JP2016198691A - Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil - Google Patents

Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil Download PDF

Info

Publication number
JP2016198691A
JP2016198691A JP2015078496A JP2015078496A JP2016198691A JP 2016198691 A JP2016198691 A JP 2016198691A JP 2015078496 A JP2015078496 A JP 2015078496A JP 2015078496 A JP2015078496 A JP 2015078496A JP 2016198691 A JP2016198691 A JP 2016198691A
Authority
JP
Japan
Prior art keywords
catalyst
heavy oil
treatment
unused
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015078496A
Other languages
Japanese (ja)
Inventor
圭祐 三宅
Keisuke Miyake
圭祐 三宅
純司 山田
Junji Yamada
純司 山田
岩本 隆一郎
Ryuichiro Iwamoto
隆一郎 岩本
全人 森田
Zento Morita
全人 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2015078496A priority Critical patent/JP2016198691A/en
Publication of JP2016198691A publication Critical patent/JP2016198691A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a regeneration catalyst for treating heavy oil or the like capable of preventing reduction of economical efficiency by catalyst performance reduction or device utilization reduction due to abnormal heat generation in a reactor which becomes problem in a heavy oil hydrodesulfurization device or metal unloading device and achieving catalyst cost reduction or waste amount reduction.SOLUTION: There is provided a regeneration catalyst for treating heavy oil or the like for treating heavy oil with combing unused catalyst for treating heavy oil, which is (A) a used catalyst where the unused catalyst for treating heavy oil and (B) a regeneration catalyst for treating heavy oil or the like having (a) deposition amount of vanadium and nickel of 1 to 45 mass%, (b) carbon coating weight of 1 to 26 mass% and (c) at least one of desulfurization activity and desulfurization activity of 50 to 70%.SELECTED DRAWING: None

Description

本発明は、重質油処理用再生触媒及びその製造方法、並びに重質油処理用再生触媒の使用方法に関する。   The present invention relates to a regenerated catalyst for treating heavy oil, a method for producing the same, and a method for using the regenerated catalyst for treating heavy oil.

重質油水素化精製分野に限らず触媒の再生は、可能な限り触媒活性を未使用触媒レベルに回復し、再利用することを目的としている。そのため、これまでの再生は灯油や軽油用の触媒が主であり、より高い触媒活性を有する再生触媒の製造方法や使用方法が主であった(例えば、特許文献1〜3参照)。   The regeneration of the catalyst, not limited to the heavy oil hydrorefining field, aims to restore the catalyst activity to the unused catalyst level as much as possible and reuse it. Therefore, the regeneration so far has mainly been a catalyst for kerosene and light oil, and mainly a method for producing and using a regenerated catalyst having higher catalytic activity (see, for example, Patent Documents 1 to 3).

特開2012−86198号公報JP 2012-86198 A 特開2011−200797号公報JP 2011-200787 A 特開2011−143389号公報JP 2011-143389 A

しかし例えば、脱硫触媒の場合、全量を未使用触媒又は通常の再生触媒で運転を開始すると、活性が高すぎて触媒層の温度条件を下限に設定しても触媒性能をコントロールできず、触媒層が異常発熱することで、コーク前駆体が生成して後段のリアクターや配管・熱交換器の詰りを引き起こしてしまう。また、この異常発熱により、触媒どうしが固着・固化して極端な性能低下や偏流による触媒パフォーマンスの低下を引き起こしてしてしまう。
ここで、触媒を充填した反応器の入口と出口との温度差が30℃以上になることを異常発熱と定義する。このような異常発熱の検知は反応塔の入口及び出口の温度を測定することで算出することができる。
However, for example, in the case of a desulfurization catalyst, if the entire amount is started with an unused catalyst or an ordinary regenerated catalyst, the activity is too high and the catalyst performance cannot be controlled even if the temperature condition of the catalyst layer is set to the lower limit. As a result of abnormal heat generation, a coke precursor is generated, which causes clogging of the subsequent reactor, piping, and heat exchanger. In addition, the abnormal heat generation causes the catalysts to be fixed and solidified to cause an extreme deterioration in performance and a decrease in catalyst performance due to drift.
Here, an abnormal heat generation is defined as a temperature difference of 30 ° C. or more between the inlet and the outlet of the reactor filled with the catalyst. Detection of such abnormal heat generation can be calculated by measuring the temperatures at the inlet and outlet of the reaction tower.

そこで、本発明では、重油水素化脱硫装置や脱メタル装置等で問題となる反応塔での異常発熱による触媒性能低下や装置稼働低下による経済性低下を未然に防止でき、かつ、触媒コスト削減や廃棄物量削減を達成できる重質油処理用再生触媒及びその製造方法、重質油処理用再生触媒の使用方法を提供することを目的とする。   Therefore, in the present invention, it is possible to prevent a decrease in catalyst performance due to abnormal heat generation in a reaction tower, which is a problem in a heavy oil hydrodesulfurization apparatus, a demetallizer, etc., and a decrease in economy due to a decrease in apparatus operation, and to reduce catalyst costs. It is an object of the present invention to provide a heavy oil treatment regenerated catalyst that can achieve a reduction in the amount of waste, a method for producing the same, and a method for using the heavy oil treatment regenerated catalyst.

本発明者等は、上記課題を解決するために鋭意研究を行った結果、装置から抜き出した使用済み触媒を、未使用触媒よりも適度に活性が低い状態に再生(脱油)処理し、未使用触媒と組み合わせて水素化脱硫装置もしくは脱メタル装置に充填することで、装置内での異常発熱等の問題を解決できることを見出し、本発明に想到した。すなわち、本発明は下記の通りである。   As a result of intensive studies to solve the above problems, the present inventors have regenerated (deoiled) the spent catalyst extracted from the apparatus to a state of moderately lower activity than the unused catalyst. The present inventors have found that problems such as abnormal heat generation in the apparatus can be solved by filling the hydrodesulfurization apparatus or demetallization apparatus in combination with the catalyst used. That is, the present invention is as follows.

[1] 未使用の重質油処理用触媒と組み合わせて重質油の処理を行う重質油処理用再生触媒であって、
該重質油処理用再生触媒が、
(A)前記未使用の重質油処理用触媒を重質油の処理に使用した使用済み触媒であり、
(B)前記未使用の重質油処理用触媒に対する、(a)バナジウム及びニッケルの堆積量が1〜45質量%であり、(b)カーボン付着量が1〜26質量%であり、(c)脱硫活性及び脱メタル活性の少なくともいずれかが50〜70%である重質油処理用再生触媒。
[2] 平均粒径が、2〜5mmである[1]に記載の重質油処理用再生触媒。
[3] 比表面積が、50〜300m/gである[1]又は[2]に記載の重質油処理用再生触媒。
[1] A heavy oil treatment regenerated catalyst for treating heavy oil in combination with an unused heavy oil treatment catalyst,
The recycled catalyst for heavy oil treatment
(A) It is a used catalyst used for treating heavy oil, the unused heavy oil treatment catalyst,
(B) With respect to the unused heavy oil treatment catalyst, (a) the amount of vanadium and nickel deposited is 1 to 45% by mass, (b) the amount of carbon adhesion is 1 to 26% by mass, (c ) A regenerated catalyst for heavy oil treatment in which at least one of desulfurization activity and demetalization activity is 50 to 70%.
[2] The regenerated catalyst for heavy oil treatment according to [1], wherein the average particle size is 2 to 5 mm.
[3] The regenerated catalyst for heavy oil treatment according to [1] or [2], wherein the specific surface area is 50 to 300 m 2 / g.

[4] [1]〜[3]のいずれかに記載の重質油処理用再生触媒の製造方法であって、下記工程(1)〜(3)を順次含み、未使用の重質油処理用触媒に対する脱硫活性及び脱メタル活性の少なくともいずれかが50〜70%である重質油処理用再生触媒を得る、重質油処理用再生触媒の製造方法。
工程(1):重質油の処理に使用する前の未使用の重質油処理用触媒に対し、バナジウム及びニッケルの含有量を測定する工程
工程(2):前記未使用の重質油処理用触媒を重質油処理に使用し、処理後の使用済み触媒におけるバナジウム及びニッケルの堆積量が、前記測定したバナジウム及びニッケルの含有量に対して1〜45質量%である使用済み触媒を選別する工程
工程(3):前記選別した使用済み触媒に、乾燥処理又は溶剤洗浄処理を施してカーボン付着量を1〜26質量%とする工程
[4] A method for producing a recycled catalyst for treating heavy oil according to any one of [1] to [3], comprising the following steps (1) to (3) in sequence, and treating unused heavy oil A method for producing a regenerated catalyst for heavy oil treatment, which obtains a regenerated catalyst for heavy oil treatment in which at least one of desulfurization activity and demetalization activity for the catalyst for use is 50 to 70%.
Step (1): Step of measuring the content of vanadium and nickel with respect to an unused heavy oil treatment catalyst before being used for treatment of heavy oil Step (2): Treatment of the unused heavy oil The catalyst for heavy oil is used for heavy oil treatment, and the used catalyst after the treatment is selected to have a vanadium and nickel deposition amount of 1 to 45% by mass with respect to the measured vanadium and nickel content. Step (3) to perform: A step of subjecting the selected spent catalyst to a drying treatment or a solvent washing treatment to adjust the carbon adhesion amount to 1 to 26 mass%.

[5] [1]〜[3]のいずれかに記載の重質油処理用再生触媒と、未使用の重質油処理用触媒とを組み合わせて、重質油の処理を行う重質油処理用再生触媒の使用方法。
[6] 全触媒充填量に対し、10〜50質量%の前記重質油処理用再生触媒を、反応器上流部に前記未使用の重質油処理用触媒と分けて充填する[5]に記載の重質油処理用再生触媒の使用方法。
[5] Heavy oil treatment for treating heavy oil by combining the heavy oil treatment regenerated catalyst according to any one of [1] to [3] and an unused heavy oil treatment catalyst. To use regenerated catalyst.
[6] To [5], 10 to 50% by mass of the regenerated catalyst for heavy oil treatment is charged separately from the unused heavy oil treatment catalyst in the upstream portion of the reactor with respect to the total catalyst charge. Use of the regenerated catalyst for heavy oil treatment as described.

本発明によれば、重油水素化脱硫装置や脱メタル装置等で問題となる反応塔での異常発熱による触媒性能低下や装置稼働低下による経済性低下を未然に防止でき、かつ、触媒コスト削減や廃棄物量削減を達成できる重質油処理用再生触媒及びその製造方法、重質油処理用再生触媒の使用方法を提供することができる。   According to the present invention, it is possible to prevent a decrease in catalyst performance due to abnormal heat generation in a reaction tower, which is a problem in a heavy oil hydrodesulfurization apparatus, a demetalization apparatus, etc., or an economic decrease due to a decrease in apparatus operation, and to reduce catalyst costs. It is possible to provide a recycled catalyst for heavy oil treatment that can achieve a reduction in the amount of waste, a method for producing the same, and a method for using the recycled catalyst for heavy oil treatment.

[1.重質油処理用再生触媒及びその製造方法]
本発明に係る重質油処理用再生触媒は、重質油等の水素化脱硫や脱メタル等に使用した触媒を再生したものであり、もともと水素化処理能力や脱メタル能力を持つ触媒である必要がある。このように再生した触媒を用いているため、触媒コスト削減や廃棄物量削減を達成できる。
[1. Regenerated catalyst for heavy oil treatment and method for producing the same]
The regenerated catalyst for heavy oil treatment according to the present invention is a catalyst obtained by regenerating a catalyst used for hydrodesulfurization or demetalization of heavy oil or the like, and originally has a hydrotreating ability and a demetalization ability. There is a need. Since the regenerated catalyst is used in this way, catalyst cost reduction and waste amount reduction can be achieved.

未使用触媒の基本的な触媒構成として無機酸化物担体、例えばアルミナやアルミナ−りん担体、アルミナ−ほう素担体、アルミナ−珪素担体等に、モリブデンと、コバルト及び/又はニッケルとの酸化物を担持したものが好適に使用される。
この中でも、アルミナ担体/ニッケル−モリブデン担持触媒、アルミナ−りん担体/ニッケル−モリブデン担持触媒、アルミナ−ほう素担体/ニッケル−モリブデン担持触媒、アルミナ−珪素担体/ニッケル−モリブデン担持触媒が好ましい。
As a basic catalyst structure of an unused catalyst, an oxide of molybdenum and cobalt and / or nickel is supported on an inorganic oxide carrier such as alumina, alumina-phosphorus carrier, alumina-boron carrier, alumina-silicon carrier, etc. What was used is used suitably.
Among these, an alumina carrier / nickel-molybdenum supported catalyst, an alumina-phosphorus carrier / nickel-molybdenum supported catalyst, an alumina-boron carrier / nickel-molybdenum supported catalyst, and an alumina-silicon carrier / nickel-molybdenum supported catalyst are preferable.

担体としてアルミナにりん、珪素、ほう素を含有させる場合は、りん、珪素、ほう素の酸化物の少なくとも1種の含有量が30質量%以下であることが好ましく、0.1〜10質量%であることがより好ましく、0.2〜5質量%であることがさらに好ましい。
なお、触媒中のりん等の含有量は、400℃以上で酸化処理して減量しなくなったものを基準質量として、りん等の質量を質量%として表わすものとする。
When phosphorus, silicon, or boron is contained in alumina as a support, the content of at least one of phosphorus, silicon, and boron oxide is preferably 30% by mass or less, and 0.1 to 10% by mass More preferably, it is 0.2-5 mass%.
The content of phosphorus or the like in the catalyst is expressed as mass% of the mass of phosphorus or the like with the reference mass being the one that has not been reduced by oxidation treatment at 400 ° C. or higher.

さらに、重質油処理であるので担持金属としてモリブデンを0.1〜25質量%含有していることが好ましく、0.2〜8質量%含有していることがより好ましい。また、担持金属としてコバルト又はニッケルを0.1〜10質量%含有していることが好ましく、0.2〜8質量%含有していることがより好ましい。
なお、触媒中の金属分含有量は400℃以上で酸化処理して減量しなくなったものを基準質量として、測定対象金属の酸化物の質量を質量%として表わすものとする。以下の金属含有量についても同じである。
Furthermore, since it is heavy oil processing, it is preferable to contain 0.1-25 mass% of molybdenum as a support metal, and it is more preferable to contain 0.2-8 mass%. Moreover, it is preferable to contain 0.1-10 mass% of cobalt or nickel as a carrying | support metal, and it is more preferable to contain 0.2-8 mass%.
In addition, the metal content in the catalyst is expressed by mass% as the mass of the oxide of the metal to be measured, based on the mass that is not reduced by oxidation treatment at 400 ° C. or higher. The same applies to the following metal contents.

また、未使用触媒の平均粒径は、2〜5mmであることが好ましく、2.8〜4.5mmであることがより好ましい。平均粒径が5mmを超える場合、単位体積当たりの充填量が低下するため、反応器に充填する触媒量(担持金属量)が低下する可能性がある。また、2mmを下回るとき、空隙径が小さくなり、反応塔内の差圧が上昇して、運転に支障が出る可能性がある。
平均粒径は、ノギス等で直接測定し、100点を統計処理することで求められる。
Moreover, it is preferable that the average particle diameter of an unused catalyst is 2-5 mm, and it is more preferable that it is 2.8-4.5 mm. When the average particle size exceeds 5 mm, the amount of packing per unit volume decreases, and therefore the amount of catalyst (the amount of supported metal) charged in the reactor may decrease. Moreover, when it is less than 2 mm, the gap diameter becomes small, and the differential pressure in the reaction tower rises, which may hinder the operation.
The average particle size is obtained by directly measuring with a caliper or the like and statistically processing 100 points.

上記のような構成の未使用触媒は通常の方法により作製することができる。
そして、この未使用触媒を使用して、例えば常圧残油のような重質油の水素化脱硫処理を1年間実施する。その後、使用済み触媒を反応器から抜き出し、下記の再生処理方法により再生することで本発明の重質油処理用再生触媒が製造される。
なお、アップフロー型の反応器の場合、反応の最上流部や反応器の最上部の触媒でも本発明の要件に適合する触媒なら使用可能ではあるが、これらは通常はスケールや金属分が多く付着している場合があり選別除去したほうが好ましい。
The unused catalyst having the above configuration can be produced by a usual method.
Then, using this unused catalyst, hydrodesulfurization treatment of heavy oil such as atmospheric residual oil is carried out for one year. Thereafter, the spent catalyst is withdrawn from the reactor and regenerated by the following regenerating method to produce the regenerated catalyst for heavy oil processing of the present invention.
In the case of an upflow type reactor, the catalyst at the uppermost part of the reaction or the uppermost part of the reactor can be used as long as it meets the requirements of the present invention, but these usually have a large scale and metal content. It may be adhering and is preferably removed by sorting.

以下では、水素化処理プロセスでよく使用される固定床反応器による水素化脱硫処理を中心に説明するが、本発明はこれに限定されない。   In the following, the hydrodesulfurization treatment using a fixed bed reactor often used in the hydrotreatment process will be mainly described, but the present invention is not limited to this.

まず、本発明に係る「重質油」とは常圧残油、減圧残油等の残渣分を含むものをいい、灯油、軽油、減圧軽油等の留出油のみからなるものは含まない。通常、重質油中には硫黄分1質量%以上、窒素分200質量ppm以上、残炭分3質量%以上、バナジウム5質量ppm以上、ニッケル30質量ppm以上、アスファルテン分0.5質量%以上が含まれている。
なお、重質油としては常圧残油等の他、原油、アスファルト油、熱分解油、タールサンド油あるいはこれらを含む混合油等が挙げられる。原料の重質油としては上記のようなものであればどのようなものでよいが、常圧残油、減圧残油、減圧残油またはアスファルト油と分解軽油の混合油等が好適に使用される。
First, “heavy oil” according to the present invention refers to those containing residues such as atmospheric residual oil and vacuum residual oil, and does not include oils consisting only of distillate oil such as kerosene, light oil and vacuum gas oil. Usually, in heavy oil, sulfur content is 1 mass% or more, nitrogen content is 200 massppm or more, residual carbon content is 3 mass% or more, vanadium is 5 massppm or more, nickel is 30 massppm or more, asphaltene content is 0.5 mass% or more. It is included.
Examples of heavy oil include atmospheric residual oil, crude oil, asphalt oil, pyrolysis oil, tar sand oil, and mixed oils containing these. Any heavy oil can be used as long as it is as described above, but normal pressure residual oil, vacuum residual oil, vacuum residual oil, mixed oil of asphalt oil and cracked gas oil, etc. are preferably used. The

重質油の処理としては、水素化脱硫処理以外に脱メタル処理が好ましく挙げられる。これらの処理における処理温度としては、280〜430℃であることが好ましく、300〜423℃であることがより好ましい。また、圧力としては3〜18MPaであることが好ましく、4〜17MPaであることがより好ましい。液空間速度は0.1〜6.5(時間−1)であることが好ましく、0.2〜6.0(時間−1)であることがより好ましい。処理時間は、7680〜30720時間であることが好ましく、7680〜7920時間であることがより好ましい。 As the heavy oil treatment, a demetallation treatment is preferably mentioned in addition to the hydrodesulfurization treatment. As processing temperature in these processes, it is preferable that it is 280-430 degreeC, and it is more preferable that it is 300-423 degreeC. Moreover, it is preferable that it is 3-18 Mpa as a pressure, and it is more preferable that it is 4-17 Mpa. Preferably the liquid hourly space velocity is from 0.1 to 6.5 (time -1), and more preferably 0.2 to 6.0 (time -1). The treatment time is preferably 7680 to 30720 hours, and more preferably 7680 to 7920 hours.

上記のような重質油の処理を施した後、装置から使用済みの触媒を抜き出し、下記工程(1)〜(3)を順次経て、未使用の重質油処理用触媒に対する脱硫活性及び脱メタル活性の少なくともいずれかが50〜70%である重質油処理用再生触媒を得る。   After the heavy oil treatment as described above is performed, the used catalyst is extracted from the apparatus, and through the following steps (1) to (3), the desulfurization activity and desulfurization activity on the unused heavy oil treatment catalyst are sequentially performed. A regenerated catalyst for heavy oil treatment in which at least one of the metal activities is 50 to 70% is obtained.

工程(1):
工程(1)は、重質油の処理に使用する前の未使用の重質油処理用触媒に対し、バナジウム及びニッケルの含有量を測定する工程である。バナジウム及びニッケルの含有量は、プラズマ(ICP)発光分析法により求めることができる。
Step (1):
Step (1) is a step of measuring the contents of vanadium and nickel with respect to an unused heavy oil processing catalyst before being used for processing heavy oil. The contents of vanadium and nickel can be determined by plasma (ICP) emission spectrometry.

工程(2):
工程(2)では、未使用の重質油処理用触媒を重質油処理に使用し、処理後の使用済み触媒におけるバナジウム及びニッケルの堆積量が、工程(1)で測定したバナジウム及びニッケルの含有量に対して1〜45質量%(好ましくは5〜35質量%)である使用済み触媒を選別する。
使用済み触媒中のバナジウム及びニッケルの含有量も工程(1)の測定方法で測定すればよい。
上記堆積量が1質量%未満では、脱硫活性が高すぎ、発熱量が多くなり好ましくない。45質量%を超えると、触媒細孔に金属が付着し脱硫活性を低下させてしまう可能性がある。
Step (2):
In step (2), an unused heavy oil treatment catalyst is used for heavy oil treatment, and the amount of vanadium and nickel deposited on the used catalyst after treatment is determined by the amount of vanadium and nickel measured in step (1). A used catalyst that is 1 to 45% by mass (preferably 5 to 35% by mass) based on the content is selected.
What is necessary is just to measure the content of vanadium and nickel in a used catalyst with the measuring method of process (1).
If the deposition amount is less than 1% by mass, the desulfurization activity is too high and the calorific value is increased, which is not preferable. If it exceeds 45% by mass, metal may adhere to the catalyst pores and desulfurization activity may be reduced.

工程(3):
工程(3)では、工程(2)で選別した使用済み触媒に、下記乾燥処理又は溶剤洗浄処理を施してカーボン付着量を1〜26質量%とする。
Step (3):
In the step (3), the used catalyst selected in the step (2) is subjected to the following drying treatment or solvent washing treatment so that the carbon adhesion amount is 1 to 26 mass%.

i)乾燥処理
乾燥処理に係る乾燥方法は特に問わないが、例としてベルトコンベアーを用いて触媒を移送し、移送中に高温乾燥することで、触媒の表面に付着した水分・油分を除去する方法が挙げられる。また、固定式乾燥炉を使用することもできる。
i) Drying treatment The drying method according to the drying treatment is not particularly limited. For example, the catalyst is transferred using a belt conveyor, and the moisture and oil adhering to the surface of the catalyst are removed by drying at a high temperature during the transfer. Is mentioned. A fixed drying furnace can also be used.

乾燥温度は100〜500℃とすることが好ましく、180〜450℃とすることがより好ましい。乾燥時間は3〜24時間とすることが好ましく、5〜10時間とすることがより好ましい。また、乾燥時の酸素濃度は1容量%以下とすることが好ましく、0.8容量%以下とすることがより好ましい。   The drying temperature is preferably 100 to 500 ° C, more preferably 180 to 450 ° C. The drying time is preferably 3 to 24 hours, more preferably 5 to 10 hours. The oxygen concentration during drying is preferably 1% by volume or less, and more preferably 0.8% by volume or less.

ii)溶剤洗浄処理
溶剤洗浄処理に係る方法は特に問わないが、例として使用済み触媒を容器に入れ、洗浄液を用いて液循環洗浄を実施することで、触媒の表面に付着した油分を溶解除去し、その後、乾燥工程により溶剤洗浄で除去しきれなかった油分を除去する。バッチ洗浄方法でも洗浄は可能である。
ii) Solvent cleaning treatment The method related to the solvent cleaning treatment is not particularly limited, but as an example, a used catalyst is placed in a container, and liquid circulation cleaning is performed using a cleaning liquid to dissolve and remove oil adhering to the surface of the catalyst. Then, the oil that could not be removed by solvent washing is removed by a drying process. Cleaning can also be performed by a batch cleaning method.

洗浄液としては、ナフサ、灯油、軽油、トルエン、アセトンといった溶剤を使用することが可能で、中でも灯油が好ましい。また、これらを用いて、液循環洗浄することが好ましい。洗浄時間は1〜10時間であることが好ましく、3〜6時間であることがより好ましい。
なお、液循環洗浄の場合、その循環速度は50〜300L/minであることが好ましく、120〜200L/minであることがより好ましい。
As the cleaning liquid, solvents such as naphtha, kerosene, light oil, toluene, and acetone can be used, and kerosene is particularly preferable. Moreover, it is preferable to carry out liquid circulation washing | cleaning using these. The washing time is preferably 1 to 10 hours, and more preferably 3 to 6 hours.
In the case of liquid circulation cleaning, the circulation rate is preferably 50 to 300 L / min, and more preferably 120 to 200 L / min.

溶剤洗浄処理後は、乾燥温度50〜250℃で乾燥することが好ましく、150〜200℃で乾燥することがより好ましい。また、乾燥時間は3〜24時間とすることが好ましく、5〜10時間とすることがより好ましい。   After the solvent washing treatment, drying at a drying temperature of 50 to 250 ° C is preferable, and drying at 150 to 200 ° C is more preferable. The drying time is preferably 3 to 24 hours, more preferably 5 to 10 hours.

上記乾燥処理又は溶剤洗浄処理を施してカーボン付着量を1〜26質量%(好ましくは5〜24質量%)の使用済み触媒を得る。カーボン付着量が1質量%未満では、触媒上の活性金属同士がシンタリングを起こし,活性低下を引き起こす可能性がある。26質量%を超えると触媒細孔上にコークが残存することで,脱硫活性を低下させてしまう可能性がある。
なお、カーボン付着量は、高周波誘導加熱燃焼−赤外吸収法により測定することができる。
The above-mentioned drying treatment or solvent washing treatment is performed to obtain a used catalyst having a carbon adhesion amount of 1 to 26% by mass (preferably 5 to 24% by mass). If the carbon adhesion amount is less than 1% by mass, the active metals on the catalyst may cause sintering, resulting in a decrease in activity. If it exceeds 26% by mass, coke remains on the catalyst pores, which may reduce the desulfurization activity.
The carbon adhesion amount can be measured by a high frequency induction heating combustion-infrared absorption method.

上記のようにして得られた使用済み触媒は、未使用の重質油処理用触媒に対する脱硫活性及び脱メタル活性の少なくともいずれかが50〜70%であり、55〜60%であることが好ましい。そして、かかる使用済み触媒を重質油処理用再生触媒とする。
未使用の重質油処理用触媒に対する脱硫活性及び脱メタル活性の少なくともいずれかが50%未満では、再び重質油処理に使用した際の触媒活性が十分でなくなる。70%を超えると、活性が高すぎて異常発熱の問題が生じてしまう。
The spent catalyst obtained as described above has a desulfurization activity and / or a demetallization activity of 50 to 70%, preferably 55 to 60% with respect to an unused heavy oil treatment catalyst. . And this used catalyst is used as a recycled catalyst for heavy oil treatment.
If at least one of the desulfurization activity and the demetalization activity for the unused heavy oil treatment catalyst is less than 50%, the catalyst activity when used again for the heavy oil treatment becomes insufficient. If it exceeds 70%, the activity is too high, and the problem of abnormal heat generation occurs.

使用済み触媒の水素化脱硫活性は、「(原料油中の硫黄分−製品油中の硫黄分)/原料油中の硫黄分」の式により求めることができる。また、脱メタル活性は、「(原料油中のメタル分−製品油中のメタル分)/原料油中のメタル分」の式により求めることができる。
また、使用済み触媒が、未使用の重質油処理用触媒に対する脱硫活性及び脱メタル活性の少なくともいずれかが50〜70%であることを満足するかどうかは、パイロット試験により確認することができる。
The hydrodesulfurization activity of the used catalyst can be determined by the formula “(sulfur content in raw material oil−sulfur content in product oil) / sulfur content in raw material oil”. Further, the demetalization activity can be determined by the formula “(metal content in raw material oil−metal content in product oil) / metal content in raw material oil”.
Moreover, it can be confirmed by a pilot test whether the used catalyst satisfies that at least one of the desulfurization activity and the demetalization activity with respect to the unused heavy oil treatment catalyst is 50 to 70%. .

重質油処理用再生触媒は、未使用触媒と同様に、平均粒径が2.0〜5.0mmであることが好ましく、2.8〜4.5mmであることがより好ましい。比表面積は50〜300m/gであることが好ましく、70〜200m/gであることがより好ましい。比表面積はBET法により測定することができる。
また、圧壊強度は0.6〜2.0kg/mmであることが好ましく、1.0〜1.5kg/mmであることがより好ましい。さらに摩耗強度(10メッシュ篩以下)は0.1〜3.0質量%であることが好ましく、0.1〜2.0質量%であることがより好ましい。圧壊強度は、圧壊強度測定装置を用いることで測定することができる。
The regenerated catalyst for heavy oil treatment has an average particle diameter of preferably 2.0 to 5.0 mm, and more preferably 2.8 to 4.5 mm, like the unused catalyst. Preferably the specific surface area is 50 to 300 m 2 / g, more preferably 70~200m 2 / g. The specific surface area can be measured by the BET method.
The crushing strength is preferably 0.6 to 2.0 kg / mm, and more preferably 1.0 to 1.5 kg / mm. Furthermore, the abrasion strength (10 mesh sieve or less) is preferably 0.1 to 3.0% by mass, and more preferably 0.1 to 2.0% by mass. The crushing strength can be measured by using a crushing strength measuring device.

[2.重質油処理用再生触媒の使用方法]
本発明の重質油処理用再生触媒の使用方法は、本発明の重質油処理用再生触媒と未使用の重質油処理用触媒とを組み合わせて、重質油の処理を行うものである。重質油の処理の種類や条件は既述のとおりである。
[2. Usage of regenerated catalyst for heavy oil treatment]
The method of using the regenerated catalyst for heavy oil treatment of the present invention is a treatment of heavy oil by combining the regenerated catalyst for heavy oil treatment of the present invention and an unused heavy oil treatment catalyst. . The types and conditions of heavy oil treatment are as described above.

このとき、全触媒充填に対し、10〜50質量%(好ましくは10〜30質量%)の重質油処理用再生触媒を、反応器上流部に未使用の重質油処理用触媒と分けて充填することが好ましい。すなわち、全触媒量に対する重質油処理用再生触媒の割合を10〜50質量%とし、この重質油処理用再生触媒と未使用の重質油処理用触媒とを分離した状態としてそれぞれ充填する。そして、反応器上流部に未使用の重質油処理用触媒を充填し、未使用の重質油処理用触媒は充填した重質油処理用再生触媒よりも反応器下流部へ充填する。
かかる充填方法により、比較的活性の低い重質油処理用再生触媒でマイルドな反応がまず進行するため、異常発熱を抑えることができると考えられる。
At this time, 10-50 mass% (preferably 10-30 mass%) of the heavy oil processing regenerated catalyst is separated from the unused heavy oil processing catalyst upstream in the reactor with respect to the total catalyst charge. Filling is preferred. That is, the ratio of the heavy oil processing regenerated catalyst to the total catalyst amount is set to 10 to 50% by mass, and the heavy oil processing regenerated catalyst and the unused heavy oil processing catalyst are charged separately. . Then, an unused heavy oil processing catalyst is charged in the upstream portion of the reactor, and the unused heavy oil processing catalyst is charged in the downstream portion of the reactor rather than the filled heavy oil processing regenerated catalyst.
By such a filling method, since a mild reaction first proceeds with a regenerated catalyst for treating heavy oil with relatively low activity, it is considered that abnormal heat generation can be suppressed.

また、水素化処理プロセスには固定床反応器を用いるものが一般的であるが、移動床や沸騰床等の反応形式でもなんら支障はない。また、反応物の流れとしては上昇流でも下降流でもよい。好ましい水素化処理として重質油の脱硫処理や脱メタル処理が挙げられるのは既述のとおりである。   In general, the hydrotreating process uses a fixed bed reactor, but there is no problem even if it is a reaction type such as a moving bed or a boiling bed. Further, the flow of the reactant may be an upward flow or a downward flow. As described above, desulfurization treatment and demetallation treatment of heavy oil can be cited as preferable hydrogenation treatment.

なお、重質油処理用再生触媒をサポート触媒として使用する場合は、適度に活性が低い状態の重質油処理用再生触媒を、サポートとして未使用触媒の代わりに反応器の底部に充填する。ここで、サポート触媒とは、一例としてセラミックボールなどを用い充填した触媒が反応器から下流に流出することを防止する役割である。   In addition, when using the regeneration catalyst for heavy oil processing as a support catalyst, the regenerated catalyst for heavy oil processing of a moderately low activity is filled into the bottom part of a reactor instead of an unused catalyst as a support. Here, a support catalyst is a role which prevents the catalyst filled using the ceramic ball etc. as an example from flowing out downstream from a reactor.

以下、実施例を参照して本発明を詳細に説明するが、本発明はこれらの実施例により限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited by these Examples.

(未使用触媒の作製)
未使用触媒を下記の手順で作製した。
純水2リットルに水酸化ナトリウム70gを溶解させ、さらに、アルミン酸ナトリウム200gを添加して均一なアルミナ溶液(1)を得た。また、純水2リットルに硝酸アルミニウム1,000gを溶解させ、アルミナ溶液(2)を得た。先ず、純水4リットルを70℃に加温し、攪拌しながらアルミナ溶液(2)をpH3.6になるまで添加した。次に、アルミナ溶液(1)をpH9.0になるまで添加して、5分間攪拌しながら熟成させた。続いて再びアルミナ溶液(2)を添加してpHを3.6として、攪拌しながら5分間熟成させた。このように、pHを3.6から9.0の間で変化させる操作を計9回繰り返しベーマイトゲル水溶液を得た。
上記ベーマイトゲルを濾過、脱イオン水で洗浄し、乾燥後、直径1.5mmの円形に押出成型した。この押出成型したベーマイトゲルを120℃で160時間乾燥後、さらに550℃で2時間焼成してアルミナ担体を得た。次に、炭酸ニッケル69.5g(NiOとして39.7g)、三酸化モリブデン220g、正リン酸31.5g(純度85質量%、Pとして19.5g)を純水250cmに加えて、攪拌しながら80℃で溶解させ、室温に冷却後、再び純水を加えて250cmに定容し、含浸液を調製した。含浸液を50cm採取し、ポリエチレングリコール(分子量400)6g添加して、担体100gの吸水量に見合うように純水にて稀釈・定容し、常圧にて含浸し、70℃で1時間真空乾燥後、450℃で16時間熱処理し、触媒を作製した。下記に触媒の物性を示す。こうして得た未使用触媒は、NiOとして3.0質量%、MoOとして13.2質量%を含有するものであり、細孔容量は0.83ミリリットル/g、比表面積は100m/g であった。
(Preparation of unused catalyst)
An unused catalyst was prepared by the following procedure.
70 g of sodium hydroxide was dissolved in 2 liters of pure water, and 200 g of sodium aluminate was further added to obtain a uniform alumina solution (1). In addition, 1,000 g of aluminum nitrate was dissolved in 2 liters of pure water to obtain an alumina solution (2). First, 4 liters of pure water was heated to 70 ° C., and the alumina solution (2) was added to pH 3.6 while stirring. Next, the alumina solution (1) was added until pH 9.0 and aged with stirring for 5 minutes. Subsequently, the alumina solution (2) was added again to adjust the pH to 3.6 and aged for 5 minutes with stirring. Thus, the operation of changing the pH between 3.6 and 9.0 was repeated 9 times in total to obtain a boehmite gel aqueous solution.
The boehmite gel was filtered, washed with deionized water, dried, and extruded into a circle having a diameter of 1.5 mm. The extruded boehmite gel was dried at 120 ° C. for 160 hours and then calcined at 550 ° C. for 2 hours to obtain an alumina carrier. Next, 69.5 g of nickel carbonate (39.7 g as NiO), 220 g of molybdenum trioxide, and 31.5 g of orthophosphoric acid (purity 85 mass%, 19.5 g as P 2 O 5 ) were added to 250 cm 3 of pure water. The mixture was dissolved at 80 ° C. with stirring, cooled to room temperature, pure water was added again, and the volume was adjusted to 250 cm 3 to prepare an impregnation solution. Take 50 cm 3 of the impregnating solution, add 6 g of polyethylene glycol (molecular weight 400), dilute and constant volume with pure water to match the water absorption of 100 g of carrier, impregnate at normal pressure, and at 70 ° C. for 1 hour. After vacuum drying, heat treatment was performed at 450 ° C. for 16 hours to prepare a catalyst. The physical properties of the catalyst are shown below. The unused catalyst thus obtained contains 3.0% by mass as NiO and 13.2% by mass as MoO 3 , has a pore volume of 0.83 ml / g and a specific surface area of 100 m 2 / g. there were.

(使用済触媒Aの作製)
まず、上記未使用触媒を下記条件で反応させて水素化脱硫処理を行った。
・反応条件
(1)原料性状:
硫黄分4.5質量%、窒素分240質量ppm、残炭分10.2質量%、バナジウム及びニッケル85質量ppm、アスファルテン分0.5質量%を含む常圧残油
(2)使用温度(反応温度):360〜410℃
(3)圧力:15MPa
(4)液空間速度:0.22(時間−1
(5)使用時間(反応時間):7680時間
(Preparation of spent catalyst A)
First, hydrodesulfurization treatment was performed by reacting the unused catalyst under the following conditions.
Reaction conditions (1) Raw material properties:
Normal pressure residual oil containing 4.5% by mass of sulfur, 240% by mass of nitrogen, 10.2% by mass of residual carbon, 85% by mass of vanadium and nickel, 0.5% by mass of asphaltene (2) Working temperature (reaction Temperature): 360-410 ° C
(3) Pressure: 15 MPa
(4) Liquid space velocity: 0.22 (time- 1 )
(5) Use time (reaction time): 7680 hours

上記のような水素化脱硫反応を行った後、触媒を反応装置から抜き取って、使用済触媒Aを得た。得られた使用済触媒Aは、NiOとして8質量%、Vとして45質量%を含みカーボン含有するものであった。 After performing the hydrodesulfurization reaction as described above, the catalyst was extracted from the reaction apparatus to obtain a used catalyst A. The obtained spent catalyst A contained 8% by mass as NiO and 45% by mass as V 2 O 5 and contained carbon.

(実施例1)
使用済触媒Aに、下記表1に記載の乾燥処理を施して重質油処理用再生触媒を作製した。
この重質油処理用再生触媒について、比表面積の測定を行った。結果を下記表1に示す。
なお、平均粒径はノギスにより測定し、100点の測定値を平均した。比表面積は窒素ガスを吸着種としたBET法により測定した。
Example 1
The spent catalyst A was subjected to the drying treatment described in Table 1 below to prepare a heavy oil treatment regenerated catalyst.
The specific surface area of the recycled catalyst for heavy oil treatment was measured. The results are shown in Table 1 below.
In addition, the average particle diameter was measured with calipers, and the measured values at 100 points were averaged. The specific surface area was measured by the BET method using nitrogen gas as an adsorption species.

また、(a)バナジウム及びニッケルの堆積量、(b)カーボン付着量、(c)未使用触媒の脱硫活性に対する、重質油処理用再生触媒の脱硫活性の割合(活性度合)を下記のようにして求めた。結果を下記表1に示す。   Further, (a) the amount of vanadium and nickel deposited, (b) the amount of carbon adhesion, and (c) the desulfurization activity ratio (activity degree) of the regenerated catalyst for heavy oil treatment to the desulfurization activity of the unused catalyst is as follows: I asked for it. The results are shown in Table 1 below.

(a)バナジウム及びニッケルの堆積量
重質油処理用再生触媒を灰化後、灰分をアルカリ融剤で融解し、酸で溶解後、誘導結合プラズマ(ICP)発光分析法(アジレント・テクノロジー株式会社製、agilent 720)で、重質油処理用再生触媒のバナジウム分及びニッケル分を分析した。
(A) Amount of vanadium and nickel deposited After ashing the recycled catalyst for heavy oil treatment, the ash is melted with an alkaline flux, dissolved with an acid, and then inductively coupled plasma (ICP) emission spectrometry (Agilent Technology Co., Ltd.) Manufactured by agilent 720), the vanadium content and the nickel content of the regenerated catalyst for heavy oil treatment were analyzed.

(b)カーボン付着量
高周波誘導加熱燃焼−赤外吸収法を用いた炭素分析装置(堀場製作所製、EMIA-920V2)で重質油処理用再生触媒の炭素含有量を測定した。
(B) Carbon adhesion amount The carbon content of the regenerated catalyst for heavy oil treatment was measured with a carbon analyzer (EMIA-920V2 manufactured by Horiba, Ltd.) using a high-frequency induction heating combustion-infrared absorption method.

(c)活性度合
未使用触媒と重質油処理用再生触媒をパイロットプラントにそれぞれ同量(体積基準)充填し、上記反応条件で、重質油を水素化脱硫処理した。それぞれの入口及び出口油中の硫黄分ならびにバナジウム及びニッケルの量から、計算にて活性度合を確認した。
(C) Degree of activity An unused catalyst and a recycled catalyst for treating heavy oil were charged in the same amount (by volume) in a pilot plant, and heavy oil was hydrodesulfurized under the above reaction conditions. The degree of activity was confirmed by calculation from the amount of sulfur in each inlet and outlet oil and the amount of vanadium and nickel.

重質油処理用再生触媒と未使用触媒とを質量比で20:80の割合で水素化脱硫装置の反応器に別々に充填した。重質油処理用再生触媒は未使用触媒よりも反応器上流部に充填した。充填後、水素化脱硫反応を行い、反応器の入口及び出口温度を確認し、異常発熱の有無を調べた。結果を下記表1に記す。
なお、反応器を通過する流体は既述の常圧残油とし、反応器入口温度は概ね一定とした。
The recycled catalyst for heavy oil treatment and the unused catalyst were separately charged into the hydrodesulfurization reactor at a mass ratio of 20:80. The recycled catalyst for heavy oil treatment was packed in the upstream portion of the reactor with respect to the unused catalyst. After filling, hydrodesulfurization reaction was performed, the reactor inlet and outlet temperatures were confirmed, and the presence or absence of abnormal heat generation was examined. The results are shown in Table 1 below.
The fluid passing through the reactor was the above-described normal pressure residual oil, and the reactor inlet temperature was substantially constant.

(実施例2)
下記表1に記載の乾燥処理とした以外は実施例1と同様にして重質油処理用再生触媒を作製し、実施例1と同様に水素化脱硫反応を行い、反応器の入口及び出口温度を確認し、異常発熱の有無を調べた。結果を下記表1に記す。
(Example 2)
Except for the drying treatment described in Table 1 below, a regenerated catalyst for heavy oil treatment was prepared in the same manner as in Example 1, and hydrodesulfurization reaction was carried out in the same manner as in Example 1, and the reactor inlet and outlet temperatures Was checked for the presence or absence of abnormal fever. The results are shown in Table 1 below.

(実施例3)
乾燥処理を、下記表1に記載の洗浄処理(灯油を用いた液循環洗浄及び約150℃の乾燥)に変更した以外は実施例1と同様にして重質油処理用再生触媒を作製し、実施例1と同様に水素化脱硫反応を行い、反応器の入口及び出口温度を確認し、異常発熱の有無を調べた。結果を下記表1に記す。
Example 3
A regenerated catalyst for heavy oil treatment was prepared in the same manner as in Example 1 except that the drying treatment was changed to the washing treatment described in Table 1 below (liquid circulation washing using kerosene and drying at about 150 ° C.), The hydrodesulfurization reaction was performed in the same manner as in Example 1, the reactor inlet and outlet temperatures were confirmed, and the presence or absence of abnormal heat generation was examined. The results are shown in Table 1 below.

(比較例1)
未使用触媒のみを反応器に充填して、実施例1と同様に水素化脱硫反応を行い、反応器の入口及び出口温度を確認し、異常発熱の有無を調べた。結果を下記表1に記す。
なお、実施例1〜3及び比較例1における合計触媒量は同一としている。
(Comparative Example 1)
Only the unused catalyst was charged into the reactor, and hydrodesulfurization reaction was performed in the same manner as in Example 1. The reactor inlet and outlet temperatures were confirmed, and the presence or absence of abnormal heat generation was examined. The results are shown in Table 1 below.
The total catalyst amount in Examples 1 to 3 and Comparative Example 1 is the same.

Figure 2016198691
Figure 2016198691

適度に活性が低い状態である重質油処理用再生触媒を、未使用触媒と組み合わせて水素化脱硫装置に充填することで、反応器内での異常発熱を抑制できることが分かった。   It has been found that abnormal heat generation in the reactor can be suppressed by filling a hydrodesulfurization apparatus with a regenerated catalyst for treating heavy oil, which has a moderately low activity, in combination with an unused catalyst.

Claims (6)

未使用の重質油処理用触媒と組み合わせて重質油の処理を行う重質油処理用再生触媒であって、
該重質油処理用再生触媒が、
(A)前記未使用の重質油処理用触媒を重質油の処理に使用した使用済み触媒であり、
(B)前記未使用の重質油処理用触媒に対する、(a)バナジウム及びニッケルの堆積量が1〜45質量%であり、(b)カーボン付着量が1〜26質量%であり、(c)脱硫活性及び脱メタル活性の少なくともいずれかが50〜70%である重質油処理用再生触媒。
A heavy oil processing regenerated catalyst that processes heavy oil in combination with an unused heavy oil processing catalyst,
The recycled catalyst for heavy oil treatment
(A) It is a used catalyst used for treating heavy oil, the unused heavy oil treatment catalyst,
(B) With respect to the unused heavy oil treatment catalyst, (a) the amount of vanadium and nickel deposited is 1 to 45% by mass, (b) the amount of carbon adhesion is 1 to 26% by mass, (c ) A regenerated catalyst for heavy oil treatment in which at least one of desulfurization activity and demetalization activity is 50 to 70%.
平均粒径が、2〜5mmである請求項1に記載の重質油処理用再生触媒。   The regenerated catalyst for heavy oil treatment according to claim 1, wherein the average particle size is 2 to 5 mm. 比表面積が、50〜300m/gである請求項1又は2に記載の重質油処理用再生触媒。 The regenerated catalyst for heavy oil treatment according to claim 1, wherein the specific surface area is 50 to 300 m 2 / g. 請求項1〜3のいずれか1項に記載の重質油処理用再生触媒の製造方法であって、下記工程(1)〜(3)を順次含み、未使用の重質油処理用触媒に対する脱硫活性及び脱メタル活性の少なくともいずれかが50〜70%である重質油処理用再生触媒を得る、重質油処理用再生触媒の製造方法。
工程(1):重質油の処理に使用する前の未使用の重質油処理用触媒に対し、バナジウム及びニッケルの含有量を測定する工程
工程(2):前記未使用の重質油処理用触媒を重質油処理に使用し、処理後の使用済み触媒におけるバナジウム及びニッケルの堆積量が、前記測定したバナジウム及びニッケルの含有量に対して1〜45質量%である使用済み触媒を選別する工程
工程(3):前記選別した使用済み触媒に、乾燥処理又は溶剤洗浄処理を施してカーボン付着量を1〜26質量%とする工程
It is a manufacturing method of the regenerated catalyst for heavy oil processing of any one of Claims 1-3, Comprising: The following process (1)-(3) is included in order, It is with respect to the catalyst for unused heavy oil processing. A method for producing a regenerated catalyst for treating heavy oil, wherein a regenerated catalyst for treating heavy oil having at least one of desulfurization activity and demetalization activity of 50 to 70% is obtained.
Step (1): Step of measuring the content of vanadium and nickel with respect to an unused heavy oil treatment catalyst before being used for treatment of heavy oil Step (2): Treatment of the unused heavy oil The catalyst for heavy oil is used for heavy oil treatment, and the used catalyst after the treatment is selected to have a vanadium and nickel deposition amount of 1 to 45% by mass with respect to the measured vanadium and nickel content. Step (3) to perform: A step of subjecting the selected spent catalyst to a drying treatment or a solvent washing treatment to adjust the carbon adhesion amount to 1 to 26 mass%.
請求項1〜3のいずれか1項に記載の重質油処理用再生触媒と、未使用の重質油処理用触媒とを組み合わせて、重質油の処理を行う重質油処理用再生触媒の使用方法。   The regenerated catalyst for heavy oil processing which processes heavy oil combining the regenerated catalyst for heavy oil processing of any one of Claims 1-3, and the catalyst for unused heavy oil processing. How to use. 全触媒充填量に対し、10〜50質量%の前記重質油処理用再生触媒を、反応器上流部に前記未使用の重質油処理用触媒と分けて充填する請求項5に記載の重質油処理用再生触媒の使用方法。   The heavy catalyst according to claim 5, wherein 10 to 50 mass% of the recycled catalyst for processing heavy oil is packed separately from the unused heavy oil processing catalyst in the upstream portion of the reactor with respect to the total amount of catalyst charged. How to use regenerated catalyst for treating oil.
JP2015078496A 2015-04-07 2015-04-07 Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil Pending JP2016198691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015078496A JP2016198691A (en) 2015-04-07 2015-04-07 Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078496A JP2016198691A (en) 2015-04-07 2015-04-07 Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil

Publications (1)

Publication Number Publication Date
JP2016198691A true JP2016198691A (en) 2016-12-01

Family

ID=57423317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078496A Pending JP2016198691A (en) 2015-04-07 2015-04-07 Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil

Country Status (1)

Country Link
JP (1) JP2016198691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220413A1 (en) * 2021-04-13 2022-10-20 한화솔루션 주식회사 Method for measuring concentration of catalyst in slurry solution and continuous production method of hydrogenated hydrocarbon resin using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751210A (en) * 1987-05-21 1988-06-14 Intevep, S.A. Regeneration of an iron based natural catalyst used in the hydroconversion of heavy crudes and residues
US5087596A (en) * 1990-06-21 1992-02-11 Amoco Corporation Process for regenerating spent heavy hydrocarbon hydroprocessing catalyst
JP2000017274A (en) * 1998-07-01 2000-01-18 Idemitsu Kosan Co Ltd Hydrogenation method for heavy oil
JP2000144151A (en) * 1998-11-06 2000-05-26 Idemitsu Kosan Co Ltd Regeneration of hydrogenation treatment catalyst
EP1065000A1 (en) * 1998-09-29 2001-01-03 Idemitsu Kosan Co., Ltd. Method of regenerating hydrogenation catalyst
JP2004148139A (en) * 2002-10-28 2004-05-27 Idemitsu Kosan Co Ltd Regenerated catalyst for hydrogenating heavy oil and method for hydrotreating heavy oil by using the same
JP2008290071A (en) * 2007-04-27 2008-12-04 Cosmo Oil Co Ltd Method for manufacturing catalyst for hydrotreating hydrocarbon oil and regeneration method
JP2013212447A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst
JP2014050838A (en) * 2013-10-07 2014-03-20 Jgc Catalysts & Chemicals Ltd Method for regenerating hydrodesulfurization catalyst

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751210A (en) * 1987-05-21 1988-06-14 Intevep, S.A. Regeneration of an iron based natural catalyst used in the hydroconversion of heavy crudes and residues
US5087596A (en) * 1990-06-21 1992-02-11 Amoco Corporation Process for regenerating spent heavy hydrocarbon hydroprocessing catalyst
JP2000017274A (en) * 1998-07-01 2000-01-18 Idemitsu Kosan Co Ltd Hydrogenation method for heavy oil
EP1065000A1 (en) * 1998-09-29 2001-01-03 Idemitsu Kosan Co., Ltd. Method of regenerating hydrogenation catalyst
JP2000144151A (en) * 1998-11-06 2000-05-26 Idemitsu Kosan Co Ltd Regeneration of hydrogenation treatment catalyst
JP2004148139A (en) * 2002-10-28 2004-05-27 Idemitsu Kosan Co Ltd Regenerated catalyst for hydrogenating heavy oil and method for hydrotreating heavy oil by using the same
JP2008290071A (en) * 2007-04-27 2008-12-04 Cosmo Oil Co Ltd Method for manufacturing catalyst for hydrotreating hydrocarbon oil and regeneration method
JP2013212447A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst
JP2014050838A (en) * 2013-10-07 2014-03-20 Jgc Catalysts & Chemicals Ltd Method for regenerating hydrodesulfurization catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220413A1 (en) * 2021-04-13 2022-10-20 한화솔루션 주식회사 Method for measuring concentration of catalyst in slurry solution and continuous production method of hydrogenated hydrocarbon resin using same
TWI826986B (en) * 2021-04-13 2023-12-21 南韓商韓華思路信股份有限公司 Method for measuring catalyst concentration in slurry solution and continuous preparation method of hydrogenated petroleum resin using the same

Similar Documents

Publication Publication Date Title
EP3478801A1 (en) Processing of heavy hydrocarbon feeds
TWI611836B (en) Catalyst support and preparation method thereof
KR102245503B1 (en) Novel resid hydrotreating catalyst
WO1999065604A1 (en) Hydrogenation catalyst and method of hydrogenating heavy oil
JP2000210565A (en) Catalyst for hydrogenation and hydrogenation method
JP2004010857A (en) Method for hydrogenating hydrocarbon heavy oil
WO2015046316A1 (en) Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil
JP4773634B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
NO179617B (en) Hydrogenation process to remove contaminants from hydrocarbon oil
JP4773633B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
JP5841481B2 (en) Method for hydrotreating heavy residual oil
KR102297022B1 (en) Method for regenerating and utilizing heavy-oil desulfurization catalyst
JPS58252A (en) Improved catalyst and carrier and production and use thereof
JP6026782B2 (en) Heavy oil hydroprocessing method
CN107794087B (en) Hydrogenation system and method for hydrocarbon raw material
JP7321790B2 (en) Method for hydrotreating heavy oil
CN103013567B (en) Method for preparing needle coke material by catalytic cracking slurry
JP2016198691A (en) Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil
JP3715893B2 (en) Method for regenerating hydrotreating catalyst
JP2010069466A (en) Hydrogenation catalyst
JP3978064B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
JP2013209528A (en) Hydrogenation purification method for heavy residual oil
WO2022209410A1 (en) Hydrotreatment catalyst for hydrocarbon oil and method for producing same
JP3708381B2 (en) Regeneration method of heavy oil hydrotreating catalyst and regenerated hydrotreating catalyst
JP2013212447A (en) Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190416