス充填される。触媒を予備硫化した後、水素とともに加熱した原料油を触媒を充填した反応器に通油する。貴金属系の触媒は予備硫化せずに還元処理を行って使用する。使用済の触媒は通常の焼成再生処理によって繰り返し使用しても差し支えない。
【0021】
【実施例】
本発明を実施例によりさらに詳細に説明する。
実施例1
中東系の直留軽油(沸点230〜382℃)を理論段数20段の常圧蒸留装置で340℃をカット温度として軽質分75容量%と重質分25容量%に分離した。質量分析装置で芳香族炭化水素の割合を調べたところ、軽質分中の2環芳香族炭化水素の割合は9. 6重量%であり、3環芳香族炭化水素の割合は0. 3重量%であった。また、重質分中の2環芳香族炭化水素の割合は0. 6重量%であり、3環芳香族炭化水素の割合は4. 3重量%であり、4環芳香族炭化水素の割合は1. 2重量%であった。
第一反応器として、内径1インチの反応管にγ−アルミナ担体100重量部に対してコバルト5 重量部(CoO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を300ml充填した。この触媒をジメチルジスルフィドを含む直留灯油(硫黄分3重量%)を用いて300℃、5MPa、LHSV1h-1、水素/ 油比1000scfbの条件下で、4 時間、予備硫化した後、軽質分を温度350℃、圧力5MPa、LHSV1h-1、水素/ 油比1000scfbの条件で通油して水素化した。生成油の2環芳香族炭化水素の割合は3. 9重量%であり、3環芳香族炭化水素の割合は0. 2重量%であった。
さらに第二反応器として、内径1インチの反応管の上層部にγ−アルミナ97重量%とプロトン交換USY型ゼオライト3重量%とを含む担体にニッケル3重量部(NiO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を200ml充填し、下層部にはγ−アルミナ担体にコバルト5 重量部(CoO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を100ml充填した。この触媒をジメチルジスルフィドを含む直留灯油(硫黄分3重量%)を用いて300℃、5MPa、LHSV1h-1、水素/ 油比1000scfbの条件下で、4 時間、予備硫化した後、前述の蒸留分離した重質分を温度350℃、圧力10MPa、LHSV1h-1、水素/ 油比2000scfbの条件で通油して水素化処理した。生成油の2環芳香族炭化水素の割合は0. 0重量%であり、3環芳香族炭化水素の割合は1. 3重量%であり、4環芳香族炭化水素の割合は0. 4重量%であった。この重質分と前述の軽質分を混合して、2環芳香族炭化水素の割合は2. 9重量%であり、3環芳香族炭化水素の割合は0. 5重量%であり、4環芳香族炭化水素の割合は0. 1重量%、色はセイボルトカラー(JISK−2580)で+15の軽油を製造した。
【0022】
実施例2
実施例1の触媒に替えて、第一反応器および第二反応器にγ−アルミナ担体100重量部に対してニッケル5 重量部(NiO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒をそれぞれ300mlづつ充填した。この触媒を実施例1と同様に予備硫化し、実施例1の軽油の軽質分を第一反応器で、重質分を第二反応器で実施例1と同一条件で脱硫した。第一反応器生成油の2環芳香族炭化水素の割合は3. 6重量%であり、3環芳香族炭化水素の割合は0. 1重量%であり、第二反応器生成油の2環芳香族炭化水素の割合は0. 0重量%であり、3環芳香族炭化水素の割合は1. 5重量%であり、4環芳香族炭化水素の割合は0. 5重量%であった。この重質分と前述の軽質分を混合して、2環芳香族炭化水素の割合は2. 7重量%であり、3環芳香族炭化水素の割合は0. 4重量%であり、4環芳香族炭化水素の割合は0. 1重量%、色はセイボルトカラーで+20の軽油を製造した。
【0023】
実施例3
中東系の直留軽油(沸点224〜368℃)80容量%と、接触分解軽油(沸点212〜345℃)10容量%と、直脱分解軽油(沸点181〜346℃)10容量%とを混合した。を理論段数20段の常圧蒸留装置で335℃をカット温度として軽質分77容量%と重質分23容量%に分離した。軽質分中の2環芳香族炭化水素の割合は11. 9重量%であり、3環芳香族炭化水素の割合は0. 4重量%であった。また、重質分中の2環芳香族炭化水素の割合は0. 7重量%であり、3環芳香族炭化水素の割合は5. 8重量%であり、4環芳香族炭化水素の割合は1. 1重量%であった。
この混合軽油を実施例1と同一の触媒を同量充填した第一反応器で軽質分を、実施例1と同一の触媒を同量充填した第二反応器で重質分をそれぞれ実施例1と同一の反応条件で水素化した。第一反応器生成油の2環芳香族炭化水素の割合は4. 2重量%であり、3環芳香族炭化水素の割合は0. 2重量%であり、第二反応器生成油の2環芳香族炭化水素の割合は0. 0重量%であり、3環芳香族炭化水素の割合は1. 5重量%であり、4環芳香族炭化水素の割合は0. 4重量%であった。この重質分と前述の軽質分を混合して、2環芳香族炭化水素の割合は3. 2重量%であり、3環芳香族炭化水素の割合は0. 5重量%であり、4環芳香族炭化水素の割合は0. 1重量%、色はセイボルトカラーで−2の軽油を製造した。
【0024】
実施例4
水素化脱硫反応器として、内径1インチの反応管にγ−アルミナ担体100重量部に対してコバルト5 重量部(CoO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を300ml充填した。この触媒を、ジメチルジスルフィドを含む直留灯油(硫黄分3重量%)を用いて温度300℃、圧力5MPa、LHSV1h-1、水素/ 油比1000scfbの条件下で、4 時間、予備硫化した。これに実施例1で用いた中東系直留軽油(沸点230〜382℃、硫黄分1.5重量%)を温度350℃、圧力5MPa、LHSV1h-1、水素/ 油比2000scfbの条件下で通油して水素化脱硫処理した。生成油を理論段数20段の常圧蒸留装置で340℃をカット温度として軽質分77容量%と重質分23容量%に分離した。質量分析装置で芳香族炭化水素の割合を調べたところ、軽質分中の2環芳香族炭化水素の割合は4.5重量%であり、3環芳香族炭化水素の割合は0. 2重量%であった。また、重質分中の2環芳香族炭化水素の割合は0.4重量%であり、3環芳香族炭化水素の割合は2. 3重量%であり、4環芳香族炭化水素の割合は0.8重量%であった。硫黄分は軽質分が0.01重量%であり、重質分が0.04重量%であった。
第一反応器として、内径1インチの反応管にγ−アルミナ担体100重量部に対してニッケル5 重量部(Ni O換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を300ml充填した。この触媒を、ジメチルジスルフィドを含む直留灯油(硫黄分3重量%)を用いて、温度300℃、圧力5MPa、LHSV1h-1、水素/ 油比1000scfbの条件下で、4 時間、予備硫化した後、軟質分を温度350℃、圧力5MPa、LHSV1h-1、水素/ 油比1000scfbの条件下で通油して水素化した。生成油の2環芳香族炭化水素の割合は2.3重量%であり、3環芳香族炭化水素の割合は0.1重量%であった。硫黄分は0.001重量%であった。さらに第二反応器として、内径1インチの反応管にγ−アルミナ97重量%とプロトン交換USY型ゼオライト3重量%とを含む担体にプラチナを0.5重量%担持した触媒を200ml充填した。この触媒を300℃、4時間水素還元した後、前述の蒸留分離した重質分を温度250℃、圧力2MPa、LHSV1h-1、水素/ 油比2000scfbの条件下で通油して水素化処理した。生成油の2環芳香族炭化水素の割合は0.1重量%であり、3環芳香族炭化水素の割合は1.0重量%であり、4環芳香族炭化水素の割合は0.2重量%であった。硫黄分は0.001重量%であった。
この重質分と前述の軽質分を混合して、2環芳香族炭化水素の割合は1.8重量%であり、3環芳香族炭化水素の割合は0. 3重量%であり、4環芳香族炭化水素の割合は0. 1重量%、色はセイボルトカラー(JISK−2580)で+21の軽油を製造した。硫黄分は0.002重量%あった。
比較例1
内径1インチの反応管に反応管に、γ−アルミナ97重量%とプロトン交換USY型ゼオライト3重量%とを含む担体にニッケル3重量部(NiO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を300ml充填した。ジメチルジスルフィドを含む直留灯油(硫黄分3重量%)を用いて300℃、5MPa、LHSV1h-1、水素/ 油比1000scfbの条件下で、4 時間、予備硫化した後、実施例で用いた軽油を温度350℃、圧力5MPa、LHSV1h-1、水素/ 油比1000scfbの条件で通油して水素化した。生成油中の2環芳香族炭化水素の割合は3. 7重量%であり、3環芳香族炭化水素の割合は1. 0重量%であり、4環芳香族炭化水素の割合は0. 3重量%、色はセイボルトカラーで−15であった。
【0025】
比較例2
内径1インチの反応管に反応管に、γ−アルミナ担体100重量部に対してコバルト5 重量部(CoO換算)とモリブデン20重量部(MoO3 換算)を担持した触媒を600ml充填した。この触媒を比較例1と同様に予備硫化し、実施例1の軽油を通油して比較例1と同一条件で脱硫した。生成油中の2環芳香族炭化水素の割合は3. 7重量%であり、3環芳香族炭化水素の割合は1. 2重量%であり、4環芳香族炭化水素の割合は0. 3重量%、色はセイボルトカラーで+15であった。
【0026】
比較例3
比較例1の触媒に実施例3の混合軽油を通油して水素化脱硫した。反応条件は比較例1と同じである。生成油の2環芳香族炭化水素の割合は5. 2重量%であり、3環芳香族炭化水素の割合は2. 5重量%であり、4環芳香族炭化水素の割合は0. 5重量%、色はセイボルトカラーで−20の軽油を製造した。
【0027】
【発明の効果】
多環芳香族炭化水素を含む沸点200〜400℃の石油系炭化水素の留分を水素化処理する際に、本発明を採用することにより多環芳香族の含有率が低い、着色のほとんどない、優れた軽油が効率的に製造できる。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a polycyclic aromatic by using a combination of specific hydroprocessing steps, a specific catalyst, and specific hydroprocessing conditions when hydrotreating a petroleum fraction containing polycyclic aromatic hydrocarbons. The present invention relates to a method for efficiently hydrogenating a group hydrocarbon.
[0002]
[Prior art]
A straight-run gas oil obtained by distillation of crude oil, a vacuum gas oil or a cracked gas oil obtained by cracking heavy oil contains polycyclic aromatic hydrocarbons, and the amount thereof is about 10% by weight in the straight-run gas oil. Examples of polycyclic aromatic hydrocarbons include bicyclic (alkyl) naphthalene, tricyclic (alkyl) anthracene, and (alkyl) phenanthrene. When diesel oil containing a large amount of polycyclic aromatic hydrocarbons is used as diesel fuel, particulate emissions increase and pollute the environment. Therefore, these light oils are usually hydrotreated and used as fuel after hydrogenating a part of polycyclic aromatic hydrocarbons. However, there is a need to further reduce the particulates emitted from diesel engines. To that end, it is said that the amount of polycyclic aromatic hydrocarbons in diesel fuel oil needs to be further reduced. No specific means was found.
[0003]
Conventionally, a catalyst in which cobalt or nickel and molybdenum or tungsten are supported on a porous carrier such as alumina has been used for the hydrotreatment of polycyclic aromatic hydrocarbons. However, with this conventional catalyst, aromatic hydrocarbons of 3 or more rings are difficult to be hydrogenated, and in order to fully hydrogenate, the contact time must be increased or the pressure must be very high. There was a problem that the cost was extremely high. For example, phenanthrene is partially hydrogenated and easily hydrogenated to tetrahydrophenanthrene or octahydrophenanthrene, but it is difficult to hydrogenate all of the aromatic rings. In order to reduce the particulates, it is desirable to completely hydrogenate the aromatic ring.
[0004]
With regard to hydroprocessing of diesel oil, research is proceeding mainly on hydrodesulfurization of sulfur content, and many proposals have been made. For example, as a method for increasing the desulfurization activity for a hardly desulfurizing sulfur compound, a catalyst in which phosphorus or boron is contained in a catalyst carrier (Japanese Patent Laid-Open No. 52-13503) or a catalyst in which zeolite is added to a carrier (Japanese Patent Laid-Open No. 7-197039) has been reported. These catalysts have Bronsted acid sites and have a high ability to isomerize the methyl group of (di) methyldibenzothiophene or to hydrogenate the phenyl group. 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene High activity against desulfurization.
[0005]
However, catalysts in which phosphorus, boron or zeolite is added to the above support are alkylbenzothiophenes or dibenzothiophenes having no alkyl substituent at the 4- or 6-position, such as dibenzothiophene, 1-, 2- Alternatively, the desulfurization activity for 3-methylbenzothiophene and the like is inferior to that of a catalyst in which cobalt and molybdenum are supported on a conventionally used alumina support (F. van Looij et al., Applied Catalysis A: General 170, 1-12). (1998)). In addition, because of the presence of Bronsted acid sites, products are easy to color, and when using raw materials containing olefins or when used in reactions at temperatures higher than 350 ° C, thiols and sulfides are produced and the desulfurization rate decreases. There are also disadvantages. In addition, the olefin component is polymerized at the Brönsted acid point and coke is precipitated, resulting in a serious problem that the deactivation of the catalyst is fast. In particular, when the above catalyst is used, even when the olefin is not contained in the raw material oil, when the sulfur compound is desulfurized, olefin is produced, which causes coke precipitation. This can be understood from the fact that the coking speed when thiophene is passed is 10 times the coking speed when olefin or aromatic is passed (Catalysis Review, 24, (3), 343 (1982) )
[0006]
Even if each of the above catalysts is used, it is difficult to desulfurize to a level of 0.05% by weight or less, and studies have been made to achieve deep desulfurization from the viewpoint of the method and the reactor. For example, Japanese Patent Laid-Open No. 7-102266 proposes a method of performing deep desulfurization without deteriorating the hue by a two-stage reaction with different reaction conditions, and Japanese Patent Laid-Open No. 5-3117979 is a light product that can be easily desulfurized by distillation. There has been proposed a method for achieving deep desulfurization by separating a distillate and a heavy fraction that is difficult to desulfurize, separately hydrodesulfurizing each, and then integrating the respective products. However, the method of performing deep desulfurization without deteriorating the hue by a two-stage reaction with different reaction conditions is effective in improving the hue, but has little effect of further deep desulfurization, and light distillation that is easy to desulfurize by distillation. And heavy fractions that are difficult to desulfurize, and each of them is hydrodesulfurized separately and then combined with each product to achieve deep desulfurization.・ There are many problems such as requiring high pressure.
In any case, all of the conventional techniques aim to hydrodesulfurize sulfur-containing compounds in order to obtain light oil with excellent properties, and in the hydrogenation reaction of polycyclic aromatic hydrocarbons as in the present invention. It does not focus on hydrogenation of polycyclic components of light oil, and further does not attempt to hydrogenate polycyclic aromatic hydrocarbons in order to reduce particulates.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for efficiently hydrogenating polycyclic aromatic hydrocarbons contained in a petroleum fraction having a boiling point of 200 to 400 ° C.
[0008]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, the present inventors have found a method for efficiently hydrogenating polycyclic aromatic hydrocarbons by using specific process combinations, apparatus configurations, catalysts, and reaction conditions. The present invention has been completed.
The present inventionFirst, when hydrotreating a fraction of petroleum hydrocarbons having a boiling point of 200 to 400 ° C. containing polycyclic aromatic hydrocarbons, three or more aromatics contained in the light fractions separated by distillation Distillation of light components including bicyclic aromatic hydrocarbons and three or more rings by distillation so that the hydrocarbons are 1 wt% or less and the bicyclic aromatic hydrocarbons contained in the heavy component are 1 wt% or less. Polycyclic aromatic hydrocarbons, which are separated into heavy components containing aromatic hydrocarbons, and the light components and the heavy components are hydrotreated in independent processes, followed by mixing the light components and the heavy components The present invention relates to a hydrogenation method.
Second, the present invention includes mixing the light component and the heavy component after hydrotreating the light component and / or the heavy component in an independent reactor, respectively. The present invention relates to a method for hydrogenating polycyclic aromatic hydrocarbons.
Third, the present invention provides the hydrogenation of the polycyclic aromatic hydrocarbon according to the first or second invention, wherein a cut temperature when separating a light component and a heavy component by distillation is 330 to 350 ° C. About the method
Fourthly, in the present invention, in the hydrotreatment of the light component, the catalyst support used is any one of alumina, amorphous silica alumina, and zeolite, or a mixture thereof, and cobalt and / or nickel on the support. Using a catalyst supporting molybdenum, the reaction conditions of the hydrogenation treatment for the light component are a temperature of 320 to 380 ° C., a pressure of 5 to 7 MPa , LHSV 0 . 5-3 h -1 ,hydrogen / Oil ratio 1000-3000 scfb The method for hydrogenating a polycyclic aromatic hydrocarbon according to any one of the first to third inventions.
Fifth, the present invention reduces the sulfur content in the heavy component to 500. wtppm After the following, using a catalyst supporting platinum, rhodium or palladium on a porous carrier, the reaction conditions for the hydrogenation treatment on the heavy component are 200 to 300 ° C., pressure 1 to 5 MPa , LHSV 0 . 5-3 h -1 ,hydrogen / Oil ratio 1000-5000 scfb The method for hydrogenating a polycyclic aromatic hydrocarbon according to any one of the first to fourth inventions.
Sixth, according to the present invention, the catalyst support used in the hydrotreatment of the heavy component is any one of alumina, amorphous silica alumina and zeolite, or a mixture thereof, and cobalt and / or nickel is supported on the support. And a catalyst supporting molybdenum, the reaction conditions of the hydrogenation treatment for heavy components are as follows: temperature 320 to 360 ° C., pressure 7 to 15 MPa , LHSV 0 . 5-3 h -1 ,hydrogen / Oil ratio 2000-5000 scfb The method for hydrogenating a polycyclic aromatic hydrocarbon according to any one of the first to fourth inventions.
Further, regarding the means for solving the problems of the present invention, specific embodiments and functions of the present invention will be described in detail below.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a petroleum fraction having a boiling point of 200 to 400 ° C. containing a polycyclic aromatic hydrocarbon to be hydrotreated first is subjected to a hydrotreating process by distilling a light fraction containing a bicyclic aromatic hydrocarbon and three or more rings. It is characterized in that it is separated into heavy components containing aromatic hydrocarbons, and the light components and heavy components are hydrotreated in separate reactors, and then the light components and heavy components are mixed to produce a product. . The cut temperature of the light and heavy components by distillation is preferably 300 to 350 ° C, more preferably 330 to 350 ° C. This is because anthracene has a boiling point of 342 ° C. and phenanthrene has a boiling point of 339 ° C., so that it is hydrogenated using heavy hydrocarbons of three or more aromatic hydrocarbons that are difficult to be hydrogenated if cut at 330 to 350 ° C. This is because it can be easily separated from light components containing bicyclic aromatic hydrocarbons. From the aspect of composition, the tricyclic or higher aromatic hydrocarbon contained in the light fraction separated by distillation is 1% by weight or less, and the bicyclic aromatic hydrocarbon contained in the heavy fraction. When it is distilled and separated so that the amount of water becomes 1% by weight or less, the characteristics of the present invention that can set the reaction conditions for the light and heavy components independently can be exhibited sufficiently, and a high hydrogenation rate is achieved. be able to. Distillation can be performed using a normal atmospheric multi-stage continuous distillation system, and the number of distillation stages can be determined in consideration of the separation performance of light components containing bicyclic aromatic hydrocarbons and heavy components containing three or more aromatic hydrocarbons. Set.
[0010]
Light components containing bicyclic aromatic hydrocarbons separated by distillation can be hydrotreated under relatively mild reaction conditions. As the catalyst, for example, a catalyst in which cobalt and / or nickel and molybdenum are supported on an alumina carrier is used, temperature 320 to 380 ° C., pressure 3 to 20 MPa, LHSV 0.5 to 3 h.-1The hydrogen / oil ratio can be set according to the target hydrogenation rate among the conditions of 1000 to 5000 scfb. More preferably, the temperature is 320 to 380 ° C., the pressure is 5 to 7 MPa, and the LHSV is 0.5 to 3 h.-1The hydrogen / oil ratio is 1000 to 3000 scfb.
[0011]
The heavy component containing three or more ring aromatic hydrocarbons separated by distillation needs to be hydrotreated at a higher pressure than the light component hydrogenation reaction.
As the catalyst, a catalyst in which cobalt and / or nickel and molybdenum are supported on a porous carrier mainly composed of alumina may be used. However, a catalyst having higher hydrogenation activity, for example, 85 to 99% by weight of alumina and zeolite. A catalyst including nickel and molybdenum supported on a support containing 1 to 15% by weight, or a catalyst supporting nickel and tungsten supported on 85 to 99% by weight of alumina or amorphous silica alumina and 1 to 20% by weight of zeolite is used. The hydrogenation rate can also be increased. In the case of these catalysts, the reaction conditions are as follows: temperature 320 to 380 ° C., pressure 3 to 20 MPa, LHSV 0.5 to 3 h.-1The hydrogen / oil ratio of 1000 to 5000 scfb can be set according to the target hydrogenation rate, but it is necessary to set conditions for higher pressure and higher contact time than for light hydrogenation. Further preferable reaction conditions are as follows: temperature 320 to 360 ° C., pressure 7 to 15 MPa, LHSV 0.5 to 3 h.-1The hydrogen / oil ratio is 2000 to 5000 scfb. Further, when the pressure is 10 MPa or more, a product oil having excellent hue can be obtained.
It is difficult to increase the size of a high-pressure device, and an increase in cost is inevitable for increasing the size. In the present invention, since aromatic hydrocarbons having three or more rings that are difficult to hydrogenate are separated and then hydrogenated under high pressure, the construction cost of the apparatus can be greatly reduced as compared with the case of treating all fractions with high pressure. .
[0012]
A catalyst in which a noble metal such as platinum, rhodium or palladium is supported on a porous carrier can also be used as a catalyst. When a noble metal catalyst is used, the reaction can be performed at a lower temperature and a lower pressure than these conditions. When these precious metal-supported catalysts are used, the reaction conditions for the preferred heavy component hydrotreating are as follows: temperature 200 to 300 ° C., pressure 1 to 5 MPa, LHSV 0.5 to 3 h.-1The hydrogen / oil ratio is 1000 to 5000 scfb.
However, since the noble metal catalyst is subjected to sulfur poisoning, it is necessary to install a desulfurization reactor in the previous stage when processing raw material oil containing sulfur.
[0013]
Regarding the reaction temperature, the aromatic hydrogenation reaction is disadvantageous for the hydrogenation reaction from the parallel side of the reaction as the temperature is higher, so the reaction at an extremely high temperature should be avoided. Since the hydrogenation reaction for heavy components is difficult to proceed, a plurality of reactors arranged in parallel or in series may be used as necessary. In this case, hydrogen sulfide contained in the first stage reactor outlet hydrogen gas is separated by an amine absorber or the like, or a part of the hydrogen is extracted out of the system and replaced with new hydrogen instead. Decreasing the hydrogen concentration facilitates the hydrogenation reaction in the second stage. If the sulfur content can be reduced to 500 ppm or less in the first stage reaction, a noble metal catalyst such as platinum or palladium can be used in the second stage hydrogenation process. Regarding the light component, the hydrogenation process may be further advanced by installing a second reactor as necessary.
Precious metal catalysts are particularly effective for hydrogenation of heavy components, and it is not always necessary to use expensive precious metal catalysts for the hydrogenation reaction of all fractions. This is an important feature of the present invention. In the desulfurization treatment of the raw material oil, the entire fraction is desulfurized and then distilled to separate it into a soft component and a heavy component, and the heavy component may be treated with a precious metal catalyst, or only the heavy component is desulfurized after the distillation. Then, it may be hydrogenated with a noble metal catalyst.
[0014]
Thus, the heavy component sufficiently reduced in aromaticity can be mixed with the light component to produce a product. As for the heavy component, the light component may be mixed in the ratio when separated by distillation, and the distillation property of the product can be adjusted by changing the mixing ratio as necessary. It can also be commercialized by mixing with light oil produced by other desulfurization equipment. Of course, a lubricity improver, a cetane number improver, and a detergent can be blended as necessary when the product is produced by mixing.
[0015]
In this way, the light and heavy components that have been sufficiently reduced in aromatization can be mixed to produce a product. The light and heavy components may be mixed at a ratio when separated by distillation, and the distillation property of the product can be adjusted by changing the mixing ratio as necessary. It is also possible to produce a product by mixing with a light oil fraction treated in another hydrogenation apparatus. Of course, a lubricity improver, a cetane number improver, and a detergent can be blended as necessary when the product is produced by mixing.
[0016]
The amount of active metal supported on the catalyst used in the present invention may be the amount employed in a normal light oil hydrotreating catalyst. That is, assuming that the weight of the carrier is 100 parts by weight (weight including zeolite), Co or Ni is 1 to 10 parts by weight, preferably 3 to 6 parts by weight in terms of oxide, and Mo is 10 to 30 parts by weight in terms of oxide. Parts, preferably 15 to 25 parts by weight. If the amount of metal is small, the activity is insufficient and the deactivation rate of the catalyst is increased. On the other hand, if too much, the activity is saturated, which is uneconomical.
When using a catalyst in which nickel and molybdenum are supported on a support containing 1 to 15% by weight of zeolite, A zeolite, X zeolite, Y zeolite, L zeolite, MFI zeolite, mordenite, etc. can be used as the zeolite. . Among them, USY type zeolite obtained by dealumination of Y type zeolite to improve thermal stability is most preferable. These zeolites are ion-exchanged to develop Bronsted acid sites, but can be ion-exchanged with protons, alkaline earth metals, rare earth metals, and the like.
[0017]
Zeolite may be mixed with alumina gel, molded and fired, or may be adhered to the molded alumina support using a binder.
In order to improve the activity or the like of each hydrogen catalyst, a catalyst with a small amount of various reforming components added may be used. For example, when phosphorus is added, metal dispersion is improved and the Bronsted acid point is increased, so that hydrogenation activity may be improved. On the other hand, the addition of potassium or magnesium reduces the Bronsted acid point and suppresses the formation of thiols and sulfides, so that a sweet-nung effect can be expected in addition to the catalyst near the outlet of each reactor.
[0018]
The feedstock to which the present invention can be applied has a boiling range of 200 to 400 ° C. such as straight-run (decompressed) light oil, catalytic cracking (reduced pressure) light oil, thermal cracked (reduced pressure) light oil, etc., and bicyclic aromatic hydrocarbons and 3 A petroleum fraction containing aromatic hydrocarbons above the ring. The present invention is also effective for hydrotreating vacuum gas oil having a boiling point higher than 400 ° C.
The amount of aromatic hydrocarbon contained in the feedstock is not particularly limited, but is about 10% by weight in the case of ordinary straight-run gas oil. The amount of aromatic hydrocarbons in the product oil can be arbitrarily determined as required, and the required hydrogenation rate can be achieved by optimizing reaction conditions such as reaction temperature, pressure, liquid space velocity and the like.
Moreover, the raw material oil containing a sulfur compound and a nitrogen compound can also be used. In this case, hydrodesulfurization can be achieved simultaneously with aromatic hydrogenation to produce a low-sulfur product.
The light oil hydrogenated in the present invention can be used as a regular or premium diesel fuel for light oil vehicles. It can also be used by mixing with A heavy oil or the like.
[0019]
The reaction conditions of the present invention are as follows: temperature 320 to 380 ° C., pressure 3 to 20 MPa, LHSV 0.5 to 3 h.-1The hydrogen / oil ratio can be set according to the target hydrogenation rate among the conditions of 1000 to 5000 scfb.
[0020]
The reactor used in the present invention may be any conventionally known reactor, for example, a fixed bed or a moving bed, and may be either a downflow type or an upflow type. Most suitable among these are fixed bed downflow reactors. Since this is a reactor mode conventionally used for hydrotreating petroleum fractions, the conventional apparatus can be used as it is. As the reactor, it is possible to use a reactor in which one reactor for light and heavy components is divided into a plurality of catalyst beds. The hydrotreating conditions of the present invention are so-called trickle beds in which a liquid and a gas coexist, and therefore it is desirable to install a distributor that uniformly disperses the liquid on each catalyst bed. Depending on the heat generation situation, quench hydrogen may be introduced at an optimal location to control the heat generation. In an actual apparatus, an extruded catalyst is used, and the catalyst is socked or densely charged into the reactor by conventional methods. After presulfiding the catalyst, the raw material oil heated together with hydrogen is passed through a reactor filled with the catalyst. A noble metal catalyst is used after being subjected to a reduction treatment without being presulfided. The spent catalyst may be used repeatedly by ordinary calcination regeneration treatment.
[0021]
【Example】
The invention is explained in more detail by means of examples.
Example 1
A Middle Eastern straight-run gas oil (boiling point 230-382 ° C.) was separated into 75% light by weight and 25% by weight heavy by using an atmospheric distillation apparatus with 20 theoretical plates and 340 ° C. as the cut temperature. When the proportion of aromatic hydrocarbons was examined using a mass spectrometer, the proportion of bicyclic aromatic hydrocarbons in the light component was 9.6% by weight, and the proportion of tricyclic aromatic hydrocarbons was 0.3% by weight. Met. The proportion of bicyclic aromatic hydrocarbons in the heavy component is 0.6% by weight, the proportion of tricyclic aromatic hydrocarbons is 4.3% by weight, and the proportion of tetracyclic aromatic hydrocarbons is 1.2% by weight.
As a first reactor, 5 parts by weight of cobalt (CoO equivalent) and 20 parts by weight of molybdenum (MoO) with respect to 100 parts by weight of γ-alumina support in a reaction tube having an inner diameter of 1 inch.Three300 ml of a catalyst carrying (conversion) was charged. This catalyst was used at 300 ° C., 5 MPa, LHSV1h using straight-run kerosene containing dimethyl disulfide (sulfur content 3% by weight).-1After presulfiding for 4 hours under a hydrogen / oil ratio of 1000 scfb, the light component was heated to 350 ° C., pressure 5 MPa, LHSV 1 h.-1Then, hydrogenation was performed by passing oil under conditions of a hydrogen / oil ratio of 1000 scfb. The ratio of bicyclic aromatic hydrocarbons in the product oil was 3.9% by weight, and the ratio of tricyclic aromatic hydrocarbons was 0.2% by weight.
Further, as a second reactor, 3 parts by weight of nickel (in terms of NiO) and 20 parts by weight of molybdenum are formed on a support containing 97% by weight of γ-alumina and 3% by weight of proton-exchanged USY zeolite in the upper layer of a 1-inch inner diameter reaction tube. (MoOThree200 ml of the catalyst carrying the equivalent) was filled, and in the lower layer part, 5 parts by weight of cobalt (CoO equivalent) and 20 parts by weight of molybdenum (MoO equivalent) were added to the γ-alumina carrier.Three100 ml of the catalyst carrying the equivalent) was charged. This catalyst was used at 300 ° C., 5 MPa, LHSV1h using straight-run kerosene containing dimethyl disulfide (sulfur content 3% by weight).-1, After presulfiding for 4 hours under the condition of hydrogen / oil ratio of 1000 scfb, the above-distilled heavy component was heated to 350 ° C., pressure 10 MPa, LHSV 1 h.-1Then, hydrogenation was performed by passing oil under conditions of a hydrogen / oil ratio of 2000 scfb. The proportion of 2-ring aromatic hydrocarbons in the product oil is 0.0% by weight, the proportion of 3-ring aromatic hydrocarbons is 1.3% by weight, and the proportion of 4-ring aromatic hydrocarbons is 0.4% by weight. %Met. By mixing this heavy component and the aforementioned light component, the proportion of the bicyclic aromatic hydrocarbon is 2.9% by weight, the proportion of the tricyclic aromatic hydrocarbon is 0.5% by weight, A diesel oil with a proportion of aromatic hydrocarbons of 0.1% by weight and a color of Saybolt color (JISK-2580) was produced at +15.
[0022]
Example 2
Instead of the catalyst of Example 1, 5 parts by weight of nickel (in terms of NiO) and 20 parts by weight of molybdenum (MoO) are added to 100 parts by weight of the γ-alumina support in the first reactor and the second reactor.ThreeEach catalyst was loaded in an amount of 300 ml. This catalyst was presulfided in the same manner as in Example 1, and the light oil of Example 1 was desulfurized in the same condition as in Example 1 in the first reactor and the heavy part in the second reactor. The ratio of bicyclic aromatic hydrocarbons in the first reactor product oil is 3.6% by weight, and the ratio of tricyclic aromatic hydrocarbons is 0.1% by weight. The proportion of aromatic hydrocarbons was 0.0% by weight, the proportion of tricyclic aromatic hydrocarbons was 1.5% by weight, and the proportion of tetracyclic aromatic hydrocarbons was 0.5% by weight. By mixing this heavy component and the aforementioned light component, the ratio of the bicyclic aromatic hydrocarbon is 2.7% by weight and the ratio of the tricyclic aromatic hydrocarbon is 0.4% by weight. A diesel oil with a proportion of aromatic hydrocarbons of 0.1% by weight and a Saybolt color was used, producing +20 gas oil.
[0023]
Example 3
80% by volume of Middle Eastern straight oil (boiling point 224 to 368 ° C), 10% by volume of catalytic cracking gas oil (boiling point 212 to 345 ° C), and 10% by volume of direct decomposing light oil (boiling point 181 to 346 ° C) did. Was separated into 77% by volume of the light component and 23% by volume of the heavy component with a cutting temperature of 335 ° C. using an atmospheric distillation apparatus having 20 theoretical plates. The proportion of bicyclic aromatic hydrocarbons in the light component was 11.9% by weight, and the proportion of tricyclic aromatic hydrocarbons was 0.4% by weight. The proportion of bicyclic aromatic hydrocarbons in the heavy component is 0.7% by weight, the proportion of tricyclic aromatic hydrocarbons is 5.8% by weight, and the proportion of tetracyclic aromatic hydrocarbons is 1. 1% by weight.
The mixed light oil was loaded with the same amount of the same catalyst as in Example 1 in the first reactor, and the lighter portion in the second reactor charged with the same amount of the same catalyst as in Example 1. Hydrogenation was carried out under the same reaction conditions. The ratio of 2-ring aromatic hydrocarbons in the first reactor product oil is 4.2% by weight, and the ratio of tricyclic aromatic hydrocarbons is 0.2% by weight. The proportion of aromatic hydrocarbons was 0.0% by weight, the proportion of tricyclic aromatic hydrocarbons was 1.5% by weight, and the proportion of tetracyclic aromatic hydrocarbons was 0.4% by weight. By mixing this heavy component and the aforementioned light component, the proportion of the bicyclic aromatic hydrocarbon is 3.2% by weight and the proportion of the tricyclic aromatic hydrocarbon is 0.5% by weight. A diesel oil with a proportion of aromatic hydrocarbons of 0.1% by weight and a color of Saybolt color -2 was produced.
[0024]
Example 4
As a hydrodesulfurization reactor, 5 parts by weight of cobalt (CoO equivalent) and 20 parts by weight of molybdenum (MoO) with respect to 100 parts by weight of γ-alumina support in a reaction tube having an inner diameter of 1 inch.Three300 ml of a catalyst carrying (conversion) was charged. This catalyst was obtained by using straight-run kerosene (sulfur content: 3% by weight) containing dimethyl disulfide at a temperature of 300 ° C., a pressure of 5 MPa, and LHSV1h.-1And presulfided for 4 hours under a hydrogen / oil ratio of 1000 scfb. Middle East straight gas oil (boiling point 230 to 382 ° C., sulfur content 1.5% by weight) used in Example 1 was temperature 350 ° C., pressure 5 MPa, LHSV 1h.-1Then, hydrodesulfurization treatment was performed by passing oil under a hydrogen / oil ratio of 2000 scfb. The product oil was separated into 77% by volume of light component and 23% by volume of heavy component by cutting at 340 ° C. using an atmospheric distillation apparatus having 20 theoretical plates. When the proportion of aromatic hydrocarbons was examined with a mass spectrometer, the proportion of bicyclic aromatic hydrocarbons in the light component was 4.5% by weight, and the proportion of tricyclic aromatic hydrocarbons was 0.2% by weight. Met. In addition, the proportion of bicyclic aromatic hydrocarbons in the heavy component is 0.4% by weight, the proportion of tricyclic aromatic hydrocarbons is 2.3% by weight, and the proportion of tetracyclic aromatic hydrocarbons is 0.8% by weight. The sulfur content was 0.01% by weight for light and 0.04% by weight for heavy.
As a first reactor, in a reaction tube having an inner diameter of 1 inch, nickel 5 parts by weight (converted to Ni 2 O) and molybdenum 20 parts by weight (MoO) with respect to 100 parts by weight of γ-alumina support.Three300 ml of a catalyst carrying (conversion) was charged. This catalyst was obtained by using straight-run kerosene containing dimethyl disulfide (sulfur content: 3% by weight), temperature of 300 ° C., pressure of 5 MPa, LHSV1h.-1, After presulfiding for 4 hours under the condition of hydrogen / oil ratio of 1000 scfb, the soft content is 350 ° C., pressure 5 MPa, LHSV 1 h.-1Then, hydrogenation was performed by passing oil under conditions of a hydrogen / oil ratio of 1000 scfb. The ratio of bicyclic aromatic hydrocarbons in the product oil was 2.3% by weight, and the ratio of tricyclic aromatic hydrocarbons was 0.1% by weight. The sulfur content was 0.001% by weight. Further, as a second reactor, 200 ml of a catalyst supporting 0.5% by weight of platinum on a carrier containing 97% by weight of γ-alumina and 3% by weight of proton-exchanged USY zeolite was packed in a reaction tube having an inner diameter of 1 inch. After this catalyst was reduced with hydrogen at 300 ° C. for 4 hours, the heavy component separated by distillation was heated to 250 ° C., pressure 2 MPa, LHSV 1h.-1And hydrogenation was performed by passing oil under conditions of a hydrogen / oil ratio of 2000 scfb. The ratio of bicyclic aromatic hydrocarbons in the product oil is 0.1% by weight, the ratio of tricyclic aromatic hydrocarbons is 1.0% by weight, and the ratio of tetracyclic aromatic hydrocarbons is 0.2% by weight. %Met. The sulfur content was 0.001% by weight.
By mixing this heavy component and the aforementioned light component, the ratio of the bicyclic aromatic hydrocarbon is 1.8% by weight and the ratio of the tricyclic aromatic hydrocarbon is 0.3% by weight. A light oil of +21 was produced with a proportion of aromatic hydrocarbons of 0.1% by weight and a color of Saybolt color (JISK-2580). The sulfur content was 0.002% by weight.
Comparative Example 1
In a reaction tube having an inner diameter of 1 inch, in a reaction tube, in a support containing 97% by weight of γ-alumina and 3% by weight of proton exchanged USY zeolite, 3 parts by weight of nickel (in terms of NiO) and 20 parts by weight of molybdenum (MoO)Three300 ml of a catalyst carrying (conversion) was charged. Using straight-run kerosene containing dimethyl disulfide (sulfur content 3% by weight), 300 ° C, 5 MPa, LHSV 1h-1After presulfiding for 4 hours under the condition of a hydrogen / oil ratio of 1000 scfb, the light oil used in the examples was heated to 350 ° C., pressure 5 MPa, LHSV 1 h.-1Then, hydrogenation was performed by passing oil under conditions of a hydrogen / oil ratio of 1000 scfb. The proportion of bicyclic aromatic hydrocarbons in the product oil is 3.7% by weight, the proportion of tricyclic aromatic hydrocarbons is 1.0% by weight, and the proportion of tetracyclic aromatic hydrocarbons is 0.3%. The weight% and color were -15 in Saybolt color.
[0025]
Comparative Example 2
Into a reaction tube having an inner diameter of 1 inch, 5 parts by weight of cobalt (CoO equivalent) and 20 parts by weight of molybdenum (MoO) are added to 100 parts by weight of the γ-alumina support.Three600 ml of the catalyst carrying the equivalent) was charged. This catalyst was presulfided in the same manner as in Comparative Example 1, the diesel oil of Example 1 was passed through, and desulfurized under the same conditions as in Comparative Example 1. The proportion of bicyclic aromatic hydrocarbons in the product oil is 3.7% by weight, the proportion of tricyclic aromatic hydrocarbons is 1.2% by weight, and the proportion of tetracyclic aromatic hydrocarbons is 0.3%. Weight%, color was +15 in Saybolt color.
[0026]
Comparative Example 3
The mixed light oil of Example 3 was passed through the catalyst of Comparative Example 1 and hydrodesulfurized. The reaction conditions are the same as in Comparative Example 1. The ratio of 2-ring aromatic hydrocarbons in the product oil is 5.2% by weight, the ratio of 3-ring aromatic hydrocarbons is 2.5% by weight, and the ratio of 4-ring aromatic hydrocarbons is 0.5% by weight. %, The color was Seybolt color and -20 light oil was produced.
[0027]
【The invention's effect】
When hydrotreating a petroleum hydrocarbon fraction having a boiling point of 200 to 400 ° C. containing a polycyclic aromatic hydrocarbon, by adopting the present invention, the polycyclic aromatic content is low and there is almost no coloring. Excellent diesel oil can be produced efficiently.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28282198A JP3744698B2 (en) | 1998-10-05 | 1998-10-05 | Process for hydrogenating polycyclic aromatic hydrocarbons |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28282198A JP3744698B2 (en) | 1998-10-05 | 1998-10-05 | Process for hydrogenating polycyclic aromatic hydrocarbons |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000109853A JP2000109853A (en) | 2000-04-18 |
JP3744698B2 true JP3744698B2 (en) | 2006-02-15 |
Family
ID=17657529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28282198A Expired - Fee Related JP3744698B2 (en) | 1998-10-05 | 1998-10-05 | Process for hydrogenating polycyclic aromatic hydrocarbons |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3744698B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7240202B2 (en) * | 2019-02-28 | 2023-03-15 | Eneos株式会社 | PETROLEUM-BASED AROMATIC-CONTAINING OIL, RUBBER COMPOSITION, TIRE, AND METHOD FOR MAKING TIRE |
-
1998
- 1998-10-05 JP JP28282198A patent/JP3744698B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000109853A (en) | 2000-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3871449B2 (en) | Hydrodesulfurization method of light oil | |
JP3868128B2 (en) | Gas oil hydrodesulfurization apparatus and method | |
JP4686822B2 (en) | Method for producing gasoline with low sulfur content | |
Song | An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel | |
AU721836B2 (en) | Process for increased olefin yields from heavy feedstocks | |
JP4233154B2 (en) | Hydrodesulfurization method of light oil | |
KR20020068369A (en) | Process for removing sulfur from a hydrocarbon feed | |
JP4740544B2 (en) | Selective hydrodesulfurization of naphtha stream | |
JP2023501181A (en) | Method and system for processing aromatic-rich distillates | |
JP4282118B2 (en) | Hydrodesulfurization method of light oil | |
KR101514954B1 (en) | Process for producing gasoline base and gasoline | |
JP3744698B2 (en) | Process for hydrogenating polycyclic aromatic hydrocarbons | |
JP2003183676A (en) | Method for producing low-sulfur gasoline | |
US20070068849A1 (en) | Lead-free gasoline composition and method for production thereof | |
US20050032629A1 (en) | Catalyst system to manufacture low sulfur fuels | |
JP4217336B2 (en) | Fuel oil desulfurization method and fuel oil desulfurization system | |
JP4385178B2 (en) | Process for producing desulfurized gasoline from gasoline fractions containing converted gasoline | |
RU2824346C1 (en) | Method for hydrotreating secondary distillates | |
JP4766940B2 (en) | Method for producing hydrocarbon oil | |
JP4223630B2 (en) | Method for producing low sulfur gas oil | |
CN101993729A (en) | Method for modifying gasoline | |
JPH1088153A (en) | Production of low-sulfur diesel light oil | |
US20050023190A1 (en) | Process to manufacture low sulfur fuels | |
WO2005012462A2 (en) | A catalyst system and its use in manufacturing low sulfur fuels | |
Menoufy et al. | Study On Hydrotreating Of-Coker Distillate (S) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051018 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051115 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091202 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101202 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101202 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111202 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121202 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121202 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131202 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |