WO2022209410A1 - Hydrotreatment catalyst for hydrocarbon oil and method for producing same - Google Patents

Hydrotreatment catalyst for hydrocarbon oil and method for producing same Download PDF

Info

Publication number
WO2022209410A1
WO2022209410A1 PCT/JP2022/006712 JP2022006712W WO2022209410A1 WO 2022209410 A1 WO2022209410 A1 WO 2022209410A1 JP 2022006712 W JP2022006712 W JP 2022006712W WO 2022209410 A1 WO2022209410 A1 WO 2022209410A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
catalyst
hydrotreating catalyst
carrier
metal component
Prior art date
Application number
PCT/JP2022/006712
Other languages
French (fr)
Japanese (ja)
Inventor
和成 田川
泰 新宅
雄介 松元
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to JP2023510643A priority Critical patent/JPWO2022209410A1/ja
Publication of WO2022209410A1 publication Critical patent/WO2022209410A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Definitions

  • the present invention relates to a hydrotreating catalyst for removing sulfur, metal, and silicon in hydrocarbon oil in the presence of hydrogen, and a method for producing the same.
  • the reaction proceeds at high temperature and high pressure using a catalyst, but since the economic efficiency of the process is improved by lowering the reaction conditions at low temperature and pressure, it is desirable that the catalyst has high activity. It is rare.
  • the hydrotreating catalyst is prepared by impregnating a carrier made of inorganic oxides such as alumina with an impregnating solution containing molybdenum and cobalt or nickel, which are active metals, and drying and calcining the carrier.
  • a carrier made of inorganic oxides such as alumina with an impregnating solution containing molybdenum and cobalt or nickel, which are active metals, and drying and calcining the carrier.
  • the metal supported on the catalyst is sulfurized with a sulfur compound and reacted with the hydrocarbon oil at high temperature to remove sulfur and metal at the same time as hydrogenation.
  • silicon contained in antifoaming agents and the like used in the process from extraction of crude oil to the hydrotreating process deposits on the catalyst surface and deactivates the catalyst in the hydrotreating process, so its removal is required.
  • Patent Document 1 Conventionally, various studies have been made on the shape and pore structure of the catalyst in order to improve the performance of the hydrotreating catalyst (for example, Patent Document 1).
  • Patent Document 1 In addition, in the paper entitled " Hydrodesulfurization Activity of Catalysts with Non-Cylindrical Shape" in Non-Patent Document 1, it is stated that the hydrodesulfurization activity and the surface of the catalyst are highly correlated. It can be said that the improvement of the geometric surface ratio by is effective for improving the activity.
  • an object of the present invention is to provide a catalyst with improved performance in the hydrotreating of hydrocarbon oil.
  • the present invention relates to, for example, the following [1] to [9].
  • [1] comprising an inorganic oxide support and an active metal component supported on said inorganic oxide support; the active metal component comprises a first metal that is at least one of molybdenum and tungsten and a second metal that is at least one of cobalt and nickel;
  • a hydrotreating catalyst for hydrocarbon oils that satisfies the following requirements (1) to (3) in the Log differential pore volume distribution measured by mercury porosimetry.
  • Requirement (2): dV/d (log D) is maximized in the pore diameter range of 2-50 ⁇ m.
  • Requirement (3) The ratio of the pore volume with a pore diameter of 2 to 50 ⁇ m to the total pore volume is 3% or more.
  • [6] comprising an inorganic oxide support and an active metal component supported on said inorganic oxide support;
  • the active metal component comprises a first metal that is at least one of molybdenum and tungsten and a second metal that is at least one of cobalt and nickel;
  • 3 crevasses/mm 2 or more having a maximum width of 2 ⁇ m or more and a length of 100 ⁇ m or more are present on the surface of the inorganic oxide support,
  • a hydrotreating catalyst for hydrocarbon oils that satisfies the following requirement (1) in the Log differential pore volume distribution measured by mercury porosimetry. Requirement (1): dV/d (log D) is maximized in the pore diameter range of 5-30 nm.
  • the hydrotreating catalyst for hydrocarbon oil of the present invention is excellent in hydrodesulfurization activity, hydrodemetalization ability, and silicon trapping ability. Further, according to the method for producing a hydrotreating catalyst for hydrocarbon oil of the present invention, a hydrotreating catalyst for hydrocarbon oil having excellent hydrodesulfurization activity, hydrodemetalization ability, and silicon trapping ability is produced. be able to.
  • Pore distribution of the catalysts of Example 1 and Comparative Example 1 measured by mercury porosimetry Enlarged view of pore size distribution of the catalysts of Example 1 and Comparative Example 1 measured by mercury porosimetry Photomicrograph of the catalyst of Example 1
  • the hydrotreating catalyst for hydrocarbon oil according to the present invention contains an inorganic oxide support and an active metal component supported on the inorganic oxide support, and mercury It is characterized in that requirements (1) to (3), which will be described later, are satisfied in the pore size distribution measured by the indentation method.
  • Inorganic oxides constituting the carrier include oxides or composite oxides of aluminum, silicon, titanium, boron, zirconium, cerium or phosphorus. Specific examples include alumina, silica, titania, boria and zirconia.
  • ceria phosphorous oxide, silica-alumina, alumina-titania, alumina-zirconia, alumina-boria, phosphorous oxide-alumina, silica-alumina-boria, phosphorous oxide-alumina-boria, phosphorous oxide-alumina-silica , silica-alumina-titania, and silica-alumina-zirconia, preferably alumina or a composite oxide of aluminum containing alumina as a main component and other elements. These may be used singly or in combination of two or more.
  • the inorganic oxide carrier contains a matrix component made of the inorganic oxide and inorganic fibers, for example, when produced by the production method described below.
  • the content of the inorganic fibers in the inorganic oxide support is preferably 0.2 to 10% by mass, more preferably 0.5 to 5% by mass.
  • an active metal component is supported on the inorganic composite oxide support.
  • the active metal component includes, as active metal species, a first metal that is at least one of molybdenum and tungsten, and a second metal that is at least one of cobalt and nickel. Accordingly, an active metal component including, for example, molybdenum as a first metal and cobalt as a second metal is supported on the support. Active metal components include oxides comprising a first metal and a second metal.
  • the first metal may be molybdenum, tungsten, or both molybdenum and tungsten, preferably molybdenum.
  • the content (supported amount) of the first metal component in the catalyst of the present invention can be appropriately changed depending on the properties of the feedstock to be treated. 30% by mass, preferably 15 to 22% by mass.
  • the catalyst of the present invention exhibits good desulfurization activity.
  • the content of the first metal is equal to or less than the upper limit, aggregation of the first metal can be prevented and good dispersibility can be obtained.
  • the second metal may be cobalt, nickel, or both cobalt and nickel.
  • the content (supported amount) of the second metal component in the catalyst of the present invention can be appropriately changed depending on the properties of the feedstock to be treated. ⁇ 10.0% by mass, preferably 2.0 to 8.0% by mass.
  • the second metal acts as a promoter for the first metal.
  • the content of the second metal is equal to or higher than the lower limit, the first metal and the second metal, which are active metal species, can maintain an appropriate structure.
  • the hydrotreating catalyst of the present invention may contain carbon, phosphorus, boron, etc. derived from organic acids that may be used in the production process.
  • the hydrotreating catalyst of the present invention contains an inorganic oxide support and an active metal component supported on the inorganic oxide support, and is processed by a mercury intrusion method (contact angle of mercury: 130°, surface tension: 480 dyn/cm).
  • the measured Log differential pore volume distribution satisfies the following requirements (1) to (3).
  • Requirement (1) expresses that the hydrotreating catalyst of the present invention has mesopores like a typical hydrotreating catalyst.
  • Requirement (2) expresses that the hydrotreating catalyst of the present invention has characteristic crevasses on its surface as shown in FIG.
  • a peak (maximum point) of dV/d (log D) exists in a range of pore diameters of 2 ⁇ m (2000 nm) or more, the hydrotreating catalyst has excellent hydrodesulfurization activity, hydrodemetalization ability, and silicon trapping ability. .
  • the peak (maximum point) of dV/d (log D) exists in the range of pore diameters of 50 ⁇ m (50000 nm) or less, the hydrotreating catalyst has high strength.
  • the value of this peak (maximum point) is, for example, 0.02 cc/g or more.
  • Requirement (3) expresses that the volume of the pores due to the crevasses occupies a constant ratio with respect to the pore volume of the entire hydrotreating catalyst. Since the hydrotreating catalyst of the present invention has crevices represented by the requirements (2) and (3), the catalyst volume surface ratio is dramatically improved compared to the conventional technology, and the hydrodesulfurization activity , demetallization ability, silicon trapping ability, etc., which are correlated with the surface of the catalyst, are improved.
  • the presence of many crevasses in the catalyst can be expected to significantly improve the catalyst volume surface ratio compared to changing the size and shape of the molded body, and has macropores formed by adding organic additives. It can be expected that the diffusibility of the reaction oil to the inside of the catalyst is better than that of the catalyst.
  • the surface of the inorganic oxide carrier (the surface facing the direction perpendicular to the extrusion direction when the carrier is produced by extrusion molding) preferably has a crevasse having a maximum width of 2 ⁇ m or more and a length of 100 ⁇ m or more. is 3 crevasses/mm 2 or more, more preferably 5 crevasses/mm 2 or more (the upper limit is, for example, 50 crevasses/mm 2 ) having a maximum width of 10 ⁇ m or more and a length of 100 ⁇ m or more. These values can be measured based on SEM images of the hydroprocessing catalyst.
  • the hydrotreating catalyst of the present invention has a crushing strength of usually 5 N/mm or more, preferably 8 N/mm or more, more preferably 10 N/mm or more, as measured by the method described below. When the crushing strength is within this range, it is possible to prevent the catalyst from breaking during filling and causing drift or pressure loss during the reaction.
  • Another aspect of the hydrotreating catalyst of the present invention is comprising an inorganic oxide support and an active metal component supported on said inorganic oxide support; the active metal component comprises a first metal that is at least one of molybdenum and tungsten and a second metal that is at least one of cobalt and nickel; 3 crevasses/mm 2 or more having a maximum width of 2 ⁇ m or more and a length of 100 ⁇ m or more are present on the surface of the inorganic oxide support,
  • the hydrotreating catalyst for hydrocarbon oil satisfies the above requirement (1) in terms of log differential pore volume distribution measured by mercury porosimetry.
  • the method for producing a hydrotreating catalyst for hydrocarbon oil of the present invention comprises: (1) mixing an inorganic oxide or a precursor of the inorganic oxide with an inorganic fiber to prepare a carrier material mixture; (2) a step of obtaining a molded product by extrusion molding from the carrier raw material mixture; (3) a step of drying and calcining the molded product to obtain an inorganic oxide carrier; (4) preparing an impregnating solution containing a raw material for a first metal component that is at least one of molybdenum and tungsten, a raw material for a second metal component that is at least one of cobalt and nickel, and a solvent; A step of contacting the impregnating solution with the inorganic oxide support to obtain a support, and (5) a step of heat-treating the support to obtain a hydrotreating catalyst.
  • Step (1) is a step of mixing inorganic oxides or precursors thereof with inorganic fibers to prepare a mixture of carrier raw materials.
  • An inorganic oxide precursor can be manufactured by a conventionally well-known method. An example is given below. First, a basic metal salt aqueous solution and an acidic metal salt aqueous solution are mixed to obtain a slurry of an inorganic oxide precursor (hydrate).
  • basic aluminum salts sodium aluminate, potassium aluminate and the like are preferably used.
  • acidic aluminum salt aluminum sulfate, aluminum chloride, aluminum nitrate and the like are preferably used.
  • the silica source includes an aqueous solution of sodium silicate and a hydrogel of sodium silicate as an alkali silicate
  • the phosphate source includes phosphite ions such as ammonium phosphate, potassium phosphate, Phosphate compounds that generate phosphate ions in water, such as sodium phosphate, phosphoric acid, and phosphorous acid, can be used.
  • titanium mineral salts include titanium tetrachloride, titanium trichloride, titanium sulfate, titanyl sulfate, and titanium nitrate. Titanium sulfate and titanyl sulfate are particularly preferred because they are inexpensive.
  • the slurry is washed with warm water, for example, an ammonia aqueous solution with a concentration of 0.3% by mass. Then, ion-exchanged water is added to the cake-like slurry after washing to form a slurry, and an aging process is performed. In the aging step, for example, an aqueous organic acid solution, aqueous ammonia, etc. are added to the obtained slurry to adjust the pH to, for example, 9.5 to 10.5. Heat aging is preferably carried out at 80 to 100° C. for 1 to 20 hours, preferably 2 to 15 hours.
  • the aged product obtained in the aging step is placed in a double-arm kneader with a steam jacket and heated and kneaded to obtain an inorganic oxide precursor.
  • the inorganic fibers include glass fibers, silica fibers, alumina fibers, alumina silica fibers, rock wool, and carbon fibers.
  • the average diameter of the inorganic fibers is preferably 0.1-20 ⁇ m, more preferably 5-10 ⁇ m.
  • the average diameter is at least the above lower limit, crevasses can be formed on the surface of the catalyst carrier, and when the average diameter is at most the above upper limit, extrusion molding can be easily performed.
  • the average length of the inorganic fibers is preferably 0.1 mm or more, more preferably 0.5 or more, and the upper limit may be 5 mm, for example.
  • the inorganic fibers can be oriented substantially in the extrusion direction during extrusion molding.
  • These average diameter and average length can be determined, for example, by measuring the diameter and length of 100 randomly selected inorganic fibers on the SEM image and calculating the arithmetic mean value.
  • the inorganic fiber is used in an amount such that the amount in the obtained inorganic oxide carrier is, for example, 0.2 to 10% by mass, preferably 0.5 to 5% by mass.
  • the amount of the inorganic fibers is at least the above lower limit, crevasses can be formed on the surface of the catalyst carrier, and when the amount of the inorganic fibers is at most the above upper limit, extrusion molding can be easily carried out, and strength is increased. A high catalyst can be obtained.
  • step (1) the inorganic oxide or the inorganic oxide precursor (preferably the inorganic oxide precursor) and the inorganic fiber are mixed to obtain a carrier raw material mixture.
  • a conventionally known device such as a steam-jacketed dual-arm kneader can be used.
  • Step (2) is a step of obtaining a molded product by extrusion molding from the carrier raw material mixture obtained in step (1).
  • Extrusion molding can be carried out by a conventionally known method, except that the carrier raw material mixture obtained in step (1) is used as a raw material.
  • Preferred conditions for extrusion molding are as follows.
  • the shape of the molded body includes shapes commonly used in hydrotreating catalysts, such as cylindrical, three-lobed and four-lobed shapes.
  • the size of the shaped body may be, for example, the typical size of shaped bodies used in the production of hydrotreating catalysts. Taking a cylindrical molding as an example, its diameter is, for example, 1 mm to 10 mm, and its length is, for example, 2 to 50 mm.
  • Step (3) is a step of drying and firing the molding obtained in step (2) to obtain an inorganic oxide carrier.
  • This drying and firing is usually performed at 50-800°C. More specifically, the molding is dried by heat-treating it in an air atmosphere at, for example, 50 to 200° C., preferably 75 to 150° C., for example, for 0.5 to 24 hours, preferably 6 to 18 hours. Then, it is calcined by heat treatment at, for example, 350 to 800° C., preferably 400 to 600° C., for 0.5 to 10 hours, preferably 2 to 5 hours, to obtain an inorganic oxide support.
  • Step (4) an impregnation solution containing a raw material for the first metal component, a raw material for the second metal component, and a solvent is prepared, and the impregnation solution is combined with the inorganic oxide support obtained in the step (3).
  • This is a step of contacting to obtain a carrier.
  • first metal component and the second metal component are as described above.
  • Preferred raw materials for the first metal component include, for example, molybdenum trioxide, ammonium molybdate, ammonium metatungstate, ammonium paratungstate, and tungsten trioxide.
  • Preferred materials for the second metal component include, for example, nickel nitrate, nickel carbonate, cobalt nitrate, and cobalt carbonate.
  • the solvent is usually water.
  • the impregnation liquid may further contain a phosphorus component.
  • Preferred examples of the phosphorus component include orthophosphoric acid (hereinafter also simply referred to as “phosphoric acid”), ammonium dihydrogen phosphate, diammonium hydrogen phosphate, trimetaphosphoric acid, pyrophosphoric acid, and tripolyphosphoric acid.
  • the concentration of phosphorus in the impregnating solution is preferably 0.5 to 5.0% by mass in terms of oxide (P 2 O 5 ).
  • the impregnation liquid may further contain an organic acid.
  • Organic acids include, for example, citric acid, malic acid, tartaric acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA).
  • Organic additives may be used in addition to organic acids, and examples of organic additives include saccharides (monosaccharides, disaccharides, polysaccharides, etc.). Specifically, for example, glucose (glucose; C 6 H 12 O 6 ), fructose (fructose; C 6 H 12 O 6 ), maltose (maltose; C 12 H 22 O 11 ), lactose (lactose; C 12 H 22 O 11 ), sucrose (sucrose; C 12 H 22 O 11 ), etc. may be added.
  • saccharides monosaccharides, disaccharides, polysaccharides, etc.
  • the impregnating liquid can be prepared by mixing the above components by a conventional method.
  • the prepared impregnating solution is brought into contact with an inorganic oxide carrier to impregnate the inorganic oxide carrier to obtain an inorganic oxide carrier impregnated with the impregnating solution (hereinafter also referred to as "support"). .
  • Step (5) is a step of heat-treating the support obtained in step (4) to obtain a hydrotreating catalyst.
  • This heat treatment is usually performed at 50-800°C. More specifically, the support is heat-treated in an air atmosphere at, for example, 50 to 200° C., preferably 75 to 150° C., for example, for 0.5 to 24 hours, preferably 0.5 to 4.0 hours. and then calcined by heat treatment at, for example, 350 to 800° C., preferably 400 to 600° C., for example, for 0.5 to 5.0 hours, preferably 0.5 to 2.0 hours, to perform inorganic oxidation.
  • the hydrotreating catalyst of the present invention is obtained in which an active metal component is supported on a metal carrier.
  • Examples of light oil include naphtha, kerosene, light gas oil (LGO), heavy gas oil (HGO), vacuum gas oil (VGO), etc.
  • Examples of heavy oil Examples include atmospheric residue (AR), vacuum residue (VR) and the like.
  • ⁇ Method for measuring the content of silica in the catalyst 3 g of a sample obtained by calcining the catalyst at 500 ° C. for 1 hour and then allowing it to cool in a desiccator was collected in a zirconia ball with a lid of 30 ml, heat-treated (200 ° C., 20 minutes), and calcined (700 ° C., 5 minutes), 2 g of Na 2 O 2 and 1 g of NaOH were added and melted for 15 minutes. Further, 25 ml of H 2 SO 4 and 200 ml of water were added and dissolved, and then diluted to 500 ml with pure water to obtain a sample. The obtained sample was measured for silicon content in terms of oxide (SiO 2 ) using an ICP apparatus (ICPS-8100, analysis software ICPS-8000, manufactured by Shimadzu Corporation).
  • step (a) 9.09 kg of an aqueous sodium aluminate solution having a 22% by mass Al 2 O 3 concentration conversion was put into a 100 L (liter) tank with a steam jacket and diluted with deionized water to make 40.00 kg. Next, 230.8 g of an aqueous sodium gluconate solution having a concentration of 26% by mass was added to this solution, and the mixture was heated to 60° C. with stirring to obtain a sodium aluminate/sodium gluconate mixed solution having a concentration of 5% by mass.
  • step (b) Next, the aged alumina hydrate slurry was dehydrated and then washed with 1.5 L of an ammonia aqueous solution having a concentration of 0.3% by mass.
  • step (c) The cake-like slurry after washing is diluted with ion-exchanged water so that the concentration becomes 10% by mass in terms of Al 2 O 3 to form a slurry, and then ammonia water having a concentration of 15% by mass is added to pH 10.2. and aged at 95° C. for 10 hours while stirring.
  • step (d) After aging, the slurry was dewatered, heated while being kneaded by a double-arm kneader with a steam jacket, and concentrated until the alumina concentration reached 20% or more. 0.30 kg of a 10% by mass solution of malic acid was added to the obtained concentrate, and then the mixture was further heated and concentrated and kneaded to a predetermined moisture content.
  • step (e) After that, the resulting kneaded product was molded into a cylindrical shape with a diameter of 1.6 mm using a screw extruder.
  • step (f) Next, after drying the molding at 110° C. for 12 hours, it was calcined at 500° C. for 3 hours to obtain a carrier A. After drying in step (f), crevasses corresponding to the requirements (2) and (3) were not observed on the molding surface.
  • Steps (a) to (d) of the preparation of carrier A were performed.
  • 60 g of glass fiber chopped strands, product name: CS 3DE-704S, manufactured by Nitto Boseki Co., Ltd.
  • carrier B was obtained in the same procedure as the step (f) of preparation of carrier A. After drying in step (f), numerous crevasses corresponding to the requirements (2) and (3) were confirmed on the surface of the molding in a direction substantially perpendicular to the direction of extrusion.
  • step (a) 7.23 kg of sodium aluminate aqueous solution with 22% by mass in terms of Al 2 O 3 concentration is put into a 100 L (liter) tank with a steam jacket, diluted with 39.8 kg of deionized water, and then P 2 O 5 concentration 4.5 kg of sodium phosphate solution of 2.5% by mass in conversion was added with stirring, and the mixture was heated to 60° C. with stirring to prepare a basic aluminum salt mixed aqueous solution.
  • step (b) Next, the aged alumina hydrate slurry was dehydrated and then washed with 120 L of an ammonia aqueous solution having a concentration of 0.3% by mass.
  • step (c) The washed cake-like slurry was diluted with ion-exchanged water to a concentration of 10% by mass in terms of Al 2 O 3 and slurried. After that, aqueous ammonia having a concentration of 15% by mass was added to adjust the pH to 10.3, and the mixture was aged at 95° C. for 10 hours while stirring.
  • step (d) After aging, the slurry was dewatered, heated while being kneaded by a double-arm kneader with a steam jacket, and concentrated and kneaded to a predetermined moisture content.
  • step (e) After that, the resulting kneaded product was molded into a cylindrical shape with a diameter of 1.6 mm using a screw extruder.
  • step (f) Next, after drying the molding at 110° C. for 12 hours, it was calcined at 500° C. for 3 hours to obtain a carrier C. After drying in step (f), crevasses corresponding to requirements (2) and (3) were not observed on the molding surface.
  • Steps (a)-(d) of the preparation of support C were performed.
  • 60 g of glass fiber chopped strands, product name: CS 3DE-704S, manufactured by Nitto Boseki Co., Ltd.
  • carrier D was obtained in the same procedure as the step (f) of preparation of carrier C.
  • step (f) numerous crevasses corresponding to the requirements (2) and (3) were confirmed on the surface of the molding in a direction substantially perpendicular to the direction of extrusion.
  • Steps (a)-(d) of the preparation of support C were performed.
  • 30 g of quartz wool (coarse grade, manufactured by Tosoh Corporation) was added to the kneaded product obtained in step (d), and the kneaded product was further kneaded for 5 minutes. It was molded into a cylindrical shape.
  • Carrier E was then obtained in the same manner as in step (f) of the preparation of carrier C. After drying in step (f), numerous crevasses corresponding to the requirements (2) and (3) were confirmed on the surface of the molding in a direction substantially perpendicular to the direction of extrusion.
  • Example 1 Preparation of hydrotreating catalyst (Al carrier GF)> 780 ml of the impregnating solution a was spray impregnated into 1000 g of the carrier B, dried at 100 ° C. for 1 hour, and calcined at 500 ° C. for 1 hour to obtain a hydrotreating catalyst (hereinafter simply referred to as "catalyst". The same applies to Examples.) was obtained.
  • Example 2 Preparation of hydrotreating catalyst (Al/P carrier GF)> 1000 g of carrier D was impregnated with 780 ml of impregnating liquid a by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
  • Example 3 Preparation of hydrotreating catalyst (Al/P-supported SiFiber)> 1000 g of carrier E was impregnated with 780 ml of impregnating solution a by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
  • Example 4 Preparation of hydrotreating catalyst (Al carrier GF)> After impregnating 1000 g of the carrier B with 760 ml of the impregnating liquid b by spraying, drying at 100° C. for 1 hour and calcining at 500° C. for 1 hour, a hydrotreating catalyst was obtained.
  • Example 5 Preparation of hydrotreating catalyst (Al/P carrier GF)> 1000 g of carrier D was impregnated with 760 ml of impregnation solution b by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
  • Example 7 Preparation of hydrotreating catalyst (Al carrier GF)> After impregnating 1000 g of the carrier B with 770 ml of the impregnating liquid c by spraying, the resultant was dried at 100° C. for 1 hour and then calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
  • Example 8 Preparation of hydrotreating catalyst (Al/P carrier GF)> 1000 g of carrier D was impregnated with 770 ml of impregnating solution c by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
  • Example 9 Preparation of hydrotreating catalyst (Al/P-supported SiFiber)> 1000 g of carrier E was impregnated with 770 ml of impregnating solution c by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
  • VGO vacuum gas oil
  • the Si trapping ability was evaluated using the following method. (1) After confirmation test for evaluation of catalyst performance, it was operated at 360°C for one year. After the operation was stopped, the catalyst was removed, the catalyst was dried in an oven at 110° C. overnight and washed with toluene in a Soxhlet extractor. The washed catalyst was dried overnight in a drier at 110° C. and calcined at 500° C. for 1 hour. The SiO 2 concentrations of the calcined catalysts were measured and compared.
  • a pre-sulfidation treatment was performed on the filled catalyst in order to desorb and activate the oxygen atoms contained in the catalyst.
  • This treatment was carried out by a conventional method, ie, by passing a liquid or gas containing a sulfur compound through a controlled reaction vessel at a temperature of 200 to 400° C. and under a hydrogen pressure atmosphere of normal pressure to 100 MPa.
  • Heavy oil (dense specific gravity at 15 ° C.: 0.9750, sulfur content: 4.06 mass%, metal (Ni + V) content: 85.1 mass ppm, nitrogen content: 2075 mass ppm , asphaltene content: 4.2% by mass, residual carbon content: 10.7% by mass) were introduced and hydrogenated.
  • the reaction conditions at that time were a hydrogen partial pressure of 13.5 MPa, a liquid hourly space velocity of 0.3 h -1 , a hydrogen oil ratio of 800 Nm 3 /kl, and a reaction temperature of 370°C.
  • the metal content in the produced oil obtained was analyzed, and the demetalization rate was determined by the following equation.
  • Demetalization rate (metal concentration in feedstock - metal concentration in hydrotreated oil/metal concentration in feedstock) x 100
  • Tables 2, 3 and 4 show the results of the confirmation tests described above.
  • Example 4 and Comparative Example 3 use the same raw materials except for the presence or absence of inorganic fibers, and can serve as comparison targets for verifying the effects of the present invention.
  • the calculated deposited SiO 2 was defined as the amount of SiO 2 in the spent minus the amount of catalytic SiO 2 before evaluation.
  • the deposited SiO 2 was 6.96% in Example 4 and 4.44% in Comparative Example 3, showing an improvement of 141% in silicon trapping ability.
  • Examples 5 and 6 and Comparative Example 4 use the same raw materials except for the presence or absence of inorganic fibers.
  • the deposited SiO 2 is 6.57% for Example 5, 5.85% for Example 6 and 4.61% for Comparative Example 4.
  • the silicon trapping ability of Example 5 was improved by 141% compared to Comparative Example 4, and the silicon trapping ability of Example 6 was improved by 127% compared to Comparative Example 4, confirming the effects of the invention.
  • a comparison between Example 1 and Comparative Example 1, and a comparison between Examples 2 and 3 and Comparative Example 2 also showed an improvement in the silicon trapping ability.
  • the hydrotreating catalyst of the present invention is industrially extremely useful because it can highly hydrotreat hydrocarbon oils.

Abstract

[Problem] To provide a hydrotreatment catalyst for hydrocarbon oils that has improved hydrodesulfurization activity, hydrodemetallization ability, and silicon trap ability. [Solution] A hydrotreatment catalyst for hydrocarbon oils that includes an inorganic oxide carrier and an active metal component supported on the inorganic oxide carrier. The active metal component includes a first metal that is at least one from among molybdenum and tungsten, and a second metal that is at least one from among cobalt and nickel. The following requirements (1) to (3) are satisfied in the log differential pore volume distribution measured by the mercury intrusion technique. Requirement (1): dV/d(logD) is at an absolute maximum in the range of pore diameter 5-30 nm. Requirement (2): dV/d(logD) is at a local maximum in the range of pore diameter 2-50 μm. Requirement (3): The ratio of the pore volume in the range of pore diameter 2-50 μm to the total pore volume is 3% or more.

Description

炭化水素油の水素化処理触媒、およびその製造方法Hydrocarbon oil hydrotreating catalyst and method for producing the same
 本発明は、水素存在下で炭化水素油中の硫黄、メタル、シリコンを除去するための水素化処理触媒、およびその製造方法に関する。 The present invention relates to a hydrotreating catalyst for removing sulfur, metal, and silicon in hydrocarbon oil in the presence of hydrogen, and a method for producing the same.
 炭化水素油の水素化処理は、触媒を用いて高温高圧下にて反応を進行させるが、反応条件を低温、低圧下することによりプロセスの経済性が高まるため、触媒の活性が高いことが望まれている。 In the hydrotreating of hydrocarbon oil, the reaction proceeds at high temperature and high pressure using a catalyst, but since the economic efficiency of the process is improved by lowering the reaction conditions at low temperature and pressure, it is desirable that the catalyst has high activity. It is rare.
 水素化処理触媒の調製は、アルミナ等の無機酸化物からなる担体に活性金属となるモリブデン及びコバルト又はニッケル等を含む含浸液を含浸したものを、乾燥、焼成することで得られる。炭化水素油の水素化処理では、この触媒の担持金属を硫黄化合物により硫化し、炭化水素油と高温で反応させることにより水素化と同時に硫黄、メタルの除去を行う。また、原油の採掘から水素化処理プロセスまでの過程で用いられる消泡剤等に含まれるシリコンも、触媒表面に沈着し、水素化処理プロセスにて触媒を失活させるため、除去が求められる。 The hydrotreating catalyst is prepared by impregnating a carrier made of inorganic oxides such as alumina with an impregnating solution containing molybdenum and cobalt or nickel, which are active metals, and drying and calcining the carrier. In the hydrotreating of hydrocarbon oil, the metal supported on the catalyst is sulfurized with a sulfur compound and reacted with the hydrocarbon oil at high temperature to remove sulfur and metal at the same time as hydrogenation. In addition, silicon contained in antifoaming agents and the like used in the process from extraction of crude oil to the hydrotreating process deposits on the catalyst surface and deactivates the catalyst in the hydrotreating process, so its removal is required.
 従来、水素化処理触媒の性能向上のため、触媒の形状、細孔構造について種々の検討がなされてきた(たとえば、特許文献1)。また、非特許文献1の"Hydrodesulfurization Activity of Catalysts with Non-Cylindrical Shape"と題する論文では水素化脱硫活性と触媒の表面が大きく相関することが述べられており、触媒のサイズ、形状の検討による幾何的表面比の向上が活性向上には有効であるといえる。 Conventionally, various studies have been made on the shape and pore structure of the catalyst in order to improve the performance of the hydrotreating catalyst (for example, Patent Document 1). In addition, in the paper entitled " Hydrodesulfurization Activity of Catalysts with Non-Cylindrical Shape" in Non-Patent Document 1, it is stated that the hydrodesulfurization activity and the surface of the catalyst are highly correlated. It can be said that the improvement of the geometric surface ratio by is effective for improving the activity.
 その他、形状やサイズの検討と異なる幾何的表面比を向上させると考えられる手法として、マイクロメートルオーダーのマクロ孔の生成がある。その手法として、触媒担体基材へ、触媒調製における焼成工程で除かれる有機物の粒子(各種デンプン粒、ポリエチレングリコール)を添加することがいくつか報告されている(たとえば、特許文献2および3)。 In addition, there is the generation of micrometer-order macropores as a method that is considered to improve the geometric surface ratio, which is different from the consideration of shape and size. As a method for this, several reports have been made of adding organic particles (various starch granules, polyethylene glycol) that are removed in the baking process in catalyst preparation to the catalyst carrier substrate (for example, Patent Documents 2 and 3).
特表2004-537406号公報Japanese Patent Publication No. 2004-537406 特開2001-270782号公報Japanese Patent Application Laid-Open No. 2001-270782 特開2020-078794号公報JP 2020-078794 A
 従来の水素化処理触媒には、水素化脱硫活性、水素化脱メタル能、およびシリコントラップ能という観点から更なる改善の余地があった。そこで本発明は、炭化水素油の水素化処におけるこれらの性能が向上した触媒を提供することを目的とする。  Conventional hydrotreating catalysts had room for further improvement in terms of hydrodesulfurization activity, hydrodemetalization ability, and silicon trapping ability. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a catalyst with improved performance in the hydrotreating of hydrocarbon oil.
 本発明者らは、鋭意研究したところ、触媒成型担体のマクロ孔構造を制御することで上記の課題を解決できることを見出し、本発明を完成させた。
 本発明は、たとえば以下の[1]~[9]に関する。
As a result of extensive research, the inventors of the present invention have found that the above problems can be solved by controlling the macropore structure of the molded catalyst carrier, and completed the present invention.
The present invention relates to, for example, the following [1] to [9].
 [1]
 無機酸化物担体、および前記無機酸化物担体に担持された活性金属成分を含み、
 前記活性金属成分は、モリブデン及びタングステンの内の少なくとも一方である第1の金属と、コバルト及びニッケルの内の少なくとも一方である第2の金属を含み、
 水銀圧入法で測定したLog微分細孔容積分布において下記要件(1)~(3)が満たされる
炭化水素油の水素化処理触媒。
要件(1):細孔直径5-30nmの範囲でdV/d(logD)が最大となる。
要件(2):細孔直径2-50μmの範囲でdV/d(logD)が極大となる。
要件(3):全細孔容積に対する細孔直径2-50μmの範囲の細孔容積の比率が3%以上である。
[1]
comprising an inorganic oxide support and an active metal component supported on said inorganic oxide support;
the active metal component comprises a first metal that is at least one of molybdenum and tungsten and a second metal that is at least one of cobalt and nickel;
A hydrotreating catalyst for hydrocarbon oils that satisfies the following requirements (1) to (3) in the Log differential pore volume distribution measured by mercury porosimetry.
Requirement (1): dV/d (log D) is maximized in the pore diameter range of 5-30 nm.
Requirement (2): dV/d (log D) is maximized in the pore diameter range of 2-50 μm.
Requirement (3): The ratio of the pore volume with a pore diameter of 2 to 50 μm to the total pore volume is 3% or more.
 [2]
 前記無機酸化物担体が無機酸化物マトリックスおよび無機繊維を含む、前記[1]の炭化水素油の水素化処理触媒。
[2]
The hydrotreating catalyst for hydrocarbon oil according to [1] above, wherein the inorganic oxide support comprises an inorganic oxide matrix and inorganic fibers.
 [3]
 前記無機酸化物担体の前記無機繊維の含有量が0.2~10質量%である、前記[2]の炭化水素油の水素化処理触媒。
[3]
The hydrotreating catalyst for hydrocarbon oil according to [2] above, wherein the inorganic fiber content of the inorganic oxide support is 0.2 to 10% by mass.
 [4]
 前記無機酸化物マトリックスが、アルミニウム、ケイ素、チタン、ホウ素、ジルコニウム、セリウムもしくはリンの酸化物または複合酸化物からなる、前記[2]または[3]の炭化水素油の水素化処理触媒。
[4]
The hydrotreating catalyst for hydrocarbon oil according to the above [2] or [3], wherein the inorganic oxide matrix comprises an oxide or composite oxide of aluminum, silicon, titanium, boron, zirconium, cerium or phosphorus.
 [5]
 前記無機酸化物担体の表面に、最大幅が2μm以上、長さが100μm以上のクラック(以下「クレバス」ともいう。)が3本/mm2以上存在する、前記[1]~[4]のいずれかの炭化水素油の水素化処理触媒。
[5]
The above [1] to [4], wherein the surface of the inorganic oxide support has 3 or more cracks/mm 2 with a maximum width of 2 μm or more and a length of 100 μm or more (hereinafter also referred to as “crevasse”). Any hydrocarbon oil hydrotreating catalyst.
 [6]
 無機酸化物担体、および前記無機酸化物担体に担持された活性金属成分を含み、
 前記活性金属成分は、モリブデン及びタングステンの内の少なくとも一方である第1の金属と、コバルト及びニッケルの内の少なくとも一方である第2の金属を含み、
 前記無機酸化物担体の表面に、最大幅が2μm以上、長さが100μm以上のクレバスが3本/mm2以上存在し、
 水銀圧入法で測定したLog微分細孔容積分布において下記要件(1)が満たされる
炭化水素油の水素化処理触媒。
要件(1):細孔直径5-30nmの範囲でdV/d(logD)が最大となる。
[6]
comprising an inorganic oxide support and an active metal component supported on said inorganic oxide support;
the active metal component comprises a first metal that is at least one of molybdenum and tungsten and a second metal that is at least one of cobalt and nickel;
3 crevasses/mm 2 or more having a maximum width of 2 μm or more and a length of 100 μm or more are present on the surface of the inorganic oxide support,
A hydrotreating catalyst for hydrocarbon oils that satisfies the following requirement (1) in the Log differential pore volume distribution measured by mercury porosimetry.
Requirement (1): dV/d (log D) is maximized in the pore diameter range of 5-30 nm.
 [7]
(1)無機酸化物または前記無機酸化物の前駆体と無機繊維とを混合し、担体原料混合物を調製する工程、
(2)前記担体原料混合物から、押出し成型により成型物を得る工程、
(3)前記成型物を乾燥、焼成し、無機酸化物担体を得る工程と、
(4)モリブデン及びタングステンの内の少なくとも一方である第1の金属成分の原料と、コバルト及びニッケルの内の少なくとも一方である第2の金属成分の原料と、溶媒とを含む含浸液を調製し、前記含浸液を前記無機酸化物担体と接触させて担持物を得る工程、および
(5)前記担持物を加熱処理して水素化処理触媒を得る工程
を有する炭化水素油の水素化処理触媒の製造方法。
[7]
(1) mixing an inorganic oxide or a precursor of the inorganic oxide with an inorganic fiber to prepare a carrier material mixture;
(2) a step of obtaining a molded product by extrusion molding from the carrier raw material mixture;
(3) a step of drying and calcining the molded product to obtain an inorganic oxide carrier;
(4) preparing an impregnating solution containing a raw material for a first metal component that is at least one of molybdenum and tungsten, a raw material for a second metal component that is at least one of cobalt and nickel, and a solvent; , the step of contacting the impregnation liquid with the inorganic oxide support to obtain a supported material, and (5) the step of heat-treating the supported material to obtain a hydrotreatment catalyst. Production method.
 [8]
 前記工程(3)において、乾燥、焼成が50~800℃で行われる、前記[7]の炭化水素油の水素化処理触媒の製造方法。
[8]
The method for producing a hydrotreating catalyst for hydrocarbon oil according to the above [7], wherein drying and calcination are carried out at 50 to 800° C. in the step (3).
 [9]
 前記工程(5)において、加熱処理が50~800℃で行われる、前記[7]または[8]の炭化水素油の水素化処理触媒の製造方法。
[9]
The method for producing a hydrotreating catalyst for hydrocarbon oil according to the above [7] or [8], wherein in the step (5), the heat treatment is performed at 50 to 800°C.
 本発明の炭化水素油の水素化処理触媒は、水素化脱硫活性、水素化脱メタル能、及びシリコントラップ能に優れている。
 また、本発明の炭化水素油の水素化処理触媒の製造方法によれば、水素化脱硫活性、水素化脱メタル能、及びシリコントラップ能に優れた、炭化水素油の水素化処理触媒を製造することができる。
The hydrotreating catalyst for hydrocarbon oil of the present invention is excellent in hydrodesulfurization activity, hydrodemetalization ability, and silicon trapping ability.
Further, according to the method for producing a hydrotreating catalyst for hydrocarbon oil of the present invention, a hydrotreating catalyst for hydrocarbon oil having excellent hydrodesulfurization activity, hydrodemetalization ability, and silicon trapping ability is produced. be able to.
実施例1及び比較例1の触媒の水銀圧入法で測定された細孔分布Pore distribution of the catalysts of Example 1 and Comparative Example 1 measured by mercury porosimetry 実施例1及び比較例1の触媒の水銀圧入法で測定された細孔分布の拡大図Enlarged view of pore size distribution of the catalysts of Example 1 and Comparative Example 1 measured by mercury porosimetry 実施例1の触媒の顕微鏡写真Photomicrograph of the catalyst of Example 1
 以下、本発明をさらに詳細に説明する。
         〔炭化水素油の水素化処理触媒〕
 本発明に係る炭化水素油の水素化処理触媒(以下、単に「水素化処理触媒」ともいう。)は、無機酸化物担体、および前記無機酸化物担体に担持された活性金属成分を含み、水銀圧入法で測定した細孔分布において後述する要件(1)~(3)が満たされることを特徴としている。
The present invention will now be described in more detail.
[Hydrotreatment catalyst for hydrocarbon oil]
The hydrotreating catalyst for hydrocarbon oil according to the present invention (hereinafter also simply referred to as "hydrotreating catalyst") contains an inorganic oxide support and an active metal component supported on the inorganic oxide support, and mercury It is characterized in that requirements (1) to (3), which will be described later, are satisfied in the pore size distribution measured by the indentation method.
 <無機酸化物担体>
 担体を構成する無機酸化物としては、アルミニウム、ケイ素、チタン、ホウ素、ジルコニウム、セリウムもしくはリンの酸化物または複合酸化物が挙げられ、具体的には、例えば、アルミナ、シリカ、チタニア、ボリア、ジルコニア、セリア、リン酸化物、シリカ-アルミナ、アルミナ-チタニア、アルミナ-ジルコニア、アルミナ-ボリア、リン酸化物-アルミナ、シリカ-アルミナ-ボリア、リン酸化物-アルミナ-ボリア、リン酸化物-アルミナ-シリカ、シリカ-アルミナ-チタニア、シリカ-アルミナ-ジルコニアが挙げられ、好ましくはアルミナ、またはアルミナを主成分とするアルミニウムと他の元素との複合酸化物が挙げられる。れらは1種単独であっても2種以上であってもよい。
<Inorganic oxide carrier>
Inorganic oxides constituting the carrier include oxides or composite oxides of aluminum, silicon, titanium, boron, zirconium, cerium or phosphorus. Specific examples include alumina, silica, titania, boria and zirconia. , ceria, phosphorous oxide, silica-alumina, alumina-titania, alumina-zirconia, alumina-boria, phosphorous oxide-alumina, silica-alumina-boria, phosphorous oxide-alumina-boria, phosphorous oxide-alumina-silica , silica-alumina-titania, and silica-alumina-zirconia, preferably alumina or a composite oxide of aluminum containing alumina as a main component and other elements. These may be used singly or in combination of two or more.
 前記無機酸化物担体は、たとえば後述する製造方法により製造される場合には、前記無機酸化物からなるマトリックス成分と無機繊維とを含んでいる。
 前記無機酸化物担体における前記無機繊維の含有量は、好ましくは0.2~10質量%、より好ましくは0.5~5質量%である。
The inorganic oxide carrier contains a matrix component made of the inorganic oxide and inorganic fibers, for example, when produced by the production method described below.
The content of the inorganic fibers in the inorganic oxide support is preferably 0.2 to 10% by mass, more preferably 0.5 to 5% by mass.
 前記無機繊維の好ましい態様等については、後述する水素化処理触媒の製造方法の説明の中で詳述する。
 <活性金属成分>
 無機複合酸化物担体上には、活性金属成分が担持されている。前記活性金属成分は、活性金属種として、モリブデン及びタングステンのうちの少なくとも一方である第1の金属、ならびにコバルト及びニッケルのうちの少なくとも一方である第2の金属を含む。したがって、前記担体上には、例えば第1の金属であるモリブデンと、第2の金属であるコバルトとを含む活性金属成分が担持される。活性金属成分としては、第1の金属および第2の金属を含む酸化物が挙げられる。
Preferred aspects of the inorganic fibers will be described in detail in the description of the method for producing a hydrotreating catalyst, which will be described later.
<Active metal component>
An active metal component is supported on the inorganic composite oxide support. The active metal component includes, as active metal species, a first metal that is at least one of molybdenum and tungsten, and a second metal that is at least one of cobalt and nickel. Accordingly, an active metal component including, for example, molybdenum as a first metal and cobalt as a second metal is supported on the support. Active metal components include oxides comprising a first metal and a second metal.
 第1の金属は、モリブデンであってもよく、タングステンであってもよく、モリブデン及びタングステンの両方であってもよく、好ましくはモリブデンである。本発明の触媒中の第1の金属成分の含有量(担持量)は、処理する原料油の性状により適宜変更することができ、酸化物(すなわちMoO3、WO3)換算で、たとえば10~30質量%、好ましくは15~22質量%である。 The first metal may be molybdenum, tungsten, or both molybdenum and tungsten, preferably molybdenum. The content (supported amount) of the first metal component in the catalyst of the present invention can be appropriately changed depending on the properties of the feedstock to be treated. 30% by mass, preferably 15 to 22% by mass.
 第1の金属の含有量が前記下限値以上であると、本発明の触媒は、良好な脱硫活性を発揮する。第1の金属の含有量が前記上限値以下であると、第1の金属の凝集を防ぎ、良好な分散性を得られる。 When the content of the first metal is at least the lower limit, the catalyst of the present invention exhibits good desulfurization activity. When the content of the first metal is equal to or less than the upper limit, aggregation of the first metal can be prevented and good dispersibility can be obtained.
 第2の金属は、コバルトであってもよく、ニッケルであってもよく、コバルト及びニッケルの両方であってもよい。本発明の触媒中の第2の金属成分の含有量(担持量)は、処理する原料油の性状により適宜変更することができ、酸化物(すなわち、CoO、NiO)換算で、たとえば2.0~10.0質量%、好ましくは2.0~8.0質量%である。 The second metal may be cobalt, nickel, or both cobalt and nickel. The content (supported amount) of the second metal component in the catalyst of the present invention can be appropriately changed depending on the properties of the feedstock to be treated. ~10.0% by mass, preferably 2.0 to 8.0% by mass.
 第2の金属は、第1の金属に対して助触媒として働く。第2の金属の含有量が前記下限値以上であると、活性金属種である第1の金属及び第2の金属が適切な構造を保つことができる。 The second metal acts as a promoter for the first metal. When the content of the second metal is equal to or higher than the lower limit, the first metal and the second metal, which are active metal species, can maintain an appropriate structure.
 <任意成分>
 本発明の水素化処理触媒には、上述した成分の他に、その製造過程で使用されることのある有機酸に由来する炭素、リン、ホウ素などが含まれていてもよい。
<Optional component>
In addition to the components described above, the hydrotreating catalyst of the present invention may contain carbon, phosphorus, boron, etc. derived from organic acids that may be used in the production process.
 (水素化処理触媒)
 本発明の水素化処理触媒は、無機酸化物担体、および前記無機酸化物担体に担持された活性金属成分を含み、水銀圧入法(水銀の接触角:130°、表面張力:480dyn/cm)で測定したLog微分細孔容積分布において以下の要件(1)~(3)を満たす。
要件(1):細孔直径5-30nmの範囲でdV/d(logD)が最大となる。
要件(2):細孔直径2-50μm(2000-50000nm)の範囲でdV/d(logD)が極大となる。
要件(3):全細孔容積に対する細孔直径2-50μm(2000-50000nm)の範囲の細孔容積の比率が3%以上である。
(hydrotreating catalyst)
The hydrotreating catalyst of the present invention contains an inorganic oxide support and an active metal component supported on the inorganic oxide support, and is processed by a mercury intrusion method (contact angle of mercury: 130°, surface tension: 480 dyn/cm). The measured Log differential pore volume distribution satisfies the following requirements (1) to (3).
Requirement (1): dV/d (log D) is maximized in the pore diameter range of 5-30 nm.
Requirement (2): dV/d (log D) is maximized in the pore diameter range of 2-50 μm (2000-50000 nm).
Requirement (3): The ratio of pore volume with pore diameters in the range of 2-50 μm (2000-50000 nm) to the total pore volume is 3% or more.
 要件(1)は、本発明の水素化処理触媒が、一般的な水素化処理触媒と同様にメソ細孔を有することを表している。
 要件(2)は、本発明の水素化処理触媒が、その表面に、図3に示すような特徴的なクレバスを有することを表している。細孔直径2μm(2000nm)以上の範囲にdV/d(logD)のピーク(極大点)が存在すると、水素化処理触媒は、水素化脱硫活性、水素化脱メタル能、およびシリコントラップ能に優れる。また、細孔直径50μm(50000nm)以下の範囲にdV/d(logD)のピーク(極大点)が存在すると、水素化処理触媒は、高い強度を有する。このピーク(極大点)の値は、たとえば0.02cc/g以上である。
Requirement (1) expresses that the hydrotreating catalyst of the present invention has mesopores like a typical hydrotreating catalyst.
Requirement (2) expresses that the hydrotreating catalyst of the present invention has characteristic crevasses on its surface as shown in FIG. When a peak (maximum point) of dV/d (log D) exists in a range of pore diameters of 2 μm (2000 nm) or more, the hydrotreating catalyst has excellent hydrodesulfurization activity, hydrodemetalization ability, and silicon trapping ability. . Moreover, when the peak (maximum point) of dV/d (log D) exists in the range of pore diameters of 50 μm (50000 nm) or less, the hydrotreating catalyst has high strength. The value of this peak (maximum point) is, for example, 0.02 cc/g or more.
 また、要件(3)は、前記クレバスによる孔の容積が、水素化処理触媒全体の細孔容積に対して一定の割合を占めることを表している。
 本発明の水素化処理触媒は、要件(2)および(3)により表されるクレバスを有することから、従来技術と比べて、触媒容積表面比が飛躍的に向上しており、水素化脱硫活性、脱メタル能、シリコントラップ能等の、触媒の表面と相関がある触媒性能が向上している。
Requirement (3) expresses that the volume of the pores due to the crevasses occupies a constant ratio with respect to the pore volume of the entire hydrotreating catalyst.
Since the hydrotreating catalyst of the present invention has crevices represented by the requirements (2) and (3), the catalyst volume surface ratio is dramatically improved compared to the conventional technology, and the hydrodesulfurization activity , demetallization ability, silicon trapping ability, etc., which are correlated with the surface of the catalyst, are improved.
 また、触媒に多数のクレバスが存在することで、成型体のサイズ、形状を変更するよりも格段に触媒容積表面比が向上することが期待でき、有機物添加物の添加で形成したマクロ孔を有する触媒よりも触媒の内側への反応油の拡散性が良いことが期待できる。 In addition, the presence of many crevasses in the catalyst can be expected to significantly improve the catalyst volume surface ratio compared to changing the size and shape of the molded body, and has macropores formed by adding organic additives. It can be expected that the diffusibility of the reaction oil to the inside of the catalyst is better than that of the catalyst.
 前記無機酸化物担体の表面(担体を押出成型によって製造する場合には、押出方向に対して垂直な方向を向く表面)には、好ましくは、最大幅が2μm以上、長さが100μm以上のクレバスが3本/mm2以上、より好ましくは最大幅が10μm以上、長さが100μm以上のクレバスが5本/mm2以上(上限は、たとえば50本/mm2)存在する。これらの値は、水素化処理触媒のSEM画像に基づいて計測することができる。 The surface of the inorganic oxide carrier (the surface facing the direction perpendicular to the extrusion direction when the carrier is produced by extrusion molding) preferably has a crevasse having a maximum width of 2 μm or more and a length of 100 μm or more. is 3 crevasses/mm 2 or more, more preferably 5 crevasses/mm 2 or more (the upper limit is, for example, 50 crevasses/mm 2 ) having a maximum width of 10 μm or more and a length of 100 μm or more. These values can be measured based on SEM images of the hydroprocessing catalyst.
 本発明の水素化処理触媒の、下記方法により測定される圧壊強度は、通常5N/mm以上、好ましくは8N/mm以上、より好ましくは10N/mm以上である。圧壊強度がこの範囲にあると、触媒が充填する際に壊れて反応時に偏流または圧損を生じさせることを抑制できる。 The hydrotreating catalyst of the present invention has a crushing strength of usually 5 N/mm or more, preferably 8 N/mm or more, more preferably 10 N/mm or more, as measured by the method described below. When the crushing strength is within this range, it is possible to prevent the catalyst from breaking during filling and causing drift or pressure loss during the reaction.
 <圧壊強度の測定方法>
 前処理として試料(水素化処理触媒)を500℃で1時間焼成し、室温までデシケーターにて冷却したものの中から、長さ4mm以上の試料40個以上を木屋式硬度計(圧縮子3.18mm)を用いて圧縮し、破砕された時の加圧荷重を求めて次式により圧壊強度を算出する。
<Method for measuring crushing strength>
As a pretreatment, the sample (hydrotreatment catalyst) was calcined at 500 ° C. for 1 hour and cooled to room temperature in a desiccator. ) to obtain the pressurized load at the time of crushing, and calculate the crushing strength by the following equation.
   圧壊強度(N/mm)=(S×9.807(m/s2))/(L×n)
  (Sは加圧荷重の総和(kg)、Lは圧縮子の直径(3.18mm)、nは測定個数を表す。)
 また、本発明の水素化処理触媒の別の態様は、
 無機酸化物担体、および前記無機酸化物担体に担持された活性金属成分を含み、
 前記活性金属成分は、モリブデン及びタングステンの内の少なくとも一方である第1の金属と、コバルト及びニッケルの内の少なくとも一方である第2の金属を含み、
 前記無機酸化物担体の表面に、最大幅が2μm以上、長さが100μm以上のクレバスが3本/mm2以上存在し、
 水銀圧入法で測定したLog微分細孔容積分布において上記要件(1)が満たされる炭化水素油の水素化処理触媒である。
Crushing strength (N/mm) = (S x 9.807 (m/s 2 ))/(L x n)
(S is the sum of applied loads (kg), L is the diameter of the compressor (3.18 mm), and n is the number of measurements.)
Another aspect of the hydrotreating catalyst of the present invention is
comprising an inorganic oxide support and an active metal component supported on said inorganic oxide support;
the active metal component comprises a first metal that is at least one of molybdenum and tungsten and a second metal that is at least one of cobalt and nickel;
3 crevasses/mm 2 or more having a maximum width of 2 μm or more and a length of 100 μm or more are present on the surface of the inorganic oxide support,
The hydrotreating catalyst for hydrocarbon oil satisfies the above requirement (1) in terms of log differential pore volume distribution measured by mercury porosimetry.
 無機酸化物担体、活性金属成分およびクレバスの詳細は上述のとおりである。
       〔炭化水素油の水素化処理触媒の製造方法〕
 本発明の炭化水素油の水素化処理触媒の製造方法は、
(1)無機酸化物または前記無機酸化物の前駆体と無機繊維とを混合し、担体原料混合物を調製する工程、
(2)前記担体原料混合物から、押出し成型により成型物を得る工程、
(3)前記成型物を乾燥、焼成し、無機酸化物担体を得る工程と、
(4)モリブデン及びタングステンの内の少なくとも一方である第1の金属成分の原料と、コバルト及びニッケルの内の少なくとも一方である第2の金属成分の原料と、溶媒とを含む含浸液を調製し、前記含浸液を前記無機酸化物担体と接触させて担持物を得る工程、および
(5)前記担持物を加熱処理して水素化処理触媒を得る工程
を有することを特徴としている。
Details of the inorganic oxide support, active metal component and crevasses are provided above.
[Method for producing hydrotreating catalyst for hydrocarbon oil]
The method for producing a hydrotreating catalyst for hydrocarbon oil of the present invention comprises:
(1) mixing an inorganic oxide or a precursor of the inorganic oxide with an inorganic fiber to prepare a carrier material mixture;
(2) a step of obtaining a molded product by extrusion molding from the carrier raw material mixture;
(3) a step of drying and calcining the molded product to obtain an inorganic oxide carrier;
(4) preparing an impregnating solution containing a raw material for a first metal component that is at least one of molybdenum and tungsten, a raw material for a second metal component that is at least one of cobalt and nickel, and a solvent; A step of contacting the impregnating solution with the inorganic oxide support to obtain a support, and (5) a step of heat-treating the support to obtain a hydrotreating catalyst.
 以下、各工程について説明する。
 <工程(1)>
 工程(1)は、無機酸化物またはその前駆体と無機繊維とを混合し、担体原料混合物を調製する工程である。
Each step will be described below.
<Step (1)>
Step (1) is a step of mixing inorganic oxides or precursors thereof with inorganic fibers to prepare a mixture of carrier raw materials.
 無機酸化物前駆体は従来公知の方法で製造することができる。以下にその一例を挙げる。
 先ず塩基性金属塩水溶液と酸性金属塩の水溶液を、混合して無機酸化物前駆体(水和物)のスラリーを得る。塩基性アルミニウム塩としては、アルミン酸ナトリウム、アルミン酸カリウムなどが好適に使用される。また、酸性アルミニウム塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウムなどが好適に使用される。複合酸化物の前駆体の調製の場合、シリカ源としては珪酸アルカリとして珪酸ナトリウム水溶液や珪酸ナトリウムのヒドロゲルが、リン酸塩源としては亜リン酸イオンを包含し、リン酸アンモニア、リン酸カリウム、リン酸ナトリウム、リン酸、亜リン酸などの水中でリン酸イオンを生じるリン酸化合物が使用可能である。また、チタン鉱酸塩としては、四塩化チタン、三塩化チタン、硫酸チタン、硫酸チタニル、硝酸チタンなどが例示され、特に硫酸チタン、硫酸チタニルは安価であるので好適に使用される。
An inorganic oxide precursor can be manufactured by a conventionally well-known method. An example is given below.
First, a basic metal salt aqueous solution and an acidic metal salt aqueous solution are mixed to obtain a slurry of an inorganic oxide precursor (hydrate). As basic aluminum salts, sodium aluminate, potassium aluminate and the like are preferably used. As the acidic aluminum salt, aluminum sulfate, aluminum chloride, aluminum nitrate and the like are preferably used. In the case of preparation of a composite oxide precursor, the silica source includes an aqueous solution of sodium silicate and a hydrogel of sodium silicate as an alkali silicate, and the phosphate source includes phosphite ions such as ammonium phosphate, potassium phosphate, Phosphate compounds that generate phosphate ions in water, such as sodium phosphate, phosphoric acid, and phosphorous acid, can be used. Examples of titanium mineral salts include titanium tetrachloride, titanium trichloride, titanium sulfate, titanyl sulfate, and titanium nitrate. Titanium sulfate and titanyl sulfate are particularly preferred because they are inexpensive.
 その後、スラリーの脱水処理を行った後、温水、例えば濃度0.3質量%のアンモニア水溶液でスラリーを洗浄する。そして洗浄後のケーキ状スラリーに対してイオン交換水を加えてスラリー化し、熟成工程を行う。熟成工程では、例えば得られたスラリーに有機酸水溶液、アンモニア水等を添加して、例えばpH9.5~10.5に調製し、還流器付の熟成タンク内において、撹拌しながら30℃以上、好ましくは80~100℃で、例えば1~20時間、好ましくは2~15時間加熱熟成する。 After that, after the slurry is dehydrated, the slurry is washed with warm water, for example, an ammonia aqueous solution with a concentration of 0.3% by mass. Then, ion-exchanged water is added to the cake-like slurry after washing to form a slurry, and an aging process is performed. In the aging step, for example, an aqueous organic acid solution, aqueous ammonia, etc. are added to the obtained slurry to adjust the pH to, for example, 9.5 to 10.5. Heat aging is preferably carried out at 80 to 100° C. for 1 to 20 hours, preferably 2 to 15 hours.
 前記熟成工程で得られた熟成物をスチームジャケット付双腕式ニーダーに入れて加熱捏和して、無機酸化物前駆体が得られる。
 前記無機繊維の例としてはガラス繊維、シリカ繊維、アルミナ繊維、アルミナシリカ繊維、ロックウール、炭素繊維が挙げられる。
The aged product obtained in the aging step is placed in a double-arm kneader with a steam jacket and heated and kneaded to obtain an inorganic oxide precursor.
Examples of the inorganic fibers include glass fibers, silica fibers, alumina fibers, alumina silica fibers, rock wool, and carbon fibers.
 前記無機繊維の平均径は、好ましくは0.1~20μm、より好ましくは5~10μmである。平均径が上記下限値以上であると、触媒担体表面にクレバスを生じさせることができ、平均径が上記上限値以下であると押出成型を容易に行うことができる。 The average diameter of the inorganic fibers is preferably 0.1-20 μm, more preferably 5-10 μm. When the average diameter is at least the above lower limit, crevasses can be formed on the surface of the catalyst carrier, and when the average diameter is at most the above upper limit, extrusion molding can be easily performed.
 また前記無機繊維の平均長は、好ましくは0.1mm以上、より好ましくは0.5以上であり、上限はたとえば5mmであってもよい。平均長が上記下限値以上であると、押出成型時に無機繊維を略押出方向に配向させることができる。 In addition, the average length of the inorganic fibers is preferably 0.1 mm or more, more preferably 0.5 or more, and the upper limit may be 5 mm, for example. When the average length is at least the above lower limit, the inorganic fibers can be oriented substantially in the extrusion direction during extrusion molding.
 これら平均径および平均長は、たとえば、SEM画像上で、無作為に選んだ100本の無機繊維の直径および長さをそれぞれ測定し、算術平均値を求めることにより、決定することができる。 These average diameter and average length can be determined, for example, by measuring the diameter and length of 100 randomly selected inorganic fibers on the SEM image and calculating the arithmetic mean value.
 前記無機繊維は、得られる無機酸化物担体中の量が、たとえば0.2~10質量%、好ましくは0.5~5質量%となるような量で用いられる。無機繊維の量が上記下限値以上であると、触媒担体表面にクレバスを生じさせることができ、無機繊維の量が上記上限値以下であると押出成型を容易に行うことができ、また強度の高い触媒を得ることができる。 The inorganic fiber is used in an amount such that the amount in the obtained inorganic oxide carrier is, for example, 0.2 to 10% by mass, preferably 0.5 to 5% by mass. When the amount of the inorganic fibers is at least the above lower limit, crevasses can be formed on the surface of the catalyst carrier, and when the amount of the inorganic fibers is at most the above upper limit, extrusion molding can be easily carried out, and strength is increased. A high catalyst can be obtained.
 工程(1)では、前記無機酸化物または前記無機酸化物前駆体(好ましくは前記無機酸化物前駆体)と前記無機繊維とが混合され、担体原料混合物が得られる。混合には、従来公知の装置、たとえばスチームジャケット付双腕式ニーダーを使用することができる。 In step (1), the inorganic oxide or the inorganic oxide precursor (preferably the inorganic oxide precursor) and the inorganic fiber are mixed to obtain a carrier raw material mixture. For mixing, a conventionally known device such as a steam-jacketed dual-arm kneader can be used.
 <工程(2)>
 工程(2)は、工程(1)で得られた前記担体原料混合物から、押出し成型により成型物を得る工程である。
<Step (2)>
Step (2) is a step of obtaining a molded product by extrusion molding from the carrier raw material mixture obtained in step (1).
 押出し成型は、原料として工程(1)で得られた前記担体原料混合物を用いる点を除いて、従来公知の方法で行うことができる。押出し成型の好ましい条件は以下のとおりである。 Extrusion molding can be carried out by a conventionally known method, except that the carrier raw material mixture obtained in step (1) is used as a raw material. Preferred conditions for extrusion molding are as follows.
 無機繊維が配合された前記担体原料混合物を押し出すことにより、無機繊維が略押出方向に配向した成型体が得られ、これを次の工程(3)で乾燥させることにより、成型体表面には、押出方向に対して略垂直な方向に多数のクレバスが形成される。 By extruding the carrier raw material mixture containing the inorganic fibers, a molded body in which the inorganic fibers are oriented substantially in the direction of extrusion is obtained, which is dried in the next step (3). Numerous crevasses are formed in a direction generally perpendicular to the direction of extrusion.
 成型体の形状としては、水素化処理触媒で一般的に用いられる形状、たとえば円筒、三葉、四葉などの形状が挙げられる。
 成型体の大きさは、たとえば水素化処理触媒の製造に用いられる成型体の一般的な大きさであってもよい。円筒形の成型体を例に挙げると、その直径はたとえば1mm~10mm、その長さはたとえば、2~50mmである。
The shape of the molded body includes shapes commonly used in hydrotreating catalysts, such as cylindrical, three-lobed and four-lobed shapes.
The size of the shaped body may be, for example, the typical size of shaped bodies used in the production of hydrotreating catalysts. Taking a cylindrical molding as an example, its diameter is, for example, 1 mm to 10 mm, and its length is, for example, 2 to 50 mm.
 <工程(3)>
 工程(3)は、工程(2)で得られた前記成型物を乾燥、焼成し、無機酸化物担体を得る工程である。
<Step (3)>
Step (3) is a step of drying and firing the molding obtained in step (2) to obtain an inorganic oxide carrier.
 この乾燥および焼成は、通常50~800℃で行われる。より具体的には、大気雰囲気中で前記成型物を、たとえば50~200℃、好ましくは75~150℃で、たとえば0.5~24時間、好ましくは6~18時間加熱処理することにより乾燥させ、次いでたとえば350~800℃、好ましくは400~600℃で、たとえば0.5~10時間、好ましくは2~5時間加熱処理することにより焼成して、無機酸化物担体が得られる。 This drying and firing is usually performed at 50-800°C. More specifically, the molding is dried by heat-treating it in an air atmosphere at, for example, 50 to 200° C., preferably 75 to 150° C., for example, for 0.5 to 24 hours, preferably 6 to 18 hours. Then, it is calcined by heat treatment at, for example, 350 to 800° C., preferably 400 to 600° C., for 0.5 to 10 hours, preferably 2 to 5 hours, to obtain an inorganic oxide support.
 <工程(4)>
 工程(4)は、第1の金属成分の原料と第2の金属成分の原料と溶媒とを含む含浸液を調製し、前記含浸液を工程(3)で得られた前記無機酸化物担体と接触させて担持物を得る工程である。
<Step (4)>
In the step (4), an impregnation solution containing a raw material for the first metal component, a raw material for the second metal component, and a solvent is prepared, and the impregnation solution is combined with the inorganic oxide support obtained in the step (3). This is a step of contacting to obtain a carrier.
 第1の金属成分と第2の金属成分の詳細は上述のとおりである。
 第1の金属成分の原料としては、例えば、三酸化モリブデン、モリブデン酸アンモニウム、メタタングステン酸アンモニウム、パラタングステン酸アンモニウム、三酸化タングステン好ましい。また第2の金属成分の原料としては、例えば、硝酸ニッケル、炭酸ニッケル、硝酸コバルト、炭酸コバルトが好ましい。
The details of the first metal component and the second metal component are as described above.
Preferred raw materials for the first metal component include, for example, molybdenum trioxide, ammonium molybdate, ammonium metatungstate, ammonium paratungstate, and tungsten trioxide. Preferred materials for the second metal component include, for example, nickel nitrate, nickel carbonate, cobalt nitrate, and cobalt carbonate.
 溶媒は、通常、水である。
 前記含浸液は、さらにリン成分を含んでいてもよい。前記リン成分としては、オルトリン酸(以下、単に「リン酸」ともいう)、リン酸二水素アンモニウム、リン酸水素二アンモニウム、トリメタリン酸、ピロリン酸、トリポリリン酸などが好ましい。
The solvent is usually water.
The impregnation liquid may further contain a phosphorus component. Preferred examples of the phosphorus component include orthophosphoric acid (hereinafter also simply referred to as “phosphoric acid”), ammonium dihydrogen phosphate, diammonium hydrogen phosphate, trimetaphosphoric acid, pyrophosphoric acid, and tripolyphosphoric acid.
 含浸液中のリンの濃度は、酸化物(P25)換算で、好ましくは0.5~5.0質量%である。
 前記含浸液は、さらに有機酸を含んでいてもよい。有機酸としては、例えば、クエン酸、リンゴ酸、酒石酸、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)が挙げられる。
The concentration of phosphorus in the impregnating solution is preferably 0.5 to 5.0% by mass in terms of oxide (P 2 O 5 ).
The impregnation liquid may further contain an organic acid. Organic acids include, for example, citric acid, malic acid, tartaric acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA).
 また有機酸に加えて有機添加剤を用いてもよく、有機添加剤としては、糖類(単糖類、二糖類、多糖類等)が挙げられる。具体的には、例えば、ブドウ糖(グルコース;C6126)、果糖(フルクトース;C6126)、麦芽糖(マルトース;C122211)、乳糖(ラクトース;C122211)、ショ糖(スクロース;C122211)等を加えてもよい。 Organic additives may be used in addition to organic acids, and examples of organic additives include saccharides (monosaccharides, disaccharides, polysaccharides, etc.). Specifically, for example, glucose (glucose; C 6 H 12 O 6 ), fructose (fructose; C 6 H 12 O 6 ), maltose (maltose; C 12 H 22 O 11 ), lactose (lactose; C 12 H 22 O 11 ), sucrose (sucrose; C 12 H 22 O 11 ), etc. may be added.
 前記含浸液は、前記各成分を常法により混合することにより調製できる。
 調製された前記含浸液は、無機酸化物担体と接触させることにより、無機酸化物担体に含浸され、含浸液が含浸された無機酸化物担体(以下「担持物」とも記載する。)が得られる。
The impregnating liquid can be prepared by mixing the above components by a conventional method.
The prepared impregnating solution is brought into contact with an inorganic oxide carrier to impregnate the inorganic oxide carrier to obtain an inorganic oxide carrier impregnated with the impregnating solution (hereinafter also referred to as "support"). .
 前記含浸液に含まれる各成分の量は、所望の組成の水素化処理触媒が得られるように、適宜設定すればよい。
 <工程(5)>
 工程(5)は、工程(4)で得られた前記担持物を加熱処理して水素化処理触媒を得る工程である。
The amount of each component contained in the impregnating liquid may be appropriately set so as to obtain a hydrotreating catalyst having a desired composition.
<Step (5)>
Step (5) is a step of heat-treating the support obtained in step (4) to obtain a hydrotreating catalyst.
 この加熱処理は、通常50~800℃で行われる。より具体的には、大気雰囲気中で前記担持物を、たとえば50~200℃、好ましくは75~150℃で、たとえば0.5~24時間、好ましくは0.5~4.0時間加熱処理することにより乾燥させ、次いでたとえば350~800℃、好ましくは400~600℃で、たとえば0.5~5.0時間、好ましくは0.5~2.0時間加熱処理することにより焼成し、無機酸化物担体に活性金属成分が担持されてなる本発明の水素化処理触媒が得られる。 This heat treatment is usually performed at 50-800°C. More specifically, the support is heat-treated in an air atmosphere at, for example, 50 to 200° C., preferably 75 to 150° C., for example, for 0.5 to 24 hours, preferably 0.5 to 4.0 hours. and then calcined by heat treatment at, for example, 350 to 800° C., preferably 400 to 600° C., for example, for 0.5 to 5.0 hours, preferably 0.5 to 2.0 hours, to perform inorganic oxidation. The hydrotreating catalyst of the present invention is obtained in which an active metal component is supported on a metal carrier.
          [炭化水素油の水素化処理]
 炭化水素油である軽質油または重質油と水素とを、高温高圧雰囲気下で、本発明の炭化水素油の水素化処理触媒の存在下で接触させることにより、脱硫、脱窒素、脱メタル、水素化分解などの反応を進行させることができる。反応装置に水素化処理触媒を充填する際には、反応装置の入口部分に、夾雑物、または触媒の被毒物を除去するためのガード触媒、トラップ剤などを設置してもよい。
[Hydrotreatment of hydrocarbon oil]
Desulfurization, denitrification, demetallization, desulfurization, denitrification, demetallization, and Reactions such as hydrogenolysis can proceed. When the reactor is filled with a hydrotreating catalyst, a guard catalyst, a trapping agent, or the like for removing contaminants or catalyst poisoning substances may be installed at the inlet of the reactor.
 軽質油の例としてはナフサ、灯油、軽質軽油(Light Gas Oil、LGO)、重質軽油(Heavy Gas Oil、HGO)、減圧軽油(Vacuum Gas Oil、VGO)などが挙げられ、重質油の例としては常圧残油(Atmospheric Residue、AR)、減圧残油(Vacuum Residue、VR)などが挙げられる。 Examples of light oil include naphtha, kerosene, light gas oil (LGO), heavy gas oil (HGO), vacuum gas oil (VGO), etc. Examples of heavy oil Examples include atmospheric residue (AR), vacuum residue (VR) and the like.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 [測定方法]
 各種測定は以下のように行った。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.
[Measuring method]
Various measurements were performed as follows.
 <触媒のシリカの含有量の測定方法>
 触媒を500℃で1時間焼成後デシケーター内で放冷して得られた試料3gを、容量30mlの蓋付きジルコニアボールに採取し、加熱処理(200℃、20分)させ、焼成(700℃、5分)した後、Na22を2gおよびNaOHを1g加えて15分間溶融した。さらに、H2SO4を25mlおよび水を200ml加えて溶解したのち、純水で500mlになるよう希釈して試料とした。得られた試料について、ICP装置(島津製作所(株)製、ICPS-8100、解析ソフトウェアICPS-8000)を用いて、ケイ素の含有量を酸化物換算基準(SiO2)で測定した。
<Method for measuring the content of silica in the catalyst>
3 g of a sample obtained by calcining the catalyst at 500 ° C. for 1 hour and then allowing it to cool in a desiccator was collected in a zirconia ball with a lid of 30 ml, heat-treated (200 ° C., 20 minutes), and calcined (700 ° C., 5 minutes), 2 g of Na 2 O 2 and 1 g of NaOH were added and melted for 15 minutes. Further, 25 ml of H 2 SO 4 and 200 ml of water were added and dissolved, and then diluted to 500 ml with pure water to obtain a sample. The obtained sample was measured for silicon content in terms of oxide (SiO 2 ) using an ICP apparatus (ICPS-8100, analysis software ICPS-8000, manufactured by Shimadzu Corporation).
 <スペント触媒のシリカの含有量の測定方法>
 Siトラップ評価用に運転後の触媒を取り出し、洗浄、焼成後の触媒を500℃で1時間焼成後デシケーター内で放冷して得られた試料3gを、容量30mlの蓋付きジルコニアボールに採取し、加熱処理(200℃、20分)させ、焼成(700℃、5分)した後、Na22を2gおよびNaOHを1g加えて15分間溶融した。さらに、H2SO4を25mlおよび水を200ml加えて溶解したのち、純水で500mlになるよう希釈して試料とした。得られた試料について、ICP装置(島津製作所(株)製、ICPS-8100、解析ソフトウェアICPS-8000)を用いて、ケイ素の含有量を酸化物換算基準(SiO2)で測定した。
<Method for measuring silica content of spent catalyst>
For Si trap evaluation, the catalyst after operation was taken out, and after washing and calcining, the catalyst was calcined at 500° C. for 1 hour and allowed to cool in a desiccator. , heat treatment (200° C., 20 minutes) and firing (700° C., 5 minutes), then 2 g of Na 2 O 2 and 1 g of NaOH were added and melted for 15 minutes. Further, 25 ml of H 2 SO 4 and 200 ml of water were added and dissolved, and then diluted to 500 ml with pure water to obtain a sample. The obtained sample was measured for silicon content in terms of oxide (SiO 2 ) using an ICP apparatus (ICPS-8100, analysis software ICPS-8000, manufactured by Shimadzu Corporation).
 <細孔分布測定>
 実施例および比較例で製造された触媒について、水銀圧入法により細孔分布測定を行った。
<Pore size distribution measurement>
The pore size distribution of the catalysts produced in Examples and Comparative Examples was measured by mercury porosimetry.
 [水素化処理触媒の製造]
 (担体の調製)
 <担体Aの調製(Al担体)>
 工程(a)
 容量が100L(リットル)のスチームジャケット付のタンクに、Al23濃度換算で22質量%のアルミン酸ナトリウム水溶液9.09kgを入れ、イオン交換水で希釈して40.00kgとした。次いで、この溶液に濃度26質量%のグルコン酸ナトリウム水溶液230.8gを加え、撹拌しながら60℃に加温し、濃度5質量%のアルミン酸ナトリウム・グルコン酸ナトリウム混合溶液を得た。別途、濃度がAl23換算で7質量%の硫酸アルミニウム水溶液14.29kgを室温でイオン交換水25.71kgで希釈した後60℃に加温して、希釈硫酸アルミニウム水溶液を調製した。次に、前記濃度5質量%のアルミン酸ナトリウム・グルコン酸ナトリウム混合溶液を撹拌しながら、これに前記希釈硫酸アルミニウム水溶液を一定速度で10分間かけて添加して、Al23として濃度が3.8質量%のアルミナ水和物スラリーを調製した。このとき、スラリーのpHは7.2であった。アルミナ水和物スラリーを、その後、撹拌しながら60℃で60分間熟成した。
[Production of hydrotreating catalyst]
(Preparation of carrier)
<Preparation of carrier A (Al carrier)>
step (a)
9.09 kg of an aqueous sodium aluminate solution having a 22% by mass Al 2 O 3 concentration conversion was put into a 100 L (liter) tank with a steam jacket and diluted with deionized water to make 40.00 kg. Next, 230.8 g of an aqueous sodium gluconate solution having a concentration of 26% by mass was added to this solution, and the mixture was heated to 60° C. with stirring to obtain a sodium aluminate/sodium gluconate mixed solution having a concentration of 5% by mass. Separately, 14.29 kg of an aluminum sulfate aqueous solution having a concentration of 7% by mass in terms of Al 2 O 3 was diluted with 25.71 kg of deionized water at room temperature and then heated to 60° C. to prepare a diluted aluminum sulfate aqueous solution. Next, while stirring the mixed solution of sodium aluminate/sodium gluconate having a concentration of 5% by mass, the diluted aluminum sulfate aqueous solution was added thereto at a constant rate over 10 minutes to obtain Al 2 O 3 having a concentration of 3. A 0.8 wt% alumina hydrate slurry was prepared. At this time, the pH of the slurry was 7.2. The alumina hydrate slurry was then aged at 60° C. for 60 minutes with stirring.
 工程(b)
 次いで、熟成したアルミナ水和物スラリーを、脱水した後、濃度0.3質量%のアンモニア水溶液1.5Lで洗浄した。
step (b)
Next, the aged alumina hydrate slurry was dehydrated and then washed with 1.5 L of an ammonia aqueous solution having a concentration of 0.3% by mass.
 工程(c)
 洗浄後のケーキ状のスラリーを、濃度がAl23換算で10質量%になるようにイオン交換水で希釈してスラリー化した後、濃度15質量%のアンモニア水を添加してpH10.2に調整し、撹拌しながら95℃で10時間熟成した。
step (c)
The cake-like slurry after washing is diluted with ion-exchanged water so that the concentration becomes 10% by mass in terms of Al 2 O 3 to form a slurry, and then ammonia water having a concentration of 15% by mass is added to pH 10.2. and aged at 95° C. for 10 hours while stirring.
 工程(d)
 熟成終了後のスラリーを、脱水し、スチームジャケット付双腕式ニーダーにて練りながら加温しアルミナ濃度が20%以上となるまで濃縮した。得られた濃縮物に、リンゴ酸を10質量%溶液として0.30kg添加し、その後にさらに加温して所定の水分まで濃縮捏和した。
step (d)
After aging, the slurry was dewatered, heated while being kneaded by a double-arm kneader with a steam jacket, and concentrated until the alumina concentration reached 20% or more. 0.30 kg of a 10% by mass solution of malic acid was added to the obtained concentrate, and then the mixture was further heated and concentrated and kneaded to a predetermined moisture content.
 工程(e)
 その後、得られた捏和物をスクリュー式押し出し機で直径が1.6mmの円柱状に成型した。
step (e)
After that, the resulting kneaded product was molded into a cylindrical shape with a diameter of 1.6 mm using a screw extruder.
 工程(f)
 次いで、成型物を110℃で12時間乾燥した後、500℃で3時間焼成して担体Aを得た。工程(f)の乾燥後、成型物表面には要件(2)および(3)に対応するクレバスは確認されなかった。
step (f)
Next, after drying the molding at 110° C. for 12 hours, it was calcined at 500° C. for 3 hours to obtain a carrier A. After drying in step (f), crevasses corresponding to the requirements (2) and (3) were not observed on the molding surface.
 <担体Bの調製(Al担体GF)>
 担体Aの調製の工程(a)~(d)を行った。工程(d)で得られた捏和物にガラス繊維(チョップドストランド、品種名: CS 3DE-704S、(株)日東紡績製)60gを添加し、さらに5分間混錬し、混錬物をスクリュー式押し出し機で直径が1.6mmの円柱状に成型した。次いで担体Aの調製の工程(f)と同様の手順で担体Bを得た。工程(f)の乾燥後、成型物表面には、押出方向と略垂直方向に要件(2)および(3)に対応する多数のクレバスが確認された。
<Preparation of Carrier B (Al Carrier GF)>
Steps (a) to (d) of the preparation of carrier A were performed. 60 g of glass fiber (chopped strands, product name: CS 3DE-704S, manufactured by Nitto Boseki Co., Ltd.) was added to the kneaded product obtained in step (d), kneaded for another 5 minutes, and the kneaded product was screwed. It was molded into a cylindrical shape with a diameter of 1.6 mm using a type extruder. Subsequently, carrier B was obtained in the same procedure as the step (f) of preparation of carrier A. After drying in step (f), numerous crevasses corresponding to the requirements (2) and (3) were confirmed on the surface of the molding in a direction substantially perpendicular to the direction of extrusion.
 <担体Cの調製(Al/P担体)>
 工程(a)
 容量が100L(リットル)のスチームジャケット付のタンクに、Al23濃度換算で22質量%のアルミン酸ナトリウム水溶液7.23kgを入れ、イオン交換水39.8kgで希釈後、P25濃度換算で2.5質量%のリン酸ナトリウム溶液4.5kgを撹拌しながら添加し、混合物を撹拌しながら60℃に加温して、塩基性アルミニウム塩混合水溶液を作製した。また、Al23濃度換算で7質量%の硫酸アルミニウム水溶液11.37kgを、イオン交換水20.46kgで希釈した後、60℃に加温して、希釈硫酸アルミニウム水溶液を調製した。
<Preparation of Carrier C (Al/P Carrier)>
step (a)
7.23 kg of sodium aluminate aqueous solution with 22% by mass in terms of Al 2 O 3 concentration is put into a 100 L (liter) tank with a steam jacket, diluted with 39.8 kg of deionized water, and then P 2 O 5 concentration 4.5 kg of sodium phosphate solution of 2.5% by mass in conversion was added with stirring, and the mixture was heated to 60° C. with stirring to prepare a basic aluminum salt mixed aqueous solution. Also, 11.37 kg of an aluminum sulfate aqueous solution having a concentration of 7% by mass in terms of Al 2 O 3 concentration was diluted with 20.46 kg of ion-exchanged water, and then heated to 60° C. to prepare a diluted aluminum sulfate aqueous solution.
 次に、前記塩基性アルミニウム塩混合水溶液をタンク内で撹拌しながら、ローラーポンプを用いて前記希釈硫酸アルミニウム水溶液を一定速度で10分間かけて添加し、リン及びアルミナを含有する水和物スラリーAを調製した。この水和物スラリーAを、その後、撹拌しながら60℃で60分間熟成した。 Next, while stirring the basic aluminum salt mixed aqueous solution in a tank, the diluted aluminum sulfate aqueous solution was added at a constant rate over 10 minutes using a roller pump to obtain a hydrate slurry A containing phosphorus and alumina. was prepared. This Hydrate Slurry A was then aged at 60° C. for 60 minutes with stirring.
 工程(b)
 次いで、熟成したアルミナ水和物スラリーを、脱水した後、濃度0.3質量%のアンモニア水溶液120Lで洗浄した。
step (b)
Next, the aged alumina hydrate slurry was dehydrated and then washed with 120 L of an ammonia aqueous solution having a concentration of 0.3% by mass.
 工程(c)
 洗浄後のケーキ状のスラリーを、濃度がAl23換算で10質量%になるようにイオン交換水で希釈してスラリー化した後、クエン酸の10質量%水溶液で0.50kgを加え、その後に濃度15質量%のアンモニア水を添加してpH10.3に調整し、撹拌しながら95℃で10時間熟成した。
step (c)
The washed cake-like slurry was diluted with ion-exchanged water to a concentration of 10% by mass in terms of Al 2 O 3 and slurried. After that, aqueous ammonia having a concentration of 15% by mass was added to adjust the pH to 10.3, and the mixture was aged at 95° C. for 10 hours while stirring.
 工程(d)
 熟成終了後のスラリーを、脱水し、スチームジャケット付双腕式ニーダーにて練りながら加温し所定の水分量まで濃縮捏和した。
step (d)
After aging, the slurry was dewatered, heated while being kneaded by a double-arm kneader with a steam jacket, and concentrated and kneaded to a predetermined moisture content.
 工程(e)
 その後、得られた捏和物をスクリュー式押し出し機で直径が1.6mmの円柱状に成型した。
step (e)
After that, the resulting kneaded product was molded into a cylindrical shape with a diameter of 1.6 mm using a screw extruder.
 工程(f)
 次いで、成型物を110℃で12時間乾燥した後、500℃で3時間焼成して担体Cを得た。工程(f)の乾燥後、成型物表面には、要件(2)および(3)に対応するクレバスは確認されなかった。
step (f)
Next, after drying the molding at 110° C. for 12 hours, it was calcined at 500° C. for 3 hours to obtain a carrier C. After drying in step (f), crevasses corresponding to requirements (2) and (3) were not observed on the molding surface.
 <担体Dの調製(Al/P担体GF)>
 担体Cの調製の工程(a)~(d)を行った。工程(d)で得られた捏和物にガラス繊維(チョップドストランド、品種名: CS 3DE-704S、(株)日東紡績製)60gを添加し、さらに5分間混錬し、混錬物をスクリュー式押し出し機で直径が1.6mmの円柱状に成型した。次いで担体Cの調製の工程(f)と同様の手順で担体Dを得た。工程(f)の乾燥後、成型物表面には、押出方向と略垂直方向に要件(2)および(3)に対応する多数のクレバスが確認された。
<Preparation of Carrier D (Al/P Carrier GF)>
Steps (a)-(d) of the preparation of support C were performed. 60 g of glass fiber (chopped strands, product name: CS 3DE-704S, manufactured by Nitto Boseki Co., Ltd.) was added to the kneaded product obtained in step (d), kneaded for another 5 minutes, and the kneaded product was screwed. It was molded into a cylindrical shape with a diameter of 1.6 mm using a type extruder. Subsequently, carrier D was obtained in the same procedure as the step (f) of preparation of carrier C. After drying in step (f), numerous crevasses corresponding to the requirements (2) and (3) were confirmed on the surface of the molding in a direction substantially perpendicular to the direction of extrusion.
 <担体Eの調製(Al/P担体SiFiber)>
 担体Cの調製の工程(a)~(d)を行った。工程(d)で得られた捏和物に石英ウール(コースグレード、東ソー(株)製)30gを添加し、さらに5分間混錬し、混錬物をスクリュー式押し出し機で直径が1.6mmの円柱状に成型した。次いで担体Cの調製の工程(f)と同様の手順で担体Eを得た。工程(f)の乾燥後、成型物表面には、押出方向と略垂直方向に要件(2)および(3)に対応する多数のクレバスが確認された。
<Preparation of Carrier E (Al/P Carrier SiFiber)>
Steps (a)-(d) of the preparation of support C were performed. 30 g of quartz wool (coarse grade, manufactured by Tosoh Corporation) was added to the kneaded product obtained in step (d), and the kneaded product was further kneaded for 5 minutes. It was molded into a cylindrical shape. Carrier E was then obtained in the same manner as in step (f) of the preparation of carrier C. After drying in step (f), numerous crevasses corresponding to the requirements (2) and (3) were confirmed on the surface of the molding in a direction substantially perpendicular to the direction of extrusion.
 (含浸液の調製)
 <含浸液aの調製>
 三酸化モリブデン205gと炭酸コバルト63.0gと炭酸ニッケル23.3gを、イオン交換水700mlに懸濁させ、85%リン酸41.6gをゆっくり添加した。この懸濁液を90℃で1時間液容量が減少しないように適当な還流装置を施して加熱した後、クエン酸77gを加えて5分間撹拌し、次いで放冷し溶液を濾過することにより780mlの含浸液aを得た。同様の操作を複数回繰り返し、複数の含浸液aを調製した。
(Preparation of impregnation liquid)
<Preparation of impregnation liquid a>
205 g of molybdenum trioxide, 63.0 g of cobalt carbonate and 23.3 g of nickel carbonate were suspended in 700 ml of deionized water, and 41.6 g of 85% phosphoric acid was slowly added. After heating this suspension at 90° C. for 1 hour with a suitable reflux apparatus so as not to reduce the liquid volume, 77 g of citric acid was added and stirred for 5 minutes. to obtain an impregnation liquid a. The same operation was repeated multiple times to prepare multiple impregnating liquids a.
 <含浸液bの調製>
 三酸化モリブデン116gと炭酸ニッケル42.3gを、イオン交換水700mlに懸濁させ、85%リン酸41.6gをゆっくり加えた。この懸濁液を90℃で1時間液容量が減少しないように適当な還流装置を施して加熱した後、放冷後し、溶液を濾過することにより760mlの含浸液bを得た。同様の操作を複数回繰り返し、複数の含浸液bを調製した。
<Preparation of impregnation liquid b>
116 g of molybdenum trioxide and 42.3 g of nickel carbonate were suspended in 700 ml of deionized water, and 41.6 g of 85% phosphoric acid was slowly added. This suspension was heated at 90° C. for 1 hour with a suitable reflux apparatus so as not to reduce the volume of the suspension, allowed to cool, and filtered to obtain 760 ml of impregnation solution b. The same operation was repeated multiple times to prepare multiple impregnating liquids b.
 <含浸液cの調製>
 三酸化モリブデン115gと炭酸ニッケル65.7gを、イオン交換水700mlに懸濁させ、85%リン酸41.6gをゆっくり加えた。この懸濁液を90℃で1時間液容量が減少しないように適当な還流装置を施して加熱した後、放冷後、溶液を濾過することにより770mlの含浸液cを得た。同様の操作を複数回繰り返し、複数の含浸液cを調製した。
<Preparation of impregnation liquid c>
115 g of molybdenum trioxide and 65.7 g of nickel carbonate were suspended in 700 ml of deionized water, and 41.6 g of 85% phosphoric acid was slowly added. This suspension was heated at 90° C. for 1 hour with a suitable reflux apparatus so as not to reduce the volume of the suspension, and after cooling, the solution was filtered to obtain 770 ml of impregnation solution c. The same operation was repeated multiple times to prepare multiple impregnating liquids c.
 (触媒の調製)
 <実施例1:水素化処理触媒(Al担体GF)の調製>
 1000gの担体Bに780mlの含浸液aを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒(以下、単に「触媒」ともいう。以下の実施例についても同様である。)を得た。
(Preparation of catalyst)
<Example 1: Preparation of hydrotreating catalyst (Al carrier GF)>
780 ml of the impregnating solution a was spray impregnated into 1000 g of the carrier B, dried at 100 ° C. for 1 hour, and calcined at 500 ° C. for 1 hour to obtain a hydrotreating catalyst (hereinafter simply referred to as "catalyst". The same applies to Examples.) was obtained.
 <実施例2:水素化処理触媒(Al/P担体GF)の調製>
 1000gの担体Dに780mlの含浸液aを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Example 2: Preparation of hydrotreating catalyst (Al/P carrier GF)>
1000 g of carrier D was impregnated with 780 ml of impregnating liquid a by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 <実施例3:水素化処理触媒(Al/P担体SiFiber)の調製>
 1000gの担体Eに780mlの含浸液aを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Example 3: Preparation of hydrotreating catalyst (Al/P-supported SiFiber)>
1000 g of carrier E was impregnated with 780 ml of impregnating solution a by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 <実施例4:水素化処理触媒(Al担体GF)の調製>
 1000gの担体Bに760mlの含浸液bを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Example 4: Preparation of hydrotreating catalyst (Al carrier GF)>
After impregnating 1000 g of the carrier B with 760 ml of the impregnating liquid b by spraying, drying at 100° C. for 1 hour and calcining at 500° C. for 1 hour, a hydrotreating catalyst was obtained.
 <実施例5:水素化処理触媒(Al/P担体GF)の調製>
 1000gの担体Dに760mlの含浸液bを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Example 5: Preparation of hydrotreating catalyst (Al/P carrier GF)>
1000 g of carrier D was impregnated with 760 ml of impregnation solution b by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 <実施例6:水素化処理触媒(Al/P担体SiFiber)の調製>
 1000gの担体Eに760mlの含浸液bを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Example 6: Preparation of hydrotreating catalyst (Al/P-supported SiFiber)>
1000 g of carrier E was impregnated with 760 ml of impregnating solution b by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 <実施例7:水素化処理触媒(Al担体GF)の調製>
 1000gの担体Bに770mlの含浸液cを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Example 7: Preparation of hydrotreating catalyst (Al carrier GF)>
After impregnating 1000 g of the carrier B with 770 ml of the impregnating liquid c by spraying, the resultant was dried at 100° C. for 1 hour and then calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 <実施例8:水素化処理触媒(Al/P担体GF)の調製>
 1000gの担体Dに770mlの含浸液cを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Example 8: Preparation of hydrotreating catalyst (Al/P carrier GF)>
1000 g of carrier D was impregnated with 770 ml of impregnating solution c by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 <実施例9:水素化処理触媒(Al/P担体SiFiber)の調製>
 1000gの担体Eに770mlの含浸液cを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Example 9: Preparation of hydrotreating catalyst (Al/P-supported SiFiber)>
1000 g of carrier E was impregnated with 770 ml of impregnating solution c by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 <比較例1:水素化処理触媒(Al担体)の調製>
 1000gの担体Aに780mlの含浸液aを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒(以下、単に「触媒」ともいう。以下の比較例についても同様である。)を得た。
<Comparative Example 1: Preparation of hydrotreating catalyst (Al support)>
780 ml of the impregnating solution a was spray impregnated into 1000 g of the carrier A, dried at 100 ° C. for 1 hour, and then calcined at 500 ° C. for 1 hour to obtain a hydrotreating catalyst (hereinafter simply referred to as "catalyst". The same applies to the comparative example.) was obtained.
 <比較例2:水素化処理触媒(Al/P担体)の調製>
 1000gの担体Cに780mlの含浸液aを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Comparative Example 2: Preparation of hydrotreating catalyst (Al/P carrier)>
1000 g of carrier C was impregnated with 780 ml of impregnating liquid a by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 <比較例3:水素化処理触媒(Al担体)の調製>
 1000gの担体Aに760mlの含浸液bを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Comparative Example 3: Preparation of hydrotreating catalyst (Al support)>
1000 g of carrier A was impregnated with 760 ml of impregnating solution b by spraying, dried at 100° C. for 1 hour, and then calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 <比較例4:水素化処理触媒(Al/P担体)の調製>
 1000gの担体Cに760mlの含浸液bを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Comparative Example 4: Preparation of hydrotreating catalyst (Al/P carrier)>
1000 g of carrier C was impregnated with 760 ml of impregnating solution b by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 <比較例5:水素化処理触媒(Al担体)の調製>
 1000gの担体Aに770mlの含浸液cを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Comparative Example 5: Preparation of hydrotreating catalyst (Al support)>
1000 g of carrier A was impregnated with 770 ml of impregnating liquid c by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 <比較例6:水素化処理触媒(Al/P担体)の調製>
 1000gの担体Cに770mlの含浸液cを噴霧含浸させた後、100℃で1時間乾燥後、500℃で1時間焼成することで水素化処理触媒を得た。
<Comparative Example 6: Preparation of hydrotreating catalyst (Al/P carrier)>
1000 g of carrier C was impregnated with 770 ml of impregnating liquid c by spraying, dried at 100° C. for 1 hour, and calcined at 500° C. for 1 hour to obtain a hydrotreating catalyst.
 実施例および比較例で得られた各触媒の細孔分布測定の結果(以下の(a)~(c))を表に示す。
(a)細孔直径5-30nmの範囲内でdV/d(logD)が最大となる細孔直径
(b)細孔直径2-50μmの範囲内でdV/d(logD)が極大となる細孔直径
(c)全細孔容積に対する細孔直径2-50μmの範囲の細孔容積の比率
The results of pore size distribution measurement ((a) to (c) below) of each catalyst obtained in Examples and Comparative Examples are shown in the table.
(a) the pore diameter with the maximum dV/d (logD) within the pore diameter range of 5-30 nm (b) the pore diameter with the maximum dV/d (logD) within the range of 2-50 μm Pore diameter (c) Ratio of pore volume in the range of pore diameter 2-50 μm to total pore volume
Figure JPOXMLDOC01-appb-T000001
 表1中、「ガラス繊維」の列の「〇」は、担体の原料にガラス繊維が使用されたことを表す。
Figure JPOXMLDOC01-appb-T000001
In Table 1, "◯" in the "glass fiber" column indicates that glass fiber was used as the raw material of the carrier.
 また、「SiO2Fib」の列の「〇」は、担体の原料に石英ウールが使用されたことを表す。
 表1に示すとおり、実施例1~9の触媒には、Log微分細孔容積分布において、細孔直径5-30nmの範囲にdV/d(logD)の最大点が存在し、かつ細孔直径2-50μm(2000-50000nm)の範囲にもdV/d(logD)の極大点が存在した。また、細孔直径2-50μm(2000-50000nm)の範囲の細孔容積は、全体の細孔容積の3%以上であった。さらに、実施例1の触媒の顕微鏡写真(図3)に示されるような、成型時の押出し方向と略垂直方向に走る多数のクレバスが確認された。
In addition, "o" in the "SiO 2 Fib" column indicates that quartz wool was used as the raw material of the carrier.
As shown in Table 1, in the catalysts of Examples 1 to 9, the maximum point of dV/d (log D) exists in the pore diameter range of 5 to 30 nm in the Log differential pore volume distribution, and the pore diameter There was also a maximum point of dV/d (log D) in the range of 2-50 μm (2000-50000 nm). In addition, the pore volume with a pore diameter of 2-50 μm (2000-50000 nm) was 3% or more of the total pore volume. Furthermore, as shown in the photomicrograph of the catalyst of Example 1 (Fig. 3), many crevasses running in a direction substantially perpendicular to the extrusion direction during molding were confirmed.
 一方、比較例1~6の触媒には、Log微分細孔容積分布において、細孔直径5-30nmの範囲にdV/d(logD)の最大点が存在したが、細孔直径2-50μm(2000-50000nm)の範囲には極大点は存在しなかった。また、細孔直径2-50μm(2000-50000nm)の範囲の細孔容積は、全体の細孔容積の3%未満であった。担体の表面に、実施例で観察されたようなクレバスは確認されなかった。 On the other hand, in the catalysts of Comparative Examples 1 to 6, the maximum point of dV/d (log D) was present in the pore diameter range of 5 to 30 nm in the Log differential pore volume distribution, but the pore diameter of 2 to 50 μm ( 2000-50000 nm), there was no maximum point. Also, the pore volume in the pore diameter range of 2-50 μm (2000-50000 nm) was less than 3% of the total pore volume. No crevasses observed in the examples were observed on the surface of the carrier.
 [触媒性能の評価]
 (1)減圧軽油処理用触媒性能の評価のための確認試験
 実施例および比較例で製造された各触媒を固定床反応装置に充填し、触媒に含まれている酸素原子を脱離させて活性化するために、予備硫化処理した。この処理は、硫黄化合物を含む液体または気体を200℃~400℃の温度、常圧~100MPaの水素圧雰囲気下の管理された反応容器中で流通させることによって行われた。
[Evaluation of catalyst performance]
(1) Verification test for evaluation of catalyst performance for vacuum gas oil treatment The catalysts produced in Examples and Comparative Examples were packed in a fixed bed reactor, and the oxygen atoms contained in the catalyst were eliminated to activate it. It was pre-sulfurized for curing. This treatment was carried out by circulating a liquid or gas containing a sulfur compound in a controlled reaction vessel at a temperature of 200° C. to 400° C. and under a hydrogen pressure atmosphere of normal pressure to 100 MPa.
 次いで、固定床流通式反応装置内に触媒を充填し、減圧軽油(VGO)(15℃における密度0.9314g/cm3、硫黄分2.73質量%)を水素化処理した。その際の反応条件は液空間速度1.50h-1、水素分圧4.5MPa、水素油比200Nm3/klで、350-380℃の範囲で温度条件を変化させ、生成油中の硫黄分が、0.18%になる温度をそれぞれ求めた。 Next, a fixed-bed flow reactor was filled with a catalyst, and vacuum gas oil (VGO) (density at 15° C. 0.9314 g/cm 3 , sulfur content 2.73% by mass) was hydrotreated. The reaction conditions at that time were a liquid space velocity of 1.50 h −1 , a hydrogen partial pressure of 4.5 MPa, a hydrogen oil ratio of 200 Nm 3 / kl, and a temperature condition of 350 to 380 ° C. is 0.18%.
 (2)Siトラップ剤としての評価のための確認試験
 各触媒を固定床反応装置に充填し、触媒に含まれている酸素原子を脱離させて活性化するために、予備硫化処理した。この処理は、硫黄化合物を含む液体または気体を200℃~400℃の温度、常圧~100MPaの水素圧雰囲気下の管理された反応容器中で流通させることによって行われた。
(2) Confirmation Test for Evaluation as Si Trap Agent Each catalyst was packed in a fixed bed reactor and presulfurized to desorb oxygen atoms contained in the catalyst for activation. This treatment was carried out by circulating a liquid or gas containing a sulfur compound in a controlled reaction vessel at a temperature of 200° C. to 400° C. and under a hydrogen pressure atmosphere of normal pressure to 100 MPa.
 Siトラップ能の評価は以下の手法を用いて実施した。(1)触媒性能の評価のための確認試験後に360℃にて1年間運転を行った。運転を停止後、触媒を取り出し、触媒を110℃の乾燥機で一晩乾燥し、ソックスレー抽出機によりトルエンを用いて洗浄した。洗浄後の触媒を110℃の乾燥機で一晩乾燥し、500℃にて1h焼成処理を行った。焼成後の触媒のSiO2濃度を測定し、比較した。 The Si trapping ability was evaluated using the following method. (1) After confirmation test for evaluation of catalyst performance, it was operated at 360°C for one year. After the operation was stopped, the catalyst was removed, the catalyst was dried in an oven at 110° C. overnight and washed with toluene in a Soxhlet extractor. The washed catalyst was dried overnight in a drier at 110° C. and calcined at 500° C. for 1 hour. The SiO 2 concentrations of the calcined catalysts were measured and compared.
 (3)脱メタル触媒としての評価のための確認試験
 市販の脱メタル触媒、トランジション触媒、及び各実施例又は比較例で製造された水素化処理触媒を固定床流通式反応装置(触媒充填容積350ml)に以下の順番に充填した。
(3) Confirmation test for evaluation as a demetalization catalyst A commercially available demetalization catalyst, a transition catalyst, and a hydrotreating catalyst produced in each example or comparative example were placed in a fixed bed flow reactor (catalyst packed volume: 350 ml). ) were filled in the following order.
  市販の脱メタル触媒CDS-RS110(日揮触媒化成(株)製)を35ml
  市販の脱メタル触媒CDS-RS210(日揮触媒化成(株)製)を35ml
  市販のトランジション触媒CDS-RS420(日揮触媒化成(株)製)を70ml
  各実施例又は比較例で製造された水素化処理触媒を210ml。
35 ml of commercially available demetalization catalyst CDS-RS110 (manufactured by Nikki Shokubai Kasei Co., Ltd.)
35 ml of commercially available demetalization catalyst CDS-RS210 (manufactured by Nikki Shokubai Kasei Co., Ltd.)
70 ml of commercially available transition catalyst CDS-RS420 (manufactured by Nikki Shokubai Kasei Co., Ltd.)
210 ml of the hydrotreating catalyst produced in each example or comparative example.
 充填した触媒に対し、触媒に含まれている酸素原子を脱離させて活性化するために、予備硫化処理を行った。この処理は、常法により、すなわち硫黄化合物を含む液体または気体を200~400℃の温度、常圧~100MPaの水素圧雰囲気下の管理された反応容器中で流通させることによって行った。 A pre-sulfidation treatment was performed on the filled catalyst in order to desorb and activate the oxygen atoms contained in the catalyst. This treatment was carried out by a conventional method, ie, by passing a liquid or gas containing a sulfur compound through a controlled reaction vessel at a temperature of 200 to 400° C. and under a hydrogen pressure atmosphere of normal pressure to 100 MPa.
 固定床流通式反応装置内に、重質油(15℃における密比重:0.9750、硫黄分:4.06質量%、メタル(Ni+V)分:85.1質量ppm、窒素分:2075質量ppm、アスファルテン分:4.2質量%、残留炭素分:10.7質量%)を導入して水素化処理を行なった。その際の反応条件は、水素分圧が13.5MPa、液空間速度が0.3h-1、水素油比が800Nm3/kl、反応温度が370℃であった。得られる生成油中のメタル分の分析を行い、脱メタル率は次式により求めた。 Heavy oil (dense specific gravity at 15 ° C.: 0.9750, sulfur content: 4.06 mass%, metal (Ni + V) content: 85.1 mass ppm, nitrogen content: 2075 mass ppm , asphaltene content: 4.2% by mass, residual carbon content: 10.7% by mass) were introduced and hydrogenated. The reaction conditions at that time were a hydrogen partial pressure of 13.5 MPa, a liquid hourly space velocity of 0.3 h -1 , a hydrogen oil ratio of 800 Nm 3 /kl, and a reaction temperature of 370°C. The metal content in the produced oil obtained was analyzed, and the demetalization rate was determined by the following equation.
   脱メタル率=(原料油中のメタル濃度-水素化処理生成油中のメタル濃度/原料油中のメタル濃度)×100
 以上の確認試験の結果を表2、3および4に示す。
Demetalization rate = (metal concentration in feedstock - metal concentration in hydrotreated oil/metal concentration in feedstock) x 100
Tables 2, 3 and 4 show the results of the confirmation tests described above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 (確認試験の評価結果)
 (1)減圧軽油処理用触媒性能評価結果
 実施例1と比較例1は、無機繊維の有無を除いて同一の原料が使用されており、本発明の効果を検証する比較対象となり得る。0.18%到達温度は、実施例1で359.6℃、比較例1で363.4℃と3.8℃の反応温度低下が見られ発明の効果が確認できる。同様に実施例2、3を比較例2と比較すると、3.9~4.9℃の反応温度低下が見られ発明の効果が確認できた。
Figure JPOXMLDOC01-appb-T000004
(Evaluation result of confirmation test)
(1) Result of Evaluation of Catalyst Performance for Vacuum Gas Oil Processing Example 1 and Comparative Example 1 use the same raw materials except for the presence or absence of inorganic fibers, and can serve as comparison targets for verifying the effects of the present invention. The temperature reached 0.18% was 359.6°C in Example 1 and 363.4°C in Comparative Example 1, showing a decrease in reaction temperature of 3.8°C, confirming the effect of the invention. Similarly, when Examples 2 and 3 were compared with Comparative Example 2, a decrease in reaction temperature of 3.9 to 4.9° C. was observed, confirming the effect of the invention.
 (2)シリコントラップ剤としての性能評価結果
 実施例4と比較例3は、無機繊維の有無を除いて同一の原料が使用されており、本発明の効果を検証する比較対象となり得る。スペントにおけるSiO2量から評価前の触媒SiO2量を差し引いた値を堆積SiO2計算値と定義した。堆積SiO2は実施例4で6.96%、比較例3で4.44%でありシリコントラップ能として、141%の向上が見られた。
(2) Performance Evaluation Results as a Silicon Trap Agent Example 4 and Comparative Example 3 use the same raw materials except for the presence or absence of inorganic fibers, and can serve as comparison targets for verifying the effects of the present invention. The calculated deposited SiO 2 was defined as the amount of SiO 2 in the spent minus the amount of catalytic SiO 2 before evaluation. The deposited SiO 2 was 6.96% in Example 4 and 4.44% in Comparative Example 3, showing an improvement of 141% in silicon trapping ability.
 実施例5、6と比較例4とは、無機繊維の有無を除いて同一の原料が使用されている。堆積SiO2は実施例5で6.57%、実施例6で5.85%、比較例4は4.61%である。実施例5は比較例4と比較し141%、実施例6は比較例4と比較して127%のシリコントラップ能向上が見られ、発明の効果が確認できた。実施例1と比較例1との対比、実施例2、3と比較例2との対比からもシリコントラップ能向上が見られた。 Examples 5 and 6 and Comparative Example 4 use the same raw materials except for the presence or absence of inorganic fibers. The deposited SiO 2 is 6.57% for Example 5, 5.85% for Example 6 and 4.61% for Comparative Example 4. The silicon trapping ability of Example 5 was improved by 141% compared to Comparative Example 4, and the silicon trapping ability of Example 6 was improved by 127% compared to Comparative Example 4, confirming the effects of the invention. A comparison between Example 1 and Comparative Example 1, and a comparison between Examples 2 and 3 and Comparative Example 2 also showed an improvement in the silicon trapping ability.
 (3)脱メタル用触媒評価結果
 表4の結果から、実施例7~9の触媒の脱メタル率は、比較例5、6の触媒よりも脱メタル率が高いことが判る。実施例1と比較例1との対比、実施例2、3と比較例2との対比からも脱メタル率の向上が確認された。
(3) Demetalization Catalyst Evaluation Results From the results in Table 4, it can be seen that the demetalization rates of the catalysts of Examples 7-9 are higher than those of the catalysts of Comparative Examples 5 and 6. A comparison between Example 1 and Comparative Example 1, and a comparison between Examples 2 and 3 and Comparative Example 2 also confirmed an improvement in the demetalization rate.
 本発明の水素化処理触媒は、炭化水素油を高度に水素化処理することができるため産業上きわめて有用である。 The hydrotreating catalyst of the present invention is industrially extremely useful because it can highly hydrotreat hydrocarbon oils.

Claims (9)

  1.  無機酸化物担体、および前記無機酸化物担体に担持された活性金属成分を含み、
     前記活性金属成分は、モリブデン及びタングステンの内の少なくとも一方である第1の金属と、コバルト及びニッケルの内の少なくとも一方である第2の金属を含み、
     水銀圧入法で測定したLog微分細孔容積分布において下記要件(1)~(3)が満たされる
    炭化水素油の水素化処理触媒。
    要件(1):細孔直径5-30nmの範囲でdV/d(logD)が最大となる。
    要件(2):細孔直径2-50μmの範囲でdV/d(logD)が極大となる。
    要件(3):全細孔容積に対する細孔直径2-50μmの範囲の細孔容積の比率が3%以上である。
    comprising an inorganic oxide support and an active metal component supported on said inorganic oxide support;
    the active metal component comprises a first metal that is at least one of molybdenum and tungsten and a second metal that is at least one of cobalt and nickel;
    A hydrotreating catalyst for hydrocarbon oils that satisfies the following requirements (1) to (3) in the Log differential pore volume distribution measured by mercury porosimetry.
    Requirement (1): dV/d (log D) is maximized in the pore diameter range of 5-30 nm.
    Requirement (2): dV/d (log D) is maximized in the pore diameter range of 2-50 μm.
    Requirement (3): The ratio of the pore volume with a pore diameter of 2 to 50 μm to the total pore volume is 3% or more.
  2.  前記無機酸化物担体が無機酸化物マトリックスおよび無機繊維を含む、請求項1に記載の炭化水素油の水素化処理触媒。 The hydrotreating catalyst for hydrocarbon oil according to claim 1, wherein the inorganic oxide support comprises an inorganic oxide matrix and inorganic fibers.
  3.  前記無機酸化物担体の前記無機繊維の含有量が0.2~10質量%である、請求項2に記載の炭化水素油の水素化処理触媒。 The hydrotreating catalyst for hydrocarbon oil according to claim 2, wherein the inorganic fiber content of the inorganic oxide support is 0.2 to 10% by mass.
  4.  前記無機酸化物マトリックスが、アルミニウム、ケイ素、チタン、ホウ素、ジルコニウム、セリウムもしくはリンの酸化物または複合酸化物からなる、請求項2または3に記載の炭化水素油の水素化処理触媒。 The hydrotreating catalyst for hydrocarbon oils according to claim 2 or 3, wherein the inorganic oxide matrix consists of oxides or composite oxides of aluminum, silicon, titanium, boron, zirconium, cerium or phosphorus.
  5.  前記無機酸化物担体の表面に、最大幅が2μm以上、長さが100μm以上のクレバスが3本/mm2以上存在する、請求項1~4のいずれか一項に記載の炭化水素油の水素化処理触媒。 The hydrogen of the hydrocarbon oil according to any one of claims 1 to 4, wherein crevasses having a maximum width of 2 μm or more and a length of 100 μm or more are present on the surface of the inorganic oxide support at least 3 crevasses/mm 2 . chemical treatment catalyst.
  6.  無機酸化物担体、および前記無機酸化物担体に担持された活性金属成分を含み、
     前記活性金属成分は、モリブデン及びタングステンの内の少なくとも一方である第1の金属と、コバルト及びニッケルの内の少なくとも一方である第2の金属を含み、
     前記無機酸化物担体の表面に、最大幅が2μm以上、長さが100μm以上のクレバスが3本/mm2以上存在し、
     水銀圧入法で測定したLog微分細孔容積分布において下記要件(1)が満たされる
    炭化水素油の水素化処理触媒。
    要件(1):細孔直径5-30nmの範囲でdV/d(logD)が極大となる。
    comprising an inorganic oxide support and an active metal component supported on said inorganic oxide support;
    the active metal component comprises a first metal that is at least one of molybdenum and tungsten and a second metal that is at least one of cobalt and nickel;
    3 crevasses/mm 2 or more having a maximum width of 2 μm or more and a length of 100 μm or more are present on the surface of the inorganic oxide support,
    A hydrotreating catalyst for hydrocarbon oils that satisfies the following requirement (1) in the Log differential pore volume distribution measured by mercury porosimetry.
    Requirement (1): dV/d (log D) is maximized in the pore diameter range of 5-30 nm.
  7. (1)無機酸化物または前記無機酸化物の前駆体と無機繊維とを混合し、担体原料混合物を調製する工程、
    (2)前記担体原料混合物から、押出し成型により成型物を得る工程、
    (3)前記成型物を乾燥、焼成し、無機酸化物担体を得る工程と、
    (4)モリブデン及びタングステンの内の少なくとも一方である第1の金属成分の原料と、コバルト及びニッケルの内の少なくとも一方である第2の金属成分の原料と、溶媒とを含む含浸液を調製し、前記含浸液を前記無機酸化物担体と接触させて担持物を得る工程、および
    (5)前記担持物を加熱処理して水素化処理触媒を得る工程
    を有する炭化水素油の水素化処理触媒の製造方法。
    (1) mixing an inorganic oxide or a precursor of the inorganic oxide with an inorganic fiber to prepare a carrier material mixture;
    (2) a step of obtaining a molded product by extrusion molding from the carrier raw material mixture;
    (3) a step of drying and calcining the molded product to obtain an inorganic oxide carrier;
    (4) preparing an impregnating solution containing a raw material for a first metal component that is at least one of molybdenum and tungsten, a raw material for a second metal component that is at least one of cobalt and nickel, and a solvent; , the step of contacting the impregnation liquid with the inorganic oxide support to obtain a supported material, and (5) the step of heat-treating the supported material to obtain a hydrotreatment catalyst. Production method.
  8.  前記工程(3)において、乾燥、焼成が50~800℃で行われる、請求項7に記載の炭化水素油の水素化処理触媒の製造方法。 The method for producing a hydrotreating catalyst for hydrocarbon oil according to claim 7, wherein drying and calcination are performed at 50 to 800°C in the step (3).
  9.  前記工程(5)において、加熱処理が50~800℃で行われる、請求項7または8に記載の炭化水素油の水素化処理触媒の製造方法。 The method for producing a hydrotreating catalyst for hydrocarbon oil according to claim 7 or 8, wherein the heat treatment is performed at 50 to 800°C in the step (5).
PCT/JP2022/006712 2021-03-31 2022-02-18 Hydrotreatment catalyst for hydrocarbon oil and method for producing same WO2022209410A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023510643A JPWO2022209410A1 (en) 2021-03-31 2022-02-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-062245 2021-03-31
JP2021062245 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209410A1 true WO2022209410A1 (en) 2022-10-06

Family

ID=83455990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006712 WO2022209410A1 (en) 2021-03-31 2022-02-18 Hydrotreatment catalyst for hydrocarbon oil and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2022209410A1 (en)
WO (1) WO2022209410A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193539A (en) * 1984-03-15 1985-10-02 Chiyoda Chem Eng & Constr Co Ltd Composition having fibrous clay mineral
JPH0427436A (en) * 1990-05-22 1992-01-30 Catalysts & Chem Ind Co Ltd Catalyst for hydrogenation treatment and its production
JP2006181562A (en) * 2004-12-24 2006-07-13 Catalysts & Chem Ind Co Ltd Catalyst composition for hydrotreating heavy hydrocarbon oil
WO2016189982A1 (en) * 2015-05-27 2016-12-01 日揮触媒化成株式会社 Hydrotreating catalyst for hydrocarbon oil, process for producing same, and hydrotreating method
CN109718857A (en) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 The hydrofinishing process of Hydrobon catalyst and its preparation method and application and distillate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193539A (en) * 1984-03-15 1985-10-02 Chiyoda Chem Eng & Constr Co Ltd Composition having fibrous clay mineral
JPH0427436A (en) * 1990-05-22 1992-01-30 Catalysts & Chem Ind Co Ltd Catalyst for hydrogenation treatment and its production
JP2006181562A (en) * 2004-12-24 2006-07-13 Catalysts & Chem Ind Co Ltd Catalyst composition for hydrotreating heavy hydrocarbon oil
WO2016189982A1 (en) * 2015-05-27 2016-12-01 日揮触媒化成株式会社 Hydrotreating catalyst for hydrocarbon oil, process for producing same, and hydrotreating method
CN109718857A (en) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 The hydrofinishing process of Hydrobon catalyst and its preparation method and application and distillate

Also Published As

Publication number Publication date
JPWO2022209410A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
EP1773969B1 (en) Two-step hydroprocessing method for heavy hydrocarbon oil
TWI558455B (en) Hydrodemetallization and hydrodesulphurization catalysts, and use in a single formulation in a concatenated process
US9669394B2 (en) Resid hydrotreating catalyst containing titania
JP6643810B2 (en) Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method
EP2586529A1 (en) Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
EP3050624B1 (en) Hydrogenation treatment catalyst for heavy hydrocarbon oil, and method for hydrogenation treatment of heavy hydrocarbon oil
KR102176790B1 (en) Spheroidal resid hydrodemetallation catalyst
KR102133607B1 (en) Extruded resid demetallation catalyst
KR20160064123A (en) Hydrogenation catalyst for heavy hydrocarbon oil, production method for hydrogenation catalyst for heavy hydrocarbon oil, and hydrogenation method for heavy hydrocarbon oil
KR20150132484A (en) Novel resid hydrotreating catalyst
JP4773634B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
US4399057A (en) Catalyst and support, their methods of preparation, and processes employing same
WO2020066555A1 (en) Hydrotreating catalyst for hydrocarbon oil, production method therefor, and method for hydrotreating hydrocarbon oil
US4495062A (en) Catalyst and support, their methods of preparation, and processes employing same
CA1187864A (en) Catalyst and support, their methods of preparation, and processes employing same
WO2022209410A1 (en) Hydrotreatment catalyst for hydrocarbon oil and method for producing same
JP2006000726A (en) Hydrogenation catalyst of hydrocarbon oil, manufacturing method therefor and hydrogenation method for hydrocarbon oil
JP7395374B2 (en) Hydrotreating catalyst for hydrocarbon oil, its production method, and hydrotreating method
CN115702040A (en) Catalyst for hydrotreating hydrocarbon oil, method for producing catalyst for hydrotreating hydrocarbon oil, and method for hydrotreating hydrocarbon oil
JP7080693B2 (en) Hydrocarbon oil hydrogenation catalyst, its production method, and hydrogenation treatment method
JP3990676B2 (en) Hydrodesulfurization method of light oil
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JPH08176560A (en) Hydrodesulfurization of light oil
JP2000093804A (en) Hydrogen treating catalyst for hydrocarbon oil and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510643

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779637

Country of ref document: EP

Kind code of ref document: A1