JP2013212447A - Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst - Google Patents
Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst Download PDFInfo
- Publication number
- JP2013212447A JP2013212447A JP2012083120A JP2012083120A JP2013212447A JP 2013212447 A JP2013212447 A JP 2013212447A JP 2012083120 A JP2012083120 A JP 2012083120A JP 2012083120 A JP2012083120 A JP 2012083120A JP 2013212447 A JP2013212447 A JP 2013212447A
- Authority
- JP
- Japan
- Prior art keywords
- heavy oil
- catalyst
- hydrotreating catalyst
- oil hydrotreating
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
本発明は、重質油水素化処理触媒の再生方法、重質油水素化処理触媒の使用方法、及び重質油水素化処理触媒に関する。さらに詳しくは、コークが付着し、触媒活性の劣化した重質油水素化処理触媒を触媒性能や摩耗強度の低下などを極力損なうことなく、効果的に触媒性能を維持向上させる重質油水素化処理触媒の再生方法、このようにして再生された重質油水素化処理触媒を用いて重質油の水素化処理を実施する重質油水素化処理触媒の使用方法、及び上記再生方法によって製造された重質油水素化処理触媒に関するものである。 The present invention relates to a method for regenerating a heavy oil hydrotreating catalyst, a method for using a heavy oil hydrotreating catalyst, and a heavy oil hydrotreating catalyst. More specifically, heavy oil hydrogenation that effectively maintains and improves catalyst performance without losing catalyst performance and wear strength degradation as much as possible with heavy oil hydrotreating catalysts with coke adhesion and degraded catalyst activity. A method for regenerating a treated catalyst, a method for using a heavy oil hydrotreating catalyst for hydrotreating heavy oil using the regenerated heavy oil hydrotreating catalyst, and a method for producing the same by the above regeneration method The present invention relates to a heavy oil hydrotreating catalyst.
一般に、灯軽油等の軽質な含硫黄炭化水素の水素化処理での触媒性能の低下原因は、コーク(炭素分)の触媒上への析出であると言われている。また、重質油の水素化処理では、軽質油とは異なり、原料油中に存在する多量のバナジウム、ニッケル等の金属不純物が、水素化処理の運転中に触媒上に蓄積することにより触媒性能が低下する。また、重質油中には難脱硫性の硫黄化合物が多く含まれていることから、軽質な含硫黄化合物の水素化処理に比べて上記金属不純物の蓄積の影響をより顕著に受けやすい。 In general, it is said that the cause of the decrease in the catalyst performance in the hydrotreatment of light sulfur-containing hydrocarbons such as kerosene oil is the deposition of coke (carbon content) on the catalyst. Also, in heavy oil hydrotreating, unlike light oil, a large amount of metal impurities such as vanadium and nickel present in the feedstock accumulate on the catalyst during the hydrotreating operation. Decreases. In addition, since heavy oil contains a large amount of sulfur compounds that are difficult to desulfurize, it is more remarkably affected by the accumulation of metal impurities than hydrogenation treatment of light sulfur-containing compounds.
また近年、環境問題の高まりから、触媒廃棄物を低減するため、水素化処理触媒の再生利用が望まれている。しかし、再生時に触媒の摩耗強度は低下して、再生後の再充填時に、触媒粒子間隙が閉塞し、再利用時に運転ができなくなるという問題があった。 Also, in recent years, due to increasing environmental problems, it is desired to recycle the hydrotreating catalyst in order to reduce catalyst waste. However, there is a problem that the wear strength of the catalyst is reduced during regeneration, and the catalyst particle gap is blocked during refilling after regeneration, making it impossible to operate during reuse.
さらに、最近では、アルミナ担体に、酸化ニッケル、三酸化モリブデン、酸化マグネシウム及び五酸化リンを担持させた触媒が提案されている(例えば、特許文献1参照)。
また、重質油の水素化処理によって劣化した水素化処理触媒を再生使用するに適した水素化処理触媒として、アルミナ担体にチタニアを添加して再生使用に適した重質油水素化処理触媒(例えば、特許文献2参照)などが開示されている。しかし、これらの方法でも、触媒再生時における摩耗強度の低下問題は解消せず、触媒の再生利用は困難であった。
Furthermore, recently, a catalyst in which nickel oxide, molybdenum trioxide, magnesium oxide, and phosphorus pentoxide are supported on an alumina carrier has been proposed (see, for example, Patent Document 1).
In addition, as a hydrotreating catalyst suitable for reclaiming a hydrotreating catalyst that has deteriorated due to heavy oil hydrotreating, a heavy oil hydrotreating catalyst suitable for regeneration using titania added to an alumina carrier ( For example, see Patent Document 2). However, even with these methods, the problem of lowering the wear strength during catalyst regeneration has not been solved, and it has been difficult to recycle the catalyst.
この触媒再生は活性低下の主因であるコークを効率よく除去するために、一般に、活性劣化した触媒を酸素や空気等の酸素含有雰囲気で処理し、該コークを酸化燃焼することによって行われている。コークはこうした酸化燃焼処理によって十分に除去することができるので、これによって触媒活性を回復させることができる。 In order to efficiently remove coke, which is the main cause of the decrease in activity, this catalyst regeneration is generally performed by treating the catalyst whose activity has deteriorated in an oxygen-containing atmosphere such as oxygen or air, and oxidizing and burning the coke. . Since the coke can be sufficiently removed by such oxidative combustion treatment, the catalyst activity can be restored.
しかしながら、その酸化燃焼の際、触媒は高温にさらされるために損傷を受けやすい。すなわち、コークの析出等によって活性劣化した触媒から該コークを酸化燃焼除去すれば一時的に触媒活性を回復することができるものの、再生時に触媒の損傷が起こると、触媒活性等の触媒性能は再生毎に新触媒(反応前のフレッシュな触媒)の性能に比べて低下していき、その結果、触媒の繰り返し使用の寿命が顕著に短くなり、プロセス効率の著しい低下を招くことになる。特に、この種の重質油水素化処理触媒は、通常、厳しい条件での反応に使用されることが多く、そのため触媒の再生処理における再生時の触媒の損傷は極めて深刻な問題となる。そこで、酸化燃焼による触媒の損傷を出来るだけ抑制した効果的な触媒の再生方法の開発が強く望まれている。 However, during its oxidative combustion, the catalyst is subject to damage because it is exposed to high temperatures. That is, if the coke is oxidized and removed from the catalyst whose activity has deteriorated due to the deposition of coke, etc., the catalytic activity can be temporarily recovered. However, if the catalyst is damaged during regeneration, the catalytic performance such as catalytic activity is regenerated. Every time, the performance of the new catalyst (fresh catalyst before the reaction) is deteriorated. As a result, the life of repeated use of the catalyst is remarkably shortened, and the process efficiency is remarkably lowered. In particular, this type of heavy oil hydrotreating catalyst is usually used for reactions under severe conditions. Therefore, damage of the catalyst during regeneration in the catalyst regeneration treatment becomes a very serious problem. Therefore, development of an effective catalyst regeneration method that suppresses damage to the catalyst due to oxidative combustion as much as possible is strongly desired.
この種の重質油水素化処理触媒をコークの酸化燃焼を行って再生する際に、従来の再生方法では、触媒活性の回復をコークの除去という点に専念して行っており、実際残留コーク分が出来るだけ少なくなるように0%を目標とし、多くても0.5質量%未満となるように酸化燃焼による再生処理を行っている。しかしながら、この従来の再生方法のように残留コーク分が0.5質量%未満になるまで過度の酸化燃焼を行うには、触媒を厳しい酸化条件(例えば、高濃度の酸素雰囲気下、高温下、あるいは、長時間の酸素雰囲気下など)にさらす必要があるため、たとえコークの除去による活性の回復がそれなりになされたとしても、触媒の損傷等の他の問題が生じやすい。 When this type of heavy oil hydrotreating catalyst is regenerated by oxidative combustion of coke, in the conventional regeneration method, recovery of the catalyst activity is devoted to the removal of coke. The target is 0% so that the amount is as small as possible, and the regeneration process by oxidative combustion is performed so that it is less than 0.5% by mass at most. However, in order to perform excessive oxidative combustion until the residual coke content is less than 0.5% by mass as in this conventional regeneration method, the catalyst is subjected to severe oxidation conditions (for example, in a high concentration oxygen atmosphere, high temperature, Alternatively, it is necessary to be exposed to an oxygen atmosphere for a long period of time, and therefore other problems such as catalyst damage are likely to occur even if the activity is recovered by removing coke.
なお、コークの酸化燃焼による再生を、低酸素濃度にて段階的に行うことによって酸化燃焼時の過度の発熱を抑制しようとする改善方法も提案されてはいるが、この従来法においても、再生後の残留コーク分を0.5質量%未満としているので、上記と同様に触媒自体が必要以上に過度の酸化状態になってしまい、結局は、上記の問題点を十分に解決するに至っていない(例えば、特許文献3参照)。
また、再生後の触媒上の最終残留コーク量が0.5〜10.0質量%の範囲になるようにコークの酸化燃焼を制御して再生性を向上させた技術(例えば、特許文献4参照)も開示されている。しかしながら、当該技術においては、再生性の向上は、必ずしも十分に満足し得るとはいえなかった。
There has also been proposed an improved method for suppressing excessive heat generation during oxidative combustion by performing regeneration by coke oxidative combustion stepwise at a low oxygen concentration. Since the residual residual coke content is less than 0.5% by mass, the catalyst itself is excessively oxidized in the same manner as described above, and as a result, the above problems have not been sufficiently solved. (For example, refer to Patent Document 3).
Further, a technique for improving regenerative performance by controlling the oxidative combustion of coke so that the final residual coke amount on the regenerated catalyst is in the range of 0.5 to 10.0 mass% (see, for example, Patent Document 4). ) Is also disclosed. However, in this technique, the improvement in reproducibility cannot always be fully satisfied.
本発明は、このような状況下になされたものであり、コークが付着し、触媒活性の劣化した重質油水素化処理触媒を触媒性能や摩耗強度の低下などを極力損なうことなく、効果的に触媒性能を維持向上させる重質油水素化処理触媒の再生方法を提供することを目的とするものである。また、本発明は、高活性で劣化が少なく、かつ触媒の摩耗強度が大きくて再生使用に最適の重質油水素化処理触媒を用いて、再生後も長期間安定して用いることができる重質油の水素化処理方法を提供することを目的とするものである。更に本発明は、上記の重質油水素化処理触媒の再生方法によって製造される重質油水素化処理触媒を提供することを目的とするものである。 The present invention has been made under such circumstances, and it is possible to effectively treat a heavy oil hydrotreating catalyst having coke attached thereto and having deteriorated catalytic activity without losing catalyst performance and wear strength. It is another object of the present invention to provide a method for regenerating a heavy oil hydrotreating catalyst that maintains and improves catalyst performance. In addition, the present invention uses a heavy oil hydrotreating catalyst that is highly active, has little deterioration, and has a high wear strength of the catalyst, which is optimal for regeneration, and can be used stably for a long time after regeneration. An object of the present invention is to provide a method for hydrotreating a refined oil. A further object of the present invention is to provide a heavy oil hydrotreating catalyst produced by the above method for regenerating a heavy oil hydrotreating catalyst.
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記の知見を得た。
結晶性アルミノシリケート、特にゼオライト類と多孔性無機酸化物を含む担体に活性金属として特定の金属を担持した触媒が、重質油水素化処理触媒として、その目的に適合し得ることを見出した。本発明はかかる知見に基づいて完成したものである。
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
It has been found that a catalyst in which a specific metal is supported as an active metal on a support containing crystalline aluminosilicate, particularly zeolites and a porous inorganic oxide, can meet the purpose as a heavy oil hydrotreating catalyst. The present invention has been completed based on such findings.
すなわち、本発明は、次の[1]〜[10]を提供するものである。
[1]重質油水素化処理触媒の再生方法であって、重質油水素化処理触媒が、結晶性アルミノシリケートと多孔性無機酸化物を含む無機酸化物担体に、周期表第6族、第9族及び第10族に属する金属の中から選ばれる少なくとも1種からなる活性金属を含む金属化合物を担持した触媒であり、重質油を通油して水素化処理に供した後の既使用の重質油水素化処理触媒を、加熱処理して付着したコークを除去する加熱処理工程を含む、重質油水素化処理触媒の再生方法。
[2]結晶性アルミノシリケートがY型ゼオライト、USY型ゼオライト、及び鉄を含有した鉄含有USY型ゼオライトの中から選ばれる少なくとも1種である、[1]に記載の重質油水素化処理触媒の再生方法。
[3]多孔性無機酸化物がアルミナ、シリカ−アルミナ、シリカ、アルミナ−ボリア、アルミナ−ジルコニア及びアルミナ−チタニアの中から選ばれる少なくとも1種である、[1]又は[2]に記載の重質油水素化処理触媒の再生方法。
[4]周期表6族に属する金属がモリブデン、第9族に属する金属がコバルト、第10族に属する金属がニッケルである、[1]〜[3]のいずれかに記載の重質油水素化処理触媒の再生方法。
[5]結晶性アルミノシリケートの含有量が、触媒全量基準で40〜80質量%である、[1]〜[4]のいずれかに記載の重質油水素化処理触媒の再生方法。
[6]重質油水素化処理触媒の使用方法であって、重質油水素化処理触媒が、結晶性アルミノシリケートと多孔性無機酸化物を含む無機酸化物担体に、周期表第6族、第9族及び第10族に属する金属の中から選ばれる少なくとも1種からなる活性金属を含む金属化合物を担持した触媒であり、未使用の重質油水素化処理触媒に重質油を通油して所定時間、水素化処理を実施する水素化処理工程、及び、水素化処理工程に供した後の既使用の重質油水素化処理触媒を、加熱処理して付着したコークを除去する加熱処理工程を含む、重質油水素化処理触媒の使用方法。
[7]前記重質油水素化処理触媒は、結晶性アルミノシリケートの含有量が触媒全量基準で40質量%以上かつ55質量%未満である第1の重質油水素化処理触媒を含んでおり、
前記水素化処理工程は、1基又は複数基の反応塔内の第1の所定位置に第1の重質油水素化処理触媒を充填し、前記反応塔内に重質油を所定時間通油して、水素化処理を実施する工程であり、前記第1の所定位置は、前記所定時間の水素化処理によって第1の重質油水素化処理触媒に堆積するバナジウム化合物及びニッケル化合物からなる不純物金属化合物の堆積量が、第1の重質油水素化処理触媒の全量基準で4質量%以下になると想定される位置である、[6]に記載の重質油水素化処理触媒の使用方法。
[8]前記重質油水素化処理触媒は、結晶性アルミノシリケートの含有量が触媒全量基準で55質量%以上かつ65質量%未満である第2の重質油水素化処理触媒を含んでおり、
前記水素化処理工程は、1基又は複数基の反応塔内の第2の所定位置に第2の重質油水素化処理触媒を充填し、前記反応塔内に重質油を所定時間通油して、水素化処理を実施する工程であり、前記第2の所定位置は、前記所定時間の水素化処理によって第2の重質油水素化処理触媒に堆積するバナジウム化合物及びニッケル化合物からなる不純物金属化合物の堆積量が、第2の重質油水素化処理触媒の全量基準で9質量%以下になると想定される位置である、[6]又は[7]に記載の重質油水素化処理触媒の使用方法。
[9]前記重質油水素化処理触媒は、結晶性アルミノシリケートの含有量が触媒全量基準で65質量%以上かつ80質量%未満である第3の重質油水素化処理触媒を含んでおり、前記水素化処理工程は、1基又は複数基の反応塔内の第3の所定位置に第3の重質油水素化処理触媒を充填し、前記反応塔内に重質油を所定時間通油して、水素化処理を実施する工程であり、前記第3の所定位置は、前記所定時間の水素化処理によって第3の重質油水素化処理触媒に堆積するバナジウム化合物及びニッケル化合物からなる不純物金属化合物の堆積量が、第3の重質油水素化処理触媒の全量基準で12質量%以下になると想定される位置である、[6]〜[8]のいずれかに記載の重質油水素化処理触媒の使用方法。
[10][1]〜[5]のいずれかに記載の重質油水素化処理触媒の再生方法によって製造された、重質油水素化処理触媒。
That is, the present invention provides the following [1] to [10].
[1] A method for regenerating a heavy oil hydrotreating catalyst, wherein the heavy oil hydrotreating catalyst is attached to an inorganic oxide support containing crystalline aluminosilicate and a porous inorganic oxide, the periodic table group 6; A catalyst carrying a metal compound containing an active metal consisting of at least one selected from the metals belonging to Group 9 and Group 10, and has already been subjected to hydroprocessing by passing heavy oil through it. A method for regenerating a heavy oil hydrotreating catalyst, comprising a heat treatment step of removing coke adhering to the heavy oil hydrotreating catalyst used by heat treatment.
[2] The heavy oil hydrotreating catalyst according to [1], wherein the crystalline aluminosilicate is at least one selected from Y-type zeolite, USY-type zeolite, and iron-containing USY-type zeolite containing iron. How to play.
[3] The weight according to [1] or [2], wherein the porous inorganic oxide is at least one selected from alumina, silica-alumina, silica, alumina-boria, alumina-zirconia, and alumina-titania. A method for regenerating a refined oil hydroprocessing catalyst.
[4] The heavy oil hydrogen according to any one of [1] to [3], wherein the metal belonging to Group 6 of the periodic table is molybdenum, the metal belonging to Group 9 is cobalt, and the metal belonging to Group 10 is nickel. Method for regenerating catalyst for chemical treatment.
[5] The method for regenerating a heavy oil hydrotreating catalyst according to any one of [1] to [4], wherein the content of the crystalline aluminosilicate is 40 to 80% by mass based on the total amount of the catalyst.
[6] A method of using a heavy oil hydrotreating catalyst, wherein the heavy oil hydrotreating catalyst is attached to an inorganic oxide carrier containing crystalline aluminosilicate and a porous inorganic oxide, the periodic table group 6; A catalyst carrying a metal compound containing an active metal composed of at least one selected from metals belonging to Group 9 and Group 10, and passing heavy oil through an unused heavy oil hydrotreating catalyst Then, the hydrotreating process for performing the hydrotreating for a predetermined time, and the heating for removing the attached coke by heating the used heavy oil hydrotreating catalyst after being subjected to the hydrotreating process. A method of using a heavy oil hydrotreating catalyst comprising a treatment step.
[7] The heavy oil hydrotreating catalyst includes a first heavy oil hydrotreating catalyst having a crystalline aluminosilicate content of 40% by mass or more and less than 55% by mass based on the total amount of the catalyst. ,
In the hydrotreating step, a first heavy oil hydrotreating catalyst is filled in a first predetermined position in one or a plurality of reaction towers, and heavy oil is passed through the reaction tower for a predetermined time. The first predetermined position is an impurity composed of a vanadium compound and a nickel compound deposited on the first heavy oil hydroprocessing catalyst by the hydrogenation process for the predetermined time. The method for using the heavy oil hydrotreating catalyst according to [6], wherein the amount of the deposited metal compound is assumed to be 4% by mass or less based on the total amount of the first heavy oil hydrotreating catalyst. .
[8] The heavy oil hydrotreating catalyst includes a second heavy oil hydrotreating catalyst in which the content of crystalline aluminosilicate is 55% by mass or more and less than 65% by mass based on the total amount of the catalyst. ,
In the hydrotreating step, a second heavy oil hydrotreating catalyst is filled at a second predetermined position in one or a plurality of reaction towers, and the heavy oil is passed through the reaction tower for a predetermined time. And the second predetermined position is an impurity composed of a vanadium compound and a nickel compound deposited on the second heavy oil hydroprocessing catalyst by the hydrogenation process for the predetermined time. The heavy oil hydrotreating process according to [6] or [7], wherein the metal compound deposition amount is assumed to be 9% by mass or less based on the total amount of the second heavy oil hydrotreating catalyst. How to use the catalyst.
[9] The heavy oil hydrotreating catalyst includes a third heavy oil hydrotreating catalyst in which the content of crystalline aluminosilicate is 65% by mass or more and less than 80% by mass based on the total amount of the catalyst. In the hydrotreating step, a third heavy oil hydrotreating catalyst is filled at a third predetermined position in one or a plurality of reaction towers, and the heavy oil is allowed to pass through the reaction tower for a predetermined time. The third predetermined position is composed of a vanadium compound and a nickel compound that are deposited on the third heavy oil hydroprocessing catalyst by the hydroprocessing for the predetermined time. The heavy metal according to any one of [6] to [8], which is a position where the deposited amount of the impurity metal compound is assumed to be 12% by mass or less based on the total amount of the third heavy oil hydrotreating catalyst. How to use an oil hydrotreating catalyst.
[10] A heavy oil hydrotreating catalyst produced by the method for regenerating a heavy oil hydrotreating catalyst according to any one of [1] to [5].
本発明によれば、コークが付着し、触媒活性の劣化した重質油水素化処理触媒を触媒性能や摩耗強度の低下などを極力損なうことなく、効果的に触媒性能を維持向上させる重質油水素化処理触媒の再生方法及びこの再生方法により得られた重質油水素化処理触媒を提供することができる。
また、本発明によれば、高活性で劣化が少なく、かつ触媒の摩耗強度が大きくて再生使用に最適の重質油水素化処理触媒を用いて、再生後も長期間安定して用いることができる重質油の水素化処理方法を提供することができる。
According to the present invention, heavy oil hydrotreating catalyst to which coke is attached and whose catalytic activity has deteriorated can be effectively maintained and improved without degrading catalytic performance and wear strength. A method for regenerating a hydrotreating catalyst and a heavy oil hydrotreating catalyst obtained by the regenerating method can be provided.
In addition, according to the present invention, a heavy oil hydrotreating catalyst that is highly active, has little deterioration, has a high catalyst wear strength, and is optimal for regeneration can be used stably for a long time after regeneration. It is possible to provide a method for hydroprocessing heavy oil that can be performed.
本発明に係る重質油水素化処理触媒の再生方法、重質油水素化処理触媒の使用方法、及び重質油水素化処理触媒を、この順に説明する。
なお、本発明でいう重質油としては、例えば各種原油から得られた常圧残油、減圧残油等の他原油、アスファルト油、熱分解油、タールサンド油あるいはこれらを含む混合油などが挙げられる。
The heavy oil hydroprocessing catalyst regeneration method, heavy oil hydroprocessing catalyst usage method, and heavy oil hydroprocessing catalyst according to the present invention will be described in this order.
The heavy oil as referred to in the present invention includes, for example, atmospheric residual oils obtained from various crude oils, vacuum residual oils and the like, crude oils, asphalt oils, pyrolysis oils, tar sand oils or mixed oils containing these. Can be mentioned.
[重質油水素化処理触媒の再生方法]
本発明の重質油水素化処理触媒の再生方法は、重質油水素化処理触媒の再生方法であって、重質油水素化処理触媒が、結晶性アルミノシリケートと多孔性無機酸化物を含む無機酸化物担体に、周期表第6族、第9族及び第10族に属する金属の中から選ばれる少なくとも1種を含む金属化合物を担持した触媒であり、重質油を通油して水素化処理に供した後の既使用の重質油水素化処理触媒を、加熱処理して付着したコークを除去する加熱処理工程を含むものである。
本発明に係る触媒の再生方法によれば、触媒中に多孔性無機酸化物の他に結晶性アルミノシリケートが含まれているため、触媒再生中における触媒の摩耗強度の低下が防止又は抑制され、その結果、摩耗強度が高く触媒活性の良好な再生触媒を得ることができる。
[Regeneration method of heavy oil hydrotreating catalyst]
The method for regenerating a heavy oil hydrotreating catalyst according to the present invention is a method for regenerating a heavy oil hydrotreating catalyst, wherein the heavy oil hydrotreating catalyst contains a crystalline aluminosilicate and a porous inorganic oxide. A catalyst in which a metal compound containing at least one selected from metals belonging to Group 6, Group 9, and Group 10 of the periodic table is supported on an inorganic oxide carrier. The heat treatment process which removes the coke which adhered by carrying out the heat treatment of the used heavy oil hydrotreating catalyst after using for a chemical conversion treatment is included.
According to the catalyst regeneration method of the present invention, since the catalyst contains crystalline aluminosilicate in addition to the porous inorganic oxide, a decrease in the wear strength of the catalyst during catalyst regeneration is prevented or suppressed, As a result, a regenerated catalyst having high wear strength and good catalytic activity can be obtained.
<重質油水素化処理触媒>
当該重質油水素化処理触媒の再生方法における重質油水素化処理触媒は、バナジウム、ニッケル等の金属分を不純物として含む残渣油など重質油の処理触媒であり、水素化脱硫、水素化脱窒素、水素化分解、水素化脱芳香族などの水素化反応に用いることができるが、特に水素化脱硫反応に有効に用いられる。
<Heavy oil hydrotreating catalyst>
The heavy oil hydrotreating catalyst in the method for regenerating the heavy oil hydrotreating catalyst is a heavy oil treating catalyst such as residual oil containing metal components such as vanadium and nickel as impurities. Although it can be used for hydrogenation reactions such as denitrogenation, hydrocracking and hydrodearomatic, it is particularly effective for hydrodesulfurization reactions.
(担体)
担体に用いられる無機酸化物としては、アルミナを含むことを必須とするが、結晶性アルミノシリケートと混合して担体を構成する多孔性無機酸化物としては、アルミナ、シリカ−アルミナ、シリカ、アルミナ−ボリア、アルミナ−ジルコニア、アルミナ−チタニアが挙げられる。これらは1種を単独で用いても、2種以上を組み合わせて用いてもよいが、本発明においては金属の分散性の観点からはアルミナ担体が好ましい。
(Carrier)
The inorganic oxide used for the carrier is required to contain alumina, but the porous inorganic oxide mixed with the crystalline aluminosilicate to constitute the carrier includes alumina, silica-alumina, silica, alumina- Examples include boria, alumina-zirconia, and alumina-titania. These may be used singly or in combination of two or more, but in the present invention, an alumina carrier is preferable from the viewpoint of metal dispersibility.
(担体の製造方法)
前記触媒担体の調製方法は特に限定されないが、例えばアルミナゲルに加水したスラリー状態の結晶性アルミノシリケートを添加し、十分混練させて成型し、乾燥、焼成することにより得られる。このような結晶性アルミノシリケートとしては、結晶性アルミノケイ酸塩鉱物として総称されるがその中でもフォージャサイト型Y型ゼオライト、Y型ゼオライトをスチーミング処理等で超安定型としたUSY型ゼオライト、鉄を含有した鉄含有USY型ゼオライトを挙げることができる。
(Method for producing carrier)
The method for preparing the catalyst carrier is not particularly limited. For example, the catalyst carrier can be obtained by adding a crystalline aluminosilicate in a slurry state that has been added to alumina gel, kneading and molding, drying, and firing. Such crystalline aluminosilicates are generically named as crystalline aluminosilicate minerals. Among them, faujasite type Y zeolite, USY type zeolite in which Y type zeolite is made ultra-stable by steaming, etc., iron And iron-containing USY-type zeolite containing
これらのゼオライト類は、1種を単独で用いても、2種以上を組み合わせて用いてもよいが、結晶性アルミノシリケートとしては特に、USY型ゼオライト、さらには鉄担持USY型ゼオライトが好ましい。
また加水した結晶性アルミノシリケートスラリーと混合するアルミナゲルにも水を加えたスラリーとしてもよく、混合状態が良く、結晶性アルミノシリケートとアルミナが十分分散化してれば、再生時の磨耗強度が向上する。
These zeolites may be used singly or in combination of two or more. However, as the crystalline aluminosilicate, USY-type zeolite and iron-supported USY-type zeolite are particularly preferable.
Also, the alumina gel mixed with the hydrolyzed crystalline aluminosilicate slurry may be a slurry in which water is added, and the mixed state is good. If the crystalline aluminosilicate and alumina are sufficiently dispersed, the abrasion strength during regeneration is improved. To do.
前記担体における結晶性アルミノシリケートの含有量は、触媒全量基準で40質量%〜80質量%が好ましく、さらには50質量%〜70質量%が好ましい。40質量%以上であると充分な摩耗強度を得ることができ、80質量%以下であると成型バインダーの役割もするアルミナの量が十分に存在し、良好に成型できる。
本発明における重質油水素化処理触媒の担体形状は特に限定されず、円柱、球状、三〜六葉、ハニカム等目的とする反応形式に好適な形状を自由に選択することができる。特に固定床の直接脱硫装置では円柱、三つ葉、四つ葉の形が好適に用いられる。
The content of the crystalline aluminosilicate in the carrier is preferably 40% by mass to 80% by mass, and more preferably 50% by mass to 70% by mass based on the total amount of the catalyst. When it is 40% by mass or more, sufficient wear strength can be obtained, and when it is 80% by mass or less, there is a sufficient amount of alumina that also serves as a molding binder, and it can be molded satisfactorily.
The carrier shape of the heavy oil hydrotreating catalyst in the present invention is not particularly limited, and a shape suitable for the intended reaction mode, such as a cylinder, a sphere, three to six leaves, and a honeycomb, can be freely selected. In particular, in a fixed bed direct desulfurization apparatus, a cylindrical, three-leaf, or four-leaf shape is preferably used.
それぞれのスラリー状態での水分量は結晶性アルミノシリケートスラリーでは30〜80質量%が好ましく、40〜70質量%がより好ましい。アルミナスラリーでは50〜90質量%が好ましく、55〜85質量%がより好ましい。
上記の結晶性アルミノシリケートと多孔性無機酸化物を混合捏和したのち、1/12インチ〜1/32インチの径、長さ1.5mm〜6mmに成型し、円柱状、三つ葉型、四葉型の形状の成型物を得る。成型物は、通常30〜200℃、0.1〜24時間乾燥させ、次いで、300〜750℃程度(好ましくは450〜700℃)で、1〜10時間程度(好ましくは2〜7時間)焼成し担体とする。
The water content in each slurry state is preferably 30 to 80% by mass, more preferably 40 to 70% by mass in the crystalline aluminosilicate slurry. In an alumina slurry, 50-90 mass% is preferable and 55-85 mass% is more preferable.
After mixing and kneading the above crystalline aluminosilicate and porous inorganic oxide, it is molded into a diameter of 1/12 inch to 1/32 inch and a length of 1.5 mm to 6 mm, cylindrical, three-leaf type, four-leaf type A molded product of the shape is obtained. The molded product is usually dried at 30 to 200 ° C. for 0.1 to 24 hours, and then fired at about 300 to 750 ° C. (preferably 450 to 700 ° C.) for about 1 to 10 hours (preferably 2 to 7 hours). A carrier is used.
(担体の物性)
担体の比表面積は400〜800m2/gが好ましく、400m2/g以上であると、運転中に堆積するバナジウム、ニッケル等がアルミナ成分と結合することが防止され、摩耗強度が十分に高いものとなる。比表面積は結晶性アルミノシリケート本来が持つ小細孔径によるものであり、担体として結晶性アルミノシリケートが増加することにより、比表面積も増加するが、800m2/g以下であると、相対的にアルミナ等の多孔性無機酸化物の量が多くなり、多孔性無機酸化物(アルミナ等)上での活性金属による脱硫活性点が多くなり、脱硫活性が高くなる。
(Physical properties of the carrier)
The specific surface area of the support is 400 to 800 m 2 / g is preferable, if it is 400 meters 2 / g or more, vanadium deposited during operation, it is possible to prevent the nickel is bound to the alumina component, the wear strength sufficiently high It becomes. The specific surface area is due to the small pore diameter inherent to the crystalline aluminosilicate, and the specific surface area also increases as the crystalline aluminosilicate increases as a carrier. However, if the specific surface area is 800 m 2 / g or less, it is relatively alumina. The amount of the porous inorganic oxide, such as, increases, the desulfurization active point by the active metal on the porous inorganic oxide (such as alumina) increases, and the desulfurization activity increases.
担体の全細孔容積は、通常0.2〜1.5cm3/g、好ましくは0.3〜1.2cm3/gのものが用いられる。0.2cm3/g以上であるとバナジウム、ニッケル等の金属分、コーク分が細孔内に堆積し難くなるため、重質油分子の拡散性が低下し十分な脱硫性能が得られなくなることが防止される。1.5cm3/g以下であると、圧壊強度が強くなり、折れ難く再生後も触媒長さの低下が抑制される結果、反応塔で差圧が付き、運転が出来なくなることが防止される。
担体の平均細孔径は通常の脱硫触媒として採用されている重質油分子が容易に触媒内を拡散できる細孔系の範囲であり、100〜200Åに入っていれば良い。
The total pore volume of the carrier is usually 0.2 to 1.5 cm 3 / g, preferably 0.3 to 1.2 cm 3 / g. If it is 0.2 cm 3 / g or more, metal components such as vanadium and nickel, and coke components are difficult to deposit in the pores, so that the diffusibility of heavy oil molecules decreases and sufficient desulfurization performance cannot be obtained. Is prevented. When it is 1.5 cm 3 / g or less, the crushing strength becomes strong, and it is difficult to break, and as a result, the decrease in the catalyst length is suppressed even after regeneration. .
The average pore diameter of the carrier is in the pore system range in which heavy oil molecules employed as a normal desulfurization catalyst can easily diffuse in the catalyst, and may be in the range of 100 to 200 mm.
(活性金属を含む金属化合物)
本発明においては、上記担体に活性金属を含む金属化合物を担持することが必要であり、このことにより触媒再生時の摩耗強度を著しく高めることができる。
活性金属としては、周期表第6族、第9族、及び第10族に属する金属のうち少なくとも一種の金属が挙げられる。ここで周期表第6族に属する金属としては、モリブデン、タングステンが好ましく、9族に属する金属としてはコバルトが好ましく、10族に属する金属としては、ニッケルが好ましい。二種類の金属の組み合わせとしては、ニッケル−モリブデン、コバルト−モリブデン、ニッケル−タングステン、コバルト−タングステンなどが挙げられ、なかでもコバルト−モリブデン、ニッケル−モリブデンが好ましく、特に、ニッケル−モリブデンが好ましい。
(Metal compounds containing active metals)
In the present invention, it is necessary to carry a metal compound containing an active metal on the carrier, and this can remarkably increase the wear strength during catalyst regeneration.
Examples of the active metal include at least one metal among metals belonging to Group 6, Group 9, and Group 10 of the periodic table. Here, the metal belonging to Group 6 of the periodic table is preferably molybdenum or tungsten, the metal belonging to Group 9 is preferably cobalt, and the metal belonging to Group 10 is preferably nickel. Examples of the combination of the two kinds of metals include nickel-molybdenum, cobalt-molybdenum, nickel-tungsten, cobalt-tungsten, etc., among which cobalt-molybdenum and nickel-molybdenum are preferable, and nickel-molybdenum is particularly preferable.
上記活性金属を含む金属化合物の担持量は、特に制限はなく原料油の種類や所望する低硫黄重質油留分の得率などの各種条件に応じて適宜選定すればよいが、通常は、第6族の金属は、触媒全体の質量に対して、金属酸化物換算で、0.5〜30質量%、好ましくは5〜20質量%、第9〜10族の金属は、触媒全体の0.1〜20質量%、好ましくは1〜10質量%である。
上記金属化合物を担体に担持する方法については特に制限はなく、例えば、含浸法、混練法、共沈法などの公知の方法を採用することができる。
The supported amount of the metal compound containing the active metal is not particularly limited and may be appropriately selected according to various conditions such as the type of the raw oil and the desired yield of the low-sulfur heavy oil fraction. The Group 6 metal is 0.5 to 30% by mass, preferably 5 to 20% by mass, and the Group 9 to 10 metal is 0% of the total catalyst based on the total mass of the catalyst. .1 to 20% by mass, preferably 1 to 10% by mass.
The method for supporting the metal compound on the carrier is not particularly limited, and for example, known methods such as an impregnation method, a kneading method, and a coprecipitation method can be employed.
(重質油水素化処理触媒の製造方法)
本発明における重質油水素化処理触媒は、上記担体を調製し、該担体に上記活性金属を含む金属化合物を担持して製造される。
上記の金属化合物を担体に担持したものは、通常30〜200℃で、0.1〜24時間乾燥し、次いで、250〜700℃(好ましくは300〜650℃)で、1〜10時間(好ましくは2〜7時間)焼成して、触媒として仕上げられる。
(Method for producing heavy oil hydrotreating catalyst)
The heavy oil hydrotreating catalyst in the present invention is produced by preparing the carrier and supporting the metal compound containing the active metal on the carrier.
The above metal compound supported on a carrier is usually dried at 30 to 200 ° C. for 0.1 to 24 hours, and then at 250 to 700 ° C. (preferably 300 to 650 ° C.) for 1 to 10 hours (preferably Is calcined for 2-7 hours and finished as a catalyst.
(重質油水素化処理触媒の細孔分布)
本発明における重質油水素化処理触媒の細孔径50〜10,000Åの細孔で定義される総細孔容積は、0.30cm3/g以上が好ましく、0.35cm3/g以上より好ましく、0.40cm3/g以上が更に好ましい。総細孔容積が0.30cm3/g以上であれば減圧残渣油のような重質油分子の拡散を高めることができる。総細孔容積の上限は特に制限はないが、通常1.0cm3/g以下である。
本触媒の細孔径50〜500Åの細孔で定義されるメソ細孔容積は、0.25〜0.45cm3/gが好ましい。この範囲内であれば脱窒素活性、脱残炭活性を高く維持することができる。総細孔容積と同様の方法で測定される。
細孔径500〜10,000Åの細孔で定義されるマクロ細孔容積は、0.01〜0.25cm3/gが好ましい。この範囲内であれば脱窒素活性、脱残炭活性を高く維持することができる。総細孔容積と同様の方法で測定される。
(Pore distribution of heavy oil hydrotreating catalyst)
The total pore volume defined by pores having a pore diameter of 50~10,000Å of heavy oil hydrotreating catalyst in the present invention is preferably at least 0.30 cm 3 / g, preferably from 0.35 cm 3 / g or more 0.40 cm 3 / g or more is more preferable. If the total pore volume is 0.30 cm 3 / g or more, the diffusion of heavy oil molecules such as vacuum residue oil can be enhanced. The upper limit of the total pore volume is not particularly limited, but is usually 1.0 cm 3 / g or less.
The mesopore volume defined by pores having a pore diameter of 50 to 500 mm of the present catalyst is preferably 0.25 to 0.45 cm 3 / g. If it is in this range, denitrification activity and decarburization activity can be kept high. The total pore volume is measured by the same method.
The macropore volume defined by pores having a pore diameter of 500 to 10,000 Å is preferably 0.01 to 0.25 cm 3 / g. If it is in this range, denitrification activity and decarburization activity can be kept high. The total pore volume is measured by the same method.
<再生方法>
本発明に係る重質油水素化処理触媒の再生方法は、重質油を通油して水素化処理に供した後の既使用の前述の重質油水素化処理触媒を、加熱処理して付着したコークを除去する加熱処理工程を含むものである。このように、前述の重質油水素化処理触媒を加熱処理することにより、重質油水素化処理触媒を再生することができる。
この加熱処理工程においては、既使用の重質油水素化処理触媒を、窒素及び酸素を含有するガス雰囲気中において、300〜600℃で30〜250分間加熱することが好ましい。この条件で加熱処理することにより、前述の重質油水素化処理触媒中におけるコークを十分に除去して触媒の再生を行うことができ、かつ、摩耗強度の低下及び触媒上の活性金属状態の劣化を十分に防止又は抑制することができる。
<Playback method>
The method for regenerating a heavy oil hydrotreating catalyst according to the present invention comprises subjecting an already-used heavy oil hydrotreating catalyst after passing heavy oil and subjecting it to a hydrotreating treatment by heat treatment. It includes a heat treatment step for removing the attached coke. Thus, the heavy oil hydrotreating catalyst can be regenerated by heat-treating the aforementioned heavy oil hydrotreating catalyst.
In this heat treatment step, it is preferable to heat the used heavy oil hydrotreating catalyst at 300 to 600 ° C. for 30 to 250 minutes in a gas atmosphere containing nitrogen and oxygen. By heat treatment under these conditions, the coke in the above heavy oil hydrotreating catalyst can be sufficiently removed to regenerate the catalyst, and the wear strength is reduced and the active metal state on the catalyst is reduced. Deterioration can be sufficiently prevented or suppressed.
上記のとおり、加熱温度は300〜600℃であることが好ましい。300℃以上であると、コークの除去を十分に行うことができ、600℃以下であると、触媒の摩耗強度および触媒上の活性金属状態の劣化を防止又は抑制することができる。この観点から、加熱温度は、より好ましくは450〜500℃である。
加熱時間は、30〜250分間であることが好ましい。30分間以上であると、コークの除去を十分に行うことができ、250分間以下であると、触媒の摩耗強度の劣化を防止又は抑制することができる。この観点から、加熱時間は、より好ましくは50〜150分間である。
As above-mentioned, it is preferable that heating temperature is 300-600 degreeC. When it is 300 ° C. or higher, coke can be sufficiently removed, and when it is 600 ° C. or lower, the wear strength of the catalyst and the deterioration of the active metal state on the catalyst can be prevented or suppressed. From this viewpoint, the heating temperature is more preferably 450 to 500 ° C.
The heating time is preferably 30 to 250 minutes. If it is 30 minutes or longer, coke can be sufficiently removed, and if it is 250 minutes or less, deterioration of the wear strength of the catalyst can be prevented or suppressed. From this viewpoint, the heating time is more preferably 50 to 150 minutes.
[重質油水素化処理触媒の使用方法]
本発明に係る重質油水素化処理触媒の使用方法は、重質油水素化処理触媒が、結晶性アルミノシリケートと多孔性無機酸化物を含む無機酸化物担体に、周期表第6族、第9族及び第10族に属する金属の中から選ばれる少なくとも1種からなる活性金属を含む金属化合物を担持した触媒であり、未使用の重質油水素化処理触媒に重質油を通油して所定時間の間水素化処理を実施する水素化処理工程、及び、水素化処理工程に供した後の既使用の重質油水素化処理触媒を、加熱処理して付着したコークを除去する加熱処理工程を含むものである。
本発明の使用方法によれば、重質油水素化処理触媒を、水素化処理に供した後、加熱処理工程で再生して、再度、水素化処理に供することができる。
次に、各工程について説明する。
[Usage of heavy oil hydrotreating catalyst]
The method of using the heavy oil hydrotreating catalyst according to the present invention is such that the heavy oil hydrotreating catalyst is placed on an inorganic oxide support containing crystalline aluminosilicate and porous inorganic oxide, and the periodic table group 6, A catalyst supporting a metal compound containing an active metal composed of at least one selected from metals belonging to Group 9 and Group 10, and passing heavy oil through an unused heavy oil hydrotreating catalyst. Heat treatment for carrying out the hydrotreatment for a predetermined time, and heating to remove the attached coke by heat treatment of the used heavy oil hydrotreating catalyst after being subjected to the hydrotreatment step. It includes processing steps.
According to the method of use of the present invention, the heavy oil hydrotreating catalyst can be subjected to hydrotreating, then regenerated in a heat treatment step, and again subjected to hydrotreating.
Next, each step will be described.
<水素化処理工程>
水素化処理工程では、未使用の重質油水素化処理触媒に重質油を通油して所定時間の間水素化処理を実施する。
重質油水素化処理触媒としては、前述したものを好適に用いることができる。
所定時間としては、特に制限はないが、例えば半年〜3年程度であり、好ましくは1年〜2年程度である。
<Hydrogenation process>
In the hydrotreating step, heavy oil is passed through an unused heavy oil hydrotreating catalyst, and hydrotreating is performed for a predetermined time.
As the heavy oil hydrotreating catalyst, those described above can be suitably used.
Although there is no restriction | limiting in particular as predetermined time, For example, it is a half year-about 3 years, Preferably it is about 1 year-2 years.
(水素化処理)
水素化処理としては、水素化脱硫、水素化脱窒素、水素化分解、水素化脱芳香族の水素化反応等が挙げられるが、特に水素化脱硫が好適である。
水素化脱硫処理を行う場合の反応条件は対称となる重質油の性状により異なるが、反応温度は、好ましくは300〜550℃であり、より好ましくは320〜500℃であり、更に好ましくは350〜430℃である。反応圧力は、好ましくは0.5〜35MPaであり、より好ましくは1〜30MPaであり、更に好ましくは5〜17MPaである。
反応形式としては、特に制限はないが、固定床、移動床、沸騰床、懸濁床等の種々のプロセスを採用することができるが、経済性の観点から固定床が好適である。液空間速度(LHSV)は、好ましくは0.05〜5.0/hrであり、より好ましくは0.1〜3.0/hrであり、更に好ましくは0.2〜2.0 /hrである。
水素ガスの重質油に対する供給割合(水素/重質油)は、好ましくは50〜2,200Nm3/klであり、より好ましくは100〜2,000Nm3/klであり、更に好ましくは300〜1,000Nm3/klである。
(Hydrogenation treatment)
Examples of the hydrotreatment include hydrodesulfurization, hydrodenitrogenation, hydrocracking, hydrodearomatic hydrogenation reaction, etc., and hydrodesulfurization is particularly preferable.
The reaction conditions for the hydrodesulfurization treatment vary depending on the properties of the symmetric heavy oil, but the reaction temperature is preferably 300 to 550 ° C, more preferably 320 to 500 ° C, and even more preferably 350. ~ 430 ° C. The reaction pressure is preferably 0.5 to 35 MPa, more preferably 1 to 30 MPa, and still more preferably 5 to 17 MPa.
Although there is no restriction | limiting in particular as a reaction form, Although various processes, such as a fixed bed, a moving bed, a boiling bed, a suspension bed, can be employ | adopted, a fixed bed is suitable from a viewpoint of economical efficiency. The liquid hourly space velocity (LHSV) is preferably 0.05 to 5.0 / hr, more preferably 0.1 to 3.0 / hr, still more preferably 0.2 to 2.0 / hr. is there.
Feed rate for the heavy fuel oil of the hydrogen gas (hydrogen / heavy oil) is preferably 50~2,200Nm 3 / kl, more preferably 100~2,000Nm 3 / kl, more preferably 300 to 1,000 Nm 3 / kl.
<加熱処理工程>
水素化処理工程に供した後の既使用の重質油水素化処理触媒を、加熱処理して付着したコークを除去する加熱処理工程を含むものである。
本工程は、前述した重質油水素化処理触媒の再生方法における加熱処理工程と同様であり、その詳細は前述したとおりである。
<Heat treatment process>
It includes a heat treatment step of removing coke adhering to the already used heavy oil hydrotreatment catalyst after being subjected to the hydrotreatment step.
This step is the same as the heat treatment step in the method for regenerating a heavy oil hydrotreating catalyst described above, and details thereof are as described above.
<第1〜第3の実施形態に係る重質油水素化処理触媒の使用方法>
水素化処理は、反応塔内に前記重質油水素化処理触媒を充填し、この反応塔内に重質油を通油することにより、好適に実施することができる。そして、反応塔内における触媒の充填位置に応じて、触媒に堆積するバナジウム化合物及びニッケル化合物からなる不純物金属化合物(MOC)の堆積量は異なる。一般的には、反応塔内の上流側に充填された触媒ほど、MOCの堆積量は多くなる。
後述する第1〜第3の実施形態に係る重質油水素化処理触媒の使用方法は、重質油水素化処理触媒の反応塔内における充填位置を、当該触媒中における結晶性アルミノシリケートの含有量に応じて決定するものである。これにより、水素化処理工程の後に加熱処理工程を実施することで、当該触媒を確実に再使用することができる。
次に、第1〜第3の実施形態に係る重質油水素化処理触媒の使用方法について、詳細に説明する。
<Usage method of heavy oil hydrotreating catalyst according to first to third embodiments>
The hydrotreating can be preferably carried out by filling the heavy oil hydrotreating catalyst in a reaction tower and passing heavy oil through the reaction tower. The amount of impurity metal compound (MOC) deposited from the vanadium compound and the nickel compound deposited on the catalyst varies depending on the filling position of the catalyst in the reaction tower. Generally, the amount of MOC deposited increases as the catalyst is packed upstream in the reaction tower.
The method of using the heavy oil hydrotreating catalyst according to the first to third embodiments to be described later includes the filling position in the reaction tower of the heavy oil hydrotreating catalyst, and the inclusion of crystalline aluminosilicate in the catalyst. It is determined according to the amount. Thereby, the said catalyst can be reliably reused by implementing a heat processing process after a hydrotreating process.
Next, the usage method of the heavy oil hydrotreating catalyst according to the first to third embodiments will be described in detail.
(第1の実施形態に係る重質油水素化処理触媒の使用方法)
第1の実施形態に係る重質油水素化処理触媒の使用方法は、前記重質油水素化処理触媒が、結晶性アルミノシリケートの含有量が触媒全量基準で40質量%以上かつ55質量%未満である第1の重質油水素化処理触媒を含んでおり、前記水素化処理工程は、1基又は複数基の反応塔内の第1の所定位置に第1の重質油水素化処理触媒を充填し、前記反応塔内に重質油を所定時間通油して、水素化処理を実施する工程であり、前記第1の所定位置は、前記所定時間の水素化処理によって第1の重質油水素化処理触媒に堆積するバナジウム化合物及びニッケル化合物からなる不純物金属化合物(MOC)の堆積量が、第1の重質油水素化処理触媒の全量基準で4質量%以下になると想定される位置である、重質油水素化処理触媒の使用方法である。
(Usage method of heavy oil hydrotreating catalyst according to the first embodiment)
The method for using the heavy oil hydrotreating catalyst according to the first embodiment is such that the heavy oil hydrotreating catalyst has a crystalline aluminosilicate content of 40% by mass or more and less than 55% by mass based on the total amount of the catalyst. The first heavy oil hydrotreating catalyst, and the hydrotreating step includes a first heavy oil hydrotreating catalyst at a first predetermined position in one or a plurality of reaction towers. And the heavy oil is passed through the reaction tower for a predetermined time to carry out the hydrogenation treatment. The first predetermined position is a first heavy oil by the hydrogenation treatment for the predetermined time. The amount of impurity metal compound (MOC) consisting of vanadium compound and nickel compound deposited on the heavy oil hydrotreating catalyst is assumed to be 4% by mass or less based on the total amount of the first heavy oil hydrotreating catalyst. Is the usage method of heavy oil hydroprocessing catalyst
当該使用方法では、第1の重質油水素化処理触媒(以下、「第1の触媒」ということがある)として、結晶性アルミノシリケートの含有量が触媒全量基準で40質量%以上かつ55質量%未満という比較的低い触媒を用いているため、後述する第2の重質油水素化処理触媒や第3の重質油水素化処理触媒と比べて、水素化処理により摩耗強度が低下し易い。そのため、当該使用方法では、かかる第1の重質油水素化処理触媒を、水素化処理工程後におけるMOCの堆積量が当該触媒の4質量%以下という、、後述する第2の重質油水素化処理触媒や第3の重質油水素化処理触媒と比べて、比較的触媒負荷の低い位置で用いている。これにより、水素化処理による摩耗強度の低下を抑制することができ、当該触媒を確実に再使用することができる。この観点から、MOCの堆積量は、より好ましくは3質量%以下であり、更に好ましくは2質量以下である。 In this method of use, as the first heavy oil hydrotreating catalyst (hereinafter sometimes referred to as “first catalyst”), the content of crystalline aluminosilicate is 40% by mass or more and 55% by mass based on the total amount of the catalyst. Since a relatively low catalyst of less than 10% is used, the wear strength is likely to be reduced by hydrotreating compared to the second heavy oil hydrotreating catalyst and third heavy oil hydrotreating catalyst described later. . Therefore, in the method of use, the first heavy oil hydrotreating catalyst is a second heavy oil hydrogen hydrogen to be described later in which the amount of MOC deposited after the hydrotreating step is 4% by mass or less of the catalyst. Compared with the hydrotreating catalyst and the third heavy oil hydrotreating catalyst, it is used at a position where the catalyst load is relatively low. Thereby, the fall of the wear strength by a hydrogenation process can be suppressed, and the said catalyst can be reused reliably. In this respect, the MOC deposition amount is more preferably 3% by mass or less, and further preferably 2% by mass or less.
(第2の実施形態に係る重質油水素化処理触媒の使用方法)
第2の実施形態に係る重質油水素化処理触媒の使用方法は、前記重質油水素化処理触媒が、結晶性アルミノシリケートの含有量が触媒全量基準で55質量%以上かつ65質量%未満である第2の重質油水素化処理触媒を含んでおり、前記水素化処理工程は、1基又は複数基の反応塔内の第2の所定位置に第2の重質油水素化処理触媒を充填し、前記反応塔内に重質油を所定時間通油して、水素化処理を実施する工程であり、前記第2の所定位置は、前記所定時間の水素化処理によって第2の重質油水素化処理触媒に堆積するバナジウム化合物及びニッケル化合物からなる不純物金属化合物(MOC)の堆積量が、第2の重質油水素化処理触媒の全量基準で9質量%以下になると想定される位置である、重質油水素化処理触媒の使用方法である。
(Usage method of heavy oil hydrotreating catalyst according to the second embodiment)
The method for using the heavy oil hydrotreating catalyst according to the second embodiment is such that the heavy oil hydrotreating catalyst has a crystalline aluminosilicate content of 55% by mass or more and less than 65% by mass based on the total amount of the catalyst. The second heavy oil hydrotreating catalyst, wherein the hydrotreating step is a second heavy oil hydrotreating catalyst at a second predetermined position in one or more reaction towers. And carrying out a hydrogenation process by passing heavy oil through the reaction tower for a predetermined time, and the second predetermined position is a second heavy by the hydrogenation process for the predetermined time. The amount of impurity metal compound (MOC) consisting of a vanadium compound and a nickel compound deposited on the heavy oil hydrotreating catalyst is assumed to be 9% by mass or less based on the total amount of the second heavy oil hydrotreating catalyst. Is the usage method of heavy oil hydroprocessing catalyst
当該使用方法では、第2の重質油水素化処理触媒(以下、「第2の触媒」ということがある)として、結晶性アルミノシリケートの含有量が触媒全量基準で55質量%以上かつ65質量%未満という中程度の触媒を用いているため、水素化処理による摩耗強度は第1の触媒よりも低下し難い。そのため、当該使用方法では、かかる第2の触媒を、水素化処理工程後におけるMOCの堆積量が当該触媒の9質量%以下という、触媒負荷が中程度の位置で用いても、水素化処理による摩耗強度の低下を抑制することができ、当該触媒を確実に再使用することができる。また、水素化処理を効率よく行う観点から、MOCの堆積量は、5質量%以上が好ましい。 In this method of use, as the second heavy oil hydrotreating catalyst (hereinafter sometimes referred to as “second catalyst”), the content of crystalline aluminosilicate is 55% by mass or more and 65% by mass based on the total amount of the catalyst. Since an intermediate catalyst of less than 1% is used, the wear strength due to the hydrotreatment is less likely to be lower than that of the first catalyst. For this reason, in this method of use, even if the second catalyst is used at a position where the catalyst load is moderate, that is, the amount of MOC deposited after the hydrotreating step is 9% by mass or less of the catalyst, A decrease in wear strength can be suppressed, and the catalyst can be reliably reused. Further, from the viewpoint of efficiently performing the hydrogenation treatment, the MOC deposition amount is preferably 5% by mass or more.
(第3の実施形態に係る重質油水素化処理触媒の使用方法)
第3の実施形態に係る重質油水素化処理触媒の使用方法は、前記重質油水素化処理触媒が、結晶性アルミノシリケートの含有量が触媒全量基準で65質量%以上かつ80質量%未満である第3の重質油水素化処理触媒を含んでおり、前記水素化処理工程は、1基又は複数基の反応塔内の第3の所定位置に第3の重質油水素化処理触媒を充填し、前記反応塔内に重質油を所定時間通油して、水素化処理を実施する工程であり、前記第3の所定位置は、前記所定時間の水素化処理によって第3の重質油水素化処理触媒に堆積するバナジウム化合物及びニッケル化合物からなる不純物金属化合物(MOC)の堆積量が、第3の重質油水素化処理触媒の全量基準で12質量%以下になると想定される位置である、重質油水素化処理触媒の使用方法である。
(Usage method of heavy oil hydrotreating catalyst according to the third embodiment)
The method for using the heavy oil hydrotreating catalyst according to the third embodiment is such that the heavy oil hydrotreating catalyst has a crystalline aluminosilicate content of 65% by mass or more and less than 80% by mass based on the total amount of the catalyst. A third heavy oil hydrotreating catalyst, and the hydrotreating step includes a third heavy oil hydrotreating catalyst at a third predetermined position in one or a plurality of reaction towers. , And a heavy oil is passed through the reaction tower for a predetermined time to carry out a hydrogenation process. The third predetermined position is a third heavy position by the hydrogenation process for the predetermined time. The amount of impurity metal compound (MOC) consisting of vanadium compound and nickel compound deposited on the heavy oil hydrotreating catalyst is assumed to be 12% by mass or less based on the total amount of the third heavy oil hydrotreating catalyst. The use of heavy oil hydrotreating catalyst .
当該使用方法では、第3の重質油水素化処理触媒(以下、「第3の触媒」ということがある)として、結晶性アルミノシリケートの含有量が触媒全量基準で65質量%以上かつ80質量%未満という含有量の高い触媒を用いているため、水素化処理による摩耗強度は第2の触媒よりも低下し難い。そのため、当該使用方法では、かかる第3の触媒を、水素化処理工程後におけるMOCの堆積量が当該触媒の12質量%以下という、触媒負荷が高い位置で用いても、水素化処理による摩耗強度の低下を抑制することができ、当該触媒を確実に再使用することができる。また、水素化処理を効率よく行う観点から、MOCの堆積量は、9質量%よりも大きいことが好ましく、10質量%以上がより好ましい。
(第1〜第3の実施形態に係る重質油水素化処理触媒の使用方法の組合せ)
上記重質油水素化処理触媒としては、上記第1の触媒、第2の触媒、及び第3の触媒の1種を含むものを用いてもよいが、2種又は3種を用いてもよい。
In this method of use, as the third heavy oil hydrotreating catalyst (hereinafter sometimes referred to as “third catalyst”), the content of crystalline aluminosilicate is 65% by mass or more and 80% by mass based on the total amount of the catalyst. Since the catalyst having a high content of less than% is used, the wear strength by the hydrotreatment is less likely to be lower than that of the second catalyst. Therefore, in this method of use, even if the third catalyst is used at a position where the catalyst load is high, that is, the amount of MOC deposited after the hydrotreating process is 12% by mass or less of the catalyst, the wear strength due to hydrotreating. Can be suppressed, and the catalyst can be reliably reused. Further, from the viewpoint of efficiently performing the hydrogenation treatment, the MOC deposition amount is preferably larger than 9% by mass, and more preferably 10% by mass or more.
(Combination of usage methods of heavy oil hydrotreating catalyst according to first to third embodiments)
As the heavy oil hydrotreating catalyst, one containing one of the first catalyst, the second catalyst, and the third catalyst may be used, but two or three may be used. .
[重質油水素化処理触媒]
本発明に係る重質油水素化処理触媒は、前述の重質油水素化処理触媒の再生方法によって製造されたものである。本発明に係る重質油水素化処理触媒は、再使用することができるため、新触媒の使用量を低減することができる。
[Heavy oil hydrotreating catalyst]
The heavy oil hydrotreating catalyst according to the present invention is produced by the above-described heavy oil hydrotreating catalyst regeneration method. Since the heavy oil hydrotreating catalyst according to the present invention can be reused, the amount of new catalyst used can be reduced.
次に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例になんら制限されるものではない。 EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not restrict | limited to these Examples at all.
[各種物性測定]
実施例及び比較例で用いた触媒などの物性は、以下に示す方法で測定した。
(1)総細孔容積、メソ細孔容積
使用する触媒の直径50Å以上の総細孔容積は、ASTM D4284−03に規定する水銀圧入法により測定した。当該触媒の場合、水銀の接触角(contact angle)は140度、表面張力(surface tension)は480dyne/cmとして求めた。メソ細孔容積50〜500Åも同様の方法で求めた。
[Measurement of various physical properties]
The physical properties of the catalyst used in the examples and comparative examples were measured by the following methods.
(1) Total pore volume, mesopore volume The total pore volume of the catalyst used having a diameter of 50 mm or more was measured by a mercury intrusion method defined in ASTM D4284-03. In the case of the catalyst, the contact angle of mercury was 140 degrees, and the surface tension was 480 dyne / cm. The mesopore volume of 50 to 500 liters was determined by the same method.
(2)全細孔容積
ASTM D4222−03、D4641−94に規定する窒素吸着・脱着等温線から算出した(N2吸着法)。ここでは、窒素吸着等温線のP/P0=0.99の時の窒素吸着量を容積に換算して求めた。
測定にあたっては、予備前処理として400℃で3時間の真空加熱排気処理にて、充分に含有する水分を除去した後測定した。
(2) Total pore volume Calculated from the nitrogen adsorption / desorption isotherm defined in ASTM D4222-03 and D4641-94 (N 2 adsorption method). Here, the nitrogen adsorption amount at the time of P / P 0 = 0.99 of the nitrogen adsorption isotherm was calculated in terms of volume.
In the measurement, as a preliminary pretreatment, it was measured after removing the water sufficiently contained by vacuum heating and exhausting treatment at 400 ° C. for 3 hours.
(3)比表面積
比表面積は、BET窒素吸着法(ASTM D4365−95)に従って測定し解析した。BETプロットから比表面積を算出するP/P0の範囲は、0.01〜0.10の間の5点を直線に補間して、算出した。
なお、予備前処理として400℃で3時間の真空加熱排気処理にて、充分に含有する水分を除去した後、測定した。
(3) Specific surface area The specific surface area was measured and analyzed according to the BET nitrogen adsorption method (ASTM D4365-95). The range of P / P 0 for calculating the specific surface area from the BET plot was calculated by interpolating five points between 0.01 and 0.10 in a straight line.
In addition, it measured after removing the water | moisture content fully contained in the vacuum heating exhaust process for 3 hours at 400 degreeC as a preliminary | backup pretreatment.
(4)平均細孔径
担体の平均細孔径は、ASTM D4284−03に規定される水銀圧入法により測定される値より解析して求めた。
担体の場合、水銀の接触角(contact angle)は150度、表面張力(surface tension)は480dyne/cmとして求めた。平均細孔径(APD(Å))は、当該測定によって得られる全細孔容積(PV(cm3/g))と同じく比表面積(SA(m2/g))から、APD=4×PV/SA×104から計算される。
(4) Average pore diameter The average pore diameter of the support was determined by analysis from the value measured by the mercury intrusion method specified in ASTM D4284-03.
In the case of the carrier, the contact angle of mercury was 150 degrees and the surface tension was 480 dyne / cm. The average pore diameter (APD (Å)) was calculated from the specific surface area (SA (m 2 / g)) as well as the total pore volume (PV (cm 3 / g)) obtained by the measurement, and APD = 4 × PV / Calculated from SA × 10 4 .
(5)格子定数
結晶質アルミノシリケートを乾燥させたものとシリコン内部標準粉末をよく混合、粉砕しX線粉末回折用サンプルホルダーに充填した。これをCu管球、印加電圧40KV、印加電流40mVにてステップスキャンで測定し、得られたピーク角度より結晶質アルミノシリケートの格子定数〔UD〕を算出した。
(6)結晶化度
ASTM D3906に基づき、LZY−62(ユニオンカーバイド社市販Yゼオライト)の所定の8本のピークの合計面積を100として、各試料の同様の合計ピーク面積との比率で結晶化度を求めた。
(5) Lattice constant A dry crystalline aluminosilicate and a silicon internal standard powder were mixed well, pulverized, and filled into a sample holder for X-ray powder diffraction. This was measured by a step scan with a Cu tube, an applied voltage of 40 KV, and an applied current of 40 mV, and the lattice constant [UD] of the crystalline aluminosilicate was calculated from the obtained peak angle.
(6) Crystallinity Based on ASTM D3906, the total area of the predetermined 8 peaks of LZY-62 (commercially available Y zeolite of Union Carbide) is set to 100, and crystallization is performed at a ratio to the same total peak area of each sample. I asked for a degree.
[重質油水素化処理触媒Iの製造]
(1)アルミナ水和物の調製
44kgの純水を200リットルのステンレス製タンクに張り込み、これに22.0質量%のアルミナを含むアルミン酸ナトリウム水溶液2.12kgを添加し、60℃に加温した。この水溶液を高速(約40rpm)で攪拌しながら60±3℃に保持し、26.8質量%のグルコン酸ナトリウム水溶液52.3gを加え、次いで60℃に加温した3.0質量%のアルミナを含む硫酸アルミニウム水溶液7.2kgを約10分間で添加して、pH7.2の種子アルミナスラリーを得た。
[Production of heavy oil hydrotreating catalyst I]
(1) Preparation of Alumina Hydrate 44 kg of pure water was put into a 200 liter stainless steel tank, and 2.12 kg of an aqueous sodium aluminate solution containing 22.0% by mass of alumina was added thereto and heated to 60 ° C. did. This aqueous solution was kept at 60 ± 3 ° C. while stirring at high speed (about 40 rpm), 52.3 g of 26.8% by mass of sodium gluconate aqueous solution was added, and then 3.0% by mass of alumina heated to 60 ° C. An aqueous aluminum sulfate solution (7.2 kg) was added over about 10 minutes to obtain a seed alumina slurry having a pH of 7.2.
種子アルミナスラリー53.4kg(0.68kgのアルミナを含む)を、特許第3755826号特許公報の図2に記載されるアルミナ製造装置に張り込み攪拌した。種子アルミナスラリーを温度60℃に保ちながら、2.0m3/hrの流量で種子アルミナスラリーを循環させた。種子アルミナスラリーを攪拌及び循環させながら、これにグルコン酸ナトリウムを0.18質量%含有するアルミン酸ナトリウム水溶液(6.0質量%のアルミナを含む)と、3.0質量%のアルミナを含む硫酸アルミニウムとを、アルミナ製造装置のタンク内の溶液の温度が60±3℃、かつ、pH7.1±0.1を保つように、それぞれの添加速度を調整しながら3時間かけて添加し、循環スラリーを得た。各水溶液の添加量は、グルコン酸ナトリウムを添加した6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液が70.0kg、3.0質量%のアルミナを含む硫酸アルミニウム72.7kgであった。 53.4 kg of seed alumina slurry (containing 0.68 kg of alumina) was put into an alumina production apparatus described in FIG. 2 of Japanese Patent No. 3755826 and stirred. While maintaining the seed alumina slurry at a temperature of 60 ° C., the seed alumina slurry was circulated at a flow rate of 2.0 m 3 / hr. While stirring and circulating the seed alumina slurry, a sodium aluminate aqueous solution (containing 6.0% by mass of alumina) containing 0.18% by mass of sodium gluconate and sulfuric acid containing 3.0% by mass of alumina. Aluminum was added over 3 hours while adjusting the respective addition speeds so that the temperature of the solution in the tank of the alumina production apparatus was maintained at 60 ± 3 ° C. and pH 7.1 ± 0.1. A slurry was obtained. The amount of each aqueous solution added was 70.0 kg of a sodium aluminate aqueous solution containing 6.0% by mass of alumina to which sodium gluconate was added, and 72.7 kg of aluminum sulfate containing 3.0% by mass of alumina.
次に循環スラリーがpH9.9になるように、6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液を17.0kg添加した後、洗浄してナトリウム及び硫酸根を除去した調合スラリーを調製した。
得られた調合スラリーの、ナトリウム含有量は、Na2Oとして0.05質量%、硫酸根含有量は、SO4 2-として0.2質量%であった。
Next, 17.0 kg of a sodium aluminate aqueous solution containing 6.0% by mass of alumina was added so that the circulating slurry had a pH of 9.9, and then a slurry prepared by washing to remove sodium and sulfate radicals was prepared.
The obtained blended slurry had a sodium content of 0.05 mass% as Na 2 O and a sulfate radical content of 0.2 mass% as SO 4 2- .
次にこの調合スラリーに脱イオン水を加えてAl2O3濃度で15質量%とし、更に、15質量%アンモニア水にてpH10.5に調整した後、還流器の付いた熟成タンクにて95℃で4.5時間熟成し、熟成スラリーを得た。熟成終了後、熟成スラリーをスチームジャケット付き双腕型ニーダーにより蒸発濃縮した後、さらに0.5時間捏和し、アルミナ水和物Aを得た。
上記アルミナ水和物Aについて、上記の方法でベーマイト結晶の相対ピークハイを測定した。結果は73であった。
Next, deionized water is added to the prepared slurry to make the Al 2 O 3 concentration 15% by mass, and further adjusted to pH 10.5 with 15% by mass ammonia water, and then 95% in an aging tank equipped with a reflux. Aging was carried out at a temperature of 4.5 ° C. for 4.5 hours to obtain an aging slurry. After completion of aging, the aging slurry was concentrated by evaporation using a double-arm kneader with a steam jacket, and then kneaded for an additional 0.5 hour to obtain alumina hydrate A.
About the said alumina hydrate A, the relative peak height of the boehmite crystal | crystallization was measured by said method. The result was 73.
(2)結晶性アルミノシリケートの調製
市販の合成NaY型ゼオライト、Na2O含量13.5質量%、SiO2/Al2O3モル比5.2、格子定数2.466nm)をアンモニウムイオン交換し、引き続きスチ−ミング処理を650℃で施し、USY型ゼオライト(Na2O含量1.0質量%以下、格子定数2.435nm)を得た。
次に、10kgのUSY型ゼオライトを純水115リットルに懸濁させた後、懸濁液を75℃に昇温し30分間攪拌した。次いで、この懸濁液に10質量%硫酸溶液13.7kgを35分間で添加し、更に濃度0.57モル/リットルの硫酸第二鉄溶液11.5kgを10分間で添加し、添加後更に30分間攪拌した後、濾過、洗浄し、固形分濃度30質量%の鉄含有USY型ゼオライトAのスラリーを得た。X線回折法によって求めた格子定数は2.432nmであった。
(2) Preparation of crystalline aluminosilicate A commercially available synthetic NaY-type zeolite, Na 2 O content 13.5% by mass, SiO 2 / Al 2 O 3 molar ratio 5.2, lattice constant 2.466 nm) was subjected to ammonium ion exchange. Subsequently, a steaming treatment was performed at 650 ° C. to obtain a USY-type zeolite (Na 2 O content of 1.0% by mass or less, lattice constant of 2.435 nm).
Next, 10 kg of USY-type zeolite was suspended in 115 liters of pure water, and then the suspension was heated to 75 ° C. and stirred for 30 minutes. Next, 13.7 kg of 10 mass% sulfuric acid solution was added to this suspension over 35 minutes, and 11.5 kg of ferric sulfate solution having a concentration of 0.57 mol / liter was added over 10 minutes. After stirring for a minute, filtration and washing were performed to obtain a slurry of iron-containing USY-type zeolite A having a solid content concentration of 30% by mass. The lattice constant determined by the X-ray diffraction method was 2.432 nm.
(3)重質油水素化処理触媒の調製
乾燥重量として1.50kgのアルミナ水和物Aと、鉄含有USY型ゼオライトAのスラリーを乾燥質量として1.50kg分とをニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四葉型ペレット状に押し出し成型した。
得られた成型品は、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄含有USY型ゼオライト/アルミナ(固形分換算質量比)で50/50の触媒担体Aを得た。
次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱した後、リンゴ酸を添加し溶解させた溶解液を、触媒担体Aにそれぞれ触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%になるように含浸した後、250℃で乾燥させて、550℃で1時間焼成し、重質油水素化処理触媒Iを得た。
重質油水素化処理触媒Iの物性を第1表に示した。
(3) Preparation of heavy oil hydrotreating catalyst 1.50 kg of alumina hydrate A as dry weight and 1.50 kg of iron-containing USY-type zeolite A slurry as dry mass are added to a kneader and heated. After concentration to a concentration that allows extrusion molding with stirring, it was extruded into a four-leaf type pellet of 1/18 inch size.
The obtained molded article was dried at 110 ° C. for 16 hours and then calcined at 550 ° C. for 3 hours to obtain a 50/50 catalyst carrier A of iron-containing USY-type zeolite / alumina (solid content equivalent mass ratio).
Next, a suspension obtained by suspending molybdenum trioxide and nickel carbonate in pure water is heated to 90 ° C., and then a solution obtained by adding malic acid and dissolving it is added to the catalyst carrier A as MoO 3 for the entire catalyst. After impregnation so that it might become 10.6 mass% and 4.2 mass% as NiO, it dried at 250 degreeC and baked at 550 degreeC for 1 hour, and the heavy oil hydroprocessing catalyst I was obtained.
The physical properties of the heavy oil hydrotreating catalyst I are shown in Table 1.
[重質油水素化処理触媒IIの製造]
重質油水素化処理触媒Iと同じ手法で、アルミナ水和物Aと鉄含有USY型ゼオライトAのスラリーを調製した。
乾燥質量として1.20kgのアルミナ水和物Aと、鉄含有USY型ゼオライトAのスラリーを乾燥質量として1.80kg分とをニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四葉型ペレット状に押し出し成型した。
得られた成型品は、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄含有USY型ゼオライト/アルミナ(固形分換算質量比)で60/40の触媒担体Bを得た。
次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱した後、リンゴ酸を添加し溶解させた溶解液を、触媒担体Bにそれぞれ触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%になるように含浸した後、250℃で乾燥させて、550℃で1時間焼成し、重質油水素化処理触媒IIを得た。
重質油水素化処理触媒IIの物性を第1表に示した。
[Production of heavy oil hydrotreating catalyst II]
A slurry of alumina hydrate A and iron-containing USY zeolite A was prepared in the same manner as heavy oil hydrotreating catalyst I.
After adding 1.20 kg of alumina hydrate A as dry mass and 1.80 kg of iron-containing USY-type zeolite A slurry as dry mass to a kneader and concentrating to a concentration that allows extrusion molding while heating and stirring. Extruded into a 1/18 inch size four-leaf pellet.
The obtained molded article was dried at 110 ° C. for 16 hours and then calcined at 550 ° C. for 3 hours to obtain a catalyst carrier B of 60/40 with iron-containing USY zeolite / alumina (solid content equivalent mass ratio).
Next, a suspension obtained by suspending molybdenum trioxide and nickel carbonate in pure water was heated to 90 ° C., and a solution obtained by adding malic acid to each catalyst was added to the catalyst support B as MoO 3 for the entire catalyst. After impregnating so that it might become 10.6 mass% and 4.2 mass% as NiO, it dried at 250 degreeC and baked at 550 degreeC for 1 hour, and obtained the heavy oil hydroprocessing catalyst II.
The physical properties of the heavy oil hydrotreating catalyst II are shown in Table 1.
[重質油水素化処理触媒IIIの製造]
重質油水素化処理触媒Iと同じ手法で、アルミナ水和物Aと鉄含有USY型ゼオライトAのスラリーを調製した。
乾燥質量として0.90kgのアルミナ水和物Aと鉄含有USY型ゼオライトAのスラリーを乾燥質量として2.10kg分とをニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四葉型ペレット状に押し出し成型した。
得られた成型品は、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄含有USY型ゼオライト/アルミナ(固形分換算質量比)で70/30の触媒担体Cを得た。
次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱した後、リンゴ酸を添加し溶解させた溶解液を、触媒担体Cにそれぞれ触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%になるように含浸した後、250℃で乾燥させて、550℃で1時間焼成し、重質油水素化処理触媒IIIを得た。
重質油水素化処理触媒IIIの物性を第1表に示した。
[Production of heavy oil hydrotreating catalyst III]
A slurry of alumina hydrate A and iron-containing USY zeolite A was prepared in the same manner as heavy oil hydrotreating catalyst I.
A slurry of 0.90 kg of alumina hydrate A and iron-containing USY-type zeolite A as a dry mass was added to a kneader with a dry mass of 2.10 kg, and the mixture was concentrated to an extrudable concentration with heating and stirring. Extruded into a 1/18 inch size four-leaf pellet.
The obtained molded article was dried at 110 ° C. for 16 hours and then calcined at 550 ° C. for 3 hours to obtain a catalyst carrier C of 70/30 with iron-containing USY-type zeolite / alumina (solid content converted mass ratio).
Next, a suspension obtained by suspending molybdenum trioxide and nickel carbonate in pure water was heated to 90 ° C., and then a solution obtained by adding malic acid to the catalyst support C was converted into MoO 3 for the entire catalyst. After impregnating so that it might become 10.6 mass% and 4.2 mass% as NiO, it dried at 250 degreeC and baked at 550 degreeC for 1 hour, and obtained the heavy oil hydroprocessing catalyst III.
The physical properties of heavy oil hydrotreating catalyst III are shown in Table 1.
[重質油水素化処理触媒IVの製造]
重質油水素化処理触媒Iと同じ手法で、アルミナ水和物Aと鉄含有USY型ゼオライトAのスラリーを調製した。
乾燥質量として1.80kgのアルミナ水和物Aと、鉄含有USY型ゼオライトAのスラリーを乾燥質量として1.20kg分とをニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四葉型ペレット状に押し出し成型した。
得られた成型品は、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄含有USY型ゼオライト/アルミナ(固形分換算質量比)で40/60の触媒担体Dを得た。
次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱した後、リンゴ酸を添加し溶解させた溶解液を、触媒担体Dにそれぞれ触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%になるように含浸した後、250℃で乾燥させて、550℃で1時間焼成し、重質油水素化処理触媒IVを得た。
重質油水素化処理触媒IVの物性を第1表に示した。
[Production of heavy oil hydrotreating catalyst IV]
A slurry of alumina hydrate A and iron-containing USY zeolite A was prepared in the same manner as heavy oil hydrotreating catalyst I.
After adding 1.80 kg of alumina hydrate A as dry mass and 1.20 kg of iron-containing USY zeolite A slurry as dry mass to a kneader and concentrating to a concentration that allows extrusion molding while heating and stirring. Extruded into a 1/18 inch size four-leaf pellet.
The obtained molded article was dried at 110 ° C. for 16 hours and then calcined at 550 ° C. for 3 hours to obtain a 40/60 catalyst carrier D of iron-containing USY-type zeolite / alumina (solid content equivalent mass ratio).
Next, a suspension obtained by suspending molybdenum trioxide and nickel carbonate in pure water is heated to 90 ° C., and then a solution obtained by adding and dissolving malic acid is added to the catalyst support D as MoO 3 for the entire catalyst. After impregnating so that it might become 10.6 mass% and 4.2 mass% as NiO, it dried at 250 degreeC and baked at 550 degreeC for 1 hour, and obtained heavy oil hydroprocessing catalyst IV.
The physical properties of the heavy oil hydrotreating catalyst IV are shown in Table 1.
[重質油水素化処理触媒Vの製造]
(1)アルミナ水和物の調製
アルミン酸ナトリウム溶液(Al2O3換算濃度:5.0質量%)80kg及び50質量%のグルコン酸溶液240gを容器に入れ、60℃に加熱した。次いで硫酸アルミニウム溶液(Al2O3換算濃度:2.5質量%)88kgを別容器に準備し、15分間でpH7.2になるように該硫酸アルミニウム溶液を添加し水酸化アルミニウムスラリーを得た。60℃に保ったまま、60分間熟成した。
次いで、水酸化アルミニウムスラリーをろ過脱水し、アンモニア水で洗浄し、アルミナケーキとした。該アルミナケーキの一部を純水と15質量%のアンモニア水を用い、アルミナ濃度12.0質量%、pH10.5のスラリーを得た。このスラリーを熟成タンクに入れ攪拌しながら95℃で8時間熟成した。次いで、この熟成スラリーに純水を加え、アルミナ濃度9.0質量%に希釈した後、攪拌機付オートクレーブに移し、145℃で5時間熟成した。更にAl2O3換算濃度で20質量%となるように加熱濃縮すると同時に脱アンモニアし、アルミナ水和物Bを得た。
[Production of heavy oil hydrotreating catalyst V]
(1) Preparation of Alumina Hydrate 80 kg of sodium aluminate solution (Al 2 O 3 equivalent concentration: 5.0 mass%) and 240 g of 50 mass% gluconic acid solution were placed in a container and heated to 60 ° C. Next, 88 kg of aluminum sulfate solution (Al 2 O 3 equivalent concentration: 2.5 mass%) was prepared in a separate container, and the aluminum sulfate solution was added so that the pH became 7.2 in 15 minutes to obtain an aluminum hydroxide slurry. . Aging was performed for 60 minutes while maintaining the temperature at 60 ° C.
Next, the aluminum hydroxide slurry was filtered and dehydrated and washed with aqueous ammonia to obtain an alumina cake. A part of the alumina cake was purified water and 15% by mass of ammonia water to obtain a slurry having an alumina concentration of 12.0% by mass and a pH of 10.5. The slurry was placed in an aging tank and aged at 95 ° C. for 8 hours with stirring. Next, pure water was added to the aging slurry, diluted to an alumina concentration of 9.0% by mass, transferred to an autoclave equipped with a stirrer, and aged at 145 ° C. for 5 hours. Further, the mixture was heated and concentrated so that the concentration in terms of Al 2 O 3 was 20% by mass, and deammoniated at the same time to obtain alumina hydrate B.
(2)結晶性アルミノシリケートの調製
Na−Y型ゼオライト(Na2O含量:13.3質量%、SiO2/Al2O3(モル比):5.0)をアンモニウムイオン交換し、NH4−Yゼオライト(Na2O含量:1.3質量%)を得た。これを650℃でスチーミング処理してスチーミングY型ゼオライトとした。10kgのスチーミングY型ゼオライトを純水115リットルに懸濁させた後、該懸濁液を75℃に昇温し30分間攪拌した。次いでこの懸濁液に10質量%硫酸溶液63.7kgを35分間で添加し、更に濃度0.57モル/リットルの硫酸第二鉄溶液11.5kgを10分間で添加し、添加後更に30分間攪拌した後、濾過、洗浄し、固形分濃度30.5質量%の鉄含有USY型ゼオライトBのスラリーを得た。を得た。X線回折法により求めた格子定数は2.434nmであった。
(2) Preparation of crystalline aluminosilicate Na-Y-type zeolite (Na 2 O content: 13.3 mass%, SiO 2 / Al 2 O 3 (molar ratio): 5.0) was subjected to ammonium ion exchange, NH 4 -Y zeolite (Na 2 O content: 1.3% by mass) was obtained. This was steamed at 650 ° C. to obtain a steaming Y-type zeolite. After 10 kg of steamed Y-type zeolite was suspended in 115 liters of pure water, the suspension was heated to 75 ° C. and stirred for 30 minutes. Next, 63.7 kg of 10 mass% sulfuric acid solution was added to this suspension over 35 minutes, and 11.5 kg of ferric sulfate solution having a concentration of 0.57 mol / liter was added over 10 minutes. After stirring, filtration and washing were performed to obtain a slurry of iron-containing USY-type zeolite B having a solid content concentration of 30.5% by mass. Got. The lattice constant determined by the X-ray diffraction method was 2.434 nm.
(3)重質油水素化処理触媒Vの調製
1,230gの鉄含有USY型ゼオライトBスラリー(30.5質量%濃度)と738gのアルミナ水和物B(20質量%濃度)をニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四つ葉型ペレット状に押し出し成形した。次いで、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄含有USY型ゼオライト/アルミナ(固形分換算質量比)で30/70の触媒担体Eを得た。
次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱した後、リンゴ酸を添加し溶解させた溶解液を、触媒担体Eにそれぞれ触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%になるように含浸した後、250℃で乾燥させて、550℃で1時間焼成し、重質油水素化処理触媒Vを得た。
重質油水素化処理触媒Vの物性を第1表に示した。
(3) Preparation of heavy oil hydrotreating catalyst V Add 1,230 g of iron-containing USY-type zeolite B slurry (30.5 mass% concentration) and 738 g of alumina hydrate B (20 mass% concentration) to the kneader. The mixture was concentrated to an extrudable concentration with heating and stirring, and then extruded into a four-leaf type pellet of 1/18 inch size. Subsequently, after drying at 110 degreeC for 16 hours, it baked at 550 degreeC for 3 hours, and obtained the catalyst support | carrier E of 30/70 by iron-containing USY type | mold zeolite / alumina (solid content conversion mass ratio).
Next, a suspension obtained by suspending molybdenum trioxide and nickel carbonate in pure water was heated to 90 ° C., and then a solution obtained by adding malic acid and dissolving it was added to the catalyst support E as MoO 3 for the entire catalyst. After impregnating so that it might become 10.6 mass% and 4.2 mass% as NiO, it dried at 250 degreeC and baked at 550 degreeC for 1 hour, and the heavy oil hydroprocessing catalyst V was obtained.
The physical properties of the heavy oil hydrotreating catalyst V are shown in Table 1.
[重質油水素化処理触媒VIの製造]
重質油水素化処理触媒Iと同じ手法で、アルミナ水和物のスラリーを調製した。
乾燥質量として3.00kgのアルミナ水和物のスラリーをニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四葉型ペレット状に押し出し成型した。
得られた成型品は、110℃で16時間乾燥した後、550℃で3時間焼成し、アルミナ(固形分換算質量比)で100質量%の触媒担体Fを得た。さらに重質油水素化処理触媒Iと同じ手法で、触媒担体Fに、触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%を担持させて、重質油水素化処理触媒VIを得た。
重質油水素化処理触媒VIの物性を第1表に示した。
[Production of heavy oil hydrotreating catalyst VI]
An alumina hydrate slurry was prepared in the same manner as the heavy oil hydrotreating catalyst I.
A slurry of 3.00 kg of alumina hydrate as a dry mass was added to a kneader, concentrated to a concentration capable of extrusion while heating and stirring, and then extruded into a 1/18 inch size four-leaf pellet.
The obtained molded product was dried at 110 ° C. for 16 hours and then calcined at 550 ° C. for 3 hours to obtain 100% by mass of catalyst carrier F with alumina (solid content equivalent mass ratio). Further, in the same manner as the heavy oil hydrotreating catalyst I, 10.6% by mass as MoO 3 and 4.2% by mass as NiO are supported on the catalyst carrier F with respect to the entire catalyst, and heavy oil hydrogenation is performed. A treated catalyst VI was obtained.
The physical properties of the heavy oil hydrotreating catalyst VI are shown in Table 1.
[実施例1]
<水素化処理>
重質油水素化処理触媒Iを直接脱硫装置内の所定の触媒層のサンプルバスケット内に装填し、1年間、重質油を通油して水素化脱硫反応を実施した。この際、生成する脱硫重油の硫黄分濃度が一定になるように反応温度を調整しながら運転を実施した。
[Example 1]
<Hydrogenation treatment>
The heavy oil hydrotreating catalyst I was directly loaded into a sample basket of a predetermined catalyst layer in the desulfurization apparatus, and the hydrodesulfurization reaction was carried out by passing heavy oil through for one year. At this time, the operation was carried out while adjusting the reaction temperature so that the sulfur concentration of the desulfurized heavy oil to be produced was constant.
<触媒の再生>
その後、使用済み重質水素化処理触媒Iを、焼成炉にて、空気を供給しながら、450℃で焼成し、焼成後の残存コーク量が1.0±0.7質量%となるように焼成時間を調整した。得られた触媒を冷却後ふるい分けにより塊状物から粉化物を除去し、再生重質油水素化処理触媒Aを得た。
<Catalyst regeneration>
Thereafter, the used heavy hydrotreating catalyst I is baked at 450 ° C. while supplying air in a calcination furnace so that the residual coke amount after calcination becomes 1.0 ± 0.7 mass%. The firing time was adjusted. The obtained catalyst was cooled and sieved to remove pulverized matter from the lump, whereby a regenerated heavy oil hydrotreating catalyst A was obtained.
<再生重質油水素化処理触媒の耐摩耗性(粉化率)の評価>
再生触媒100gを直径30cm、幅20cmの円筒形の回転器に入れ、60rpmで30分間回転させたのち、得られた試料を20メッシュの篩に入れ、100回振って、篩上に残った触媒量を測定し、触媒質量の減少率を粉化率として求め、耐摩耗性を評価した。なお、容器についた粉も、刷毛を用いて全て篩に入れた。この粉化率の値が小さいほど、耐摩耗性が高いことを示している。
<Evaluation of abrasion resistance (dusting rate) of recycled heavy oil hydrotreating catalyst>
100 g of the regenerated catalyst was placed in a cylindrical rotator having a diameter of 30 cm and a width of 20 cm, rotated at 60 rpm for 30 minutes, and the obtained sample was put on a 20 mesh sieve and shaken 100 times to leave the catalyst remaining on the sieve. The amount was measured, the reduction rate of the catalyst mass was determined as the pulverization rate, and the wear resistance was evaluated. In addition, all the powder attached to the container was also put on a sieve using a brush. It shows that abrasion resistance is so high that the value of this powdering rate is small.
<残留コーク量及びMOC量の測定>
残留コーク量はトルエン洗浄後、炭素−硫黄同時分析法にて測定した。MOC(:Metal on Cat)は触媒上の堆積メタルであり、金属酸化物換算で示している。新触媒、再生触媒の金属量測定はXRF(蛍光X線)定量分析にて実施した。
<Measurement of residual coke amount and MOC amount>
The amount of residual coke was measured by a simultaneous carbon-sulfur analysis method after washing with toluene. MOC (Metal on Cat) is the deposited metal on the catalyst and is shown in terms of metal oxide. The amount of metal in the new catalyst and the regenerated catalyst was measured by XRF (fluorescence X-ray) quantitative analysis.
[実施例2]
同じく重質油水素化処理触媒Iを別の触媒層のサンプルバスケット内に装填し1年間運転して得られた使用済み重質油水素化処理触媒Iを実施例1と同様の方法で再生し、得られた触媒を冷却後ふるい分けにより塊状物から粉化物を除去し、再生重質油水素化処理触媒Bを得た。第2表に、再生重質油水素化処理触媒の物性を示す。
[Example 2]
Similarly, the used heavy oil hydrotreating catalyst I obtained by loading the heavy oil hydrotreating catalyst I into a sample basket of another catalyst layer and operating it for one year is regenerated in the same manner as in Example 1. The resulting catalyst was cooled and sieved to remove pulverized matter from the lump, whereby a regenerated heavy oil hydrotreating catalyst B was obtained. Table 2 shows the physical properties of the regenerated heavy oil hydrotreating catalyst.
[実施例3]
同じく重質油水素化処理触媒IIを別の触媒層のサンプルバスケット内に装填し1年間運転して得られた使用済み重質油水素化処理触媒IIを実施例1と同様の方法で再生し、得られた触媒を冷却後ふるい分けにより塊状物から粉化物を除去し、再生重質油水素化処理触媒Cを得た。第2表に、再生重質油水素化処理触媒の物性を示す。
[Example 3]
Similarly, the used heavy oil hydrotreating catalyst II obtained by loading the heavy oil hydrotreating catalyst II in a sample basket of another catalyst layer and operating for one year is regenerated in the same manner as in Example 1. The resulting catalyst was cooled and sieved to remove pulverized matter from the lump, whereby a regenerated heavy oil hydrotreating catalyst C was obtained. Table 2 shows the physical properties of the regenerated heavy oil hydrotreating catalyst.
[実施例4]
同じく重質油水素化処理触媒IIIを別の触媒層のサンプルバスケット内に装填し1年間運転して得られた使用済み重質油水素化処理触媒IIIを実施例1と同様の方法で再生し、得られた触媒を冷却後ふるい分けにより塊状物から粉化物を除去し、再生重質油水素化処理触媒Dを得た。第2表に、再生重質油水素化処理触媒の物性を示す。
[Example 4]
Similarly, the spent heavy oil hydrotreating catalyst III obtained by loading the heavy oil hydrotreating catalyst III into a sample basket of another catalyst layer and operating for one year is regenerated in the same manner as in Example 1. The resulting catalyst was cooled and sieved to remove pulverized matter from the lump, whereby a regenerated heavy oil hydrotreating catalyst D was obtained. Table 2 shows the physical properties of the regenerated heavy oil hydrotreating catalyst.
[実施例5]
同じく重質油水素化処理触媒IVを別の触媒層のサンプルバスケット内に装填し1年間運転して得られた使用済み重質油水素化処理触媒IVを実施例1と同様の方法で再生し、得られた触媒を冷却後ふるい分けにより塊状物から粉化物を除去し、再生重質油水素化処理触媒Eを得た。第2表に、再生重質油水素化処理触媒の物性を示す。
[Example 5]
Similarly, the used heavy oil hydrotreating catalyst IV obtained by loading the heavy oil hydrotreating catalyst IV into a sample basket of another catalyst layer and operating for one year is regenerated in the same manner as in Example 1. The resulting catalyst was cooled and sieved to remove pulverized matter from the lump, whereby a regenerated heavy oil hydrotreating catalyst E was obtained. Table 2 shows the physical properties of the regenerated heavy oil hydrotreating catalyst.
[比較例1]
同じく重質油水素化処理触媒IVを別の触媒層のサンプルバスケット内に装填し1年間運転して得られた使用済み重質油水素化処理触媒IVを実施例1と同様の方法で再生し、得られた触媒を冷却後ふるい分けにより塊状物から粉化物を除去し、再生重質油水素化処理触媒Fを得た。第2表に、再生重質油水素化処理触媒の物性を示す。
[Comparative Example 1]
Similarly, the used heavy oil hydrotreating catalyst IV obtained by loading the heavy oil hydrotreating catalyst IV into a sample basket of another catalyst layer and operating for one year is regenerated in the same manner as in Example 1. The resulting catalyst was cooled and sieved to remove pulverized matter from the lump, whereby a regenerated heavy oil hydrotreating catalyst F was obtained. Table 2 shows the physical properties of the regenerated heavy oil hydrotreating catalyst.
[比較例2]
同じく重質油水素化処理触媒Vを別の触媒層のサンプルバスケット内に装填し1年間運転して得られた使用済み重質油水素化処理触媒Vを実施例1と同様の方法で再生し、得られた触媒を冷却後ふるい分けにより塊状物から粉化物を除去し、再生重質油水素化処理触媒Gを得た。第2表に、再生重質油水素化処理触媒の物性を示す。
[Comparative Example 2]
Similarly, the spent heavy oil hydrotreating catalyst V obtained by loading the heavy oil hydrotreating catalyst V in a sample basket of another catalyst layer and operating for one year is regenerated in the same manner as in Example 1. Then, the obtained catalyst was cooled and sieved to remove pulverized matter from the lump, whereby a regenerated heavy oil hydrotreating catalyst G was obtained. Table 2 shows the physical properties of the regenerated heavy oil hydrotreating catalyst.
[比較例3]
同じく重質油水素化処理触媒Iを別の触媒層のサンプルバスケット内に装填し1年間運転して得られた使用済み重質油水素化処理触媒Iを実施例1と同様の方法で再生し、得られた触媒を冷却後ふるい分けにより塊状物から粉化物を除去し、再生重質油水素化処理触媒Hを得た。第2表に、再生重質油水素化処理触媒の物性を示す。
[Comparative Example 3]
Similarly, the used heavy oil hydrotreating catalyst I obtained by loading the heavy oil hydrotreating catalyst I into a sample basket of another catalyst layer and operating it for one year is regenerated in the same manner as in Example 1. The resulting catalyst was cooled and sieved to remove pulverized matter from the lump, whereby a regenerated heavy oil hydrotreating catalyst H was obtained. Table 2 shows the physical properties of the regenerated heavy oil hydrotreating catalyst.
[比較例4]
同じく重質油水素化処理触媒VIを別の触媒層のサンプルバスケット内に装填し1年間運転して得られた使用済み重質油水素化処理触媒VIを実施例1と同様の方法で再生し、得られた触媒を冷却後ふるい分けにより塊状物から粉化物を除去し、再生重質油水素化処理触媒Iを得た。第2表に、再生重質油水素化処理触媒の物性を示す。
[Comparative Example 4]
Similarly, the used heavy oil hydrotreating catalyst VI obtained by loading the heavy oil hydrotreating catalyst VI into a sample basket of another catalyst layer and operating for one year is regenerated in the same manner as in Example 1. Then, the obtained catalyst was cooled and sieved to remove the pulverized product from the lump, whereby a regenerated heavy oil hydrotreating catalyst I was obtained. Table 2 shows the physical properties of the regenerated heavy oil hydrotreating catalyst.
[比較例5]
同じく重質油水素化処理触媒VIを別の触媒層のサンプルバスケット内に装填し1年間運転して得られた使用済み重質油水素化処理触媒VIを実施例1と同様の方法で再生し、得られた触媒を冷却後ふるい分けにより塊状物から粉化物を除去し、再生重質油水素化処理触媒Jを得た。第2表に、再生重質油水素化処理触媒の物性を示す。
[Comparative Example 5]
Similarly, the used heavy oil hydrotreating catalyst VI obtained by loading the heavy oil hydrotreating catalyst VI into a sample basket of another catalyst layer and operating for one year is regenerated in the same manner as in Example 1. The resulting catalyst was cooled and sieved to remove pulverized matter from the lump, whereby a regenerated heavy oil hydrotreating catalyst J was obtained. Table 2 shows the physical properties of the regenerated heavy oil hydrotreating catalyst.
第2表に示すとおり、実施例の再生重質油水素化処理触媒は、再生後残留コーク量が1.6質量%になるまで十分に再生されているが、粉化率が2.9質量%が以下であるため、十分に再度の水素化処理に供することが可能である。 As shown in Table 2, the regenerated heavy oil hydrotreating catalyst of the example was sufficiently regenerated until the residual coke amount after regeneration reached 1.6% by mass, but the pulverization rate was 2.9% by mass. Since% is below, it can be sufficiently subjected to hydrogenation treatment again.
Claims (10)
重質油水素化処理触媒が、結晶性アルミノシリケートと多孔性無機酸化物を含む無機酸化物担体に、周期表第6族、第9族及び第10族に属する金属の中から選ばれる少なくとも1種からなる活性金属を含む金属化合物を担持した触媒であり、
重質油を通油して水素化処理に供した後の既使用の重質油水素化処理触媒を、加熱処理して付着したコークを除去する加熱処理工程を含む、重質油水素化処理触媒の再生方法。 A method for regenerating a heavy oil hydroprocessing catalyst comprising:
The heavy oil hydrotreating catalyst is an inorganic oxide support containing crystalline aluminosilicate and porous inorganic oxide, and at least one selected from metals belonging to Groups 6, 9 and 10 of the periodic table A catalyst carrying a metal compound containing an active metal consisting of seeds,
Heavy oil hydroprocessing, including a heat treatment process that removes coke that has been deposited by heat treatment of an already used heavy oil hydroprocessing catalyst after passing through heavy oil and subjecting it to hydroprocessing Catalyst regeneration method.
重質油水素化処理触媒が、結晶性アルミノシリケートと多孔性無機酸化物を含む無機酸化物担体に、周期表第6族、第9族及び第10族に属する金属の中から選ばれる少なくとも1種からなる活性金属を含む金属化合物を担持した触媒であり、
未使用の重質油水素化処理触媒に重質油を通油して所定時間、水素化処理を実施する水素化処理工程、及び、水素化処理工程に供した後の既使用の重質油水素化処理触媒を、加熱処理して付着したコークを除去する加熱処理工程を含む、重質油水素化処理触媒の使用方法。 A method of using a heavy oil hydrotreating catalyst,
The heavy oil hydrotreating catalyst is an inorganic oxide support containing crystalline aluminosilicate and porous inorganic oxide, and at least one selected from metals belonging to Groups 6, 9 and 10 of the periodic table A catalyst carrying a metal compound containing an active metal consisting of seeds,
Passing heavy oil through an unused heavy oil hydrotreating catalyst and hydrotreating it for a predetermined time, and used heavy oil after being subjected to hydrotreating process A method for using a heavy oil hydrotreating catalyst, comprising a heat treatment step of removing coke adhering to the hydrotreating catalyst by heat treatment.
前記水素化処理工程は、1基又は複数基の反応塔内の第1の所定位置に第1の重質油水素化処理触媒を充填し、前記反応塔内に重質油を所定時間通油して、水素化処理を実施する工程であり、
前記第1の所定位置は、前記所定時間の水素化処理によって第1の重質油水素化処理触媒に堆積するバナジウム化合物及びニッケル化合物からなる不純物金属化合物の堆積量が、第1の重質油水素化処理触媒の全量基準で4質量%以下になると想定される位置である、請求項6に記載の重質油水素化処理触媒の使用方法。 The heavy oil hydrotreating catalyst includes a first heavy oil hydrotreating catalyst having a crystalline aluminosilicate content of 40% by mass or more and less than 55% by mass based on the total amount of the catalyst,
In the hydrotreating step, a first heavy oil hydrotreating catalyst is filled in a first predetermined position in one or a plurality of reaction towers, and heavy oil is passed through the reaction tower for a predetermined time. Is a step of performing a hydrogenation process,
In the first predetermined position, the deposition amount of the impurity metal compound composed of the vanadium compound and the nickel compound deposited on the first heavy oil hydroprocessing catalyst by the hydroprocessing for the predetermined time is the first heavy oil. The method for using a heavy oil hydrotreating catalyst according to claim 6, which is a position assumed to be 4% by mass or less based on the total amount of the hydrotreating catalyst.
前記水素化処理工程は、1基又は複数基の反応塔内の第2の所定位置に第2の重質油水素化処理触媒を充填し、前記反応塔内に重質油を所定時間通油して、水素化処理を実施する工程であり、
前記第2の所定位置は、前記所定時間の水素化処理によって第2の重質油水素化処理触媒に堆積するバナジウム化合物及びニッケル化合物からなる不純物金属化合物の堆積量が、第2の重質油水素化処理触媒の全量基準で9質量%以下になると想定される位置である、請求項6又は7に記載の重質油水素化処理触媒の使用方法。 The heavy oil hydrotreating catalyst contains a second heavy oil hydrotreating catalyst whose content of crystalline aluminosilicate is 55% by mass or more and less than 65% by mass based on the total amount of the catalyst,
In the hydrotreating step, a second heavy oil hydrotreating catalyst is filled at a second predetermined position in one or a plurality of reaction towers, and the heavy oil is passed through the reaction tower for a predetermined time. Is a step of performing a hydrogenation process,
In the second predetermined position, the deposition amount of the impurity metal compound composed of the vanadium compound and the nickel compound deposited on the second heavy oil hydroprocessing catalyst by the hydroprocessing for the predetermined time is the second heavy oil. The method of using a heavy oil hydrotreating catalyst according to claim 6 or 7, wherein the heavy oil hydrotreating catalyst is at a position assumed to be 9% by mass or less based on the total amount of the hydrotreating catalyst.
前記水素化処理工程は、1基又は複数基の反応塔内の第3の所定位置に第3の重質油水素化処理触媒を充填し、前記反応塔内に重質油を所定時間通油して、水素化処理を実施する工程であり、
前記第3の所定位置は、前記所定時間の水素化処理によって第3の重質油水素化処理触媒に堆積するバナジウム化合物及びニッケル化合物からなる不純物金属化合物の堆積量が、第3の重質油水素化処理触媒の全量基準で12質量%以下になると想定される位置である、請求項6〜8のいずれかに記載の重質油水素化処理触媒の使用方法。 The heavy oil hydroprocessing catalyst includes a third heavy oil hydroprocessing catalyst in which the content of crystalline aluminosilicate is 65% by mass or more and less than 80% by mass based on the total amount of the catalyst,
In the hydrotreating step, a third heavy oil hydrotreating catalyst is filled in a third predetermined position in one or a plurality of reaction towers, and heavy oil is passed through the reaction tower for a predetermined time. Is a step of performing a hydrogenation process,
In the third predetermined position, the deposition amount of the impurity metal compound composed of the vanadium compound and the nickel compound deposited on the third heavy oil hydroprocessing catalyst by the hydroprocessing for the predetermined time is the third heavy oil. The method of using a heavy oil hydrotreating catalyst according to any one of claims 6 to 8, wherein the heavy oil hydrotreating catalyst is at a position assumed to be 12% by mass or less based on the total amount of the hydrotreating catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012083120A JP2013212447A (en) | 2012-03-30 | 2012-03-30 | Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012083120A JP2013212447A (en) | 2012-03-30 | 2012-03-30 | Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013212447A true JP2013212447A (en) | 2013-10-17 |
Family
ID=49586234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012083120A Pending JP2013212447A (en) | 2012-03-30 | 2012-03-30 | Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013212447A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015147222A1 (en) * | 2014-03-27 | 2015-10-01 | 出光興産株式会社 | Method for regenerating and utilizing heavy-oil desulfurization catalyst |
JP2016198691A (en) * | 2015-04-07 | 2016-12-01 | 出光興産株式会社 | Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil |
-
2012
- 2012-03-30 JP JP2012083120A patent/JP2013212447A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015147222A1 (en) * | 2014-03-27 | 2015-10-01 | 出光興産株式会社 | Method for regenerating and utilizing heavy-oil desulfurization catalyst |
JP2015189771A (en) * | 2014-03-27 | 2015-11-02 | 出光興産株式会社 | Method for regenerating and using heavy-oil desulfurization catalyst |
JP2016198691A (en) * | 2015-04-07 | 2016-12-01 | 出光興産株式会社 | Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4839311B2 (en) | Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils | |
US10252247B2 (en) | Catalyst to attain low sulfur gasoline | |
JP2547115B2 (en) | Hydrotreating catalyst composition for hydrocarbon oil and hydrotreating method using the same | |
JP5547923B2 (en) | Heavy oil hydrocracking catalyst and method for hydrotreating heavy oil using the same | |
WO2016170995A1 (en) | Hydrogenation catalyst for hydrocarbon oil, method for manufacturing same, and hydrogenation method | |
JP7321790B2 (en) | Method for hydrotreating heavy oil | |
TW201325714A (en) | Hydrogenation catalyst and method for producing same | |
JP2000210565A (en) | Catalyst for hydrogenation and hydrogenation method | |
JP2014117703A (en) | Vanadium-containing residual fraction hydrogenation catalyst and use of the same for residual fraction hydrogenating conversion method | |
JP2002363576A (en) | Method for two step hydrogenating heavy hydrocarbon oil | |
JP5825572B2 (en) | Method for regenerating hydrotreating catalyst | |
JP5841481B2 (en) | Method for hydrotreating heavy residual oil | |
JP3692207B2 (en) | Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same | |
JP2013212447A (en) | Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst | |
JP4969754B2 (en) | Hydrodesulfurization method for gas oil fraction and reactor for hydrodesulfurization | |
US11661554B2 (en) | Hydrotreating catalyst for heavy hydrocarbon oil, method for producing the same, and method for hydrotreating heavy hydrocarbon oil | |
JP2004277597A (en) | Method for hydrogenating hydrocarbon oil by using silica-alumina-based catalyst for hydrogenation | |
JP3957122B2 (en) | Method for hydrotreating heavy hydrocarbon oils | |
JP5841480B2 (en) | Method for hydrotreating heavy residual oil | |
JP2006061845A (en) | Hydrogenation catalyst for heavy oil and manufacturing method thereof | |
JP2011074235A (en) | Method of hydrorefining hydrocarbon oil | |
JP4319812B2 (en) | Hydroprocessing catalyst and hydrocarbon oil hydroprocessing method | |
JP2009242507A (en) | Method and apparatus for producing ultra low-sulfur fuel oil | |
JP2001089773A (en) | Stock oil for producing hydrogen and its production | |
JP5031790B2 (en) | Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil |