JP6643810B2 - Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method - Google Patents

Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method Download PDF

Info

Publication number
JP6643810B2
JP6643810B2 JP2015086192A JP2015086192A JP6643810B2 JP 6643810 B2 JP6643810 B2 JP 6643810B2 JP 2015086192 A JP2015086192 A JP 2015086192A JP 2015086192 A JP2015086192 A JP 2015086192A JP 6643810 B2 JP6643810 B2 JP 6643810B2
Authority
JP
Japan
Prior art keywords
catalyst
mass
parts
metal component
hydrotreating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015086192A
Other languages
Japanese (ja)
Other versions
JP2016203074A5 (en
JP2016203074A (en
Inventor
雄介 松元
雄介 松元
渡部 光徳
光徳 渡部
雪子 中井
雪子 中井
尚喜 岩▲崎▼
尚喜 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Corp
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Catalysts and Chemicals Industries Co Ltd filed Critical JGC Corp
Priority to JP2015086192A priority Critical patent/JP6643810B2/en
Priority to PCT/JP2016/061453 priority patent/WO2016170995A1/en
Publication of JP2016203074A publication Critical patent/JP2016203074A/en
Publication of JP2016203074A5 publication Critical patent/JP2016203074A5/ja
Application granted granted Critical
Publication of JP6643810B2 publication Critical patent/JP6643810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、水素存在下で炭化水素油中の硫黄分を除去するための水素化処理触媒、その製造方法および水素化処理方法に関する。   The present invention relates to a hydrotreating catalyst for removing a sulfur content in a hydrocarbon oil in the presence of hydrogen, a method for producing the same, and a hydrotreating method.

水素化処理は、触媒を用いて高温高圧下にて反応を進行させるが、反応条件を低温、低圧下することによりプロセスの経済性が高まるため、触媒の活性が高いことが望まれている。モリブデンの還元温度に関する公の知見は以下のようなものがある。   In the hydrogenation treatment, the reaction proceeds at a high temperature and a high pressure using a catalyst. However, by lowering the reaction conditions to a low temperature and a low pressure, the economical efficiency of the process is increased. Therefore, it is desired that the activity of the catalyst is high. The public knowledge about the reduction temperature of molybdenum is as follows.

R.L.Corderoによるとモリブデンをアルミナやシリカに担持した触媒の水素気流下のモリブデンの還元温度が担体種や組成によって大きく変化することが記載されている。しかしながら、助触媒であるニッケルやコバルトが添加されておらず、実用的な触媒としての知見とは言い難い。加えて、本性質と脱硫活性との関連性には言及していないため、最適な触媒の還元温度について言及されていない。   R. L. According to Cordero, it is described that the reduction temperature of molybdenum under a hydrogen stream of a catalyst in which molybdenum is supported on alumina or silica varies greatly depending on the type and composition of the carrier. However, nickel or cobalt as a co-catalyst is not added, and it is hard to say that it is a practical catalyst. In addition, since the relationship between this property and the desulfurization activity is not mentioned, the optimum reduction temperature of the catalyst is not mentioned.

J. Escobarらは、アルミナ担体にニッケル、モリブデン、リンを担持した未焼成触媒の水素気流下におけるモリブデンに帰属する還元ピーク温度として384〜403℃、539〜576℃の二つが存在し、後者のピークの方が前者よりも大きくなることを明らかにした。しかしながら、未焼成の触媒の還元ピーク温度に関する知見を記載しているものの、焼成物触媒については言及されていないし、複合酸化物上のモリブデンの還元ピーク温度や還元プロファイルと脱硫活性の関係については記載されていない。   J. Escobar et al. Have two reduction peak temperatures of 384 to 403 ° C. and 539 to 576 ° C. belonging to molybdenum under a hydrogen gas flow of an unfired catalyst supporting nickel, molybdenum, and phosphorus on an alumina support. It was revealed that the peak was larger than the former. However, although knowledge about the reduction peak temperature of the unfired catalyst is described, the catalyst of the calcined product is not mentioned, and the relationship between the reduction peak temperature of molybdenum on the composite oxide and the reduction profile and the desulfurization activity is described. It has not been.

特許文献1には、ニッケル、コバルト、モリブデン、タングステン等の周期律表第8〜10族から選ばれる卑金属元素を含む硫化物触媒に、ロジウム、パラジウム、白金等の周期表第8〜10族から選ばれる貴金属を添加することにより、スピルオーバー水素の利用によって高い水素化処理性能を示すことが報告されている。また、反応活性点となる触媒成分の還元を受ける挙動が、水素化処理の触媒活性と密接な関係を有し、水素気流下における触媒の還元ピーク温度が500℃以下であることが望ましいと記載されている。しかしながら、貴金属を使用していることから、卑金属と比べて触媒価格が高価になるとともに地球資源の枯渇という側面からも望ましくない。
上記のようにモリブデンの還元温度について言及した知見は報告されているものの、安価で脱硫性能に優れ、容易に再生が可能な触媒について提案はされていない。
Patent Literature 1 discloses that a sulfide catalyst containing a base metal element selected from Groups 8 to 10 of the periodic table such as nickel, cobalt, molybdenum, and tungsten includes a group 8 to 10 group of the periodic table such as rhodium, palladium, and platinum. It has been reported that by adding a selected noble metal, high hydrotreating performance is exhibited by utilizing spillover hydrogen. In addition, it is described that the behavior of the catalyst component serving as a reaction active point undergoing reduction has a close relationship with the catalytic activity of the hydrogenation treatment, and it is desirable that the reduction peak temperature of the catalyst under a hydrogen stream be 500 ° C. or lower. Have been. However, the use of a precious metal is not desirable in terms of a higher catalyst price and a depletion of global resources as compared with a base metal.
Although the findings referring to the reduction temperature of molybdenum as described above have been reported, no catalyst has been proposed that is inexpensive, has excellent desulfurization performance, and can be easily regenerated.

特開2002−210362号公報JP 2002-210362 A

R.L.Cordero et al., Applied Catalysis, 74, 125-136 (1991).R. L. Cordero et al., Applied Catalysis, 74, 125-136 (1991). J. Escobar et al., Applied Catalysis B: Environmental, 88, 564-575 (2009).J. Escobar et al., Applied Catalysis B: Environmental, 88, 564-575 (2009).

本発明の目的は、脱硫活性に優れ、また高性能な触媒を再生することができる炭化水素油の水素化処理触媒およびその製造方法を提供することにある。また、炭化水素油中の硫黄分を高い除去率で除去できる炭化水素油の水素化処理方法を提供することにある。   An object of the present invention is to provide a hydrotreating catalyst for a hydrocarbon oil, which has excellent desulfurization activity and can regenerate a high-performance catalyst, and a method for producing the same. Another object of the present invention is to provide a method for hydrotreating a hydrocarbon oil, which can remove a sulfur content in the hydrocarbon oil at a high removal rate.

本発明の炭化水素油の水素化処理触媒は、
(1)無機酸化物担体上に、活性金属成分として、モリブデン及びタングステンのうちの少なくとも一方である第1の金属成分と、コバルト及びニッケルのうちの少なくとも一方である第2の金属成分と、が担持され、
(2)第1の金属成分の含有量は、触媒100質量部に対して、酸化物換算として15〜30質量部であり、第2の金属成分の含有量は、触媒100質量部に対して、酸化物換算として3〜7質量部であり、有機酸由来の炭素は、触媒100質量部に対して、元素基準として2.0質量部以下であり、
(3)触媒の比表面積が140〜350m/g、水銀圧入法で測定した触媒の平均細孔径が50〜130Åであり、
(4)強熱減量が5.0%以下、触媒の昇温還元法に基づいた、450℃までの範囲の脱離水のピーク温度が412.0℃以下、硫化処理した触媒の一酸化窒素の吸着量が8.0ml/g以上である、
ことを特徴とする。
Hydrocarbon treatment catalyst for hydrocarbon oil of the present invention,
(1) As an active metal component, a first metal component that is at least one of molybdenum and tungsten and a second metal component that is at least one of cobalt and nickel are provided on the inorganic oxide support. Carried,
(2) The content of the first metal component is 15 to 30 parts by mass in terms of oxide with respect to 100 parts by mass of the catalyst, and the content of the second metal component is 100 parts by mass of the catalyst. And 3 to 7 parts by mass in terms of oxide, and carbon derived from an organic acid is 2.0 parts by mass or less on an element basis with respect to 100 parts by mass of the catalyst.
(3) The specific surface area of the catalyst is 140 to 350 m 2 / g, the average pore diameter of the catalyst measured by a mercury intrusion method is 50 to 130 °,
(4) The peak temperature of desorbed water up to 450 ° C. based on the temperature-reduction method of the catalyst is less than 5.0% and the peak temperature of desorbed water is less than 412.0 ° C. The amount of adsorption is 8.0 ml / g or more;
It is characterized by the following.

本発明の具体的な例を以下に列挙するが、本発明の範囲を限定するものではない。
前記無機酸化物担体は、無機酸化物担体100質量部に対して、アルミニウムをアルミナ換算で80〜100質量部含む。
前記無機酸化物担体は、下記の(1)〜(3)のうちの少なくとも一つに該当する。
(1)無機酸化物担体100質量部に対して、リンをリン酸換算で5.0質量部以下含むものである。
(2)無機酸化物担体100質量部に対して、チタンをチタニア換算で20.0質量部以下含むものである。
(3)無機酸化物担体100質量部に対して、ケイ素をシリカ換算で2.0質量部以下含むものである。
Specific examples of the present invention are listed below, but do not limit the scope of the present invention.
The inorganic oxide carrier contains 80 to 100 parts by mass of aluminum in terms of alumina based on 100 parts by mass of the inorganic oxide carrier.
The inorganic oxide carrier corresponds to at least one of the following (1) to (3).
(1) It contains 5.0 parts by mass or less of phosphorus in terms of phosphoric acid with respect to 100 parts by mass of the inorganic oxide carrier.
(2) Titanium is contained in an amount of 20.0 parts by mass or less based on 100 parts by mass of the inorganic oxide carrier.
(3) Silicon is contained in an amount of 2.0 parts by mass or less in terms of silica with respect to 100 parts by mass of the inorganic oxide carrier.

前記活性金属成分は、モリブデンとコバルトとを含み、更にニッケル、銅、マグネシウム及び亜鉛の少なくとも1種を、触媒100質量部に対して、酸化物換算で0〜3.0質量部含む。
前記触媒は、昇温還元法に基づいた、900℃までの範囲の脱離水の最大ピーク温度が415℃以下である。
The active metal component contains molybdenum and cobalt, and further contains at least one of nickel, copper, magnesium and zinc in terms of oxide in an amount of 0 to 3.0 parts by mass with respect to 100 parts by mass of the catalyst.
The catalyst has a maximum peak temperature of desorbed water of up to 900 ° C. based on a temperature-reduction method of 415 ° C. or lower.

本発明の炭化水素油の水素化処理触媒の製造方法は、
(1)アルミニウムを含む無機酸化物担体を準備する工程と、
(2)モリブデン及びタングステンのうちの少なくとも一方である第1の金属成分と、コバルト及びニッケルの少なくとも一方である第2の金属成分と、有機酸と、を含む含浸液を調製し、前記第1の金属成分及び第2の金属成分を前記無機酸化物担体に担持する工程と、
(3)前記(2)の工程により得られた、前記第1の金属成分及び第2の金属成分が担持された無機酸化物担体を100〜600℃の温度で加熱処理して水素化処理触媒を得る工程と、
を有することを特徴とする。
The method for producing a catalyst for hydrotreating hydrocarbon oil of the present invention,
(1) a step of preparing an inorganic oxide carrier containing aluminum;
(2) preparing an impregnation liquid containing a first metal component that is at least one of molybdenum and tungsten, a second metal component that is at least one of cobalt and nickel, and an organic acid; Supporting a metal component and a second metal component on the inorganic oxide carrier,
(3) A hydrotreating catalyst obtained by heat-treating the inorganic oxide carrier carrying the first metal component and the second metal component obtained in the step (2) at a temperature of 100 to 600 ° C. Obtaining a
It is characterized by having.

本発明の炭化水素油の水素化処理方法は、水素化処理触媒の存在下において、水素分圧が3〜8MPa、温度が300〜420℃、液空間速度が0.3〜5hr-1条件で炭化水素油の水素化処理を行うことを特徴とする。 The hydrocarbon oil hydrotreating method of the present invention is characterized in that, in the presence of a hydrotreating catalyst, the hydrogen partial pressure is 3 to 8 MPa, the temperature is 300 to 420 ° C., and the liquid hourly space velocity is 0.3 to 5 hr −1 . and performing hydrotreating a hydrocarbon oil.

通常の脱硫触媒に貴金属を導入することにより、還元温度を低下させ、活性を向上させることが報告されているが、貴金属は高価であるとともに枯渇の点から工業化した際の課題が多い。そこで本発明では、高いNO吸着量を維持しながら、触媒の還元温度を適切に管理することにより、硫化処理を十分に進行させ、活性金属を高分散させた容易に再生が可能な高性能触媒を得ることができる。
また、本発明の炭化水素油の水素化処理触媒の製造方法によれば、本触媒の水素による触媒の還元ピーク温度(昇温還元法に基づいた脱離水のピーク温度)
を制御することにより、硫化処理を十分に進行させるとともに、活性金属を高分散させた高性能触媒を調製でき、脱硫活性に優れた水素化処理触媒を製造できる。
さらに、本発明の炭化水素油の水素化処理触媒を用いることで、高い脱硫活性を持つ炭化水素油の水素脱硫方法を提供できる。
It has been reported that by introducing a noble metal into a usual desulfurization catalyst, the reduction temperature is lowered and the activity is improved. However, there are many problems when the noble metal is industrialized due to its high cost and depletion. Therefore, in the present invention, by appropriately managing the reduction temperature of the catalyst while maintaining a high NO adsorption amount, the sulfuration treatment is sufficiently advanced, and the active metal is highly dispersed and easily regenerated. Can be obtained.
Further, according to the method for producing a catalyst for hydrotreating hydrocarbon oil of the present invention, the peak temperature of reduction of the catalyst by hydrogen of the present catalyst (the peak temperature of desorbed water based on the temperature raising reduction method).
By controlling the sulfur content, the sulfuration treatment can be sufficiently advanced, and a high-performance catalyst in which the active metal is highly dispersed can be prepared, and a hydrotreating catalyst excellent in desulfurization activity can be produced.
Further, by using the hydrocarbon oil hydrotreating catalyst of the present invention, a method for hydrodesulfurizing a hydrocarbon oil having high desulfurization activity can be provided.

昇温還元法による脱離水のピーク温度の分析結果の一例(実施例)を示すグラフである。It is a graph which shows an example (example) of an analysis result of the peak temperature of desorption water by a temperature-reduction reduction method. 昇温還元法による脱離水のピーク温度の分析結果の一例(比較例)を示すグラフである。4 is a graph showing an example (comparative example) of the analysis result of the peak temperature of desorbed water by a temperature-reduction method.

以下、本発明の好適な実施の形態について詳細に説明する。
[炭化水素油の水素化処理触媒について]
本発明の炭化水素油の水素化処理触媒は、例えばアルミニウムを含む無機酸化物担体と、活性金属成分とからなり、所定の性状を有している。以下に無機酸化物担体、活性金属成分及び触媒の性状について詳述する。
Hereinafter, preferred embodiments of the present invention will be described in detail.
[Catalyst for hydrotreating hydrocarbon oils]
The catalyst for hydrotreating hydrocarbon oil of the present invention comprises an inorganic oxide carrier containing, for example, aluminum and an active metal component, and has predetermined properties. Hereinafter, the properties of the inorganic oxide carrier, the active metal component, and the catalyst will be described in detail.

<無機酸化物担体>
前記水素化処理触媒を構成する無機酸化物担体としては、公知のこの種の触媒に使用される担体であって、各種の無機物からなるものを挙げることができる。この無機物よりなる担体あるいは担体を構成する無機物成分としては、例えばアルミナ、またはアルミナとシリカ、リン、ボリア、チタニア、ジルコニア、マグネシア等から選ばれる少なくとも一種との複合酸化物からなる各種の複合酸化物を挙げることができる。言い換えれば、複合酸化物は、アルミニウムと、チタニウム、ケイ素、リン、ジルコニウム、マグネシウムおよびホウ素から選ばれる少なくとも1種以上の元素と、を含む。
<Inorganic oxide carrier>
Examples of the inorganic oxide carrier constituting the hydrotreating catalyst include known carriers used for this type of catalyst, which are composed of various inorganic substances. As the inorganic carrier or the inorganic component constituting the inorganic carrier, for example, various kinds of composite oxides comprising alumina or a composite oxide of alumina and at least one selected from silica, phosphorus, boria, titania, zirconia, magnesia, and the like Can be mentioned. In other words, the composite oxide contains aluminum and at least one or more elements selected from titanium, silicon, phosphorus, zirconium, magnesium and boron.

複合酸化物の具体例としては、例えば、シリカアルミナ、ゼオライト、アルミナチタニア、アルミナリン、アルミナボリア、アルミナマグネシア、アルミナジルコニア、アルミナチタニアシリカ等を挙げることができるが、これらに限定されるものではない。無機酸化物担体の性状及び形状は、担持する金属成分の種類や組成等の種々の条件及び触媒の用途に応じて、適宜選択される。   Specific examples of the composite oxide include, for example, silica alumina, zeolite, alumina titania, alumina phosphorus, alumina boria, alumina magnesia, alumina zirconia, alumina titania silica, and the like, but are not limited thereto. . The properties and shape of the inorganic oxide carrier are appropriately selected according to various conditions such as the type and composition of the metal component to be supported and the use of the catalyst.

例えば、前記活性金属成分を担体に高分散状態に有効に担持して触媒活性を十分に確保するためには、通常、多孔質の担体が使用され、細孔径500Å以下の比較的小さな細孔を有するものが好適に使用される。また、担体あるいは触媒体の機械的強度や耐熱性等の物性を制御するために、担体あるいは触媒体の形成に際して適当なバインダー成分や添加剤を含有させることもできる。   For example, in order to effectively support the active metal component in a highly dispersed state on a carrier and sufficiently secure catalytic activity, a porous carrier is usually used, and relatively small pores having a pore diameter of 500 ° or less are used. Those having are preferably used. Further, in order to control physical properties such as mechanical strength and heat resistance of the carrier or the catalyst, an appropriate binder component or an additive may be contained when the carrier or the catalyst is formed.

本発明に係る炭化水素油の水素化処理触媒に使用される無機酸化物担体(以下、単に「担体」ともいう。)として、例えばアルミニウム単独酸化物、またはアルミニウムとケイ素、リンまたはチタニウムからなる複合酸化物を用いた場合におけるアルミニウム等の含有量について記載する。担体中のアルミニウムの含有量は、アルミニウム酸化物(Al)換算で80%以上(担体100質量部に対してアルミニウム酸化物(Al)換算で80質量部以上)が好ましい。酸化物換算のアルミニウムの含有量が80質量%未満であると、触媒の劣化が早くなる傾向にある。 Examples of the inorganic oxide carrier (hereinafter, also simply referred to as “carrier”) used in the catalyst for hydrotreating hydrocarbon oil according to the present invention include, for example, aluminum oxide alone or a composite of aluminum and silicon, phosphorus or titanium. The content of aluminum and the like when an oxide is used is described. The aluminum content in the carrier, aluminum oxide (Al 2 O 3) (aluminum oxide (Al 2 O 3) 80 parts by mass or more in terms of per 100 parts by mass of the carrier) of 80% or more in terms of the preferred. If the content of aluminum in terms of oxide is less than 80% by mass, the catalyst tends to deteriorate quickly.

担体中のケイ素の含有量は、ケイ素酸化物(SiO)換算で2.0質量%以下(担体100質量部に対してケイ素酸化物(SiO)換算で2.0質量部以下))が好ましく、ケイ素の含有量が過度に多いと、シリカが凝集し、担体細孔分布がブロードとなることから脱硫活性および脱窒素活性が低下する傾向にある。 Content of silicon in the carrier, silicon oxide (SiO 2) 2.0 wt% in terms of the following (a silicon oxide with respect to 100 parts by weight of carrier (SiO 2) to 2.0 parts by mass basis)) of Preferably, when the silicon content is excessively large, silica aggregates and the pore distribution of the carrier becomes broad, so that the desulfurization activity and the denitrification activity tend to decrease.

担体中のチタニウムの含有量は、チタニウム酸化物(TiO2)換算で20.0質量%以下(担体100質量部に対してチタニウム酸化物(TiO2)換算で20.0質量部以下)が好ましい。酸化物換算のチタニウム含有量が過度に多いと、担体細孔分布がブロードとなり脱硫活性が低下する傾向にある。 The content of titanium in the carrier, titanium oxide (TiO 2) 20.0% by weight in terms of the following (titanium oxide with respect to 100 parts by weight of carrier (TiO 2) 20.0 parts by mass or less in terms) are preferred . If the titanium content in terms of oxide is excessively large, the pore distribution of the carrier becomes broad and the desulfurization activity tends to decrease.

担体中のリンの含有量は、リン酸化物(P)換算で5.0質量%以下(担体100質量部に対してリン酸化物(P)換算で5.0部以下)が好ましい。リン含有量が過度に多いと、担体細孔分布がブロードとなり脱硫性能が低下する傾向にある。 The content of phosphorus in the carrier is 5.0% by mass or less in terms of phosphor oxide (P 2 O 5 ) (5.0 parts by mass or less in terms of phosphor oxide (P 2 O 5 ) per 100 parts by mass of carrier). Is preferred. If the phosphorus content is excessively large, the pore distribution of the carrier tends to be broad and the desulfurization performance tends to decrease.

<活性金属成分>
無機酸化物担体上に、活性金属成分として、第1の金属成分である例えばモリブデンと、第2の金属成分である例えばコバルトが担持される。
第1の金属成分は、モリブデンに代えてタングステンであってもよいし、モリブデン及びタングステンの両方であってもよい。第1の金属成分の含有量(担持量)は、触媒基準で酸化物換算として15〜30質量%(触媒100質量部に対して、酸化物換算として15〜30質量部)であることが必要である。
<Active metal component>
On the inorganic oxide support, a first metal component, for example, molybdenum, and a second metal component, for example, cobalt, are supported as active metal components.
The first metal component may be tungsten instead of molybdenum, or may be both molybdenum and tungsten. The content (loading amount) of the first metal component needs to be 15 to 30% by mass in terms of oxide on a catalyst basis (15 to 30 parts by mass in terms of oxide with respect to 100 parts by mass of catalyst). It is.

第1の金属成分の含有量が酸化物換算として15質量%より過度に小さいと、反応に必要な脱硫活性が確保できないおそれがあり、30質量%より過度に大きいと、金属成分が凝集しやすくなり、分散性を阻害するおそれがある。   If the content of the first metal component is excessively smaller than 15% by mass in terms of oxide, the desulfurization activity required for the reaction may not be secured. If the content is more than 30% by mass, the metal component is likely to aggregate. And dispersibility may be impaired.

第2の金属成分は、コバルトに代えてニッケルであってもよいし、コバルト及びニッケルの両方であってもよい。第2の金属成分の含有量(担持量)は、触媒基準で酸化物換算として3〜7質量%(触媒100質量部に対して、酸化物換算として15〜30質量部)であることが必要である。第2の金属成分は、第1の金属成分に対して助触媒として働き、含有量が酸化物換算として3質量%よりも少なくなると活性金属成分である第1の金属成分及び第2の金属成分が適切な構造を保つことが困難になり、含有量が酸化物換算として7質量%を越えると、活性金属成分の凝集が進みやすくなり、触媒性能が低下する。   The second metal component may be nickel instead of cobalt, or both cobalt and nickel. The content (loading amount) of the second metal component is required to be 3 to 7% by mass in terms of oxide on a catalyst basis (15 to 30 parts by mass in terms of oxide with respect to 100 parts by mass of the catalyst). It is. The second metal component acts as a cocatalyst with respect to the first metal component, and when the content is less than 3% by mass in terms of oxide, the first metal component and the second metal component that are active metal components. However, it becomes difficult to maintain an appropriate structure, and if the content exceeds 7% by mass in terms of oxides, the aggregation of the active metal component is apt to proceed, and the catalytic performance decreases.

また有機酸由来の炭素の含有量は、触媒基準で元素基準として2.0質量%以下(触媒100質量部に対して、元素基準として2.0質量部以下)であることが必要である。活性金属成分を含侵法により無機酸化物担体に担持させる場合には、通常含侵液中に有機酸が含まれ、このため有機酸が無機酸化物担体に担持される炭素の供給源となる。炭素の含有量を元素基準として2.0質量%以下とすることにより、触媒再生時の活性が新規な未使用の触媒(フレッシュな触媒)の脱硫性能を100%としたときに80%以上とすることができる。炭素の含有量が多いと、触媒再生時の焼成工程によって活性金属成分が凝集することが懸念される。   Further, the content of carbon derived from an organic acid must be 2.0% by mass or less on an element basis on a catalyst basis (2.0 parts by mass or less on an element basis with respect to 100 parts by mass of the catalyst). When the active metal component is supported on the inorganic oxide carrier by the impregnation method, an organic acid is usually contained in the impregnating liquid, and therefore, the organic acid becomes a source of carbon supported on the inorganic oxide carrier. . By setting the carbon content to 2.0% by mass or less on an elemental basis, the activity at the time of catalyst regeneration becomes 80% or more when the desulfurization performance of a new unused catalyst (fresh catalyst) is 100%. can do. If the content of carbon is large, there is a concern that the active metal component may be aggregated by the calcination step during catalyst regeneration.

有機酸としては、例えば、クエン酸、リンゴ酸、グルコン酸、酒石酸、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)が用いられ、より好ましくは、クエン酸、リンゴ酸、酒石酸、グルコン酸などが挙げられる。また有機酸に加えて例えば、糖類(単糖類、二糖類、多糖類等)などの有機添加剤を用いる場合には、本明細書においては、有機酸由来の炭素の含有量とは、有機酸及び有機添加剤の両方に由来する炭素の含有量とする。   Examples of the organic acid include citric acid, malic acid, gluconic acid, tartaric acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and more preferably citric acid, malic acid, tartaric acid, gluconic acid, and the like. Is mentioned. In the case where an organic additive such as a saccharide (monosaccharide, disaccharide, polysaccharide, etc.) is used in addition to the organic acid, in this specification, the content of carbon derived from the organic acid means the content of the organic acid. And the content of carbon derived from both organic additives.

<触媒の性状>
本発明の触媒は、BET法で測定した比表面積(SA)が、140〜350m/gの範囲であることが必要である。比表面積(SA)が、140m/gよりも小さいと、金属成分が凝集しやすくなり、脱硫性能が低下するおそれがあるため好ましくない。一方、350m/gより大きいと平均細孔径や細孔容積が小さくなり、脱硫活性が低下する傾向があるので好ましくない。
<Characteristics of catalyst>
The catalyst of the present invention needs to have a specific surface area (SA) measured by the BET method in the range of 140 to 350 m 2 / g. If the specific surface area (SA) is smaller than 140 m 2 / g, the metal component is liable to agglomerate and the desulfurization performance may be undesirably reduced. On the other hand, if it is larger than 350 m 2 / g, the average pore diameter and the pore volume become small, and the desulfurization activity tends to decrease.

また平均細孔径が50〜130Åであることが必要である。平均細孔直径は、水銀圧入法(水銀の接触角:130度、表面張力:480dyn/cm)により測定した値であり、全細孔容積の50%に相当する細孔直径を表す。なお、細孔容積は細孔直径41Å以上の細孔直径を有する細孔の容積を表す。平均細孔径が50Åよりも小さいと脱硫性能が低下するおそれがあり、平均細孔径が130Åよりも大きいと、触媒強度が低下するおそれがある。   Further, the average pore diameter needs to be 50 to 130 °. The average pore diameter is a value measured by a mercury intrusion method (mercury contact angle: 130 degrees, surface tension: 480 dyn / cm), and represents a pore diameter corresponding to 50% of the total pore volume. The pore volume indicates the volume of pores having a pore diameter of 41 ° or more. If the average pore diameter is smaller than 50 °, the desulfurization performance may decrease, and if the average pore diameter is larger than 130 °, the catalyst strength may decrease.

本発明の触媒は、強熱減量(Ig Loss)が5.0%以下である。強熱減量は後述の測定法の項目に記載しているように触媒を高温で加熱することにより算出して得られる。触媒の強熱減量を5.0%以下とするためには、無機酸化物担体に対して含侵液を噴霧含侵させた後、例えば300℃以上の温度で焼成することが必要である。
触媒の強熱減量を5.0%以下とする
ことにより、触媒再生時の活性が新規な未使用の触媒(フレッシュな触媒)の脱硫性能を100%としたときに80%以上とすることができる。触媒の強熱減量が多くなると。触媒再生時の焼成工程によって活性金属成分が凝集することが懸念される。
The catalyst of the present invention has an ignition loss (Ig Loss) of 5.0% or less. The ignition loss can be obtained by calculating by heating the catalyst at a high temperature as described in the item of the measuring method described below. In order to reduce the loss on ignition of the catalyst to 5.0% or less, it is necessary to spray and impregnate the inorganic oxide carrier with the impregnating liquid and then calcinate at a temperature of 300 ° C. or more, for example.
By making the ignition loss of the catalyst 5.0% or less, the activity at the time of catalyst regeneration can be 80% or more when the desulfurization performance of a new unused catalyst (fresh catalyst) is 100%. it can. When the ignition loss of the catalyst increases. There is a concern that the active metal component may be agglomerated by the firing step during catalyst regeneration.

本発明の触媒は、触媒の昇温還元法に基づいた、450℃までの範囲の脱離水のピーク温度(水の脱離スペクトルのピークが現れる温度)が415℃以下である。昇温還元法の具体例については後述する。通常、硫化処理はモリブデンに水素気流下で硫化水素等によって行われ、反応としては、酸化モリブデンから酸素が脱離することが必要になる。水の脱離ピークは、まさにその酸化モリブデンからの酸素の水としての脱離を検出しているものであるため、硫化処理の進行とモリブデンの還元温度には相関関係があると考えられる。従って、脱離水のピーク温度を低温化することにより、モリブデンの硫化処理を十分進行させることができると考えられる。   The catalyst of the present invention has a peak temperature of desorbed water (a temperature at which a peak of a desorption spectrum of water appears) of 415 ° C. or lower based on a catalyst temperature-reduction method up to 450 ° C. Specific examples of the temperature raising reduction method will be described later. Usually, the sulfidation treatment is carried out by molybdenum or the like under a hydrogen stream to molybdenum, and the reaction requires desorption of oxygen from molybdenum oxide. Since the desorption peak of water is a detection of the desorption of oxygen from molybdenum oxide as water, it is considered that there is a correlation between the progress of the sulfidation treatment and the reduction temperature of molybdenum. Therefore, it is considered that the sulfuration treatment of molybdenum can be sufficiently advanced by lowering the peak temperature of the desorbed water.

また還元温度が高すぎた場合、つまり脱離水のピーク温度が高すぎた場合には、水が無機酸化物担体と弱く相互作用をしているため、活性金属の凝集体が存在する可能性が高くなる。そのため、硫化工程が十分に進行しないことが推察される。従って、還元温度を低くし、水と無機酸化物担体との相互作用を小さくすることが、活性金属を高分散させるために必要である。
脱離水は、主としてモリブデンの還元工程で生成されたものであり、そのピーク温度は、担体組成、活性金属組成等に応じて変化する。本発明者の知見によれば、水の脱離ピーク温度(脱離水のピーク温度)を415℃以下にするためには無機酸化物担体上に、活性金属成分として、モリブデンおよびタングステンのうちの少なくとも一方(一種)を酸化物換算として、15〜30質量%、コバルト及びニッケルのうちの少なくとも一方(一種)を酸化物換算として3〜7質量%とすることが必要である。
If the reduction temperature is too high, that is, if the peak temperature of the desorbed water is too high, the water weakly interacts with the inorganic oxide carrier, and there is a possibility that an active metal aggregate may be present. Get higher. Therefore, it is presumed that the sulfurization step does not proceed sufficiently. Therefore, it is necessary to lower the reduction temperature and reduce the interaction between water and the inorganic oxide carrier in order to highly disperse the active metal.
The desorbed water is mainly generated in the step of reducing molybdenum, and its peak temperature changes according to the carrier composition, the active metal composition, and the like. According to the knowledge of the present inventors, in order to reduce the peak temperature of desorption of water (peak temperature of desorption water) to 415 ° C. or lower, at least one of molybdenum and tungsten as active metal components is placed on the inorganic oxide support. On the other hand, one (one) must be 15 to 30% by mass in terms of oxide, and at least one (one) of cobalt and nickel needs to be 3 to 7% by mass in terms of oxide.

本発明の触媒は、硫化処理した触媒のNO(一酸化窒素)の吸着量が8.0ml/g以上である。前記吸着量は、より好ましくは、8.3ml/g以上であり、更に好ましくは9.0ml/g以上である。NO分子吸着量に基づき、触媒の反応活性点を計測することができる。   In the catalyst of the present invention, the NO (nitrogen monoxide) adsorption amount of the sulfurized catalyst is 8.0 ml / g or more. The adsorption amount is more preferably 8.3 ml / g or more, and still more preferably 9.0 ml / g or more. The reaction active point of the catalyst can be measured based on the NO molecule adsorption amount.

触媒を硫化処理した後のNO吸着量は、脱離水のピーク温度と同様に、担体組成、活性金属組成等に応じて変化する。そしてNO吸着を行うためには、硫化処理が必要となることから、活性金属の還元温度をある一定温度以下に下げることが必要となる。本発明者の知見によれば、NOの吸着量を8.0ml/g以上とするためには、無機酸化物担体上に活性金属成分として、モリブデン及びタングステンのうちのを少なくとも一方を酸化物換算として15〜30質量%、コバルト及びニッケルのうちの少なくとも一方を酸化物換算として3〜7質量%とし、水の脱離ピーク温度を415℃以下にすることが重要である。   The amount of NO adsorbed after the catalyst is sulfurized varies depending on the carrier composition, active metal composition, and the like, as does the peak temperature of desorbed water. In order to perform NO adsorption, a sulfidation treatment is required, so that it is necessary to lower the reduction temperature of the active metal to a certain temperature or lower. According to the knowledge of the present inventor, in order to make the adsorption amount of NO equal to or more than 8.0 ml / g, at least one of molybdenum and tungsten as an active metal component is converted into oxide on an inorganic oxide carrier. It is important that 15 to 30% by mass, at least one of cobalt and nickel is 3 to 7% by mass in terms of oxide, and the desorption peak temperature of water is 415 ° C. or lower.

[炭化水素油の水素化処理方法について]
本発明の水素化処理触媒により脱硫化を図る対象となる炭化水素油は、例えば、原油の常圧蒸留装置から得られる直留灯油または直留軽油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油または減圧重質軽油、脱硫重油を接触分解して得られる接触分解灯油または接触分解軽油、減圧重質軽油あるいは脱硫重油を水素化分解して得られる水素化分解灯油または水素化分解軽油、コーカー等の熱分解装置から得られる熱分解灯油または熱分解軽油等が挙げられ、沸点が180〜390℃の留分を80容量%以上含んだ留分である。該触媒を使用した水素化処理は、固定床反応装置に触媒を充填して水素雰囲気下、高温高圧条件で行なわれる。
[About the hydrotreating method of hydrocarbon oil]
The hydrocarbon oil to be desulfurized by the hydrotreating catalyst of the present invention is, for example, straight-run kerosene or straight-run gas oil obtained from a normal-pressure distillation unit for crude oil, and straight-run heavy oil obtained from a normal-pressure distillation unit. Hydrogenation of reduced-pressure gas oil or reduced-pressure heavy gas oil obtained by treating oil or residual oil with a reduced-pressure distillation device, catalytic cracking kerosene or catalytic cracked gas oil obtained by catalytic cracking of desulfurized heavy oil, reduced-pressure heavy gas oil or desulfurized heavy oil. Hydrocracked kerosene or hydrocracked gas oil obtained by cracking, pyrolyzed kerosene or pyrolyzed gas oil obtained from a pyrolysis apparatus such as a coker, etc., and a fraction having a boiling point of 180 to 390 ° C is 80% by volume or more. The distillate included. The hydrogenation treatment using the catalyst is performed under a high-temperature and high-pressure condition under a hydrogen atmosphere by filling a fixed-bed reactor with the catalyst.

[炭化水素油の水素化処理触媒の製造方法]
次に、本発明の炭化水素油の水素化処理触媒の製造方法について説明する。
[Production method of hydrotreating catalyst for hydrocarbon oil]
Next, a method for producing the hydrocarbon oil hydrotreating catalyst of the present invention will be described.

本発明に係る炭化水素油の水素化処理触媒の製造方法は、
アルミニウムを含む無機酸化物担体を準備する第1工程と、
モリブデン及びタングステンのうちの少なくとも一方である第1の金属成分と、コバルト及びニッケルの少なくとも一方である第2の金属成分と、有機酸と、を含む含浸液を調製し、前記第1の金属成分及び第2の金属成分を前記無機酸化物担体に担持する第2工程と、
第2工程により得られた、前記第1の金属成分及び第2の金属成分が担持された無機酸化物担体を100〜600℃の温度で加熱処理して水素化処理触媒を得る工程と、を有する。
以下、各工程について説明する。
The method for producing a catalyst for hydrotreating hydrocarbon oil according to the present invention comprises:
A first step of preparing an inorganic oxide support containing aluminum;
Preparing an impregnation liquid containing a first metal component that is at least one of molybdenum and tungsten, a second metal component that is at least one of cobalt and nickel, and an organic acid; And a second step of supporting a second metal component on the inorganic oxide carrier,
Heat-treating the inorganic oxide carrier carrying the first metal component and the second metal component obtained at the second step at a temperature of 100 to 600 ° C. to obtain a hydrotreating catalyst; Have.
Hereinafter, each step will be described.

<第1工程>
先ず塩基性アルミニウム塩水溶液と酸性アルミニウム塩の水溶液を、pHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.8〜8.0になるように混合して無機酸化物の水和物を得る。そして無機酸化物の水和物のスラリーを所望の手法により熟成した後、洗浄して副生成塩を除き、アルミナを含む、あるいはアルミナやアルミナ以外のケイ素などの他の元素を含む水和物のスラリーを得る。この水和物のスラリーを例えば更に加熱熟成した後、慣用の手段により例えば加熱捏和して成型可能な捏和物とした後、押し出し成型などにより所望の形状に成型し、次いで例えば70〜150℃、好ましくは90〜130℃で加熱乾燥し、好ましくは更に例えば400〜800℃、好ましくは450〜600℃で、例えば0.5〜10時間、好ましくは2〜5時間焼成して無機酸化物担体を得る。
<First step>
First, an aqueous solution of a basic aluminum salt and an aqueous solution of an acidic aluminum salt are mixed so that the pH becomes 6.5 to 9.5, preferably 6.5 to 8.5, and more preferably 6.8 to 8.0. To obtain a hydrate of an inorganic oxide. After aging the slurry of the hydrate of the inorganic oxide by a desired method, it is washed to remove by-product salts, and contains hydrates containing alumina or other elements such as silicon other than alumina or alumina. Obtain a slurry. After the slurry of this hydrate is further heated and aged, for example, it is heated and kneaded by a conventional means to form a kneadable material, which is then molded into a desired shape by extrusion molding and the like. C., preferably 90-130.degree. C., and further preferably calcined at 400-800.degree. C., preferably 450-600.degree. C., for example 0.5-10 hours, preferably 2-5 hours to obtain an inorganic oxide. Obtain a carrier.

アルミニウム以外の元素を含む無機複合酸化物の水和物を得る場合は、用いる金属塩のpHにより、酸性水溶液または塩基性水溶液のアルミニウム塩の水溶液に予め混合した後、前記pHの範囲になるように混合して、無機複合酸化物の水和物を得る。   When obtaining a hydrate of an inorganic composite oxide containing an element other than aluminum, depending on the pH of the metal salt to be used, after preliminarily mixing with an aqueous solution of an aluminum salt of an acidic aqueous solution or a basic aqueous solution, the pH is adjusted to the above-mentioned range. To obtain a hydrate of the inorganic composite oxide.

また、塩基性アルミニウム塩としては、アルミン酸ナトリウム、アルミン酸カリウムなどが好適に使用される。また、酸性アルミニウム塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウムなどが好適に使用され、チタン鉱酸塩としては、四塩化チタン、三塩化チタン、硫酸チタン、硫酸チタニル、硝酸チタンなどが例示され、特に硫酸チタン、硫酸チタニルは安価であるので好適に使用される。また、リン酸塩源としては、亜リン酸イオンをも包含し、リン酸アンモニア、リン酸カリウム、リン酸ナトリウム、リン酸、亜リン酸などの水中でリン酸イオンを生じるリン酸化合物が使用可能である。   As the basic aluminum salt, sodium aluminate, potassium aluminate and the like are preferably used. Further, as the acidic aluminum salt, aluminum sulfate, aluminum chloride, aluminum nitrate and the like are preferably used, and as the titanium mineral acid salt, titanium tetrachloride, titanium trichloride, titanium sulfate, titanyl sulfate, titanium nitrate and the like are exemplified. Particularly, titanium sulfate and titanyl sulfate are preferably used because they are inexpensive. Phosphate ions are also used as the phosphate source, and phosphate compounds that generate phosphate ions in water such as ammonium phosphate, potassium phosphate, sodium phosphate, phosphoric acid, and phosphorous acid are used. It is possible.

前記2種のアルミニウム塩水溶液を混合する際、通常40〜90℃、好ましくは50〜70℃に加温して保持し、この溶液の温度の±5℃、好ましくは±2℃、より好ましくは±1℃に加温した混合水溶液を、pHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.5〜8.0になるように、通常5〜20分、好ましくは7〜15分の間に連続添加し沈殿を生成させ、水和物のスラリーを得る。   When mixing the two kinds of aluminum salt aqueous solutions, the mixture is usually heated to 40 to 90 ° C., preferably 50 to 70 ° C., and kept at that temperature, and the temperature of this solution is ± 5 ° C., preferably ± 2 ° C., more preferably The mixed aqueous solution heated to ± 1 ° C. is added to a mixture of usually 5 to 20 so that the pH becomes 6.5 to 9.5, preferably 6.5 to 8.5, more preferably 6.5 to 8.0. Minutes, preferably between 7 and 15 minutes, to form a precipitate and obtain a hydrate slurry.

ここで、塩基性アルミニウム塩水溶液への混合水溶液の添加に要する時間は、長くなると擬ベーマイトの他にバイヤライトやギブサイト等の好ましくない結晶物が生成することがあるので、15分以下が望ましく、13分以下が更に望ましい。バイヤライトやギブサイトは、加熱処理した時に比表面積が低下するので、好ましくない。   Here, the time required for the addition of the mixed aqueous solution to the basic aluminum salt aqueous solution is not longer than 15 minutes because undesired crystals such as bayerite and gibbsite may be generated in addition to pseudo-boehmite when the time is long. 13 minutes or less is more desirable. Bayerite and gibbsite are not preferred because the specific surface area decreases when heat-treated.

<第2工程>
無機酸化物担体に、既述の第1の金属成分と第2の金属成分と炭素成分とを含む含浸液を接触させる。
第1の金属成分の原料としては、例えば、三酸化モリブデン、モリブデン酸アンモニウム、メタタングステン酸アンモニウム、パラタングステン酸アンモニウム、三酸化タングステンなどが好適に使用される。また第2金属成分の原料としては、硝酸ニッケル、炭酸ニッケル、硝酸コバルト、炭酸コバルト等が好適に使用される。
更に銅、マグネシウムあるいは亜鉛を無機酸化物担体に担持させる場合には、例えば炭酸銅、炭酸マグネシウム、炭酸亜鉛などが用いられる。
またリンを無機酸化物担体に担持させる場合には、オルトリン酸(以下、単に「リン酸」ともいう)、リン酸二水素アンモニウム、リン酸水素二アンモニウム、トリメタリン酸、ピロリン酸、トリポリリン酸などが用いられる。
<Second step>
The impregnating liquid containing the above-described first metal component, second metal component, and carbon component is brought into contact with the inorganic oxide carrier.
As a raw material of the first metal component, for example, molybdenum trioxide, ammonium molybdate, ammonium metatungstate, ammonium paratungstate, tungsten trioxide and the like are suitably used. As the raw material of the second metal component, nickel nitrate, nickel carbonate, cobalt nitrate, cobalt carbonate and the like are preferably used.
Further, when copper, magnesium or zinc is supported on an inorganic oxide carrier, for example, copper carbonate, magnesium carbonate, zinc carbonate or the like is used.
When phosphorus is supported on an inorganic oxide carrier, orthophosphoric acid (hereinafter, also simply referred to as “phosphoric acid”), ammonium dihydrogen phosphate, diammonium hydrogen phosphate, trimetaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, etc. Used.

含浸液は、有機酸を用いてpHを4以下にして、金属成分を溶解させることが好ましい。pHが4を超えると溶解している金属成分の安定性が低下して析出する傾向にある。有機酸としては、例えば、クエン酸、リンゴ酸、酒石酸、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)が使用でき、特に、クエン酸、リンゴ酸が好適に用いられる。有機添加剤としては、糖類(単糖類、二糖類、多糖類等)が用いられる。なお有機酸に有機添加剤、例えば、ブドウ糖(グルコース;C12)、果糖(フルクトース;C12)、麦芽糖(マルトース;C122211)、乳糖(ラクトース;C122211)、ショ糖(スクロース;C122211)等を加えてもよい。 The impregnating liquid is preferably adjusted to a pH of 4 or less using an organic acid to dissolve the metal component. If the pH exceeds 4, the stability of the dissolved metal component tends to decrease and precipitate. As the organic acid, for example, citric acid, malic acid, tartaric acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA) can be used, and citric acid and malic acid are particularly preferably used. Sugars (monosaccharides, disaccharides, polysaccharides, etc.) are used as organic additives. Organic additives such as glucose (glucose; C 6 H 12 O 6 ), fructose (fructose; C 6 H 12 O 6 ), maltose (maltose; C 12 H 22 O 11 ), lactose (lactose; C 12 H 22 O 11 ), sucrose (sucrose; C 12 H 22 O 11 ) and the like may be added.

<第3工程>
第2工程で含浸液と接触させて得られる金属成分を担持した担体を、100〜600℃、好ましくは105〜550℃、さらに好ましくは110〜500℃で、0.5〜10時間、好ましくは1〜8時間で加熱処理した後、本発明の水素化処理触媒を製造する。ここで焼成温度が100℃より過度に低いと、残存水分による操作性が悪くなり、また金属担持状態が均一になりにくいおそれがあり、600℃を過度に超えると、金属が凝集を起こし、分散維持効果が期待できなくなるおそれがあるので好ましくない。
<Third step>
The carrier supporting the metal component obtained by being brought into contact with the impregnating liquid in the second step is heated at 100 to 600 ° C., preferably 105 to 550 ° C., more preferably 110 to 500 ° C., for 0.5 to 10 hours, preferably After the heat treatment for 1 to 8 hours, the hydrotreating catalyst of the present invention is produced. Here, if the firing temperature is excessively lower than 100 ° C., the operability due to residual moisture is deteriorated, and the metal carrying state may not be uniform. If the firing temperature is excessively higher than 600 ° C., the metal may aggregate and disperse. It is not preferable because the maintenance effect may not be expected.

[測定方法について]
後述のように、本発明の実施例及び比較例の各々における水素化処理触媒について、成分の含有量、比表面積及び性状に関する数値を測定しているが、これらの測定を行う方法について記載しておく。
<担体成分(アルミナ、シリカ、酸化リン、チタニア)および金属成分(モリブデン、コバルト、ニッケル、銅、マグネシウム、リン)の含有量の測定方法>
測定試料3gを容量30mlの蓋付きジルコニアボールに採取し、加熱処理(200℃、20分)させ、焼成(700℃、5分)した後、Na 2gおよびNaOH 1gを加えて15分間溶融した。さらに、HSO 25mlと水200mlを加えて溶解したのち、純水で500mlになるよう希釈して試料とした。得られた試料について、ICP装置(島津製作所(株)製、ICPS−8100、解析ソフトウェアICPS−8000)を用いて、各成分の含有量を酸化物換算基準(Al、SiO、P、TiO、MoO、NiO、CoO、MgO、CuO)で測定した。
[About measurement method]
As described below, for the hydrotreating catalysts in each of the examples and comparative examples of the present invention, the content of the components, the specific surface area and the numerical values relating to the properties are measured, and a method for performing these measurements is described. deep.
<Method for measuring the contents of carrier components (alumina, silica, phosphorus oxide, titania) and metal components (molybdenum, cobalt, nickel, copper, magnesium, phosphorus)>
3 g of a measurement sample is collected in a zirconia ball with a cap having a capacity of 30 ml, heated (200 ° C., 20 minutes), calcined (700 ° C., 5 minutes), and 2 g of Na 2 O 2 and 1 g of NaOH are added thereto for 15 minutes. Melted. Further, 25 ml of H 2 SO 4 and 200 ml of water were added and dissolved, and then diluted to 500 ml with pure water to obtain a sample. Using an ICP device (ICPS-8100, analysis software ICPS-8000, manufactured by Shimadzu Corporation), the content of each component of the obtained sample was converted into oxide conversion standard (Al 2 O 3 , SiO 2 , P 2) . 2 O 5 , TiO 2 , MoO 3 , NiO, CoO, MgO, CuO).

<比表面積の測定方法>
測定試料を磁製ルツボ(B−2型)に約30ml採取し、300℃の温度で2時間加熱処理後、デシケータに入れて室温まで冷却し、測定用サンプルを得た。次に、このサンプルを1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、試料の比表面積(m/g)をBET法にて測定した。
<Method for measuring specific surface area>
About 30 ml of the measurement sample was collected in a porcelain crucible (type B-2), heated at a temperature of 300 ° C. for 2 hours, cooled in a desiccator to room temperature, and a measurement sample was obtained. Next, 1 g of this sample was taken, and the specific surface area (m 2 / g) of the sample was measured by a BET method using a fully automatic surface area measuring device (manufactured by Yuasa Ionics, Multisorb 12).

<強熱減量の測定方法>
測定試料である触媒を570℃で2時間焼成し、焼成による質量減少量から算出している。
<Method for measuring ignition loss>
The catalyst, which is a measurement sample, is calcined at 570 ° C. for 2 hours, and calculated from the amount of mass loss due to the calcining.

<昇温還元法による脱離水のピーク温度の測定方法>
昇温還元法においては、日本ベル製触媒分析装置(BEL CAT−A)を用いて、250〜710μmに整粒した触媒0.05gを120℃で1時間、ヘリウムガスの流通下で前処理を施した後、水素ガス(99.99%)に切り換え、50℃から900℃まで10℃/分で昇温した。昇温時の水の脱離スペクトルをファイファーバキューム社製四重極質量分析装置(m/z:18.34)にて測定し、得られた、脱離スペクトルから水の脱離ピーク温度を読み取った。
<Method of measuring peak temperature of desorbed water by temperature-reduction method>
In the temperature-reduction method, 0.05 g of a catalyst sized to 250 to 710 μm was subjected to a pretreatment at 120 ° C. for 1 hour under a flow of helium gas using a catalyst analyzer (BEL CAT-A) manufactured by Nippon Bell. After the application, the gas was switched to hydrogen gas (99.99%), and the temperature was increased from 50 ° C. to 900 ° C. at a rate of 10 ° C./min. The desorption spectrum of water at the time of temperature rise was measured by a quadrupole mass spectrometer (m / z: 18.34) manufactured by Pfeiffer Vacuum Co., and the desorption peak temperature of water was read from the obtained desorption spectrum. Was.

図1に、昇温還元法による脱離水のピーク温度の分析結果の一例であるグラフを示しておく。図1の横軸は温度、縦軸は四重極質量分析装置の検出電流である。図1(a)における実線(1)及び鎖線(2)は夫々後述の実施例6及び8に対応し、図1(b)における実線(3)及び鎖線(4)は夫々後述の比較例1及び5に相当する。   FIG. 1 shows a graph as an example of the analysis result of the peak temperature of the desorbed water by the temperature-reduction reduction method. In FIG. 1, the horizontal axis represents temperature, and the vertical axis represents detection current of the quadrupole mass spectrometer. The solid line (1) and the dashed line (2) in FIG. 1A correspond to Examples 6 and 8 described later, respectively, and the solid line (3) and the dashed line (4) in FIG. 1B correspond to Comparative Example 1 described later, respectively. And 5.

<NO吸着量の測定方法>
NO吸着量の測定は、全自動触媒ガス吸着量測定装置(大倉理研製)を用い、硫化処理した水素化処理触媒に、ヘリウムガスとNOガスの混合ガス(NO濃度10容量%)をパルスで導入し、水素化処理触媒1gあたりのNO分子吸着量を測定した。具体的には、60メッシュ以下に粉砕した触媒を約0.02g秤取り、これを石英製のセルに充填し、当該触媒を360℃に加熱して、硫化水素5容量%/水素95容量%のガスを0.2リットル/分の流量で通流させて1時間硫化処理を行い、その後340℃で1時間保持し、物理吸着している硫化水素を系外に排出した。その後にヘリウムガスとNOガスの混合ガスにてNO分子を50℃にて吸着させ、NO分子吸着量を測定した。
<Method of measuring NO adsorption amount>
The measurement of the NO adsorption amount is carried out by using a fully automatic catalytic gas adsorption amount measuring device (manufactured by Okura Riken), and applying a pulse of a mixed gas of helium gas and NO gas (NO concentration 10% by volume) to the sulfurized hydrogenation catalyst. Then, the amount of adsorbed NO molecules per 1 g of the hydrotreating catalyst was measured. Specifically, about 0.02 g of a catalyst pulverized to 60 mesh or less was weighed and charged in a quartz cell, and the catalyst was heated to 360 ° C. to obtain 5% by volume of hydrogen sulfide / 95% by volume of hydrogen. Was passed through at a flow rate of 0.2 liter / min to perform sulfuration treatment for 1 hour, and then kept at 340 ° C. for 1 hour to discharge physically adsorbed hydrogen sulfide out of the system. Thereafter, NO molecules were adsorbed at 50 ° C. with a mixed gas of helium gas and NO gas, and the NO molecule adsorption amount was measured.

[実施例]
無機酸化物担体の調製例と、含浸液の調製例と、各無機酸化物担体及び含浸液を用いた本発明の実施例である水素化処理触媒の調製例と、各無機酸化物担体及び含浸液を用いた比較例である水素化処理触媒の調製例について以下に記載する。
まず無機酸化物担体の調製例について記載する。
<無機酸化物担体Aの調製>
容量が100L(リットル)のスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.95kgを入れ、イオン交換水33kgで希釈後、P濃度換算で2.5質量%のリン酸ナトリウム溶液5.40kgを撹拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液12.79kgを23kgのイオン交換水で希釈した酸性アルミニウム塩水溶液を60℃に加温した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて酸性アルミニウム塩水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、リン及びアルミナを含有する水和物スラリーAを調製した。
得られた水和物スラリーAを撹拌しながら60℃で1時間熟成した後、平板フィルターを用いて脱水し、更に、0.3質量%アンモニア水溶液150Lで洗浄した。洗浄後のケーキ状のスラリーをAl濃度換算で10質量%となるようにイオン交換水で希釈した後、15質量%アンモニア水でpHを10.5に調整した。これを還流機付熟成タンクに移し、撹拌しながら95℃で10時間熟成した。熟成終了後のスラリーを脱水し、スチームジャケットを備えた双腕式ニーダーにて練りながら所定の水分量まで濃縮捏和した。得られた捏和物を押し出し成型機にて直径が1.6mmの円柱形状に成型し、110℃で乾燥した。乾燥した成型品は電気炉で500℃の温度で3時間焼成し、担体Aを得た。
[Example]
Preparation Examples of Inorganic Oxide Carriers, Preparation Examples of Impregnating Liquids, Preparation Examples of Hydrotreating Catalysts that are Examples of the Present Invention Using Each Inorganic Oxide Carrier and Impregnating Liquid, and Each Inorganic Oxide Carrier and Impregnation A preparation example of a hydrotreating catalyst which is a comparative example using a liquid is described below.
First, a preparation example of the inorganic oxide carrier will be described.
<Preparation of inorganic oxide carrier A>
8.95 kg of a 22 mass% aqueous sodium aluminate solution in terms of Al 2 O 3 concentration was put into a tank with a steam jacket having a capacity of 100 L (liter), diluted with 33 kg of ion-exchanged water, and then converted into P 2 O 5 concentration. 5.40 kg of a 2.5 mass% sodium phosphate solution was added with stirring, and the mixture was heated to 60 ° C. to prepare a basic aluminum salt aqueous solution. Further, an acidic aluminum salt aqueous solution obtained by diluting 12.79 kg of a 7 mass% aqueous aluminum sulfate solution in terms of Al 2 O 3 concentration with 23 kg of ion-exchanged water was heated to 60 ° C. The acidic aluminum salt aqueous solution is added to the tank containing the basic aluminum salt aqueous solution at a constant rate using a roller pump until the pH becomes 7.2 (addition time: 10 minutes), and hydration containing phosphorus and alumina is performed. A slurry A was prepared.
The obtained hydrate slurry A was aged at 60 ° C. for 1 hour with stirring, dehydrated using a flat plate filter, and further washed with 150 L of a 0.3% by mass aqueous ammonia solution. The diluted cake-like slurry after washing was diluted with ion-exchanged water so as to have an Al 2 O 3 concentration of 10% by mass, and the pH was adjusted to 10.5 with 15% by mass aqueous ammonia. This was transferred to an aging tank equipped with a reflux machine, and aged at 95 ° C. for 10 hours while stirring. The slurry after aging was dewatered and concentrated and kneaded to a predetermined water content while kneading with a double-arm kneader equipped with a steam jacket. The obtained kneaded product was molded into a columnar shape having a diameter of 1.6 mm by an extrusion molding machine, and dried at 110 ° C. The dried molded product was fired in an electric furnace at a temperature of 500 ° C. for 3 hours to obtain a carrier A.

<無機酸化物担体Bの調製>
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液9.23kgを入れ、イオン交換水35kgで希釈後、P濃度換算で2.5質量%のリン酸ナトリウム溶液1.80kgを撹拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液13.19kgを24kgのイオン交換水で希釈した酸性アルミニウム塩水溶液を60℃に加温した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて酸性アルミニウム塩水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、リン及びアルミナを含有する水和物スラリーBを調製した。その後の工程は実施例1の担体Aと同様にして、担体Bを得た。
<Preparation of inorganic oxide carrier B>
In a tank with a capacity of 100 L equipped with a steam jacket, 9.23 kg of a 22 mass% aqueous sodium aluminate solution in terms of Al 2 O 3 concentration was put, diluted with 35 kg of ion-exchanged water, and then 2.5 P in terms of P 2 O 5 concentration. 1.80 kg of a mass% sodium phosphate solution was added with stirring, and the mixture was heated to 60 ° C. to prepare a basic aluminum salt aqueous solution. An acidic aluminum salt aqueous solution obtained by diluting 13.19 kg of a 7 mass% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration with 24 kg of ion-exchanged water was heated to 60 ° C. The acidic aluminum salt aqueous solution is added to the tank containing the basic aluminum salt aqueous solution at a constant rate using a roller pump until the pH becomes 7.2 (addition time: 10 minutes), and hydration containing phosphorus and alumina is performed. A product slurry B was prepared. The subsequent steps were performed in the same manner as in the case of the carrier A of Example 1 to obtain the carrier B.

<無機酸化物担体Cの調製>
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液9.38kgを入れ、イオン交換水36kgで希釈後、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液13.39kgを24kgのイオン交換水で希釈した酸性アルミニウム塩水溶液を60℃に加温した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて酸性アルミニウム塩水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、アルミナを含有する水和物スラリーCを調製した。その後の工程は実施例1の担体Aと同様にして、担体Cを得た。
<Preparation of inorganic oxide carrier C>
In a tank with a steam jacket having a capacity of 100 L, 9.38 kg of a 22 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration was put, diluted with 36 kg of ion-exchanged water, and heated to 60 ° C. An aluminum salt aqueous solution was prepared. In addition, an acidic aluminum salt aqueous solution obtained by diluting 13.39 kg of a 7 mass% aqueous aluminum sulfate solution in terms of Al 2 O 3 concentration with 24 kg of ion-exchanged water was heated to 60 ° C. A tank containing the basic aluminum salt solution, added at a constant rate until the pH is 7.2 to acidic aluminum salt aqueous solution by using a roller pump (addition time: 10 minutes), containing Alumina hydrate Slurry C was prepared. The subsequent steps were performed in the same manner as in the case of the carrier A of Example 1 to obtain the carrier C.

<無機酸化物担体Dの調製>
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液9.23kgを入れ、イオン交換水36kgで希釈後、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液13.19kgを24kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタン0.14kgを1kgのイオン交換水に溶解した硫酸チタン水溶液とを混合し60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、チタニア及びアルミナを含有する水和物スラリーDを調製した。その後の工程は実施例1の担体Aと同様にして、担体Dを得た。
<Preparation of inorganic oxide carrier D>
In a tank having a capacity of 100 L and equipped with a steam jacket, 9.23 kg of a 22% by mass aqueous sodium aluminate solution in terms of Al 2 O 3 concentration was added, diluted with 36 kg of ion-exchanged water, and heated to 60 ° C. An aluminum salt aqueous solution was prepared. Also, 1 kg of an acidic aluminum salt aqueous solution obtained by diluting 13.19 kg of a 7 mass% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration with 24 kg of ion exchange water, and 0.14 kg of 33 mass% titanium sulfate in terms of TiO 2 concentration in 1 kg. Was mixed with an aqueous solution of titanium sulfate dissolved in ion-exchanged water and heated to 60 ° C. to prepare a mixed aqueous solution. A hydrate slurry containing titania and alumina was added to the tank containing the basic aluminum salt aqueous solution at a constant rate using a roller pump until the pH reached 7.2 (addition time: 10 minutes). D was prepared. The subsequent steps were performed in the same manner as in the case of the carrier A of Example 1 to obtain the carrier D.

<無機酸化物担体Eの調製>
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.44kgを入れ、イオン交換水35kgで希釈後、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液12.05kgを22kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタン0.91kgを6kgのイオン交換水に溶解した硫酸チタン水溶液とを混合し60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、チタニア及びアルミナを含有する水和物スラリーEを調製した。その後の工程は実施例1の担体Aと同様にして、担体Eを得た。
<Preparation of inorganic oxide carrier E>
A tank with a capacity of 100 L equipped with a steam jacket was charged with 8.44 kg of a 22 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, diluted with 35 kg of ion-exchanged water, and heated to 60 ° C. An aluminum salt aqueous solution was prepared. Further, 6 kg of an acidic aluminum salt aqueous solution obtained by diluting 12.05 kg of a 7 mass% aqueous aluminum sulfate solution in terms of Al 2 O 3 concentration with 22 kg of ion-exchanged water, and 0.91 kg of 33 mass% titanium sulfate in terms of TiO 2 concentration as 6 kg Was mixed with an aqueous solution of titanium sulfate dissolved in ion-exchanged water and heated to 60 ° C. to prepare a mixed aqueous solution. A hydrate slurry containing titania and alumina was added to the tank containing the basic aluminum salt aqueous solution at a constant rate using a roller pump until the pH reached 7.2 (addition time: 10 minutes). E was prepared. The subsequent steps were performed in the same manner as in the case of the carrier A of Example 1 to obtain the carrier E.

<無機酸化物担体Fの調製>
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.50kgを入れ、イオン交換水34kgで希釈後、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液10.71kgを19kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタン1.82kgを12kgのイオン交換水に溶解した硫酸チタン水溶液とを混合し60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、チタニア及びアルミナを含有する水和物スラリーFを調製した。その後の工程は実施例1の担体Aと同様にして、担体Fを得た。
<Preparation of inorganic oxide carrier F>
A tank with a capacity of 100 L equipped with a steam jacket was charged with 7.50 kg of a 22 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, diluted with 34 kg of ion-exchanged water, and then heated to 60 ° C. An aluminum salt aqueous solution was prepared. Further, 12 kg of an acidic aluminum salt aqueous solution obtained by diluting 10.71 kg of a 7 mass% aqueous aluminum sulfate solution in terms of Al 2 O 3 concentration with 19 kg of ion exchange water, and 1.82 kg of 33 mass% titanium sulfate in terms of TiO 2 concentration as 12 kg Was mixed with an aqueous solution of titanium sulfate dissolved in ion-exchanged water and heated to 60 ° C. to prepare a mixed aqueous solution. A hydrate slurry containing titania and alumina was added to the tank containing the basic aluminum salt aqueous solution at a constant rate using a roller pump until the pH reached 7.2 (addition time: 10 minutes). F was prepared. The subsequent steps were performed in the same manner as in the case of the carrier A of Example 1 to obtain the carrier F.

<無機酸化物担体Gの調製>
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液9.09kgを入れ、イオン交換水35kgで希釈後、P濃度換算で2.5質量%のリン酸ナトリウム溶液1.80kgを撹拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液12.99kgを23kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタン0.14kgを0.9kgのイオン交換水に溶解した硫酸チタン水溶液とを混合し60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、リンとチタニア及びアルミナを含有する水和物スラリーGを調製した。その後の工程は実施例1の担体Aと同様にして、担体Gを得た。
<Preparation of inorganic oxide carrier G>
Into a tank having a capacity of 100 L equipped with a steam jacket, 9.09 kg of a 22 mass% aqueous sodium aluminate solution in terms of Al 2 O 3 concentration was added, diluted with 35 kg of ion-exchanged water, and then 2.5 P in terms of P 2 O 5 concentration. 1.80 kg of a mass% sodium phosphate solution was added with stirring, and the mixture was heated to 60 ° C. to prepare a basic aluminum salt aqueous solution. Further, an acidic aluminum salt aqueous solution obtained by diluting 12.99 kg of a 7 mass% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration with 23 kg of ion-exchanged water and 0.14 kg of 33 mass% titanium sulfate in terms of TiO 2 concentration as 0.1%. An aqueous solution of titanium sulfate dissolved in 9.9 kg of ion-exchanged water was mixed and heated to 60 ° C. to prepare a mixed aqueous solution. The mixed aqueous solution was added to the tank containing the basic aluminum salt aqueous solution at a constant rate using a roller pump until the pH reached 7.2 (addition time: 10 minutes), and hydration containing phosphorus, titania, and alumina was performed. A product slurry G was prepared. The subsequent steps were performed in the same manner as in the case of the carrier A of Example 1 to obtain the carrier G.

<無機酸化物担体Hの調製>
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液9.09kgを入れ、イオン交換水35kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液0.90kgとP濃度換算で2.5質量%のリン酸ナトリウム溶液1.80kgを撹拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液12.99kgを23kgのイオン交換水で希釈した酸性アルミニウム塩水溶液を60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、リンとシリカ及びアルミナを含有する水和物スラリーHを調製した。その後の工程は実施例1の担体Aと同様にして、担体Hを得た。
<Preparation of inorganic oxide carrier H>
Into a tank with a capacity of 100 L equipped with a steam jacket, 9.09 kg of a 22 mass% aqueous sodium aluminate solution in terms of Al 2 O 3 concentration was put, diluted with 35 kg of ion-exchanged water, and 5 mass% of silicic acid in terms of SiO 2 concentration was diluted. 0.90 kg of the sodium solution and 1.80 kg of a sodium phosphate solution of 2.5% by mass in terms of P 2 O 5 concentration were added with stirring, and the mixture was heated to 60 ° C. to prepare a basic aluminum salt aqueous solution. Further, an aqueous solution of acidic aluminum salt obtained by diluting 12.99 kg of an aluminum sulfate aqueous solution of 7 mass% in terms of Al 2 O 3 concentration with 23 kg of ion-exchanged water was heated to 60 ° C. to prepare a mixed aqueous solution. The mixed aqueous solution was added to the tank containing the basic aluminum salt aqueous solution at a constant rate using a roller pump until the pH reached 7.2 (addition time: 10 minutes), and hydration containing phosphorus, silica, and alumina was performed. A product slurry H was prepared. The subsequent steps were performed in the same manner as in the case of the carrier A of Example 1 to obtain the carrier H.

<無機酸化物担体Iの調製>
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液9.05kgを入れ、イオン交換水35kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液0.90kgとP濃度換算で2.5質量%のリン酸ナトリウム溶液1.80kgを撹拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液12.92kgを23kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタン0.14kgを0.9kgのイオン交換水に溶解した硫酸チタン水溶液とを混合し60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、シリカとリンとチタニア及びアルミナを含有する水和物スラリーIを調製した。その後の工程は実施例1の担体Aと同様にして、担体Iを得た。
<Preparation of inorganic oxide carrier I>
Into a tank with a steam jacket having a capacity of 100 L, 9.05 kg of a 22 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration was put, diluted with 35 kg of ion-exchanged water, and 5 mass% of silicic acid in terms of SiO 2 concentration was diluted. 0.90 kg of the sodium solution and 1.80 kg of a sodium phosphate solution of 2.5% by mass in terms of P 2 O 5 concentration were added with stirring, and the mixture was heated to 60 ° C. to prepare a basic aluminum salt aqueous solution. Further, 0.12 kg of an acidic aluminum salt aqueous solution obtained by diluting 12.92 kg of a 7 mass% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration with 23 kg of ion exchange water, and 0.14 kg of 33 mass% titanium sulfate in terms of TiO 2 concentration as 0%. An aqueous solution of titanium sulfate dissolved in 9.9 kg of ion-exchanged water was mixed and heated to 60 ° C. to prepare a mixed aqueous solution. The mixed aqueous solution is added to the tank containing the basic aluminum salt aqueous solution at a constant rate using a roller pump until the pH becomes 7.2 (addition time: 10 minutes), and contains silica, phosphorus, titania, and alumina. A hydrate slurry I was prepared. The subsequent steps were performed in the same manner as in the case of the carrier A of Example 1 to obtain the carrier I.

<無機酸化物担体Jの調製>
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.50kgを入れ、イオン交換水34kgで希釈後、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液10.71kgを19kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタン1.80kgを12kgのイオン交換水に溶解した硫酸チタン水溶液とを混合し60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、チタニア及びアルミナを含有する水和物スラリーJを調製した。その後の工程は実施例1の担体Aと同様にして、担体Jを得た。
<Preparation of inorganic oxide carrier J>
A tank with a capacity of 100 L equipped with a steam jacket was charged with 7.50 kg of a 22 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, diluted with 34 kg of ion-exchanged water, and then heated to 60 ° C. An aluminum salt aqueous solution was prepared. Further, 12 kg of an acidic aluminum salt aqueous solution obtained by diluting 10.71 kg of a 7 mass% aqueous aluminum sulfate solution in terms of Al 2 O 3 concentration with 19 kg of ion-exchanged water and 1.80 kg of 33 mass% titanium sulfate in terms of TiO 2 concentration as 12 kg Was mixed with an aqueous solution of titanium sulfate dissolved in ion-exchanged water and heated to 60 ° C. to prepare a mixed aqueous solution. A hydrate slurry containing titania and alumina was added to the tank containing the basic aluminum salt aqueous solution at a constant rate using a roller pump until the pH reached 7.2 (addition time: 10 minutes). J was prepared. The subsequent steps were performed in the same manner as in the case of the carrier A of Example 1 to obtain the carrier J.

<無機酸化物担体Kの調製>
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液4.09kgを入れ、イオン交換水25kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液30.00kgを撹拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液8.57kgを15kgのイオン交換水で希釈した酸性アルミニウム塩水溶液を60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、シリカ及びアルミナを含有する水和物スラリーKを調製した。その後の工程は実施例1の担体Aと同様にして、担体Kを得た。
<Preparation of inorganic oxide carrier K>
A tank with a capacity of 100 L equipped with a steam jacket was charged with 4.09 kg of a 22% aqueous sodium aluminate solution in terms of Al 2 O 3 concentration, diluted with 25 kg of ion-exchanged water, and then 5% by weight of silicic acid in terms of SiO 2 concentration. A sodium solution (30.00 kg) was added with stirring, and the mixture was heated to 60 ° C. to prepare a basic aluminum salt aqueous solution. Also, an acidic aluminum salt aqueous solution obtained by diluting 8.57 kg of a 7 mass% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration with 15 kg of ion-exchanged water was heated to 60 ° C. to prepare a mixed aqueous solution. A hydrate slurry containing silica and alumina was added to the tank containing the basic aluminum salt aqueous solution at a constant rate using a roller pump until the pH reached 7.2 (addition time: 10 minutes). K was prepared. Subsequent steps were performed in the same manner as in the case of the carrier A of Example 1 to obtain the carrier K.

<無機酸化物担体Lの調製>
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液2.15kgを入れ、イオン交換水25kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液30.0kgを撹拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液3.97kgを7kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタン2.27kgを7.1kgのイオン交換水に溶解した硫酸チタン水溶液とを混合し60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、シリカとチタニア及びアルミナを含有する水和物スラリーLを調製した。その後の工程は実施例1の担体Aと同様にして、担体Lを得た。
<Preparation of inorganic oxide carrier L>
2.15 kg of a 22 mass% aqueous sodium aluminate solution in terms of Al 2 O 3 concentration was put into a tank with a steam jacket having a capacity of 100 L, diluted with 25 kg of ion-exchanged water, and then silicic acid of 5 mass% in terms of SiO 2 concentration was added. A sodium solution (30.0 kg) was added with stirring, and the mixture was heated to 60 ° C. to prepare a basic aluminum salt aqueous solution. Further, an aqueous solution of an acidic aluminum salt obtained by diluting 3.97 kg of a 7 mass% aqueous aluminum sulfate solution in terms of Al 2 O 3 concentration with 7 kg of ion-exchanged water, and 2.27 kg of 33 mass% titanium sulfate in terms of TiO 2 concentration of 7 wt. An aqueous solution of titanium sulfate dissolved in 0.1 kg of ion-exchanged water was mixed and heated to 60 ° C. to prepare a mixed aqueous solution. The mixed aqueous solution was added to the tank containing the basic aluminum salt aqueous solution at a constant rate using a roller pump until the pH reached 7.2 (addition time: 10 minutes), and the hydration containing silica, titania and alumina was added. A product slurry L was prepared. The subsequent steps were performed in the same manner as in the case of the carrier A of Example 1 to obtain the carrier L.

<無機酸化物担体Mの調製>
実施例1と同様にして得られた担体Aにおいて、110℃で乾燥後電気炉での焼成温度を800℃とし、3時間焼成することにより担体Mを得た。
<Preparation of inorganic oxide carrier M>
The carrier A obtained in the same manner as in Example 1 was dried at 110 ° C., and then calcined in an electric furnace at 800 ° C. and calcined for 3 hours to obtain a carrier M.

次に含浸液の調整例について記載する。
<含浸液aの調製>
三酸化モリブデン282gと炭酸コバルト56gと炭酸ニッケル54gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、クエン酸84gを加えて溶解させ、含浸液aを作製した。
Next, an example of adjusting the impregnating liquid will be described.
<Preparation of impregnating liquid a>
282 g of molybdenum trioxide, 56 g of cobalt carbonate and 54 g of nickel carbonate are suspended in 800 ml of ion-exchanged water, and the suspension is heated at 95 ° C. for 5 hours by applying a suitable refluxing device so that the liquid volume does not decrease. And 84 g of citric acid were added and dissolved to prepare impregnation liquid a.

<含浸液bの調製>
三酸化モリブデン333gと炭酸コバルト56gと炭酸ニッケル43gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸23gとクエン酸120gを加えて溶解させ、含浸液bを作製した。
<Preparation of impregnating liquid b>
333 g of molybdenum trioxide, 56 g of cobalt carbonate and 43 g of nickel carbonate are suspended in 800 ml of ion-exchanged water, and this suspension is heated at 95 ° C. for 5 hours by applying a suitable reflux device so that the liquid volume does not decrease. , 23 g of phosphoric acid and 120 g of citric acid were added and dissolved to prepare an impregnating solution b.

<含浸液cの調製>
三酸化モリブデン329gと炭酸コバルト131gと炭酸銅13gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸23gとクエン酸118gを加えて溶解させ、含浸液cを作製した。
<Preparation of impregnation liquid c>
329 g of molybdenum trioxide, 131 g of cobalt carbonate and 13 g of copper carbonate are suspended in 800 ml of ion-exchanged water, and the suspension is heated at 95 ° C. for 5 hours with a suitable refluxing device so that the liquid volume does not decrease. And 23 g of phosphoric acid and 118 g of citric acid were added and dissolved to prepare an impregnation liquid c.

<含浸液dの調製>
三酸化モリブデン331gと炭酸コバルト132gと炭酸ニッケル14gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸35gとクエン酸119gを加えて溶解させ、含浸液dを作製した。
<Preparation of impregnating liquid d>
331 g of molybdenum trioxide, 132 g of cobalt carbonate and 14 g of nickel carbonate are suspended in 800 ml of ion-exchanged water, and this suspension is heated at 95 ° C. for 5 hours by applying a suitable refluxing device so that the liquid volume does not decrease. And 35 g of phosphoric acid and 119 g of citric acid were added and dissolved to prepare an impregnating liquid d.

<含浸液eの調製>
三酸化モリブデン331gと炭酸コバルト132gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸46gとクエン酸119gを加えて溶解させ、含浸液eを作製した。
<Preparation of impregnation liquid e>
331 g of molybdenum trioxide and 132 g of cobalt carbonate are suspended in 800 ml of ion-exchanged water, and this suspension is heated at 95 ° C. for 5 hours with a suitable reflux device so that the liquid volume does not decrease. And 119 g of citric acid were added and dissolved to prepare an impregnation liquid e.

<含浸液fの調製>
三酸化モリブデン294gと炭酸コバルト105gと炭酸銅25gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸45gとクエン酸94gを加えて溶解させ、含浸液fを作製した。
<Preparation of impregnation liquid f>
294 g of molybdenum trioxide, 105 g of cobalt carbonate and 25 g of copper carbonate are suspended in 800 ml of ion-exchanged water, and this suspension is heated at 95 ° C. for 5 hours by applying a suitable reflux device so that the liquid volume does not decrease. And 45 g of phosphoric acid and 94 g of citric acid were added and dissolved to prepare an impregnation liquid f.

<含浸液gの調製>
三酸化モリブデン294gと炭酸コバルト105gと炭酸マグネシウム33gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸45gとクエン酸94gを加えて溶解させ、含浸液gを作製した。
<Preparation of impregnating liquid g>
294 g of molybdenum trioxide, 105 g of cobalt carbonate and 33 g of magnesium carbonate are suspended in 800 ml of ion-exchanged water, and the suspension is heated at 95 ° C. for 5 hours with a suitable refluxing device so as not to reduce the liquid volume. , 45 g of phosphoric acid and 94 g of citric acid were added and dissolved to prepare an impregnating solution g.

<含浸液hの調製>
三酸化モリブデン454gと炭酸コバルト170gと炭酸ニッケル49gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸65gとクエン酸153gを加えて溶解させ、含浸液hを作製した。
<Preparation of impregnating liquid h>
454 g of molybdenum trioxide, 170 g of cobalt carbonate and 49 g of nickel carbonate are suspended in 800 ml of ion-exchanged water, and the suspension is heated at 95 ° C. for 5 hours with a suitable refluxing device so that the liquid volume does not decrease. , 65 g of phosphoric acid and 153 g of citric acid were added and dissolved to prepare an impregnating liquid h.

<含浸液iの調製>
三酸化モリブデン186gと炭酸コバルト70gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸20gとクエン酸63gを加えて溶解させ、含浸液iを作製した。
<Preparation of impregnation liquid i>
186 g of molybdenum trioxide and 70 g of cobalt carbonate are suspended in 800 ml of ion-exchanged water, and this suspension is heated at 95 ° C. for 5 hours with a suitable refluxing device so that the liquid volume does not decrease, and then 20 g of phosphoric acid And 63 g of citric acid were added and dissolved to prepare an impregnation liquid i.

<含浸液jの調製>
三酸化モリブデン282gと炭酸コバルト101gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、クエン酸151gを加えて溶解させ、含浸液jを作製した。
<Preparation of impregnation liquid j>
282 g of molybdenum trioxide and 101 g of cobalt carbonate are suspended in 800 ml of ion-exchanged water, and this suspension is heated at 95 ° C. for 5 hours with a suitable refluxing device so that the liquid volume does not decrease. Was added and dissolved to prepare an impregnation liquid j.

<含浸液kの調製>
三酸化モリブデン324gと炭酸コバルト141gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、クエン酸211gを加えて溶解させ、含浸液kを作製した。
<Preparation of impregnation liquid k>
324 g of molybdenum trioxide and 141 g of cobalt carbonate are suspended in 800 ml of ion-exchanged water, and this suspension is heated at 95 ° C. for 5 hours with a suitable reflux device so that the liquid volume does not decrease. Was added and dissolved to prepare an impregnation liquid k.

<含浸液lの調製>
三酸化モリブデン231gと炭酸コバルト85gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、クエン酸128gを加えて溶解させ、含浸液lを作製した。
<Preparation of impregnation liquid 1>
231 g of molybdenum trioxide and 85 g of cobalt carbonate are suspended in 800 ml of ion-exchanged water, and this suspension is heated at 95 ° C. for 5 hours with a suitable reflux device so that the liquid volume does not decrease. Was added and dissolved to prepare an impregnating liquid 1.

<含浸液mの調製>
三酸化モリブデン287gと炭酸コバルト66gを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸64gとクエン酸59gを加えて溶解させ、含浸液mを作製した。
<Preparation of impregnation liquid m>
287 g of molybdenum trioxide and 66 g of cobalt carbonate are suspended in 800 ml of ion-exchanged water, and this suspension is heated at 95 ° C. for 5 hours with a suitable reflux device so that the liquid volume does not decrease. And 59 g of citric acid were added and dissolved to prepare an impregnating liquid m.

<含浸液nの調製>
三酸化モリブデン238gと炭酸コバルト66gと炭酸ニッケル40gとを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸43gとクエン酸60gを加えて溶解させ、含浸液nを作製した。
<Preparation of impregnating liquid n>
238 g of molybdenum trioxide, 66 g of cobalt carbonate and 40 g of nickel carbonate were suspended in 800 ml of ion-exchanged water, and this suspension was heated at 95 ° C. for 5 hours by applying a suitable reflux device so as not to reduce the liquid volume. Thereafter, 43 g of phosphoric acid and 60 g of citric acid were added and dissolved to prepare an impregnating liquid n.

<含浸液oの調製>
三酸化モリブデン234gと炭酸コバルト65gと炭酸ニッケル26gとを、イオン交換水800mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸21gとクエン酸58gを加えて溶解させ、含浸液oを作製した。
<Preparation of impregnation liquid o>
234 g of molybdenum trioxide, 65 g of cobalt carbonate, and 26 g of nickel carbonate were suspended in 800 ml of ion-exchanged water, and this suspension was heated at 95 ° C. for 5 hours with a suitable reflux device so that the liquid volume did not decrease. Thereafter, 21 g of phosphoric acid and 58 g of citric acid were added and dissolved to prepare an impregnation liquid o.

以下に実施例を示し具体的に本発明を説明するが、これらのものに本発明が限定されるものではない。
<実施例1:水素化脱硫触媒の調製>
担体A1000gに含浸液aを噴霧含浸させた後、200℃で乾燥し、更に電気炉にて450℃で1時間焼成して水素化処理触媒(以下、単に「触媒」ともいう。以下の実施例についても同様である。)を得た。
<実施例2〜実施例17:水素化脱硫触媒の調製>
既述のようにした調整した担体の種類(調製例)と含浸液の種類(調製例)とを後述の表1のように組み合わせ、その他は実施例1と同様にして、実施例2〜実施例17の触媒を調製した。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
<Example 1: Preparation of hydrodesulfurization catalyst>
After impregnating liquid a is spray-impregnated into 1000 g of the support A, the impregnating liquid a is dried at 200 ° C., and further calcined at 450 ° C. for 1 hour in an electric furnace to obtain a hydrotreating catalyst (hereinafter, also simply referred to as “catalyst”. The same applies to the above.)
<Examples 2 to 17: Preparation of hydrodesulfurization catalyst>
The types of carriers (preparation examples) adjusted as described above and the types of impregnating liquids (preparation examples) were combined as shown in Table 1 described below, and the others were the same as in Example 1, and The catalyst of Example 17 was prepared.

次に比較例について説明する。
<比較例1:水素化脱硫触媒の調製>
含浸液として実施例6の含浸液eを用い、実施例5で調製した担体C1000gに噴霧含浸させた後、120℃で乾燥しその後に焼成せずに水素化処理触媒を得た。
<比較例2:水素化脱硫触媒の調製>
含浸液として実施例6の含浸液eを用い、実施例3で調製した担体B1000gに噴霧含浸させた後、120℃で乾燥しその後に焼成せずに水素化処理触媒を得た
<比較例3〜比較例10:水素化脱硫触媒の調製>
既述のようにした調整した担体の種類(調製例)と含浸液の種類(調製例)とを後述の表1のように組み合わせ、その他は実施例1と同様にして、比較例3〜比較例10の触媒を調製した。
Next, a comparative example will be described.
<Comparative Example 1: Preparation of hydrodesulfurization catalyst>
Using the impregnating liquid e of Example 6 as the impregnating liquid, 1000 g of the carrier C prepared in Example 5 was spray-impregnated, dried at 120 ° C., and then calcined to obtain a hydrotreated catalyst.
<Comparative Example 2: Preparation of hydrodesulfurization catalyst>
Using the impregnating liquid e of Example 6 as the impregnating liquid, 1000 g of the carrier B prepared in Example 3 was spray-impregnated, dried at 120 ° C., and then calcined to obtain a hydrotreated catalyst <Comparative Example 3> Comparative Example 10: Preparation of Hydrodesulfurization Catalyst>
The type of carrier (Preparation Example) adjusted as described above and the type of impregnating solution (Preparation Example) were combined as shown in Table 1 below, and the others were the same as in Example 1, and Comparative Examples 3 to The catalyst of Example 10 was prepared.

以上のよう調製して得られた実施例1〜実施例17及び比較例1〜10における各担体の性状を表1に示し、各触媒の性状を表2に示す。表1において、比表面積は、触媒の比表面積を表している。また表2において、各元素の担持量(質量%)は既に述べたように触媒基準の値である。表2におけるNi、Cu、Mgの酸化物の担持量は、酸化物を表示している列の右隣りの列に示している。また炭素量についても触媒基準の値である。   Table 1 shows the properties of each carrier in Examples 1 to 17 and Comparative Examples 1 to 10 obtained as described above, and Table 2 shows the properties of each catalyst. In Table 1, the specific surface area indicates the specific surface area of the catalyst. In Table 2, the supported amounts (% by mass) of each element are catalyst-based values as described above. The supported amounts of the oxides of Ni, Cu, and Mg in Table 2 are shown in the column on the right of the column showing the oxides. The carbon content is also a value based on the catalyst.

Figure 0006643810
Figure 0006643810

Figure 0006643810
<触媒の評価>
(評価のための確認試験)
実施例1〜17及び比較例1〜10の各触媒について、触媒性能と触媒再生性能とについて評価した。
(1)触媒性能の評価のための確認試験
各触媒を固定床反応装置に充填し、触媒に含まれている酸素原子を脱離させて活性化するために、予備硫化処理した。この処理は、硫黄化合物を含む液体または気体を200℃〜400℃の温度、常圧〜100MPaの水素圧雰囲気下の管理された反応容器中で流通させることによって行われる。
Figure 0006643810
<Evaluation of catalyst>
(Confirmation test for evaluation)
For each of the catalysts of Examples 1 to 17 and Comparative Examples 1 to 10, the catalyst performance and the catalyst regeneration performance were evaluated.
(1) Confirmation test for evaluating catalyst performance
Each catalyst was packed in a fixed-bed reactor and subjected to a pre-sulfurization treatment in order to desorb and activate oxygen atoms contained in the catalyst. This treatment is performed by flowing a liquid or gas containing a sulfur compound in a controlled reaction vessel at a temperature of 200 ° C. to 400 ° C. and a hydrogen pressure atmosphere of normal pressure to 100 MPa.

次いで、固定床流通式反応装置内に、直留軽油(15℃における密度0.8468g/cm、硫黄分1.13質量%、窒素分0.083質量%)を150ml/時間の速度で供給して水素化脱硫処理を行い、水素化精製を行なった。その際の反応条件は、水素分圧が4.5MPa、液空間速度が1.0h−1、水素油比が250Nm/klである。そして反応温度を300〜385℃の範囲で変化させ、各温度における精製油中の硫黄分析を行い、精製油中の硫黄分が8ppmになる温度をそれぞれ求めた。 Then, straight-run gas oil (density 0.8468 g / cm 3 at 15 ° C., sulfur content 1.13% by mass, nitrogen content 0.083% by mass) was fed into the fixed bed flow reactor at a rate of 150 ml / hour. Then, hydrodesulfurization treatment was performed, and hydrorefining was performed. The reaction conditions at that time are a hydrogen partial pressure of 4.5 MPa, a liquid hourly space velocity of 1.0 h −1 , and a hydrogen oil ratio of 250 Nm 3 / kl. Then, the reaction temperature was changed within the range of 300 to 385 ° C., and the sulfur in the refined oil was analyzed at each temperature to determine the temperature at which the sulfur content in the refined oil was 8 ppm.

(2)触媒再生性能の評価のための確認試験
触媒の再生は以下の手法を用いて実施した。反応後に抜き出した使用済み触媒100gを、200℃に保持された窒素雰囲気中に配置し、表面に付着した油分を除去した。しかる後、触媒の温度を400〜450℃に制御しながら、炭素量が1重量%以下になるまで空気雰囲気中で焼成を行った。焼成後の触媒は冷却し、再度活性試験に使用した。
(2) Confirmation test for evaluation of catalyst regeneration performance
The regeneration of the catalyst was performed using the following method. 100 g of the used catalyst extracted after the reaction was placed in a nitrogen atmosphere maintained at 200 ° C. to remove oil adhering to the surface. Thereafter, calcination was carried out in an air atmosphere while controlling the temperature of the catalyst at 400 to 450 ° C. until the carbon content became 1% by weight or less. After calcination, the catalyst was cooled and used again for the activity test.

再生後の性能算出法は次のとおりである。活性試験における試験結果は、アレニウスプロットより反応速度定数を求め、フレッシュ触媒(未使用触媒)からの再生率を算出した。具体的には、硫化水素を通流させて硫化処理を行った後、上記の(1)にて記載した条件にて水素化脱硫処理を行った。反応器を通過する前後での炭化水素油中の硫黄濃度の変化から、下記の式1に基づいて反応速度定数を求めた。そして、未使用触媒の反応速度定数(Kn0)に対する、再生触媒の反応速度定数(Kn)の比をパーセント表示で表した値((K/Kn0)×100[%])を相対活性とした。
=LHSV×1/(n−1)×(1/Sn−1−1/S n−1) …式1
ここで、
:反応速度定数
n:脱硫反応速度が原料油の硫黄濃度の何乗に比例するか(LGOでは1.5)
S:処理油中の硫黄濃度(%)
:原料油中の硫黄濃度(%)
LHSV:液空間速度(hr−1
以上の確認試験の結果を表3に示す。
The method of calculating the performance after reproduction is as follows. As for the test results in the activity test, a reaction rate constant was obtained from an Arrhenius plot, and a regeneration rate from a fresh catalyst (unused catalyst) was calculated. Specifically, after the sulfuration treatment was performed by flowing hydrogen sulfide, the hydrodesulfurization treatment was performed under the conditions described in the above (1). From the change in the sulfur concentration in the hydrocarbon oil before and after passing through the reactor, a reaction rate constant was determined based on the following equation 1. Then, on the reaction rate constant of the unused catalyst (K n0), the value of the ratio expressed in percentage of the reaction rate constant (Kn) of the regenerated catalyst ((K n / K n0) × 100 [%]) of the relative activity And
K n = LHSV × 1 / (n−1) × (1 / S n−1 −1 / S 0 n−1 ) Equation 1
here,
K n: reaction rate constant
n: how many times the desulfurization reaction rate is proportional to the sulfur concentration of the feedstock oil (1.5 for LGO)
S: Sulfur concentration in treated oil (%)
S 0 : Sulfur concentration in feed oil (%)
LHSV: liquid hourly space velocity (hr -1 )
Table 3 shows the results of the above confirmation tests.

Figure 0006643810
(触媒の性状及び確認試験の評価結果)
実施例1〜17は、触媒の性状に関してすべて適切な値になっている。これに対して、比較例1及び2は、脱離水のピーク温度が適切値の上限である415℃を越えており、強熱減量が適切値の上限である5重量%を大幅に大きく越えており、含有している炭素量も適切値の上限である2重量%を越えている。比較例3及び7は、450℃以下及び900℃以下の各々における脱離水のピーク温度が415℃を越えており、比較例5は、900℃以下における脱離水のピーク温度が415℃を越えている。また比較例4及び7は、NO吸着量が適切値の下限である8.0ml/gを下回っており、比較例8及び9は、450℃以下及び900℃以下の各々における脱離水のピーク温度が415℃を越えており、更にNO吸着量が8.0ml/gを下回っている。
Figure 0006643810
(Evaluation results of catalyst properties and confirmation tests)
Examples 1 to 17 all have appropriate values with regard to the properties of the catalyst. On the other hand, in Comparative Examples 1 and 2, the peak temperature of the desorbed water exceeded the upper limit of the appropriate value of 415 ° C., and the ignition loss significantly exceeded the upper limit of the appropriate value of 5% by weight. Therefore, the amount of carbon contained exceeds the upper limit of an appropriate value of 2% by weight. In Comparative Examples 3 and 7, the peak temperature of the desorbed water at 450 ° C. or lower and 900 ° C. or lower exceeded 415 ° C., and in Comparative Example 5, the peak temperature of the desorbed water at 900 ° C. or lower exceeded 415 ° C. I have. In Comparative Examples 4 and 7, the NO adsorption amount was lower than the lower limit of the appropriate value of 8.0 ml / g, and in Comparative Examples 8 and 9, the peak temperatures of desorbed water at 450 ° C. or lower and 900 ° C. or lower, respectively. Is higher than 415 ° C., and the NO adsorption amount is lower than 8.0 ml / g.

また実施例1〜17は、触媒性能の指標である、精製油中の硫黄分が8ppmになる温度が360℃以下であり、触媒再生性能の指標である上記の相対活性が80%以上である。これに対して比較例1、2では、触媒再生性能が劣っており、比較例4〜10は触媒性能が劣っており、比較例3は、触媒性能、触媒再生性能のいずれも劣っている。   In Examples 1 to 17, the temperature at which the sulfur content in the refined oil is 8 ppm, which is an index of the catalyst performance, is 360 ° C. or less, and the relative activity, which is the index of the catalyst regeneration performance, is 80% or more. . On the other hand, Comparative Examples 1 and 2 are inferior in catalyst regeneration performance, Comparative Examples 4 to 10 are inferior in catalyst performance, and Comparative Example 3 is inferior in both catalyst performance and catalyst regeneration performance.

本発明の水素化脱硫触媒は、炭化水素油を高度に水素化脱硫することができるため産業上きわめて有用である。   INDUSTRIAL APPLICABILITY The hydrodesulfurization catalyst of the present invention is extremely useful in industry because it can highly hydrodesulfurize a hydrocarbon oil.

Claims (7)

(1)無機酸化物担体上に、活性金属成分として、モリブデン及びタングステンのうちの少なくとも一方である第1の金属成分と、コバルト及びニッケルのうちの少なくとも一方である第2の金属成分と、が担持され、
(2)第1の金属成分の含有量は、触媒100質量部に対して、酸化物換算として15〜30質量部であり、第2の金属成分の含有量は、触媒100質量部に対して、酸化物換算として3〜7質量部であり、有機酸由来の炭素は、触媒100質量部に対して、元素基準として2.0質量部以下であり、
(3)触媒の比表面積が140〜350m/g、水銀圧入法で測定した触媒の平均細孔径が50〜130Åであり、
(4)強熱減量が5.0%以下、触媒の昇温還元法に基づいた、450℃までの範囲の脱離水のピーク温度が412.0℃以下、硫化処理した触媒の一酸化窒素の吸着量が8.0ml/g以上である、
ことを特徴とする炭化水素油の水素化処理触媒。
(1) As an active metal component, a first metal component that is at least one of molybdenum and tungsten and a second metal component that is at least one of cobalt and nickel are provided on the inorganic oxide support. Carried,
(2) The content of the first metal component is 15 to 30 parts by mass in terms of oxide with respect to 100 parts by mass of the catalyst, and the content of the second metal component is 100 parts by mass of the catalyst. And 3 to 7 parts by mass in terms of oxide, and carbon derived from an organic acid is 2.0 parts by mass or less on an element basis with respect to 100 parts by mass of the catalyst.
(3) The specific surface area of the catalyst is 140 to 350 m 2 / g, the average pore diameter of the catalyst measured by a mercury intrusion method is 50 to 130 °,
(4) The peak temperature of desorbed water up to 450 ° C. based on the temperature-reduction method of the catalyst is less than 5.0% and the peak temperature of desorbed water is less than 412.0 ° C. The amount of adsorption is 8.0 ml / g or more;
A hydrotreating catalyst for hydrocarbon oils, characterized in that:
前記無機酸化物担体は、無機酸化物担体100質量部に対して、アルミニウムをアルミナ換算で80〜100質量部含むことを特徴とする請求項1記載の炭化水素油の水素化処理触媒。   2. The catalyst for hydrotreating hydrocarbon oil according to claim 1, wherein the inorganic oxide carrier contains 80 to 100 parts by mass of aluminum in terms of alumina based on 100 parts by mass of the inorganic oxide carrier. 3. 前記無機酸化物担体は、下記の(1)〜(3)のうちの少なくとも一つに該当することを特徴とする請求項1または2に記載の炭化水素油の水素化処理触媒。

(1)無機酸化物担体100質量部に対して、リンをリン酸換算で5.0質量部以下含むものである。
(2)無機酸化物担体100質量部に対して、チタンをチタニア換算で20.0質量部以下含むものである。
(3)無機酸化物担体100質量部に対して、ケイ素をシリカ換算で2.0質量部以下含むものである。
3. The catalyst for hydrotreating hydrocarbon oil according to claim 1, wherein the inorganic oxide carrier corresponds to at least one of the following (1) to (3). 4.
(1) Phosphorus contains 5.0 parts by mass or less of phosphorus in terms of phosphoric acid with respect to 100 parts by mass of the inorganic oxide carrier.
(2) Titanium is contained in an amount of 20.0 parts by mass or less based on 100 parts by mass of the inorganic oxide carrier.
(3) Silicon is contained in an amount of 2.0 parts by mass or less in terms of silica with respect to 100 parts by mass of the inorganic oxide carrier.
前記活性金属成分は、モリブデンとコバルトとを含み、更にニッケル、銅、マグネシウム及び亜鉛の少なくとも1種を、触媒100質量部に対して、酸化物換算で0〜3.0質量部含むことを特徴とする請求項1ないし3のいずれか一つに記載の炭化水素油の水素化処理触媒。   The active metal component contains molybdenum and cobalt, and further contains at least one of nickel, copper, magnesium, and zinc in an amount of 0 to 3.0 parts by mass in terms of oxide based on 100 parts by mass of the catalyst. The catalyst for hydrotreating hydrocarbon oil according to any one of claims 1 to 3, wherein 前記触媒は、昇温還元法に基づいた、900℃までの範囲の脱離水の最大ピーク温度が415℃以下であることを特徴とする請求項1ないし4のいずれか一つに記載の炭化水素油の水素化処理触媒。   5. The hydrocarbon according to claim 1, wherein the catalyst has a maximum peak temperature of desorbed water in a range up to 900 ° C. of 415 ° C. or lower, based on a temperature-reduction method. 6. Oil hydrotreating catalyst. 請求項1ないし5のいずれか一つに記載された炭化水素油の水素化処理触媒を製造する方法であって、
(1)アルミニウムを含む無機酸化物担体を準備する工程と、
(2)モリブデン及びタングステンのうちの少なくとも一方である第1の金属成分と、コバルト及びニッケルの少なくとも一方である第2の金属成分と、有機酸と、を含む含浸液を調製し、前記第1の金属成分及び第2の金属成分を前記無機酸化物担体に担持する工程と、
(3)前記(2)の工程により得られた、前記第1の金属成分及び第2の金属成分が担持された無機酸化物担体を100〜600℃の温度で加熱処理して水素化処理触媒を得る工程と、
を有することを特徴とする水素化処理触媒の製造方法。
A method for producing a hydrocarbon oil hydrotreating catalyst according to any one of claims 1 to 5,
(1) a step of preparing an inorganic oxide carrier containing aluminum;
(2) preparing an impregnation liquid containing a first metal component that is at least one of molybdenum and tungsten, a second metal component that is at least one of cobalt and nickel, and an organic acid; Supporting a metal component and a second metal component on the inorganic oxide carrier,
(3) A hydrotreating catalyst obtained by heat-treating the inorganic oxide carrier carrying the first metal component and the second metal component obtained in the step (2) at a temperature of 100 to 600 ° C. Obtaining a
A method for producing a hydrotreating catalyst, comprising:
前記請求項1ないし5のいずれか一つに記載の水素化処理触媒の存在下において、水素分圧が3〜8MPa、温度が300〜420℃、液空間速度が0.3〜5hr-1条件で炭化水素油の水素化処理を行うことを特徴とする炭化水素油の水素化処理方法。 A condition in which a hydrogen partial pressure is 3 to 8 MPa, a temperature is 300 to 420 ° C., and a liquid hourly space velocity is 0.3 to 5 hr −1 in the presence of the hydrotreating catalyst according to any one of claims 1 to 5. in hydrotreating a hydrocarbon oil which is characterized in that the hydrotreating of a hydrocarbon oil.
JP2015086192A 2015-04-20 2015-04-20 Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method Active JP6643810B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015086192A JP6643810B2 (en) 2015-04-20 2015-04-20 Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method
PCT/JP2016/061453 WO2016170995A1 (en) 2015-04-20 2016-04-07 Hydrogenation catalyst for hydrocarbon oil, method for manufacturing same, and hydrogenation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015086192A JP6643810B2 (en) 2015-04-20 2015-04-20 Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method

Publications (3)

Publication Number Publication Date
JP2016203074A JP2016203074A (en) 2016-12-08
JP2016203074A5 JP2016203074A5 (en) 2018-07-19
JP6643810B2 true JP6643810B2 (en) 2020-02-12

Family

ID=57143902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015086192A Active JP6643810B2 (en) 2015-04-20 2015-04-20 Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method

Country Status (2)

Country Link
JP (1) JP6643810B2 (en)
WO (1) WO2016170995A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10370600B2 (en) 2014-04-24 2019-08-06 Advanced Refining Technologies Llc High activity hydrotreating catalysts and processes using the same
US10376873B2 (en) 2014-04-24 2019-08-13 Advanced Refining Technologies Llc Method of preparing high activity hydrotreating catalysts
WO2015164464A1 (en) * 2014-04-24 2015-10-29 Advanced Refining Technologies Llc High activity hydrotreating catalysts
US10369558B2 (en) 2014-04-24 2019-08-06 Advanced Refining Technologies Llc High activity hydrotreating catalysts
JP6660896B2 (en) * 2016-02-01 2020-03-11 日揮触媒化成株式会社 Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method
JP6916021B2 (en) 2017-03-30 2021-08-11 Eneos株式会社 Method for producing hydrodesulfurization catalyst of hydrocarbon oil and hydrodesulfurization catalyst
JP7101004B2 (en) * 2018-03-22 2022-07-14 日揮触媒化成株式会社 Active matrix and its production method, as well as (residual oil) fluid catalytic cracking catalyst
WO2020066555A1 (en) * 2018-09-28 2020-04-02 日揮触媒化成株式会社 Hydrotreating catalyst for hydrocarbon oil, production method therefor, and method for hydrotreating hydrocarbon oil
JP6630458B1 (en) * 2019-05-15 2020-01-15 日本ケッチェン株式会社 Hydrotreating catalyst for hydrocarbon oil and method for hydrotreating hydrocarbon oil using the catalyst
JP7395374B2 (en) * 2020-02-04 2023-12-11 日揮触媒化成株式会社 Hydrotreating catalyst for hydrocarbon oil, its production method, and hydrotreating method
JP2022074937A (en) 2020-11-05 2022-05-18 日揮触媒化成株式会社 Hydrogenation treatment catalyst of heavy hydrocarbon oil and manufacturing method thereof as well as hydrogenation treatment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272384B2 (en) * 1991-10-24 2002-04-08 財団法人石油産業活性化センター Catalyst composition, method for producing the same, and method for hydrodesulfurizing sulfur-containing hydrocarbons using the catalyst composition
US8258074B2 (en) * 2005-03-24 2012-09-04 Intevep, S.A. Hydroprocessing of naphtha streams at moderate conditions
CN101909747B (en) * 2007-11-09 2014-10-22 埃克森美孚研究工程公司 Preparation of bulk metallic group viii/group vib metal catalysts
JP5340101B2 (en) * 2009-09-30 2013-11-13 Jx日鉱日石エネルギー株式会社 Hydrorefining method of hydrocarbon oil

Also Published As

Publication number Publication date
WO2016170995A1 (en) 2016-10-27
JP2016203074A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6643810B2 (en) Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method
JP6681259B2 (en) Hydroprocessing catalyst for hydrocarbon oil, method for producing the same, and hydroprocessing method
JP6660896B2 (en) Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method
JP6307072B2 (en) Improved residual hydrotreating catalyst containing titania
KR102608017B1 (en) Hydrocarbon oil catalyst, production method, and hydrogenation method thereof
JP7321790B2 (en) Method for hydrotreating heavy oil
JP7366043B2 (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same, and method for hydrotreating hydrocarbon oil
JP4519719B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
JP6646349B2 (en) Method for producing catalyst for hydrodesulfurization of hydrocarbon oil and method for hydrodesulfurization of hydrocarbon oil
US11661554B2 (en) Hydrotreating catalyst for heavy hydrocarbon oil, method for producing the same, and method for hydrotreating heavy hydrocarbon oil
WO2021157450A1 (en) Hydrogenation catalyst for hydrocarbon oils, method for producing same, and hydrogenation method
JP5340101B2 (en) Hydrorefining method of hydrocarbon oil
JP2019177356A (en) Hydrotreating catalyst for heavy hydrocarbon oil, method for producing hydrotreating catalyst for heavy hydrocarbon oil, and hydrotreating method for heavy hydrocarbon oil
JP7080693B2 (en) Hydrocarbon oil hydrogenation catalyst, its production method, and hydrogenation treatment method
JP3990676B2 (en) Hydrodesulfurization method of light oil
JP6909879B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil, its production method, and hydrodesulfurization method
WO2023033172A1 (en) Catalyst for hydrotreatment of heavy hydrocarbon oil and method for producing same, and method for hydrotreatment of heavy hydrocarbon oil
JP6251107B2 (en) Hydrocarbon oil hydrodesulfurization catalyst
CN113731455B (en) Desulfurization catalyst with hydrogen production function, preparation method thereof and hydrocarbon oil desulfurization method
JP2023081114A (en) Inorganic composite oxide carrier, catalyst for hydrotreatment of hydrocarbon oil and method for producing the same, and hydrotreatment method of hydrocarbon oil
JP2024095213A (en) Hydrocarbon oil hydrotreating catalyst and method for producing same
JP2023081115A (en) Inorganic composite oxide carrier, catalyst for hydrotreatment of hydrocarbon oil and method for producing the same, and hydrotreatment method of hydrocarbon oil
WO2021193617A1 (en) Hydroprocessing catalyst for heavy hydrocarbon oil, method for producing hydroprocessing catalyst for heavy hydrocarbon oil, and method for hydroprocessing heavy hydrocarbon oil
JP2023142910A (en) Silicon scavenger for hydrogenation treatment, manufacturing method thereof, hydrogenation treatment method of hydrocarbon oil
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180316

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180316

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20191106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200107

R150 Certificate of patent or registration of utility model

Ref document number: 6643810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250