JP3990676B2 - Hydrodesulfurization method of light oil - Google Patents

Hydrodesulfurization method of light oil Download PDF

Info

Publication number
JP3990676B2
JP3990676B2 JP2004040295A JP2004040295A JP3990676B2 JP 3990676 B2 JP3990676 B2 JP 3990676B2 JP 2004040295 A JP2004040295 A JP 2004040295A JP 2004040295 A JP2004040295 A JP 2004040295A JP 3990676 B2 JP3990676 B2 JP 3990676B2
Authority
JP
Japan
Prior art keywords
catalyst
silica
stage
desulfurization
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004040295A
Other languages
Japanese (ja)
Other versions
JP2005230622A (en
Inventor
宏二 中野
Original Assignee
触媒化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 触媒化成工業株式会社 filed Critical 触媒化成工業株式会社
Priority to JP2004040295A priority Critical patent/JP3990676B2/en
Publication of JP2005230622A publication Critical patent/JP2005230622A/en
Application granted granted Critical
Publication of JP3990676B2 publication Critical patent/JP3990676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、硫黄分を含有する炭化水素の軽油留分の水素化脱硫方法に関し、さらに詳しくは軽油留分を水素化脱硫して硫黄分を超深度脱硫する軽油の水素化脱硫方法に関する。   The present invention relates to a hydrodesulfurization method for hydrocarbon gas oil fractions containing sulfur, and more particularly to a hydrodesulfurization method for gas oil in which a diesel oil fraction is hydrodesulfurized and sulfur content is ultra-deep desulfurized.

軽油を燃料とするディーゼルエンジンは高熱効率及び低燃費であり、ヨーロッパなどでは小型乗用車の約半数はディーゼルエンジンを搭載しているが、ディーゼルエンジンからの排出ガス中に存在する有害物質による大気汚染問題が深刻化してきており、大気環境改善のために軽油の品質規制値が世界的に厳しくなる傾向にある。
軽油中の硫黄化合物の低減に関して、我が国では2005年度より(一部都内では2004年度より)軽油中の硫黄濃度を50ppm以下に規制することが決定しており、既に多くの石油精製会社が該規制に対する対応を行っている。
しかしながらこの分野に関してはヨーロッパが最も進んでおり、ドイツ、オーストリア、北欧などでは軽油中の硫黄濃度を10ppm以下に低減する事を既に決定し、その対応を進めている。また、アメリカでも軽油中の硫黄濃度を15ppm以下にする事を検討中であり2006年から実施することが計画されている。この様な世界的な動向から見て、我が国においても今後さらに規制値が厳しくなることが予測される。
Diesel engines powered by light oil have high thermal efficiency and low fuel consumption. In Europe and other countries, about half of small passenger cars are equipped with diesel engines, but there are problems with air pollution caused by harmful substances present in exhaust gas from diesel engines. As the air quality improves, the quality standards for diesel oil tend to be stricter worldwide.
Regarding the reduction of sulfur compounds in light oil, it has been decided in Japan that the sulfur concentration in light oil will be regulated to 50 ppm or less from fiscal 2005 (in some cities from fiscal 2004). Is responding to.
However, Europe is the most advanced in this field, and Germany, Austria, Northern Europe, etc. have already decided to reduce the sulfur concentration in light oil to 10 ppm or less and are responding to it. In the United States, the sulfur concentration in light oil is under consideration to be 15 ppm or less, and it is planned to be implemented from 2006. In view of such global trends, it is predicted that regulatory values will become even stricter in Japan.

前述のような事情から軽油の超深度脱硫について種々の方法が提案されており、例えば、特許文献1〜3などが例示される。
しかしながら、これらの文献における脱硫の程度は、それぞれ50ppm、30ppm、40ppmまでであって、軽油中の硫黄濃度を10ppm以下に低減する軽油の超深度脱硫方法については全く記載されていない。
また、特許文献1〜3においても脱硫を2段又は多段で行っているが、硫黄化合物を易脱硫性硫黄化合物と難脱硫性硫黄化合物に分け、両者の水素化脱硫を分けて行う目的で2段階脱硫を行うという本発明の技術思想については記載も示唆もされていない。
Various methods have been proposed for ultra-deep desulfurization of light oil due to the circumstances as described above, and examples thereof include Patent Documents 1 to 3.
However, the degree of desulfurization in these documents is up to 50 ppm, 30 ppm, and 40 ppm, respectively, and there is no description of the ultra-deep desulfurization method for light oil that reduces the sulfur concentration in light oil to 10 ppm or less.
In Patent Documents 1 to 3, desulfurization is performed in two stages or in multiple stages. However, the sulfur compound is divided into an easily desulfurizable sulfur compound and a hardly desulfurizable sulfur compound, and the hydrodesulfurization of both is performed separately for the purpose of 2 There is no description or suggestion of the technical idea of the present invention to perform staged desulfurization.

従来の方法で軽油中の硫黄濃度を10ppm以下に低減するためには、製油所では軽油の水素化脱硫処理量を低下させて低液空間速度〔LHSV(hr―1)〕で運転するか、または、現状の処理量を維持するためには反応塔の容量を大きくすることが必要であった。 In order to reduce the sulfur concentration in light oil to 10 ppm or less by a conventional method, the refinery is operated at a low liquid space velocity [LHSV (hr- 1 )] by reducing the hydrodesulfurization amount of light oil, Alternatively, it was necessary to increase the capacity of the reaction tower in order to maintain the current throughput.

前述の問題点を解決するために本発明者は、特願2002−293612号を出願して、「硫黄分を含有する軽油の水素化脱硫に於いて、第一段目で軽油中に含有される硫黄化合物のうちガスクロマトグラフ分析での保持時間が4―メチルジベンゾチオフェンよりも短い硫黄化合物を脱硫触媒の存在下に水素化脱硫して除去し、第二段目で前記第一段目の脱硫触媒よりも固体酸量を多く有する脱硫触媒の存在下に水素化脱硫して前記保持時間が4―メチルジベンゾチオフェン以上の硫黄化合物を除去し、軽油中の硫黄分を10ppm以下にすることを特徴とする軽油の水素化脱硫方法」にかかる発明を提案した。   In order to solve the above-mentioned problems, the present inventor filed Japanese Patent Application No. 2002-293612, “In hydrodesulfurization of light oil containing sulfur, it is contained in light oil in the first stage. Sulfur compounds having a retention time in gas chromatographic analysis shorter than 4-methyldibenzothiophene are removed by hydrodesulfurization in the presence of a desulfurization catalyst, and the first stage desulfurization is performed in the second stage. Hydrodesulfurization is performed in the presence of a desulfurization catalyst having a larger amount of solid acid than the catalyst to remove sulfur compounds having a retention time of 4-methyldibenzothiophene or higher and the sulfur content in light oil is reduced to 10 ppm or lower. Proposed an invention relating to a hydrodesulfurization method for diesel oil.

特開2000−230179号公報JP 2000-230179 A 特開2000―109855号公報JP 2000-109855 A 特開2000―109860号公報JP 2000-109860 A

本発明の目的は、前述の問題点を解決して、軽油の水素化脱硫処理量を低下させることなく、また、反応塔の増設をも必要とすることなく軽油中の硫黄濃度を10ppm以下に低減する軽油の超深度脱硫方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems and to reduce the sulfur concentration in light oil to 10 ppm or less without reducing the hydrodesulfurization amount of light oil and without requiring additional reaction towers. An object of the present invention is to provide an ultra-deep desulfurization method for gas oil.

発明者は、先に提案した発明の知見に基づき、更に鋭意研究した結果、軽油を先の提案発明に記載されていない新しい特定の組成及び性状を有する水素化脱硫触媒の組み合わせにより水素化脱硫すると、軽油中の硫黄濃度を10ppm以下に低減できることを見出し、本発明を完成するに至った。   As a result of further diligent research based on the knowledge of the previously proposed invention, the inventor hydrodesulfurized gas oil by a combination of hydrodesulfurization catalysts having a new specific composition and properties not described in the previous proposed invention. The present inventors have found that the sulfur concentration in light oil can be reduced to 10 ppm or less, and have completed the present invention.

即ち、本発明の第1は、硫黄分を含有する軽油を、第一段目で下記触媒(1)と接触させて水素化脱硫し、次いで第二段目で下記触媒(2)と接触させて水素化脱硫して軽油中の硫黄分を10ppm以下にすることを特徴とする軽油の水素化脱硫方法に関する。
触媒(1):アルミナを主成分とする担体に周期律表第VIB族金属成分と第VIII族金属成分およびリン成分を担持した触媒であって、触媒の(1a)アンモニア昇温脱離法によるアンモニア吸着量が0.55mmol/g以下である脱硫触媒。
触媒(2):シリカ含有多孔性無機酸化物担体に周期律表第VIB族金属成分と第VIII族金属成分およびリン成分を担持した触媒であって、触媒の(2a)アンモニア昇温脱離法によるアンモニア吸着量が0.60mmol/g以上である脱硫触媒。
本発明の第2は、前記触媒(1)のアルミナを主成分とする担体が、シリカ(SiO)を2〜20重量%(担体基準)の範囲で含有するものである請求項1記載の軽油の水素化脱硫方法に関する。
本発明の第3は、前記触媒(2)のシリカ含有多孔性無機酸化物担体が、シリカ(SiO)を10〜70重量%(担体基準)の範囲で含有するものである請求項1または2記載の軽油の水素化脱硫方法に関する。
本発明の第4は、前記触媒(2)のシリカ含有多孔性無機酸化物担体が、シリカ−リン−アルミナ担体である請求項1〜3いずれか記載の軽油の水素化脱硫方法に関する。
本発明の第5は、前記第一段目の触媒(1)と前記第二段目の触媒(2)の触媒使用量の割合(触媒(1)/触媒(2))が10/90〜90/10容量比である請求項1〜4いずれか記載の軽油の水素化脱硫方法に関する。
That is, according to the first aspect of the present invention, gas oil containing sulfur is contacted with the following catalyst (1) in the first stage and hydrodesulfurized, and then is contacted with the following catalyst (2) in the second stage. The present invention relates to a hydrodesulfurization method for gas oil, characterized in that the sulfur content in gas oil is reduced to 10 ppm or less by hydrodesulfurization.
Catalyst (1): A catalyst in which a group VIB metal component, a group VIII metal component, and a phosphorus component of the periodic table are supported on a carrier mainly composed of alumina, and (1a) of the catalyst according to the ammonia temperature-programmed desorption method A desulfurization catalyst having an ammonia adsorption amount of 0.55 mmol / g or less.
Catalyst (2): A catalyst comprising a silica-containing porous inorganic oxide support carrying a group VIB metal component, a group VIII metal component and a phosphorus component of the periodic table, and (2a) ammonia temperature-programmed desorption method of the catalyst A desulfurization catalyst having an ammonia adsorption amount of 0.60 mmol / g or more.
The second aspect of the present invention is the catalyst according to claim 1, wherein the support mainly composed of alumina of the catalyst (1) contains silica (SiO 2 ) in the range of 2 to 20% by weight (support basis). The present invention relates to a hydrodesulfurization method for light oil.
A third aspect of the present invention is that the silica-containing porous inorganic oxide support of the catalyst (2) contains 10 to 70% by weight (based on support) of silica (SiO 2 ). 2. The hydrodesulfurization method for gas oil according to 2.
The fourth aspect of the present invention relates to the hydrodesulfurization method of gas oil according to any one of claims 1 to 3, wherein the silica-containing porous inorganic oxide carrier of the catalyst (2) is a silica-phosphorus-alumina carrier.
According to a fifth aspect of the present invention, the ratio of the amount of catalyst used in the first stage catalyst (1) and the second stage catalyst (2) (catalyst (1) / catalyst (2)) is 10/90 to The hydrodesulfurization method for gas oil according to any one of claims 1 to 4, wherein the volume ratio is 90/10.

本発明での水素化脱硫処理に共される原料油は、硫黄分(S)を数百ppm〜3wt%程度含有する軽油で、例えば、原油の常圧あるいは減圧蒸留により得られる直留軽油、接触分解軽油、熱分解軽油、水素化処理軽油、減圧蒸留軽油(VGO)などの軽油留分、あるいはこれらを混合したものが例示される。   The raw material oil used in the hydrodesulfurization treatment in the present invention is a light oil containing a sulfur content (S) of about several hundred ppm to 3 wt%, for example, straight-run gas oil obtained by atmospheric or vacuum distillation of crude oil, Examples of the gas oil fraction include catalytic cracking gas oil, pyrolysis gas oil, hydrotreated gas oil, vacuum distilled gas oil (VGO), and mixtures thereof.

本発明の軽油の水素化脱硫方法では、第一段目で前述の軽油を触媒(1)の存在下に水素化脱硫して軽油中に含有される易脱硫性硫黄化合物を主として除去し、次いで、第二段目で触媒(2)と接触させて水素化脱硫し軽油中の難脱硫性硫黄化合物をさらに除去して軽油中の硫黄分を10ppm以下にすることを特徴とする。
本発明での触媒(1)は、アルミナを主成分とする担体に周期律表第VIB族金属成分と第VIII族金属成分およびリン成分を担持した触媒であって、触媒の(1a)アンモニア昇温脱離法によるアンモニア吸着量が0.55mmol/g以下である脱硫触媒である。
アルミナを主成分とする担体とは、アルミナ(Al)の含有量が50重量%(担体基準)を超える多孔性担体である。担体中のアルミナ(Al)の含有量が50重量%(担体基準)以下の場合には、触媒の脱硫活性が低下することがあるので好ましくない。このような担体としては、アルミナ担体の他に、シリカ−アルミナ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−ジルコニア、シリカ−アルミナ−ボリア、アルミナ−チタニア−シリカ、アルミナ−チタニア−ボリアなどの担体が例示される。
In the hydrodesulfurization method of gas oil according to the present invention, the gas oil described above is hydrodesulfurized in the first stage in the presence of the catalyst (1) to mainly remove the easily desulfurizing sulfur compound contained in the gas oil, In the second stage, the catalyst is brought into contact with the catalyst (2) and hydrodesulfurized to further remove the hard-to-desulfurize sulfur compound in the gas oil, thereby reducing the sulfur content in the gas oil to 10 ppm or less.
The catalyst (1) in the present invention is a catalyst in which a group VIB metal component, a group VIII metal component and a phosphorus component of the periodic table are supported on a support mainly composed of alumina, and the catalyst (1a) This is a desulfurization catalyst having an ammonia adsorption amount of 0.55 mmol / g or less by the thermal desorption method.
The carrier mainly composed of alumina is a porous carrier in which the content of alumina (Al 2 O 3 ) exceeds 50% by weight (based on the carrier). When the content of alumina (Al 2 O 3 ) in the support is 50% by weight (based on the support) or less, the desulfurization activity of the catalyst may decrease, which is not preferable. As such a carrier, in addition to an alumina carrier, a carrier such as silica-alumina, alumina-boria, alumina-titania, alumina-zirconia, silica-alumina-boria, alumina-titania-silica, alumina-titania-boria, etc. Illustrated.

前記触媒(1)としては、前述の担体に活性金属成分としてモリブデン、タングステンなどの周期律表第VIB族金属成分を酸化物として10〜30重量%、コバルト、ニッケルなどの第VIII族金属成分を酸化物として1〜10重量%およびリン成分をPとして1〜6重量%の範囲で担持した脱硫触媒が好適に採用される。 As the catalyst (1), 10% to 30% by weight of a Group VIB metal component of the periodic table such as molybdenum and tungsten as an active metal component as an oxide and a Group VIII metal component such as cobalt and nickel as the active metal component. A desulfurization catalyst carrying 1 to 10% by weight as an oxide and 1 to 6% by weight of a phosphorus component as P 2 O 5 is preferably employed.

また、前述の第一段目の触媒(1)は、触媒の(1a)アンモニア昇温脱離法によるアンモニア吸着量が0.55mmol/g以下であることが必要である。第一段目の触媒(1)では、例えば4―メチルジベンゾチオフェン(4−MDBT)より軽質な反応性の高い易脱硫性硫黄化合物を主として除去するが、難脱硫性硫黄化合物の一部をも除去することも可である。触媒(1)の(1a)アンモニア昇温脱離法(NH−TPD法)によるアンモニア吸着量が0.55mmol/gより多い場合には、固体酸量が多くなるため、軽油中に含まれる塩基性を示す窒素化合物が触媒の固体酸点に吸着して分解活性と共に脱硫活性点をも被毒するため脱硫活性の低下が促進されるので好ましくない。触媒(1)の(1a)アンモニア昇温脱離法によるアンモニア吸着量は、好ましくは0.50〜0.05mmol/gの範囲であることが望ましい。 Further, the first stage catalyst (1) needs to have an ammonia adsorption amount of 0.55 mmol / g or less by (1a) ammonia temperature-programmed desorption method of the catalyst. The catalyst (1) in the first stage mainly removes a light and highly reactive easily desulfurizing sulfur compound that is lighter than, for example, 4-methyldibenzothiophene (4-MDBT). It is also possible to remove it. When the ammonia adsorption amount of the catalyst (1) by (1a) ammonia temperature-programmed desorption method (NH 3 -TPD method) is more than 0.55 mmol / g, the amount of solid acid increases, so it is contained in light oil. The basic nitrogen compound is adsorbed on the solid acid point of the catalyst and poisons the desulfurization active site as well as the decomposition activity. The ammonia adsorption amount of the catalyst (1) by the (1a) ammonia temperature-programmed desorption method is preferably in the range of 0.50 to 0.05 mmol / g.

前述の触媒(1)は、特に、シリカ(SiO)を2〜20重量%(担体基準)の範囲で含有するアルミナ担体を使用した触媒が好ましい。シリカ(SiO)を2〜20重量%(担体基準)の範囲で含有するアルミナ担体は、ある程度の固体酸を有しているため分解活性も適度に有している。シリカ(SiO)の含有量が2重量%(担体基準)より少ない場合には固体酸量が少なくなるため分解活性が不足することがあり、また、反対にシリカ(SiO)の含有量が20重量%(担体基準)より多い場合には、固体酸量が多くなるため窒素化合物が固体酸点に吸着して脱硫活性点をも被毒するため脱硫活性が低下することがある。更に好ましいシリカ(SiO)の含有量は、7〜15重量%(担体基準)の範囲にあることが望ましい。 The catalyst (1) is particularly preferably a catalyst using an alumina support containing silica (SiO 2 ) in the range of 2 to 20% by weight (based on the support). An alumina support containing silica (SiO 2 ) in the range of 2 to 20% by weight (based on the support) has a certain amount of solid acid, and therefore has moderate decomposition activity. When the content of silica (SiO 2 ) is less than 2% by weight (support basis), the amount of solid acid decreases, so that the decomposition activity may be insufficient, and conversely, the content of silica (SiO 2 ) When the amount is more than 20% by weight (based on the carrier), the amount of solid acid increases, so that the nitrogen compound is adsorbed on the solid acid point and poisons the desulfurization active site, so that the desulfurization activity may decrease. The more preferable content of silica (SiO 2 ) is desirably in the range of 7 to 15% by weight (based on the carrier).

さらに、前述の第一段目の触媒(1)は、工業触媒として使用する上で、(1b)BET法による表面積(SA)が200〜400m/g、(1c)窒素吸着法による細孔容積(PV)が0.35〜0.80ml/g、(1d)水銀圧入法で測定した細孔分布での平均細孔直径(PD)(PD)が55〜80Åの範囲にあることが望ましい。(1b)BET法による表面積(SA)が200m/gより小さい場合には触媒の活性点の数が減少して脱硫活性が低下することがあり、該表面積(SA)が400m/gより大きい触媒は平均細孔直径(PD)が55Åより小さくなる傾向にある。(1d)水銀圧入法で測定した細孔分布での平均細孔直径(PD)が55Åより小さい場合には、触媒細孔内への原料油の拡散速度が減少し、細孔内に存在する活性点への接触頻度が減少するため、脱硫活性が低下することがある。また、該平均細孔直径(PD)が80Åより大きくなると、前記表面積(SA)が200m/gより小さくなる傾向にあり、脱硫活性が低下することがある。なお、水銀圧入法で測定した細孔分布での平均細孔直径(PD)は、接触角150度、表面張力480dyn/cmの値を使用して測定した細孔直径31.8Å(水銀圧入圧力400MPaに相当)以上の細孔容積1/2に相当する細孔直径である。また、(1c)窒素吸着法による細孔容積(PV)が0.35ml/gより小さい場合には脱硫活性が低下することがあり、該細孔容積(PV)が0.80ml/gより大きい場合には工業触媒としての機械的強度が弱くなることがある。 Further, when the above-mentioned first stage catalyst (1) is used as an industrial catalyst, (1b) surface area (SA) by BET method is 200 to 400 m 2 / g, (1c) pores by nitrogen adsorption method Desirably, the volume (PV) is in the range of 0.35 to 0.80 ml / g, and (1d) the average pore diameter (PD) (PD) in the pore distribution measured by the mercury intrusion method is in the range of 55 to 80 mm. . (1b) When the surface area (SA) by the BET method is smaller than 200 m 2 / g, the number of active sites of the catalyst may be reduced and the desulfurization activity may be reduced, and the surface area (SA) may be less than 400 m 2 / g. Larger catalysts tend to have an average pore diameter (PD) of less than 55 mm. (1d) When the average pore diameter (PD) in the pore distribution measured by the mercury intrusion method is smaller than 55 mm, the diffusion rate of the raw material oil into the catalyst pores decreases and exists in the pores. Since the frequency of contact with active sites is reduced, desulfurization activity may be reduced. Further, when the average pore diameter (PD) is larger than 80 mm, the surface area (SA) tends to be smaller than 200 m 2 / g, and the desulfurization activity may be lowered. The average pore diameter (PD) in the pore distribution measured by the mercury intrusion method is 31.8 mm (mercury intrusion pressure) measured using a contact angle of 150 degrees and a surface tension of 480 dyn / cm. This is a pore diameter corresponding to a pore volume of 1/2 or more. Further, (1c) when the pore volume (PV) by the nitrogen adsorption method is smaller than 0.35 ml / g, the desulfurization activity may be reduced, and the pore volume (PV) is larger than 0.80 ml / g. In some cases, the mechanical strength as an industrial catalyst may be weakened.

前述の触媒(1)は、例えば、本出願人に係わる特公平04−046619号公報に記載の方法、即ち、擬ベーマイトを主成分とするアルミナ水和物に平均粒径4〜6nmのシリカゾルを、酸化物基準で2〜20重量%の範囲となるように加えて混練し、この混練物を任意の形状と寸法を有する粒子に成型して乾燥した後、400〜900℃で0.5〜5時間焼成してシリカ含有アルミナ担体を調製し、得られた担体に周知の方法で周期律表第VIB族金属成分と第VIII族金属成分およびリン成分を含浸させ、しかる後乾燥、焼成して製造することができる。   The above catalyst (1) is prepared by, for example, the method described in Japanese Patent Publication No. 04-046619 related to the present applicant, that is, silica sol having an average particle size of 4 to 6 nm in alumina hydrate mainly composed of pseudoboehmite. In addition, the mixture is kneaded so as to be in the range of 2 to 20% by weight based on the oxide, and the kneaded product is molded into particles having an arbitrary shape and size and dried, and then at 400 to 900 ° C., 0.5 to A silica-containing alumina support is prepared by firing for 5 hours, and the obtained support is impregnated with a Group VIB metal component, a Group VIII metal component and a phosphorus component in the periodic table by a well-known method, and then dried and fired. Can be manufactured.

第一段目での水素化脱硫の処理条件は、通常の軽油の水素化脱硫処理条件が採用可能で、具体的には、反応温度は320〜350℃、水素圧力は3〜7MPa、液空間速度(LHSV)は0.5〜2.5hr―1、水素/油比は100〜300Nm/mの範囲が例示される。 As the hydrodesulfurization treatment conditions in the first stage, the usual hydrodesulfurization treatment conditions of light oil can be adopted. Specifically, the reaction temperature is 320 to 350 ° C., the hydrogen pressure is 3 to 7 MPa, the liquid space Examples of the speed (LHSV) are 0.5 to 2.5 hr −1 , and the hydrogen / oil ratio is 100 to 300 Nm 3 / m 3 .

本発明での触媒(2)は、シリカ含有多孔性無機酸化物担体に周期律表第VIB族金属成分と第VIII族金属成分およびリン成分を担持した触媒であって、触媒の(2a)アンモニア昇温脱離法(NH−TPD法)によるアンモニア吸着量が0.60mmol/g以上の脱硫触媒である。
本発明でのシリカ含有多孔性無機酸化物担体は、一般に非晶質系多孔性無機酸化物担体と言われている担体で、例えば、シリカ−アルミナ、シリカ−チタニア、シリカ−ジルコニア、シリカ−リン−アルミナ、シリカ−アルミナ−チタニア、シリカ−アルミナ−ジルコニア、シリカ−アルミナ−ボリア、シリカ−アルミナ−チタニア−ボリアなどが例示される。特に、シリカ−リン−アルミナは典型的酸性酸化物であるPを含むので固体酸量がおおく、非晶質系担体として高い分解能を有するので好適である。この様な担体はシリカ源と多孔性無機酸化物源との共沈法やシリカヒドロゲルなどのシリカ前駆物質と多孔性無機酸化物前駆物質とを混練して得られる混練物を任意の形状と寸法を有する粒子に成型し、乾燥、焼成してシリカ含有多孔性無機酸化物担体が得られる。
また、前述のシリカ含有多孔性無機酸化物担体に周期律表第VIB族金属成分と第VIII族金属成分およびリン成分を担持した触媒は、周知の製造方法で調製される。即ち、該触媒(2)は、前記シリカ含有多孔性無機酸化物担体に活性金属成分を含浸させ、しかる後乾燥、焼成して製造することができる。前記活性金属成分としては、モリブデン、タングステンなどの周期律表第VIB族金属成分を酸化物として10〜30重量%、コバルト、ニッケルなどの第VIII族金属成分を酸化物として1〜10重量%およびリン成分をPとして1〜6重量%の範囲が好適に採用される。
前記シリカ含有多孔性無機酸化物担体に周期律表第VIB族金属成分と第VIII族金属成分およびリン成分を担持した触媒は、高い分解活性と脱硫活性を有する。
The catalyst (2) in the present invention is a catalyst in which a silica-containing porous inorganic oxide support is loaded with a group VIB metal component, a group VIII metal component and a phosphorus component of the periodic table, and the catalyst (2a) ammonia This is a desulfurization catalyst having an ammonia adsorption amount of 0.60 mmol / g or more by a temperature programmed desorption method (NH 3 -TPD method).
The silica-containing porous inorganic oxide carrier in the present invention is a carrier generally called an amorphous porous inorganic oxide carrier, for example, silica-alumina, silica-titania, silica-zirconia, silica-phosphorus. -Alumina, silica-alumina-titania, silica-alumina-zirconia, silica-alumina-boria, silica-alumina-titania-boria, etc. In particular, silica-phosphorus-alumina is preferable because it contains P 2 O 5 which is a typical acidic oxide and has a high solid resolution and high resolution as an amorphous carrier. Such a carrier is a coprecipitation method of a silica source and a porous inorganic oxide source, or a kneaded product obtained by kneading a silica precursor such as silica hydrogel and a porous inorganic oxide precursor in any shape and size. The silica-containing porous inorganic oxide carrier can be obtained by molding into particles having a particle size, drying and firing.
Moreover, the catalyst which carry | supported the periodic table group VIB metal component, the group VIII metal component, and the phosphorus component on the above-mentioned silica containing porous inorganic oxide support is prepared by a well-known manufacturing method. That is, the catalyst (2) can be produced by impregnating the silica-containing porous inorganic oxide carrier with an active metal component, followed by drying and firing. Examples of the active metal component include 10 to 30% by weight of a Group VIB metal component of the periodic table such as molybdenum and tungsten, 1 to 10% by weight of a Group VIII metal component such as cobalt and nickel as an oxide, and A range of 1 to 6% by weight is suitably employed with the phosphorus component being P 2 O 5 .
The catalyst in which the silica-containing porous inorganic oxide support carries the VIB group metal component, the VIII group metal component, and the phosphorus component of the periodic table has high decomposition activity and desulfurization activity.

本発明では、前述の第二段目の触媒(2)は、触媒の(2a)アンモニア昇温脱離法(NH−TPD法)によるアンモニア吸着量が0.60mmol/g以上であることが必要である。軽油中の難脱硫性硫黄化合物は、その化合物の構造に起因する立体障害のため脱硫触媒の活性点と硫黄原子との接触が阻害される。この脱硫触媒の活性点と硫黄原子との接触を阻害する離脱硫性硫黄化合物の構造を変える上で、第二段目の脱硫触媒はバランスのとれた分解能と水素化能を有することが重要である。該触媒の分解能が強すぎると過分解が生じて軽油収率が低下することがあり、また、分解能が弱すぎると難脱硫硫黄化合物の水素化脱硫が十分に行なわれないことがある。該触媒の(2a)アンモニア昇温脱離法(NH−TPD法)によるアンモニア吸着量が0.60mmol/gより少ない場合には、難脱硫性硫黄化合物の分解能が十分でないため所望の脱硫効果が得られない。さらに、軽油の超深度脱硫では、反応塔の前段での脱硫反応により生成した硫化水素が後段の脱硫触媒の水素化活性点に優先吸着して活性低下をもたらすが、前記アンモニア吸着量が0.60mmol/gより少ない場合には、これを抑制することが困難であり、十分に活性低下を抑制することができない。触媒の(2a)アンモニア昇温脱離法(NH−TPD法)によるアンモニア吸着量は、好ましくは0.65〜0.90mmol/gの範囲であることが望ましい。 In the present invention, the second stage catalyst (2) has an ammonia adsorption amount of 0.60 mmol / g or more by (2a) ammonia temperature programmed desorption method (NH 3 -TPD method) of the catalyst. is necessary. The hardly desulfurizable sulfur compound in light oil is impeded from contacting the active site of the desulfurization catalyst with the sulfur atom due to steric hindrance caused by the structure of the compound. In order to change the structure of the desulfurizing sulfur compound that inhibits contact between the active sites of this desulfurization catalyst and sulfur atoms, it is important that the desulfurization catalyst in the second stage has a balanced resolution and hydrogenation ability. is there. If the resolution of the catalyst is too strong, overdecomposition may occur and the light oil yield may be reduced. If the resolution is too weak, hydrodesulfurization of the difficult-to-desulfurize sulfur compound may not be performed sufficiently. When the ammonia adsorption amount of the catalyst by (2a) ammonia temperature-programmed desorption method (NH 3 -TPD method) is less than 0.60 mmol / g, the desired desulfurization effect is obtained because the resolution of the hardly desulfurizable sulfur compound is not sufficient. Cannot be obtained. Further, in ultra-deep desulfurization of light oil, hydrogen sulfide produced by the desulfurization reaction in the former stage of the reaction tower is preferentially adsorbed on the hydrogenation active point of the desulfurization catalyst in the latter stage, resulting in a decrease in activity. When the amount is less than 60 mmol / g, it is difficult to suppress this, and the decrease in activity cannot be sufficiently suppressed. The ammonia adsorption amount of the catalyst by the (2a) ammonia temperature-programmed desorption method (NH 3 -TPD method) is preferably in the range of 0.65 to 0.90 mmol / g.

前述の触媒(2)は、特に、シリカ含有多孔性無機酸化物担体がシリカ(SiO)を10〜70重量%(担体基準)の範囲で含有する担体を使用した触媒が好ましい。シリカ含有量が10重量%(担体基準)より少ない場合には固体酸量が少なくなるため分解活性が不足することがあり、また、反対にシリカ含有量が70重量%(担体基準)より多い場合には、分解活性は高くなるが脱硫活性が低下することがある。更に好ましいシリカの含有量は15〜60重量%(担体基準)の範囲にあることが望ましい。 The catalyst (2) is particularly preferably a catalyst using a carrier containing silica (SiO 2 ) in the range of 10 to 70% by weight (on the basis of carrier) as the silica-containing porous inorganic oxide carrier. If the silica content is less than 10% by weight (support basis), the solid acid amount may be reduced and the decomposition activity may be insufficient. Conversely, if the silica content is more than 70% by weight (support basis) In some cases, the desulfurization activity may decrease although the decomposition activity increases. A more preferable silica content is desirably in the range of 15 to 60% by weight (based on the carrier).

さらに、前述の第二段目の触媒(2)は、工業触媒として使用する上で、(2b)BET法による表面積(SA)が200〜400m/g、(2c)窒素吸着法による細孔容積(PV)が0.50〜0.81ml/g、(2d)水銀圧入法で測定した細孔分布での平均細孔直径(PD)が55〜80Åの範囲にあることが望ましい。(2b)BET法による表面積(SA)が200m/gより小さい場合には触媒の活性点の数が減少して触媒の水素化能が減少し、軽油留分の収率低下と共に脱硫活性も低下することがある。また、該表面積(SA)が400m/gより大きい場合には平均細孔直径(PD)が55Åより小さくなる傾向にある。(1d)水銀圧入法で測定した細孔分布での平均細孔直径(PD)が55Åより小さい場合には、離脱硫性硫黄化合物の触媒細孔内への拡散が制限されて脱硫活性が低下することがあり、
80Åより大きくなると前記表面積(SA)が200m/gより小さく成る傾向にあり、脱硫活性が低下することがある。また、(2c)窒素吸着法による細孔容積(PV)が0.50ml/gより小さい場合には、脱硫活性が低下することがあり、該細孔容積(PV)が0.80ml/gより大きい場合には工業触媒としての機械的強度が弱くなることがある。
Furthermore, when the above-mentioned second stage catalyst (2) is used as an industrial catalyst, (2b) the surface area (SA) by BET method is 200 to 400 m 2 / g, (2c) pores by nitrogen adsorption method It is desirable that the volume (PV) is 0.50 to 0.81 ml / g, and (2d) the average pore diameter (PD) in the pore distribution measured by the mercury intrusion method is in the range of 55 to 80 mm. (2b) When the surface area (SA) according to the BET method is smaller than 200 m 2 / g, the number of active sites of the catalyst is reduced and the hydrogenation ability of the catalyst is reduced. May decrease. When the surface area (SA) is larger than 400 m 2 / g, the average pore diameter (PD) tends to be smaller than 55 mm. (1d) When the average pore diameter (PD) in the pore distribution measured by the mercury intrusion method is smaller than 55 mm, the diffusion of the leaving sulfur compound into the catalyst pores is restricted and the desulfurization activity is lowered. There is
If it is larger than 80%, the surface area (SA) tends to be smaller than 200 m 2 / g, and the desulfurization activity may decrease. In addition, (2c) when the pore volume (PV) by the nitrogen adsorption method is smaller than 0.50 ml / g, the desulfurization activity may be reduced, and the pore volume (PV) is less than 0.80 ml / g. If it is large, the mechanical strength as an industrial catalyst may be weakened.

前述の第二段目での水素化脱硫の処理条件は、通常の軽油の水素化脱硫処理条件が採用可能で、具体的には、反応温度は320〜350℃、水素圧力は3〜7MPa、液空間速度(LHSV)は0.5〜2.5hr―1、水素/油比は100〜300Nm/mの範囲が例示される。 As the hydrodesulfurization treatment conditions in the second stage described above, normal gas oil hydrodesulfurization treatment conditions can be adopted. Specifically, the reaction temperature is 320 to 350 ° C., the hydrogen pressure is 3 to 7 MPa, The liquid space velocity (LHSV) is 0.5 to 2.5 hr −1 , and the hydrogen / oil ratio is 100 to 300 Nm 3 / m 3 .

本発明の軽油の水素化脱硫方法では、第一段目の触媒(1)と第二段目の触媒(2)をそれぞれ異なる反応塔に充填して行うこともできるし、また、一つの反応塔の前段側に第一段目の触媒(1)を充填し、後段側に第二段目の触媒(2)を充填して行うこともできる。
反応塔への触媒の充填量は、前記第一段目の触媒(1)と前記第二段目の触媒(2)の触媒使用量(充填量)の割合〔触媒(1)/触媒(2)〕が10/90〜90/10容量比の範囲であることが好ましい。触媒使用量の割合〔触媒(1)/触媒(2)〕が前記範囲から外れる場合には、10ppm以下の硫黄分(以下、硫黄濃度ということがある)の軽油が得られる運転期間が短くなることがある。第一段目の触媒(1)充填量は、通常、前述の軽油中に含有される硫黄化合物のうちガスクロマトグラフ分析での保持時間が4―メチルジベンゾチオフェンよりも短い硫黄化合物だけを全て除去することができる量あれば良い。本発明での第一段目の触媒(1)と第二段目の触媒(2)との充填割合(第一段目/第二段目)は、好ましくは10/90〜80/20容量比、さらに好ましくは20/80〜70/30容量比の範囲であることが望ましい。
In the hydrodesulfurization method of gas oil of the present invention, the first stage catalyst (1) and the second stage catalyst (2) can be filled in different reaction towers, respectively, or one reaction can be performed. The first stage catalyst (1) can be packed on the front side of the tower, and the second stage catalyst (2) can be packed on the rear side.
The amount of catalyst packed in the reaction tower is the ratio of the amount of catalyst used (packing amount) between the first stage catalyst (1) and the second stage catalyst (2) [catalyst (1) / catalyst (2 )] Is preferably in the range of 10/90 to 90/10 capacity ratio. When the ratio of the amount of catalyst used [catalyst (1) / catalyst (2)] is out of the above range, the operation period for obtaining light oil having a sulfur content of 10 ppm or less (hereinafter sometimes referred to as sulfur concentration) is shortened. Sometimes. The first stage catalyst (1) packing amount normally removes only the sulfur compounds whose retention time in gas chromatographic analysis is shorter than 4-methyldibenzothiophene among the sulfur compounds contained in the aforementioned light oil. Any amount that can be used. The filling ratio (first stage / second stage) of the first stage catalyst (1) and the second stage catalyst (2) in the present invention is preferably 10/90 to 80/20 volume. Ratio, more preferably in the range of 20/80 to 70/30 capacity ratio.

軽油中の硫黄化合物には容易に脱硫される易脱硫性硫黄化合物と脱硫が困難な難脱硫性硫黄化合物があり、例えばジベンゾチオフェン(DBT)などの易脱硫性硫黄化合物は温和な水素化脱硫処理条件で容易に除去することができるが、例えば4―メチルジベンゾチオフェン(4−MDBT)などの難脱硫性硫黄化合物は過酷な水素化脱硫処理条件でないと除去することができないため、軽油の水素化脱硫処理量を減らして低液空間速度で運転するなどの方法がとられていた。
本発明の軽油の水素化脱硫方法では、第一段目で固体酸量の少ない脱硫触媒の存在下に温和な条件で水素化脱硫して軽油中の易脱硫性硫黄化合物を主として除去し、次いで第二段目で固体酸量が多い特定の性状を有する脱硫触媒の存在下に水素化脱硫することにより難脱硫性硫黄化合物を過酷な水素化脱硫処理条件で処理することなく除去することができる。
即ち、本発明の軽油の水素化脱硫方法は、軽油の水素化脱硫処理量を低下させることなく、また、反応塔の増設を必要とすることもなく、通常の水素化脱硫処理条件で軽油中の硫黄濃度を10ppm以下に低減することが可能な軽油の超深度脱硫方法を提供する。
There are easily desulfurized sulfur compounds that are easily desulfurized and lightly desulfurized sulfur compounds that are difficult to desulfurize. For example, disulfosulfuric compounds such as dibenzothiophene (DBT) have mild hydrodesulfurization treatment. Although it can be easily removed under certain conditions, for example, difficult-desulfurization sulfur compounds such as 4-methyldibenzothiophene (4-MDBT) can only be removed under severe hydrodesulfurization treatment conditions. Methods such as reducing the amount of desulfurization and operating at a low liquid space velocity have been adopted.
In the hydrodesulfurization method of gas oil of the present invention, hydrodesulfurization is performed mainly in the presence of a desulfurization catalyst with a small amount of solid acid in the first stage to remove easily desulfurizable sulfur compounds in the gas oil, and then By performing hydrodesulfurization in the second stage in the presence of a desulfurization catalyst having a specific property with a large amount of solid acid, it is possible to remove difficult-to-desulfurize sulfur compounds without treatment under severe hydrodesulfurization treatment conditions. .
That is, the hydrodesulfurization method of gas oil according to the present invention does not reduce the hydrodesulfurization treatment amount of gas oil, and does not require an additional reaction tower. An ultra-deep desulfurization method for gas oil that can reduce the sulfur concentration of the oil to 10 ppm or less is provided.

以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれにより何ら限定されるものではない。   The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.

製造例1
スチームジャケット付100LタンクにAl濃度換算で22wt%のアルミン酸ナトリウム水溶液9.09kgを入れ、イオン交換水で希釈し40kgとした。この溶液の中に26wt%グルコン酸ナトリウム0.22kgを加え攪拌しながら60℃に加温した。別途、50L容器にAl濃度換算で7wt%の硫酸アルミニウム水溶液13.86kgを入れ60℃の温水で希釈し40kgとした。次に、ロータリーポンプを用いて前記アルミン酸ナトリウム水溶液中に前記硫酸アルミニウム水溶液を一定速度で添加し、10分でpHが7.1となるようにした。得られた懸濁スラリーを攪拌しながら60℃で1時間熟成した。熟成後の懸濁スラリーを平板フィルターを用いて脱水し、60℃の温水150Lで洗浄した。洗浄終了後のケーキ状スラリーにSiO濃度として20%のシリカゾル〔触媒化成工業(株)製:cataloid SI−550〕を1.85kg加えた後イオン交換水で希釈し、Al濃度で10wt%になるようにした。次いで、これを環流器付タンクに移し、攪拌しながら95℃で10時間熟成した。熟成終了後のスラリーをスチームジャケットを備えた双腕式ニーダーにて練りながら加温し所定の水分量まで濃縮した後、降温し30分捏和した。得られた捏和物を押し出し成形機にて1.8mmの円柱状に成形し110℃で乾燥させた。乾燥したペレットを電気炉中で550℃の温度で3時間焼成し、11wt%SiO−89wt%Al担体を得た。該担体の水銀圧入法による平均細孔直径(PD)は70Åであった。
別途、1L容器に三酸化モリブデン277.8g、塩基性炭酸コバルト115.7gを入れ、イオン交換水600mlを加え攪拌して懸濁し、この懸濁液を95℃で5時間、溶液量が減少しないよう適当な環流手段を施し加熱した。その後、この懸濁溶液に85%リン酸67.7gを加え、懸濁物を溶解し含浸溶液を調製した。
次いで、真空脱気可能な回転式ブレンダーに前記担体1000gを入れ、真空ポンプにて脱気しながら5分放置した後、先に調製した含浸溶液を担体の吸水率に合うよう液量を調節し、ブレンダーを回転させながら添加した。含浸溶液添加後、真空ポンプを停止し常圧下で20分間回転させ、担体中に含浸液が十分浸透するようにした。含浸された物を取り出し昇温プログラム付回転乾燥機に入れ、40℃から250℃まで1時間昇温して乾燥させた。該乾燥品を電気炉に入れ550℃で1時間焼成して触媒(A)を得た。触媒(A)の活性金属組成はMoO:20.0wt%、CoO:5.0wt%、P:3.0wt%であった。この活性金属成分のwt%は担体も含めた全触媒成分に対するwt%である。以下すべて同様である。
該触媒(A)のアンモニア吸着量をアンモニア昇温脱離法(NH−TPD法)により測定した。測定法は、測定セル中にサンプル0.05mgを入れ、400℃で60分間前処理を行った後室温まで冷却し、NHガスを導入して1分間保持しNHを吸着させる。次いで、Heパージにより系内の余剰NHを除去した後昇温を開始し、温度上昇にともなって脱離するNHの量を計測する。昇温は800℃まで行い、その間脱離したNHの総量をNH吸着量とした。触媒(A)のNH吸着量および性状を表1に示す。
Production Example 1
In a 100 L tank with a steam jacket, 9.09 kg of a 22 wt% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration was added and diluted with ion-exchanged water to 40 kg. To this solution, 0.22 kg of 26 wt% sodium gluconate was added and heated to 60 ° C. with stirring. Separately, 13.86 kg of a 7 wt% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration was placed in a 50 L container and diluted with hot water at 60 ° C. to make 40 kg. Next, the aluminum sulfate aqueous solution was added to the sodium aluminate aqueous solution at a constant rate using a rotary pump, so that the pH became 7.1 in 10 minutes. The obtained suspension slurry was aged at 60 ° C. for 1 hour with stirring. The suspension slurry after aging was dehydrated using a flat plate filter and washed with 150 L of hot water at 60 ° C. After adding 1.85 kg of 20% silica sol [catalyst chemical industry Co., Ltd .: catalyst SI-550] as SiO 2 concentration to the cake-like slurry after completion of washing, it was diluted with ion-exchanged water, and Al 2 O 3 concentration was used. It was made to become 10 wt%. Next, this was transferred to a tank equipped with a reflux condenser and aged at 95 ° C. for 10 hours with stirring. The slurry after completion of aging was heated while being kneaded with a double-arm kneader equipped with a steam jacket, concentrated to a predetermined moisture content, then cooled and kneaded for 30 minutes. The obtained kneaded product was molded into a 1.8 mm cylindrical shape by an extrusion molding machine and dried at 110 ° C. The dried pellet was fired in an electric furnace at a temperature of 550 ° C. for 3 hours to obtain an 11 wt% SiO 2 -89 wt% Al 2 O 3 support. The average pore diameter (PD) of the carrier determined by mercury porosimetry was 70 mm.
Separately, 277.8 g of molybdenum trioxide and 115.7 g of basic cobalt carbonate are placed in a 1 L container, and 600 ml of ion-exchanged water is added and stirred to suspend, and the amount of the solution does not decrease at 95 ° C. for 5 hours. Appropriate reflux means were applied and heated. Thereafter, 67.7 g of 85% phosphoric acid was added to this suspension solution, and the suspension was dissolved to prepare an impregnation solution.
Next, 1000 g of the carrier is put into a rotary blender that can be degassed and left for 5 minutes while degassing with a vacuum pump. Then, the amount of the impregnated solution prepared above is adjusted to match the water absorption rate of the carrier. , Added while rotating the blender. After the impregnation solution was added, the vacuum pump was stopped and rotated for 20 minutes under normal pressure so that the impregnation solution sufficiently penetrated into the carrier. The impregnated product was taken out and placed in a rotary dryer with a temperature raising program, and dried from 40 ° C. to 250 ° C. for 1 hour. The dried product was put in an electric furnace and calcined at 550 ° C. for 1 hour to obtain a catalyst (A). The active metal composition of the catalyst (A) was MoO 3 : 20.0 wt%, CoO: 5.0 wt%, and P 2 O 5 : 3.0 wt%. The wt% of the active metal component is wt% based on the total catalyst components including the support. The same applies hereinafter.
The ammonia adsorption amount of the catalyst (A) was measured by an ammonia temperature programmed desorption method (NH 3 -TPD method). In the measurement method, 0.05 mg of a sample is put in a measurement cell, pretreated at 400 ° C. for 60 minutes, cooled to room temperature, introduced with NH 3 gas and held for 1 minute to adsorb NH 3 . Next, after removing excess NH 3 in the system by He purge, the temperature rise is started, and the amount of NH 3 desorbed as the temperature rises is measured. Heated is conducted to 800 ° C., and the adsorbed NH 3 amount to the total amount of NH 3 desorbed therebetween. Table 1 shows the NH 3 adsorption amount and properties of the catalyst (A).

製造例2
撹拌機及び還流器付きのタンクに25wt%硫酸10.0kgを入れ40℃に加温した。別の容器にて3号水ガラス(SiO=24%)20kgをイオン交換水38.0kgで希釈した水ガラス溶液を調製した。25wt%硫酸溶液を撹拌しながら希釈水ガラス溶液を90分間かけて添加した。添加後、そのままの状態で2.5時間熟成処理を行った。熟成後15wt%アンモニア水溶液をpHが7.0となるまで添加し、pH7.0に到達後、そのままの状態で2.0時間熟成処理を行って、シリカヒドロゲルを調製した。
別途、スチームジャケット付100LタンクにAl濃度換算で22wt%のアルミン酸ナトリウム水溶液6.36kgを入れ、イオン交換水で希釈して40kgとした。この溶液の中に前記シリカヒドロゲル11.25kg及びリン酸三ナトリウム0.49kgを加え、攪拌しながら60℃に加温した。
また、50L容器にAl濃度換算で7wt%の硫酸アルミニウム水溶液10.00kgを入れ、60℃の温水で希釈し40kgとした。
次いで、ロータリーポンプを用いて前記アルミン酸ナトリウム溶液中に前記硫酸アルミニウム溶液を一定速度でpHが7.13となるように10分間で添加してアルミナ水和物スラリーを調製した。得られたアルミナ水和物スラリーを攪拌しながら60℃で1時間熟成し、熟成後の該スラリーを平板フィルターを用いて脱水し、60℃に加温した0.5wt%炭酸水素アンモニウム溶液150Lで洗浄した。洗浄終了後のケーキ状スラリーをイオン交換水で希釈し、固形分の濃度が10wt%になるように調整し、これを環流器付タンクに入れて、攪拌しながら95℃で10時間熟成した。熟成終了後のスラリーをスチームジャケットを備えた双腕式ニーダーにて練りながら加温し、所定の水分量まで濃縮した後、降温し30分捏和した。得られた捏和物を押出成形機にて1.8mmの円柱状に成形した後、110℃で乾燥し、次いで、電気炉中で550℃の温度で3時間焼成して、27wt%SiO、3wt%P、70wt%Alのシリカ−リン−アルミナ担体を得た。該担体の水銀圧入法による平均細孔直径(PD)は70Åであった。
別途、1L容器に三酸化モリブデン277.8g、塩基性炭酸ニッケル170.6gを入れイオン交換水600mlを加え攪拌し懸濁させた。この懸濁液を95℃で5時間溶液量が減少しないよう適当な環流手段を施し加熱した。その後この懸濁溶液に85%リン酸67.7gを加え懸濁物を溶解し含浸溶液を調製した。
次いで、真空脱気可能な回転式ブレンダーに前記担体1000gを入れ真空ポンプにて脱気しながら5分間放置した後、先に調製した含浸溶液を担体の吸水率に合うよう液量を調節し、ブレンダーを回転させながら添加した。溶液添加後、真空ポンプを停止し常圧下として20分間回転させ、担体中に含浸溶液が十分浸透するようにした。含浸された物を取り出し昇温プログラム付回転乾燥機にいれ、40℃から250℃まで1時間昇温して乾燥させた。乾燥品を電気炉に入れ550℃で1時間焼成し触媒(B)を得た。触媒(B)の活性金属組成はMoO:20.0wt%、NiO:5.0wt%、P:3.0wt%であった。なお、ここにおけるPは担体成分中のPではなく、担体に活性金属成分として含液、担持、焼成した結果得られたものである。触媒(B)のNH吸着量および性状を表1に示す。
Production Example 2
In a tank equipped with a stirrer and a refluxer, 10.0 kg of 25 wt% sulfuric acid was placed and heated to 40 ° C. In a separate container, a water glass solution was prepared by diluting 20 kg of No. 3 water glass (SiO 2 = 24%) with 38.0 kg of ion-exchanged water. The diluted water glass solution was added over 90 minutes while stirring the 25 wt% sulfuric acid solution. After the addition, an aging treatment was performed for 2.5 hours in the same state. After aging, a 15 wt% aqueous ammonia solution was added until the pH reached 7.0, and after reaching pH 7.0, aging treatment was performed for 2.0 hours as it was to prepare a silica hydrogel.
Separately, 6.36 kg of 22 wt% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration was placed in a 100 L tank with a steam jacket, and diluted with ion-exchanged water to 40 kg. Into this solution, 11.25 kg of the silica hydrogel and 0.49 kg of trisodium phosphate were added and heated to 60 ° C. with stirring.
Further, 10.00 kg of 7 wt% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration was placed in a 50 L container, and diluted with hot water at 60 ° C. to 40 kg.
Next, using a rotary pump, the aluminum sulfate solution was added to the sodium aluminate solution at a constant rate for 10 minutes so that the pH was 7.13 to prepare an alumina hydrate slurry. The obtained alumina hydrate slurry was aged at 60 ° C. for 1 hour with stirring, and the aged slurry was dehydrated using a flat plate filter and heated to 60 ° C. with 150 L of 0.5 wt% ammonium bicarbonate solution. Washed. The cake-like slurry after the washing was diluted with ion-exchanged water, adjusted so that the solid content concentration was 10 wt%, and placed in a tank with a reflux condenser and aged at 95 ° C. for 10 hours with stirring. The slurry after completion of aging was heated while kneading with a double-arm kneader equipped with a steam jacket, concentrated to a predetermined moisture content, then cooled and kneaded for 30 minutes. The obtained kneaded product was formed into a 1.8 mm cylindrical shape with an extruder, dried at 110 ° C., and then baked in an electric furnace at a temperature of 550 ° C. for 3 hours to obtain 27 wt% SiO 2. A silica-phosphorus-alumina support of 3 wt% P 2 O 5 and 70 wt% Al 2 O 3 was obtained. The average pore diameter (PD) of the carrier determined by mercury porosimetry was 70 mm.
Separately, 277.8 g of molybdenum trioxide and 170.6 g of basic nickel carbonate were placed in a 1 L container, and 600 ml of ion-exchanged water was added and stirred for suspension. This suspension was heated at 95 ° C. for 5 hours so that the amount of the solution did not decrease and was appropriately refluxed. Thereafter, 67.7 g of 85% phosphoric acid was added to this suspension solution to dissolve the suspension to prepare an impregnation solution.
Next, 1000 g of the carrier is placed in a rotary blender capable of vacuum degassing and left for 5 minutes while degassing with a vacuum pump, and then the amount of the impregnated solution prepared above is adjusted to match the water absorption rate of the carrier, The blender was added while rotating. After the addition of the solution, the vacuum pump was stopped and rotated under normal pressure for 20 minutes so that the impregnation solution sufficiently permeated into the carrier. The impregnated product was taken out and placed in a rotary dryer with a temperature raising program, and dried from 40 ° C. to 250 ° C. for 1 hour. The dried product was put in an electric furnace and calcined at 550 ° C. for 1 hour to obtain a catalyst (B). The active metal composition of the catalyst (B) was MoO 3 : 20.0 wt%, NiO: 5.0 wt%, and P 2 O 5 : 3.0 wt%. Incidentally, P 2 O 5 to definitive here rather than P 2 O 5 in the carrier component, liquid content as the active metal component on a carrier, carrying, in which calcined resultant. Table 1 shows the NH 3 adsorption amount and properties of the catalyst (B).

製造例3
製造例2において、アルミン酸ナトリウムの使用量を4.27kg、硫酸アルミニウムの使用量を6.71kg、シリカヒドロゲルの使用量を20.83kgとする以外は製造例2と同様な方法により50wt%SiO、3wt%P、47wt%Alのシリカ−リン−アルミナ担体を調製した。該担体を使用して、製造例2と同様にして触媒(C)を調製した。触媒(C)のNH吸着量および性状を表1に示す。
Production Example 3
In Production Example 2, 50 wt% SiO was prepared in the same manner as in Production Example 2, except that the amount of sodium aluminate used was 4.27 kg, the amount of aluminum sulfate used was 6.71 kg, and the amount of silica hydrogel used was 20.83 kg. 2 , 3 wt% P 2 O 5 , 47 wt% Al 2 O 3 silica-phosphorus-alumina support was prepared. Using the carrier, a catalyst (C) was prepared in the same manner as in Production Example 2. Table 1 shows the NH 3 adsorption amount and properties of the catalyst (C).

製造例4
製造例2において、アルミン酸ナトリウムの使用量を2.45kg、硫酸アルミニウムの使用量を3.85kg、シリカヒドロゲルの使用量を29.17kgとする以外は製造例2と同様な方法により70wt%SiO、3wt%P、27wt%Alのシリカ−リン−アルミナ担体を調製した。該担体を使用して、製造例2と同様にして触媒(D)を調製した。触媒(D)のNH吸着量および性状を表1に示す。
Production Example 4
In Production Example 2, 70 wt% SiO was prepared in the same manner as in Production Example 2 except that the amount of sodium aluminate used was 2.45 kg, the amount of aluminum sulfate used was 3.85 kg, and the amount of silica hydrogel used was 29.17 kg. 2, 3wt% P 2 O 5 , 27wt% Al 2 O 3 silica - phosphorus - to prepare an alumina carrier. Using the carrier, a catalyst (D) was prepared in the same manner as in Production Example 2. Table 1 shows the NH 3 adsorption amount and properties of the catalyst (D).

実施例1
第一段目として、容量50mlの高圧流通式反応装置に製造例1の脱硫触媒(A)30mlを充填し、第二段目として、第一段目と同じ容量50mlの高圧流通式反応装置に製造例2の脱硫触媒(B)を30mlを充填して軽油の脱硫反応試験を行った。
脱硫反応の前処理として3%HS/Hガス流通下で330℃3時間硫化処理した。原料油として硫黄(S)濃度1.2%、窒素(N)濃度150ppm、比重0.8500の直留軽油を用いた。第一段目、第二段目の反応条件は、それぞれ反応圧力5.5Mpa、水素純度90%、水素/油比250Nm/m、液空間速度2.0hr−1、反応温度340℃の条件で行い、生成油中の硫黄分をHORIBA製硫黄・重金属分析機MDX1060にて分析した。第一段目の高圧流通式反応装置出口の生成油の硫黄濃度を測定したところ350ppmであり、HP製GC−AED HP6890/G2350Aにて分析したところ4−MDBTより保持時間の短い硫黄化合物は確認されなかった。第二段目の高圧流通式反応装置出口の生成油の硫黄濃度を表1に示す。
Example 1
As a first stage, a high-pressure flow reactor having a capacity of 50 ml is filled with 30 ml of the desulfurization catalyst (A) of Production Example 1, and as a second stage, a high-pressure flow reactor having the same capacity as that of the first stage is 50 ml. The desulfurization catalyst (B) of Production Example 2 was filled with 30 ml, and a desulfurization reaction test of light oil was performed.
As a pretreatment for the desulfurization reaction, sulfidation was performed at 330 ° C. for 3 hours under a 3% H 2 S / H 2 gas flow. A straight-run gas oil having a sulfur (S) concentration of 1.2%, a nitrogen (N) concentration of 150 ppm, and a specific gravity of 0.8500 was used as a raw material oil. The reaction conditions of the first stage and the second stage are as follows: reaction pressure 5.5 Mpa, hydrogen purity 90%, hydrogen / oil ratio 250 Nm 3 / m 3 , liquid space velocity 2.0 hr −1 , reaction temperature 340 ° C. Under the conditions, the sulfur content in the product oil was analyzed with a sulfur / heavy metal analyzer MDX1060 manufactured by HORIBA. The sulfur concentration of the product oil at the outlet of the first-stage high-pressure flow reactor was measured and found to be 350 ppm. When analyzed by HP GC-AED HP6890 / G2350A, a sulfur compound having a shorter retention time than 4-MDBT was confirmed. Was not. Table 1 shows the sulfur concentration of the product oil at the outlet of the second-stage high-pressure flow reactor.

実施例2
第二段目の触媒を製造例3で調製した触媒(C)を用いたこと以外は実施例1と全く同様にして軽油の脱硫反応試験を行った。試験結果を表1に示す。
Example 2
A desulfurization reaction test of light oil was performed in the same manner as in Example 1 except that the catalyst (C) prepared in Production Example 3 was used as the second stage catalyst. The test results are shown in Table 1.

実施例3
第二段目の触媒を製造例4で調製した触媒(D)を用いたこと以外は実施例1と全く同様にして軽油の脱硫反応試験を行った。試験結果を表1に示す。
Example 3
A desulfurization reaction test of light oil was performed in the same manner as in Example 1 except that the catalyst (D) prepared in Production Example 4 was used as the second stage catalyst. The test results are shown in Table 1.

比較例1
第一段目、第二段目共に製造例1の触媒(A)を用いたこと以外は実施例1と全く同様にして軽油の脱硫反応試験を行った。試験結果を表1に示す。
Comparative Example 1
A gas oil desulfurization reaction test was conducted in the same manner as in Example 1 except that the catalyst (A) of Production Example 1 was used in both the first and second stages. The test results are shown in Table 1.

比較例2
第一段目、第二段目共に製造例2で調製した触媒(B)を用いたこと以外は実施例1と全く同様にして軽油の脱硫反応試験を行った。試験結果を表1に示す。
Comparative Example 2
A gas oil desulfurization test was conducted in the same manner as in Example 1 except that the catalyst (B) prepared in Production Example 2 was used in both the first and second stages. The test results are shown in Table 1.

比較例3
第一段目に製造例2で調製した触媒(B)、第二段目に製造例1で調製した触媒(A)を用いたこと以外は実施例1と全く同様にして軽油の脱硫反応試験を行った。試験結果を表1に示す。
Comparative Example 3
Test for desulfurization of light oil in exactly the same manner as in Example 1 except that the catalyst (B) prepared in Production Example 2 was used in the first stage and the catalyst (A) prepared in Production Example 1 was used in the second stage. Went. The test results are shown in Table 1.

Figure 0003990676
Figure 0003990676

実施例1〜3の水素化脱硫方法では、生成油硫黄分を10ppm以下まで低減させることができたが、比較例1〜3の水素化脱硫方法では生成油硫黄分を10ppm以下まで低減させることができなかった。
In the hydrodesulfurization methods of Examples 1 to 3, the product oil sulfur content could be reduced to 10 ppm or less, but in the hydrodesulfurization methods of Comparative Examples 1 to 3, the product oil sulfur content was reduced to 10 ppm or less. I could not.

Claims (5)

硫黄分を含有する軽油を、第一段目で下記触媒(1)と接触させて水素化脱硫し、次いで第二段目で下記触媒(2)と接触させて水素化脱硫して軽油中の硫黄分を10ppm以下にすることを特徴とする軽油の水素化脱硫方法。
触媒(1):アルミナを主成分とする担体に周期律表第VIB族金属成分と第VIII族金属成分およびリン成分を担持した触媒であって、触媒の(1a)アンモニア昇温脱離法によるアンモニア吸着量が0.55mmol/g以下である脱硫触媒。
触媒(2):シリカ含有多孔性無機酸化物担体に周期律表第VIB族金属成分と第VIII族金属成分およびリン成分を担持した触媒であって、触媒の(2a)アンモニア昇温脱離法によるアンモニア吸着量が0.60mmol/g以上である脱硫触媒。
Gas oil containing sulfur is brought into contact with the following catalyst (1) in the first stage and then hydrodesulfurized, and then in the second stage, it is brought into contact with the following catalyst (2) and hydrodesulfurized to undergo hydrodesulfurization. A hydrodesulfurization method for light oil, characterized in that the sulfur content is 10 ppm or less.
Catalyst (1): A catalyst in which a group VIB metal component, a group VIII metal component, and a phosphorus component of the periodic table are supported on a carrier mainly composed of alumina, and (1a) of the catalyst according to the ammonia temperature-programmed desorption method A desulfurization catalyst having an ammonia adsorption amount of 0.55 mmol / g or less.
Catalyst (2): A catalyst comprising a silica-containing porous inorganic oxide support carrying a group VIB metal component, a group VIII metal component and a phosphorus component of the periodic table, and (2a) ammonia temperature-programmed desorption method of the catalyst A desulfurization catalyst having an ammonia adsorption amount of 0.60 mmol / g or more.
前記触媒(1)のアルミナを主成分とする担体が、シリカ(SiO)を2〜20重量%(担体基準)の範囲で含有するものである請求項1記載の軽油の水素化脱硫方法。 2. The hydrodesulfurization method for gas oil according to claim 1, wherein the carrier mainly composed of alumina of the catalyst (1) contains silica (SiO 2 ) in a range of 2 to 20% by weight (based on the carrier). 前記触媒(2)のシリカ含有多孔性無機酸化物担体が、シリカ(SiO)を10〜70重量%(担体基準)の範囲で含有するものである請求項1または2記載の軽油の水素化脱硫方法。 The hydrogenation of gas oil according to claim 1 or 2, wherein the silica-containing porous inorganic oxide support of the catalyst (2) contains silica (SiO 2 ) in a range of 10 to 70 wt% (based on the support). Desulfurization method. 前記触媒(2)のシリカ含有多孔性無機酸化物担体が、シリカ−リン−アルミナ担体である請求項1〜3いずれか記載の軽油の水素化脱硫方法。   The hydrodesulfurization method for gas oil according to any one of claims 1 to 3, wherein the silica-containing porous inorganic oxide carrier of the catalyst (2) is a silica-phosphorus-alumina carrier. 前記第一段目の触媒(1)と前記第二段目の触媒(2)の触媒使用量の割合〔触媒(1)/触媒(2)〕が10/90〜90/10容量比である請求項1〜4いずれか記載の軽油の水素化脱硫方法。
The ratio of the amount of catalyst used between the first stage catalyst (1) and the second stage catalyst (2) [catalyst (1) / catalyst (2)] is 10/90 to 90/10 volume ratio. The hydrodesulfurization method of the light oil in any one of Claims 1-4.
JP2004040295A 2004-02-17 2004-02-17 Hydrodesulfurization method of light oil Expired - Lifetime JP3990676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040295A JP3990676B2 (en) 2004-02-17 2004-02-17 Hydrodesulfurization method of light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040295A JP3990676B2 (en) 2004-02-17 2004-02-17 Hydrodesulfurization method of light oil

Publications (2)

Publication Number Publication Date
JP2005230622A JP2005230622A (en) 2005-09-02
JP3990676B2 true JP3990676B2 (en) 2007-10-17

Family

ID=35014125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040295A Expired - Lifetime JP3990676B2 (en) 2004-02-17 2004-02-17 Hydrodesulfurization method of light oil

Country Status (1)

Country Link
JP (1) JP3990676B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881662B2 (en) * 2006-06-20 2012-02-22 コスモ石油株式会社 LIGHT OIL COMPOSITION AND METHOD FOR PRODUCING LIGHT OIL COMPOSITION
CN101516500A (en) 2006-08-03 2009-08-26 国际壳牌研究有限公司 A catalyst and process for the manufacture of ultra-low sulfur distillate product
US9051522B2 (en) 2006-12-01 2015-06-09 Shell Oil Company Gasification reactor
JP5697009B2 (en) * 2009-10-20 2015-04-08 日揮触媒化成株式会社 Hydrocarbon oil hydrodesulfurization catalyst
JP6332913B2 (en) * 2013-05-13 2018-05-30 ポリプラスチックス株式会社 Solid phosphoric acid catalyst and method for producing trioxane using the same

Also Published As

Publication number Publication date
JP2005230622A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
KR100755194B1 (en) Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
JP4638610B2 (en) Hydrotreating catalyst and hydrotreating method
JP4839311B2 (en) Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils
JP5498702B2 (en) Selective catalyst with silica support for naphtha hydrodesulfurization
KR101796792B1 (en) A method for simultaneous removing of sulfur and mercury in hydrocarbon source comprising them using catalyst through hydrotreating reaction
JP4313265B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons
JP6643810B2 (en) Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method
WO2003000410A1 (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
JPH05192587A (en) Hydrogenation catalyst
JP2019218556A (en) Hydrotreating method of heavy hydrocarbon oil
KR20160064123A (en) Hydrogenation catalyst for heavy hydrocarbon oil, production method for hydrogenation catalyst for heavy hydrocarbon oil, and hydrogenation method for heavy hydrocarbon oil
JP4612229B2 (en) Catalyst for hydrotreating heavy hydrocarbon oil and hydrotreating method
JP2002363575A (en) Method for two step hydrogenating heavy hydrocarbon oil
JP4805211B2 (en) Heavy hydrocarbon oil hydrotreating catalyst, method for producing the same, and hydrotreating method
JP3990676B2 (en) Hydrodesulfurization method of light oil
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP3990675B2 (en) Hydrodesulfurization method of light oil
JP3990673B2 (en) Hydrodesulfurization method of light oil
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
JP2019177356A (en) Hydrotreating catalyst for heavy hydrocarbon oil, method for producing hydrotreating catalyst for heavy hydrocarbon oil, and hydrotreating method for heavy hydrocarbon oil
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
RU2610869C2 (en) Hydroprocessing catalyst and methods of making and using such catalyst
JP2001334150A (en) Hydrodesulfurization catalyst for gas oil fraction
JP2004124009A (en) Hydrodesulfurization method of gas oil
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3990676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term