JP2000093804A - Hydrogen treating catalyst for hydrocarbon oil and its production - Google Patents

Hydrogen treating catalyst for hydrocarbon oil and its production

Info

Publication number
JP2000093804A
JP2000093804A JP10267837A JP26783798A JP2000093804A JP 2000093804 A JP2000093804 A JP 2000093804A JP 10267837 A JP10267837 A JP 10267837A JP 26783798 A JP26783798 A JP 26783798A JP 2000093804 A JP2000093804 A JP 2000093804A
Authority
JP
Japan
Prior art keywords
catalyst
mass
carrier
group
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10267837A
Other languages
Japanese (ja)
Inventor
Tomoyuki Yogo
智之 與語
Takashi Fujikawa
貴志 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Cosmo Research Institute
Original Assignee
Cosmo Oil Co Ltd
Cosmo Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Cosmo Research Institute filed Critical Cosmo Oil Co Ltd
Priority to JP10267837A priority Critical patent/JP2000093804A/en
Publication of JP2000093804A publication Critical patent/JP2000093804A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a hydrogen treating catalyst so excellent in desulfurization activity as to make the sulfur content of a hydrocarbon oil as low as possible. SOLUTION: At least one selected from the group VIA metallic elements of the Periodic Table at least one selected from the group VIII metallic elements of the Periodic Table, phosphorus and boron are carried on a carrier comprising alumina or an alumina-base inorg. oxide by 10-30 mass%, 1-10 mass%, 1-7 mass% and 0.5-7 mass% (expressed in terms of oxides), respectively, based on the total amt. of the resultant catalyst to obtain the objective hydrogen treating catalyst. The carrier may contain 1-15 mass% zeolite based on the total amt. of the catalyst. The catalyst is produced by impregnating a fluid contg. the components into the carrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素油用水素
化処理触媒とその製造方法に関し、特に、炭化水素油中
の硫黄分を極力少なくすることができる脱硫活性に優れ
た上記触媒とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrotreating catalyst for hydrocarbon oils and a method for producing the same. It relates to a manufacturing method.

【0002】[0002]

【技術背景】原油の蒸留や分解によって得られる各油留
分は、一般に、硫黄化合物を含み、それらを燃料として
使用する場合には、硫黄化合物中に存在する硫黄が酸化
物等の硫黄化合物に転化して大気中に放出される。従っ
て、大気汚染防止の観点から、燃料油として使用する炭
化水素油は、硫黄含有量ができるだけ少ないことが望ま
しい。特に、酸性雨や窒素酸化物等による環境破壊が地
球規模で進行している近年の状況下において、この環境
破壊問題を解決するために、炭化水素油中の硫黄分のよ
り一層の低含量化技術の開発が望まれている。
BACKGROUND ART Each oil fraction obtained by distillation or cracking of crude oil generally contains sulfur compounds, and when these are used as fuel, the sulfur present in the sulfur compounds is converted into sulfur compounds such as oxides. Converted and released into the atmosphere. Therefore, from the viewpoint of preventing air pollution, it is desirable that the hydrocarbon oil used as the fuel oil has as small a sulfur content as possible. In particular, under the recent circumstances where environmental destruction due to acid rain and nitrogen oxides is progressing on a global scale, in order to solve this environmental destruction problem, the sulfur content in hydrocarbon oils must be further reduced. Technology development is desired.

【0003】炭化水素油中の硫黄分の低含量化は、従
来、炭化水素油を接触水素化脱硫することにより行われ
ており、この接触水素化脱硫の運転条件、例えば、LH
SV、温度、圧力等を過酷にすることによりある程度は
達成されている。しかし、このような過酷な運転条件で
は、触媒上に炭素質が析出し、触媒の活性を急速に低下
させるという欠点がある。また、炭化水素油が軽質の場
合、色相安定性や貯蔵安定性等の性状面への悪影響もあ
る。このように、過酷な運転条件による硫黄分の低含量
化技術には限度がある。従って、最も良い方法は、格段
に優れた脱硫活性を有する触媒を開発することである。
[0003] Conventionally, the reduction of the sulfur content in hydrocarbon oil has been carried out by catalytic hydrodesulfurization of hydrocarbon oil, and the operating conditions of this catalytic hydrodesulfurization, for example, LH
This has been achieved to some extent by making the SV, temperature, pressure, etc. severe. However, under such severe operating conditions, there is a disadvantage that carbonaceous material precipitates on the catalyst and the activity of the catalyst is rapidly reduced. Further, when the hydrocarbon oil is light, there is an adverse effect on properties such as hue stability and storage stability. Thus, there is a limit to the technology for reducing the sulfur content under severe operating conditions. Therefore, the best way is to develop a catalyst with significantly better desulfurization activity.

【0004】上記のような水素化脱硫に用いられている
従来の触媒は、通常、周期律表第VIA族金属(以下、
単に「6A族金属」と記す)と周期律表第VIII族金
属(以下、単に「8族金属」と記す)を活性金属とし、
アルミナ、マグネシア、シリカ等の酸化物担体上に担持
したものであり、このような従来の触媒以上の脱硫活性
を有する触媒の開発が望まれている。なお、本明細書に
おける周期律表とは、森北出版株式会社発行の化学辞典
普及版第3刷表紙の裏に記載のものを指す。
[0004] Conventional catalysts used for hydrodesulfurization as described above are usually those of Group VIA metals of the periodic table (hereinafter referred to as "metals").
Simply referred to as “Group 6A metal”) and Group VIII metal of the periodic table (hereinafter simply referred to as “Group 8 metal”) as active metals;
A catalyst supported on an oxide carrier such as alumina, magnesia, and silica has a desulfurization activity higher than that of a conventional catalyst. In addition, the periodic table in the present specification refers to the one described on the back of the third printing cover of the popular edition of Chemical Dictionary published by Morikita Publishing Co., Ltd.

【0005】ところで、炭化水素油の水素化処理触媒に
おいて、ホウ素等の成分を担体に添加し、酸点を増加さ
せることにより活性の向上を図る技術が提案されてい
る。例えば、特公昭62−25418号、特開平3−9
8645号、同6−319994号の各公報では、担体
中にボリア(B)を含有させ、その酸性の効果に
より水素化処理を行う技術を開示しているが、重質油の
水素化分解を目的としており、常圧蒸留留出油等の軽質
留分は対象としていない。特開平1−224049号公
報では、ホウ素成分を活性金属成分と共に担体に含浸さ
せる技術を開示しているが、残油等の重質油を対象とし
ており、平均細孔径が100Å以上と大きくなってい
る。
[0005] Meanwhile, in a hydrotreating catalyst for hydrocarbon oils, a technique has been proposed in which a component such as boron is added to a carrier and the activity is improved by increasing the number of acid sites. For example, Japanese Patent Publication No. 62-25418,
JP-A Nos. 8645 and 6-319994 disclose a technique in which boria (B 2 O 3 ) is contained in a carrier and hydrogenation is performed by the effect of acidity. It is intended for chemical cracking and does not cover light fractions such as atmospheric distillate. Japanese Patent Application Laid-Open No. 1-224049 discloses a technique of impregnating a carrier with a boron component together with an active metal component. However, it is intended for heavy oils such as residual oils, and the average pore diameter becomes as large as 100 ° or more. I have.

【0006】[0006]

【発明の目的】本発明は、水素化脱硫活性金属成分を従
来の触媒よりも高い分散状態で担持させた触媒であっ
て、従来の触媒よりも高い脱硫活性を発現することがで
きる炭化水素油用水素化処理触媒とその製造方法を提供
することを目的とする。
An object of the present invention is to provide a catalyst in which a hydrodesulfurization active metal component is supported in a more dispersed state than conventional catalysts, and a hydrocarbon oil capable of exhibiting a higher desulfurization activity than conventional catalysts. It is an object of the present invention to provide a hydrotreating catalyst for use and a method for producing the same.

【0007】[0007]

【目的を達成するための手段】本発明者らは、上記目的
を達成するために検討を重ねた結果、通常この種の触媒
担体に用いられているアルミナに触媒活性成分を含浸担
持させる際に用いる含浸液として、先ず、高分散状態で
分散し易い含浸液(すなわち、6A族と8族との活性成
分と共に、燐成分とホウ素成分とを含む含浸液)を見出
し、次いで、この含浸液を用いて含浸担持操作を行った
ところ、その触媒活性成分の高度な分散を可能にすると
の知見を得て、本発明を提案するに至った。
Means for Achieving the Object As a result of repeated studies to achieve the above object, the present inventors have found that when alumina, which is usually used for this type of catalyst carrier, is impregnated and supported with a catalytically active component. As the impregnating liquid to be used, first, an impregnating liquid that is easily dispersed in a highly dispersed state (that is, an impregnating liquid containing a phosphorus component and a boron component together with the active components of groups 6A and 8) was found, and then this impregnating liquid was used. As a result of performing the impregnation-supporting operation by using the catalyst, it was found that the catalyst active component could be highly dispersed, and the present invention was proposed.

【0008】すなわち、本発明は、〔1〕アルミナ又は
アルミナを主成分とする無機酸化物からなる担体に、酸
化物換算で、触媒全量に対し、6A族金属元素から選択
される少なくとも1種を10〜30mass%、8族金
属元素から選択される少なくとも1種を1〜10mas
s%、燐を1〜7mass%、及びホウ素を0.5〜7
mass%担持させてなる炭化水素油用水素化処理触媒
を要旨とし、このとき、担体は、触媒全量に対し、ゼオ
ライトを1〜15mass%含んでいてもよい。また、
本発明は、〔2〕担体に、6A族金属元素から選択され
る少なくとも1種の化合物及び8族金属元素から選択さ
れる少なくとも1種の化合物と共に、燐化合物及びホウ
素化合物を含む含浸液を含浸させることを特徴とする上
記の炭化水素油用水素化処理触媒の製造方法をも要旨と
する。
That is, the present invention relates to [1] a carrier comprising alumina or an inorganic oxide containing alumina as a main component, wherein at least one member selected from the group 6A metal elements is added to the total amount of the catalyst in terms of oxide. 10-30 mass%, at least one selected from Group 8 metal elements is 1-10 mass
s%, 1-7 mass% of phosphorus, and 0.5-7 mass% of boron.
The present invention provides a hydrotreating catalyst for hydrocarbon oil in which a mass% is supported, and in this case, the carrier may contain 1 to 15 mass% of zeolite with respect to the total amount of the catalyst. Also,
In the present invention, [2] a carrier is impregnated with an impregnating liquid containing a phosphorus compound and a boron compound together with at least one compound selected from Group 6A metal elements and at least one compound selected from Group 8 metal elements. The gist of the present invention is also a method for producing the above hydrotreating catalyst for hydrocarbon oils.

【0009】本発明における担体は、アルミナ又はアル
ミナを主成分とする無機酸化物からなる。このアルミナ
を主成分とする無機酸化物とは、無機酸化物全体(アル
ミナをも含む意)を100%として、アルミナを好まし
くは80%以上、より好ましくは90%以上含むものを
指す。上記のアルミナ以外の無機酸化物としては、例え
ば、シリカ、ボリア、チタニア、ジルコニア、マグネシ
ア、ハフニア、セリア、イットリア、ニオビア、クロミ
ア、トリア等の非結晶性酸化物が挙げられる。本発明に
おける担体として最も好ましくは、アルミナを100%
含むもの、すなわちアルミナからなる担体である。これ
らのアルミナは、γーアルミナがより好ましい。なお、
ゼオライトは、通常、無機酸化物の範疇に入るが、本発
明におけるアルミナ又はアルミナを主成分とする無機酸
化物には、ゼオライトを含めないこととする。従って、
本発明において、ゼオライトを担体の1成分として使用
する場合は第2成分と称し、ゼオライトの含有量はアル
ミナとは別に考慮する。アルミナが無機酸化物全体を1
00%としたときの80%以上であると、担体上に塩基
性水酸基が充分に多く存在し、活性金属である6A族元
素が高分散に担持されるが、80%未満であると6A族
元素の分散性が極度に悪く、6A族元素が凝集を起こし
脱硫活性が悪くなる。
The carrier in the present invention comprises alumina or an inorganic oxide containing alumina as a main component. The inorganic oxide containing alumina as a main component refers to an inorganic oxide containing 80% or more, more preferably 90% or more of alumina, assuming that the entire inorganic oxide (including alumina) is 100%. Examples of the inorganic oxide other than alumina include amorphous oxides such as silica, boria, titania, zirconia, magnesia, hafnia, ceria, yttria, niobia, chromia, and thoria. Most preferably, the carrier in the present invention is 100% alumina.
Included, that is, a support made of alumina. These aluminas are more preferably γ-alumina. In addition,
Although zeolite generally falls into the category of inorganic oxides, zeolite is not included in the alumina or the inorganic oxide containing alumina as a main component in the present invention. Therefore,
In the present invention, when zeolite is used as one component of the carrier, it is referred to as a second component, and the content of zeolite is considered separately from alumina. Alumina reduces the entire inorganic oxide to 1
When the content is 80% or more when the content is set to 00%, a sufficient number of basic hydroxyl groups are present on the carrier, and the group 6A element which is an active metal is supported in a highly dispersed state. The dispersibility of the elements is extremely poor, and the group 6A elements are agglomerated, resulting in poor desulfurization activity.

【0010】本発明における担体の比表面積、細孔容
積、平均細孔径は、いずれも特に限定されないが、難脱
硫性物質までをも除去する触媒とするためには、比表面
積は、200m/g以上が好ましく、250m/g
以上がより好ましい。細孔容積は、0.3〜1.2cm
/gが好ましく、0.5〜1.0cm/gがより好
ましい。平均細孔径は、50〜130Åが好ましく、5
0〜100Åがより好ましい。
The specific surface area, pore volume, and average pore diameter of the carrier in the present invention are not particularly limited, but the specific surface area is 200 m 2 / m in order to obtain a catalyst that can remove even a non-desulfurized substance. g or more, preferably 250 m 2 / g
The above is more preferable. The pore volume is 0.3-1.2cm
3 / g are preferred, 0.5 to 1.0 cm 3 / g is more preferable. The average pore size is preferably 50 to 130 °, and 5
0-100 ° is more preferred.

【0011】担体に第2成分であるゼオライトを含有さ
せる場合は、触媒の全体量に対し、1〜15mass
%、好ましくは2〜10%となるようにする。15ma
ss%を越えると、活性金属の分散性を悪化させ、1m
ass%未満では、活性金属を高分散させて脱硫活性を
高める効果を十分に得ることができない。
When the carrier contains zeolite as the second component, 1 to 15 mass of the total amount of the catalyst is used.
%, Preferably 2 to 10%. 15ma
If it exceeds ss%, the dispersibility of the active metal is deteriorated, and 1 m
If the content is less than ass%, the effect of increasing the activity of the desulfurization by dispersing the active metal in a high degree cannot be sufficiently obtained.

【0012】以上の担体に担持させる6A族金属成分
は、タングステン、モリブデンが好ましく、特にモリブ
デンが好ましい。これらの金属は、酸化物のかたちで担
持される。これらの酸化物を担持させるための原料とし
ては、特に限定されず、例えば、モリブデン酸アンモニ
ウム〔(NHMo24・4HO〕、タング
ステン酸アンモニウム〔(NH101241
5HO〕、酸化モリブデン〔MoO〕、モリブド燐
酸〔H(PMo1240)・30HO〕、タング
スト燐酸〔H(PW1240)・30HO〕など
が挙げられ、これらは、単独で、あるいは2種以上を組
み合わせて使用することができる。
The group 6A metal component supported on the carrier is preferably tungsten or molybdenum, particularly preferably molybdenum. These metals are supported in the form of oxides. As a raw material for supporting these oxides is not particularly limited, for example, ammonium molybdate [(NH 4) 6 Mo 7 O 24 · 4H 2 O ], ammonium tungstate [(NH 4) 10 W 12 O 41
5H 2 O], molybdenum oxide [MoO 3 ], molybdophosphoric acid [H 3 (PMo 12 O 40 ) · 30 H 2 O], tungstophosphoric acid [H 3 (PW 12 O 40 ) · 30 H 2 O], and the like. These can be used alone or in combination of two or more.

【0013】8族金属成分は、鉄、コバルト、ニッケ
ル、ロジウム、パラジウム、オスミウム、イリジウム、
白金などが好ましく、特にコバルト、ニッケルが好まし
い。これらの金属も、酸化物のかたちで担持される。こ
れらの酸化物を担持させるための原料も、特に限定され
ないが、硝酸塩、炭酸塩、酢酸塩、燐酸塩が好ましく、
これらも、単独で、あるいは2種以上を組み合わせて使
用することができる。
The Group 8 metal components include iron, cobalt, nickel, rhodium, palladium, osmium, iridium,
Platinum and the like are preferable, and cobalt and nickel are particularly preferable. These metals are also carried in the form of oxides. Raw materials for supporting these oxides are also not particularly limited, but nitrates, carbonates, acetates, and phosphates are preferable.
These can also be used alone or in combination of two or more.

【0014】燐成分及びホウ素成分も酸化物のかたちで
担持され、担持させるための原料としては、次のような
ものが挙げられる。燐成分は、例えば、オルト燐酸、メ
タ燐酸、ピロ燐酸、三燐酸、四燐酸、ポリ燐酸などであ
り、好ましくはオルト燐酸である。ホウ素成分は、例え
ば、ホウ酸、ホウ酸ナトリウム、ホウ酸アンモニウム、
過ホウ酸ナトリウム、オルトホウ酸、四ホウ酸、五硫化
ホウ素、三塩化ホウ素、重ホウ酸アンモニウム、ホウ酸
カルシウム、ジボラン、ホウ酸マグネシウム、ホウ酸メ
チル、ホウ酸ブチル、ホウ酸トリシクロヘキシル、無水
ホウ酸など、ホウ素を含有するホウ酸塩、ホウ素酸化
物、あるいはホウ素そのものでもよく、好ましくはホウ
酸である。
[0014] The phosphorus component and the boron component are also supported in the form of an oxide. The phosphorus component is, for example, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, polyphosphoric acid, etc., and preferably orthophosphoric acid. Boron component, for example, boric acid, sodium borate, ammonium borate,
Sodium perborate, orthoboric acid, tetraboric acid, boron pentasulfide, boron trichloride, ammonium biborate, calcium borate, diborane, magnesium borate, methyl borate, butyl borate, tricyclohexyl borate, anhydrous borate Boric acid containing boron such as an acid, boron oxide, or boron itself may be used, and boric acid is preferable.

【0015】本発明では、燐成分とホウ素成分とを、6
A族、8族金属成分と共に担持させる。これにより、こ
れら活性成分の担体への分散性を向上させることができ
る。この分散性の向上効果は、燐成分、あるいはホウ素
成分単独でも見られるが、効果は非常に小さい。これら
両成分を同時に担持させることにより大きな効果を得る
ことができる。この理由は、詳細には明らかではない
が、6A族、8族の活性金属種と、燐成分、ホウ素成分
を同一含浸液に溶かし込み、これら各成分をヘテロポリ
酸化することにより、均一な含浸液を調製することがで
きることにあると考えられる。
In the present invention, the phosphorus component and the boron component are combined with 6
It is supported together with Group A and Group 8 metal components. Thereby, the dispersibility of these active ingredients in the carrier can be improved. The effect of improving the dispersibility can be seen with the phosphorus component or the boron component alone, but the effect is very small. A great effect can be obtained by carrying both these components simultaneously. Although the reason for this is not clear in detail, the active metal species of Group 6A and Group 8, the phosphorus component and the boron component are dissolved in the same impregnating solution, and these components are heteropolyoxidized to form a uniform impregnating solution. Can be prepared.

【0016】以上の各成分の含有割合は、酸化物換算
で、触媒の重量を基準として、6A族金属成分が10〜
30mass%、好ましくは15〜23mass%、8
族金属成分が1〜10mass%、好ましくは3〜7m
ass%、燐成分が1〜7mass%、好ましくは2〜
5mass%、ホウ素成分が0.5〜7mass%、好
ましくは1〜5mass%である。なお、6A族、8族
金属成分の原料として燐を含有するものを使用する場合
は、その燐の量も上記の燐成分の量として計算する。6
A族金属成分が10mass%未満では、炭化水素油中
の硫黄分を効率的に除去することができず、30mas
s%を超えると、活性金属の分散性が悪くなるのみなら
ず、6A族金属成分による効果が飽和し不経済となる。
8族金属成分が1mass%未満では、8族金属成分を
含有させる技術的意義が発現せず、従って炭化水素油中
の硫黄分を効率的に除去することができず、10mas
s%を超えても、8族金属成分による効果が飽和し不経
済となる。燐成分が1mass%未満では、ホウ素成分
と併用する場合であっても、活性金属の分散性を向上さ
せる効果が発現せず、7mass%を超えても、この効
果が飽和し不経済となる。ホウ素成分が0.5mass
%未満では、燐成分と併用する場合であっても、活性金
属の分散性を向上させる効果が発現せず、7mass%
を超えると、活性金属の分散性が却って悪くなり、また
表面積が低下するなどの不都合が生じ、ホウ素成分を含
有させる技術的意味がなくなる。
The content ratio of each of the above components is 10 to 10 in terms of oxide, based on the weight of the catalyst.
30 mass%, preferably 15 to 23 mass%, 8
Group metal component is 1 to 10 mass%, preferably 3 to 7 m
ass%, phosphorus component is 1 to 7 mass%, preferably 2 to
5 mass%, the boron component is 0.5 to 7 mass%, preferably 1 to 5 mass%. When a material containing phosphorus is used as a raw material for the Group 6A or Group 8 metal component, the amount of the phosphorus is also calculated as the amount of the phosphorus component. 6
If the group A metal component is less than 10 mass%, the sulfur content in the hydrocarbon oil cannot be efficiently removed, and the
If it exceeds s%, not only the dispersibility of the active metal is deteriorated, but also the effect of the Group 6A metal component is saturated, which is uneconomical.
If the Group 8 metal component is less than 1 mass%, the technical significance of including the Group 8 metal component will not be exhibited, and therefore, the sulfur content in the hydrocarbon oil cannot be efficiently removed, and
If it exceeds s%, the effect of the Group 8 metal component will be saturated and uneconomical. If the phosphorus component is less than 1 mass%, the effect of improving the dispersibility of the active metal is not exhibited even when used in combination with the boron component. 0.5 mass of boron component
%, The effect of improving the dispersibility of the active metal is not exhibited even when used in combination with the phosphorus component.
If it exceeds, the dispersibility of the active metal becomes rather poor, and inconveniences such as a decrease in surface area occur, and the technical meaning of containing a boron component is lost.

【0017】これら各成分の担体への具体的な担持方法
は、特に限定されないが、本発明の製造方法に沿って、
6A族金属、8族金属、燐、及びホウ素の各成分の原料
を同一の液に溶かした含浸液を用いる一段含浸法で行う
ことが望ましい。一段含浸法とは、担体への活性成分の
担持を一工程で行う方法をいう。以下に、本発明の製造
方法に沿った本発明の触媒の調製例を説明するが、本発
明の触媒は、これに限定されず、他の種々の公知の方法
により調製することができる。
The specific method of supporting each of these components on the carrier is not particularly limited, but may be in accordance with the production method of the present invention.
It is desirable to carry out by a one-stage impregnation method using an impregnation liquid in which the raw materials of the components of the 6A group metal, the 8th group metal, phosphorus and boron are dissolved in the same liquid. The one-stage impregnation method refers to a method in which the active ingredient is supported on a carrier in one step. Hereinafter, preparation examples of the catalyst of the present invention along the production method of the present invention will be described. However, the catalyst of the present invention is not limited thereto, and can be prepared by various other known methods.

【0018】アルミナ又はアルミナを主成分とする担体
に、6A族、8族金属化合物と、燐化合物、ホウ素化合
物とを、水に溶解させた含浸液を、1段の含浸処理によ
って含浸させる。この含浸液を調製する際に、これら各
化合物が溶け難い場合は、硝酸、硫酸、酢酸などの各種
の酸を加えることができる。含浸の後、乾燥、焼成を行
う。乾燥は120℃で、12〜24時間保持し、焼成は
400〜550℃で、12〜24時間保持することによ
り行う。
An impregnating solution obtained by dissolving a group 6A, group 8 metal compound, a phosphorus compound and a boron compound in water is impregnated into alumina or a carrier containing alumina as a main component by a one-stage impregnation treatment. When preparing these impregnating liquids, if these compounds are hardly soluble, various acids such as nitric acid, sulfuric acid and acetic acid can be added. After impregnation, drying and firing are performed. Drying is performed at 120 ° C. for 12 to 24 hours, and baking is performed at 400 to 550 ° C. for 12 to 24 hours.

【0019】以上の方法により調製される本発明の触媒
の比表面積、細孔容積、平均細孔径は、特に限定される
ものではないが、前述の担体の場合と同様に、難脱硫性
物質までをも効率的に除去するためには、比表面積が2
00m/g以上、細孔容積が0.3〜1.0cm
g、平均細孔径60〜120Åが好ましい。
The specific surface area, pore volume and average pore diameter of the catalyst of the present invention prepared by the above-mentioned method are not particularly limited. In order to also efficiently remove
00m 2 / g or more, pore volume of 0.3 to 1.0 cm 3 /
g, the average pore diameter is preferably 60 to 120 °.

【0020】触媒形状も、特に限定されるものではな
く、通常、この種の触媒に用いられている種々の形状、
例えば、円柱状、四葉型などを採用することができる。
大きさは、通常、径が1/10〜1/22インチ、長さ
3.2〜3.6インチが好ましい。
The shape of the catalyst is also not particularly limited, and various shapes generally used for this type of catalyst,
For example, a columnar shape, a four-leaf type, or the like can be adopted.
Usually, the size is preferably 1/10 to 1/22 inch in diameter and 3.2 to 3.6 inches in length.

【0021】本発明の触媒を、炭化水素油の水素化処理
プロセスに用いる場合、単独で使用してもよいし、公知
の触媒あるいは公知の無機質酸化物担体と混合して使用
することもできる。また、多段処理プロセスにおいて
は、他の触媒との適宜の組合せで用いることができる。
When the catalyst of the present invention is used in a hydrocarbon oil hydrotreating process, it may be used alone or in combination with a known catalyst or a known inorganic oxide carrier. Further, in the multi-stage treatment process, it can be used in an appropriate combination with another catalyst.

【0022】本発明の触媒による炭化水素油の水素化処
理において、原料油は特に限定しないが、接触分解軽
油、熱分解軽油、直留軽油、コーカーガスオイル、水素
化処理軽油、脱硫処理軽油、減圧軽油などが望ましい。
これらは、単独で、あるいは2種以上を組み合わせて原
料油とすることができる。なお、脱硫処理軽油とは、多
段処理プロセスにおいて、既に一段目で脱硫した生成油
を指す。これらの原料油は、沸点範囲が150〜400
℃、好ましくは200〜380℃、より好ましくは22
0〜340℃、硫黄分量が3mass%以下、好ましく
は2.5mass%以下、より好ましくは2.0mas
s%以下のものが好適である。
In the hydrotreating of hydrocarbon oils with the catalyst of the present invention, the feedstock oil is not particularly limited, but it may be catalytically cracked gas oil, pyrolyzed gas oil, straight run gas oil, coker gas oil, hydrotreated gas oil, desulfurized gas oil, A vacuum gas oil or the like is desirable.
These can be used alone or in combination of two or more to form a feedstock. In addition, the desulfurized gas oil refers to a product oil that has already been desulfurized in the first stage in the multi-stage processing process. These feedstocks have a boiling range of 150 to 400.
° C, preferably 200-380 ° C, more preferably 22 ° C.
0 to 340 ° C, the sulfur content is 3 mass% or less, preferably 2.5 mass% or less, more preferably 2.0 mass%
Those having s% or less are preferred.

【0023】本発明の触媒による上記原料油の水素化処
理(脱硫)条件は、圧力(水素分圧)が30〜80kg
/cm、好ましくは35〜60kg/cm、温度が
320〜360℃、好ましくは330〜360℃、液空
間速度が1.0〜5.0hr −1、好ましくは1.0〜
2.0hr−1、水素/オイル比が100〜400L/
L、好ましくは200〜300L/Lである。圧力(水
素分圧)が30kg/cm未満では、難脱硫性物質ま
でをも除去することができず、80kg/cmを超え
ても、難脱硫性物質の除去効率が飽和するのみならず、
これだけの高圧に耐え得る高コストの設備を要し、不経
済となる。温度が320℃未満では、難脱硫性物質まで
をも除去することができず、360℃を超えても、難脱
硫性物質の除去効率が飽和し、不経済となる。液空間速
度が5.0hr−1を超えると、触媒と原料油との接触
時間が短くなりすぎて難脱硫性物質までをも除去するこ
とができず、1.0hr−1未満であっても、この接触
効果が飽和するのみならず、処理効率が低下する。
Hydrotreating of the above feedstock with the catalyst of the present invention
The processing (desulfurization) conditions are as follows: pressure (hydrogen partial pressure) 30 to 80 kg
/ Cm2, Preferably 35-60 kg / cm2,temperature
320-360 ° C, preferably 330-360 ° C, liquid empty
Speed between 1.0-5.0hr -1, Preferably 1.0 to
2.0hr-1, Hydrogen / oil ratio is 100-400L /
L, preferably 200 to 300 L / L. Pressure (water
30kg / cm2If the value is less than
80 kg / cm2Beyond
However, not only does the efficiency of removing non-desulfurizable substances saturate,
High cost equipment that can withstand such high pressure is required,
It will be done. If the temperature is lower than 320 ° C, it may cause
Can not be removed.
The efficiency of removing sulphate is saturated, which is uneconomical. Liquid space velocity
The degree is 5.0hr-1Above, contact between catalyst and feedstock
The time is too short to remove even difficult-to-desulfurize substances.
1.0 hr-1Less than this contact
Not only does the effect saturate, but processing efficiency decreases.

【0024】以上の原料油を以上の条件で水素化脱硫す
る方法を商業規模で行う場合には、本発明の触媒を、適
当な反応器において、固定床、移動床又は流動床として
使用し、この反応器に上記の原料油を導入し、上記の条
件で処理すればよい。最も一般的には、上記の触媒を固
定床として維持し、原料油が該固定床を下方に通過する
ようにする。この反応器は、単独で使用してもよいし、
幾つかの反応器を連接して使用することもできる。
When the hydrodesulfurization of the above feedstock under the above conditions is carried out on a commercial scale, the catalyst of the present invention is used as a fixed bed, moving bed or fluidized bed in a suitable reactor. The feedstock may be introduced into the reactor and treated under the above conditions. Most commonly, the catalyst is maintained as a fixed bed such that feedstock passes down through the fixed bed. This reactor may be used alone,
Several reactors can be used in series.

【0025】[0025]

【実施例】実施例1 (担体の調製)水酸化アルミニウム900gを27リッ
トル(以下、リットルを「L」、ミリリットルを「m
L」と記す)のイオン交換水に加え、硝酸を加えてpH
1とした。さらに、アンモニア水をpH7になるまで加
えた。得られたアルミナゲルをイオン交換水で洗浄し、
ろ過後、混練機で70℃で加熱混練し、混練物を押出成
形することができる程度に水分量を調整(調湿)し、こ
れを押出成形機により成形した。得られた成形物を12
0℃で一昼夜乾燥し、続いて550℃で12時間焼成
し、比表面積334m/g、細孔容積0.70cc/
g、平均細孔径69Åの担体720gを得た。
EXAMPLES Example 1 (Preparation of carrier) 900 g of aluminum hydroxide was 27 liters (hereinafter, liter is "L" and milliliter is "m").
L)), add nitric acid and add pH
It was set to 1. Further, aqueous ammonia was added until the pH reached 7. The obtained alumina gel is washed with ion-exchanged water,
After filtration, the mixture was heated and kneaded at 70 ° C. in a kneader to adjust the amount of moisture (humidity control) to such an extent that the kneaded product could be extruded, and then formed using an extruder. The obtained molded product is 12
And overnight drying at 0 ° C., followed by firing at 550 ° C. 12 hours, a specific surface area of 334m 2 / g, pore volume 0.70 cc /
g of a carrier having an average pore diameter of 69 ° was obtained.

【0026】(触媒の調製)室温下、三角フラスコ中
で、炭酸コバルト11.2g、オルト燐酸3.9g、モ
リブド燐酸38.6g及びホウ酸2.5gをイオン交換
水77gに溶解し、攪拌して水溶(含浸)液を調製し
た。この含浸液を、上記の担体100gに、ナス型フラ
スコ中、室温で1時間含浸させた後、風乾し、マッフル
炉中、500℃で4時間焼成し、触媒を得た。この触媒
の組成を表1に、性状を表2に示した。
(Preparation of catalyst) In an Erlenmeyer flask at room temperature, 11.2 g of cobalt carbonate, 3.9 g of orthophosphoric acid, 38.6 g of molybdophosphoric acid and 2.5 g of boric acid were dissolved in 77 g of ion-exchanged water and stirred. Thus, an aqueous (impregnated) liquid was prepared. The impregnating solution was impregnated with 100 g of the above carrier in an eggplant-shaped flask at room temperature for 1 hour, air-dried, and calcined in a muffle furnace at 500 ° C. for 4 hours to obtain a catalyst. Table 1 shows the composition of this catalyst, and Table 2 shows its properties.

【0027】実施例2 実施例1における担体調製のための混練時に、アルミナ
ゲルに、HY型ゼオライト(SiO/Alモル
比が6、NaO含有量が0.3mass%以下、表面
積が900〜1100(Langmuir、m/g)
及び600〜700(BET、m/g)、結晶サイズ
が0.7〜1.0μm)54.6gを加えた以外は、実
施例1と同様にして、比表面積358m/g、細孔容
積0.60cc/g、平均細孔径58Åの担体を774
g得た。この担体を用いて、実施例1と同様にして、触
媒を調製した。この触媒の組成を表1に、性状を表2に
示した。
Example 2 At the time of kneading for preparing the carrier in Example 1, the alumina gel was mixed with HY-type zeolite (SiO 2 / Al 2 O 3 molar ratio: 6, Na 2 O content: 0.3 mass% or less, Surface area of 900 to 1100 (Langmuir, m 2 / g)
And a specific surface area of 358 m 2 / g, and a pore size of 600 to 700 (BET, m 2 / g) and a crystal size of 0.7 to 1.0 μm. A carrier having a volume of 0.60 cc / g and an average pore diameter of 58 °
g was obtained. Using this carrier, a catalyst was prepared in the same manner as in Example 1. Table 1 shows the composition of this catalyst, and Table 2 shows its properties.

【0028】実施例3 炭酸コバルト11.5g、モリブド燐酸39.7g、燐
酸4.1g、ホウ酸7.7gをイオン交換水77gに溶
解した以外は、実施例1と同様にして、触媒を調製し
た。この触媒の組成を表1に、性状を表2に示した。
Example 3 A catalyst was prepared in the same manner as in Example 1 except that 11.5 g of cobalt carbonate, 39.7 g of molybdophosphoric acid, 4.1 g of phosphoric acid, and 7.7 g of boric acid were dissolved in 77 g of ion-exchanged water. did. Table 1 shows the composition of this catalyst, and Table 2 shows its properties.

【0029】実施例4 炭酸コバルト11.9g、モリブド燐酸40.9g、燐
酸4.2g、ホウ酸13.3gをイオン交換水77gに
溶解した以外は、実施例1と同様にして、触媒を調製し
た。この触媒の組成を表1に、性状を表2に示した。
Example 4 A catalyst was prepared in the same manner as in Example 1 except that 11.9 g of cobalt carbonate, 40.9 g of molybdophosphoric acid, 4.2 g of phosphoric acid, and 13.3 g of boric acid were dissolved in 77 g of ion-exchanged water. did. Table 1 shows the composition of this catalyst, and Table 2 shows its properties.

【0030】比較例1 室温下、三角フラスコ中で、モリブデン酸アンモニウム
・4水和物32.7gと28〜30mass%アンモニ
ア水(関東化学株式会社製、特級試薬)10.7gとを
イオン交換水66gに溶解し、攪拌して水溶(含浸)液
を調製した。この含浸液を、実施例1と同じ担体100
gに、ナス型フラスコ中、室温で1時間含浸させた後、
風乾し、マッフル炉中、500℃で4時間焼成し、モリ
ブデン担持アルミナ担体を得た。続いて、室温下、三角
フラスコ中で、硝酸コバルト・6水和物25.9gをイ
オン交換水77gに溶解し、攪拌して水溶(含浸)液を
調製した。この含浸液を、上記のモリブデン担持アルミ
ナ担体100gに、ナス型フラスコ中、室温で1時間含
浸させた後、風乾し、マッフル炉中、500℃で4時間
焼成し、触媒を得た。この触媒の組成を表1に、性状を
表2に示した。
Comparative Example 1 In an Erlenmeyer flask at room temperature, 32.7 g of ammonium molybdate tetrahydrate and 10.7 g of 28-30 mass% ammonia water (Kanto Chemical Co., Ltd., special grade reagent) were ion-exchanged with water. The resultant was dissolved in 66 g and stirred to prepare an aqueous (impregnated) liquid. This impregnating liquid was applied to the same carrier 100 as in Example 1.
g in a eggplant-shaped flask at room temperature for 1 hour,
It was air-dried and calcined in a muffle furnace at 500 ° C. for 4 hours to obtain a molybdenum-supported alumina support. Subsequently, in an Erlenmeyer flask at room temperature, 25.9 g of cobalt nitrate hexahydrate was dissolved in 77 g of ion-exchanged water and stirred to prepare an aqueous (impregnated) liquid. The impregnating solution was impregnated with the above-mentioned molybdenum-supported alumina carrier (100 g) in a eggplant-shaped flask at room temperature for 1 hour, air-dried, and calcined in a muffle furnace at 500 ° C. for 4 hours to obtain a catalyst. Table 1 shows the composition of this catalyst, and Table 2 shows its properties.

【0031】比較例2 ホウ酸2.5gを加えない以外は、実施例1と同様にし
て触媒を調製した。この触媒の組成を表1に、性状を表
2に示した。
Comparative Example 2 A catalyst was prepared in the same manner as in Example 1 except that 2.5 g of boric acid was not added. Table 1 shows the composition of this catalyst, and Table 2 shows its properties.

【0032】比較例3 モリブデン担持アルミナを調製する際のモリブデン酸ア
ンモニウム・4水和物32.7gを、モリブデン酸アン
モニウム・4水和物33.2gとホウ酸2.4gに代え
る以外は、比較例1と同様にして触媒を調製した。この
触媒の組成を表1に、性状を表2に示した。
Comparative Example 3 Comparative Example 3 was repeated except that 32.7 g of ammonium molybdate tetrahydrate and 2.4 g of boric acid were used instead of 32.7 g of ammonium molybdate tetrahydrate when preparing molybdenum-supported alumina. A catalyst was prepared as in Example 1. Table 1 shows the composition of this catalyst, and Table 2 shows its properties.

【0033】比較例4 実施例1における担体調製のための混練時に、アルミナ
ゲルに、ゼオライト6.0gを加えた以外は、実施例1
と同様にして、比表面積324m/g、細孔容積0.
69cc/g、平均細孔径67Åの担体723gを得
た。この担体を用い、比較例2と同様にして触媒を調製
した。この触媒の組成を表1に、性状を表2に示した。
Comparative Example 4 Example 1 was repeated except that 6.0 g of zeolite was added to the alumina gel during kneading for preparing the carrier in Example 1.
In the same manner as described above, the specific surface area is 324 m 2 / g, and the pore volume is 0.1.
723 g of a carrier having 69 cc / g and an average pore diameter of 67 ° were obtained. Using this carrier, a catalyst was prepared in the same manner as in Comparative Example 2. Table 1 shows the composition of this catalyst, and Table 2 shows its properties.

【0034】比較例5 炭酸コバルト12.8g、モリブド燐酸44.2g、燐
酸4.5g、ホウ酸28.6gをイオン交換水77gに
溶解した以外は、実施例1と同様にして触媒を調製し
た。この触媒の組成を表1に、性状を表2に示した。
Comparative Example 5 A catalyst was prepared in the same manner as in Example 1 except that 12.8 g of cobalt carbonate, 44.2 g of molybdophosphoric acid, 4.5 g of phosphoric acid, and 28.6 g of boric acid were dissolved in 77 g of ion-exchanged water. . Table 1 shows the composition of this catalyst, and Table 2 shows its properties.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】実施例1〜4及び比較例1〜5で調製した
触媒を使用し、以下の条件で水素化処理(脱硫反応)試
験を行い、この結果を表3に示す。 原料油:直留軽油:比重(15/4℃);0.8567 硫黄分;1.364mass% 窒素分;150ppm 沸点(50%点);315℃ 粘度(@30℃);6.608cSt 水素化処理条件:温度;320、340、350℃ 圧力(水素分圧);50kg/cm 液空間速度;1.5hr−1 装置;固定床方式による高圧流通式反応装置 触媒の前処理条件:圧力(水素分圧);50kg/cm 雰囲気;硫化水素/水素の混合ガス流通下 温度;ステップ昇温 100℃にて2hr 250℃にて2hr 350℃にて2hr
Using the catalysts prepared in Examples 1 to 4 and Comparative Examples 1 to 5, a hydrogenation (desulfurization reaction) test was conducted under the following conditions. The results are shown in Table 3. Feed oil: straight run gas oil: specific gravity (15/4 ° C); 0.8567 sulfur content; 1.364 mass% nitrogen content; 150 ppm boiling point (50% point); 315 ° C viscosity (粘度 30 ° C); 6.608 cSt hydrogenation Treatment conditions: temperature; 320, 340, 350 ° C. Pressure (hydrogen partial pressure); 50 kg / cm 2 liquid space velocity; 1.5 hr −1 device; high-pressure flow reactor with fixed bed system Pretreatment condition of catalyst: pressure ( 50 kg / cm 2 atmosphere; hydrogen sulfide / hydrogen mixed gas flow temperature; step temperature rise 100 ° C. for 2 hours 250 ° C. for 2 hours 350 ° C. for 2 hours

【0038】[0038]

【表3】 注)比較例1の活性を100とした相対評価で示した。[Table 3] Note) The relative evaluation was made with the activity of Comparative Example 1 taken as 100.

【0039】また、本発明の触媒におけるホウ素成分含
有量による脱硫活性への影響(依存性)を調べた。この
結果を表4に示す。
Further, the influence (dependency) of the boron component content on the desulfurization activity in the catalyst of the present invention was examined. Table 4 shows the results.

【0040】[0040]

【表4】 注)触媒は上からB担持量の少ない順に並べた。 比較例2の活性を100とした相対評価で示した。[Table 4] Note) The catalysts were arranged from the top in ascending order of the amount of B 2 O 3 supported. The activity of Comparative Example 2 was shown as a relative evaluation with the activity being 100.

【0041】表3は、比較例1のCoMo/Al
触媒の脱硫活性を基準にし、これを100としたときの
比較結果を示している。表3から明らかなように、33
0℃において、Pを3%担持した比較例2では1
04%、Bを1%担持した比較例3では105%
の相対活性を示したのに対し、Pを3%とB
を1%同時に担持した実施例1では、活性が大きく向
上し、114%の相対活性を示した。この傾向は、33
0℃から340℃、さらに350℃と高温になるに従い
顕著になり、相対活性値が大きく増加していることが判
る。このことは、生成油中の硫黄分の含有量を0.05
mass%以下にする超深度脱硫領域において、B
が有効に作用し、特にPと共存させた場合にお
いて、効果が顕著になることを示唆している。
Table 3 shows CoMo / Al 2 O 3 of Comparative Example 1.
The results of comparison are shown with the desulfurization activity of the catalyst as a reference, which is set to 100. As is clear from Table 3, 33
At 0 ° C., Comparative Example 2 supporting 3% of P 2 O 5
04%, and 105% in Comparative Example 3 in which 1% of B 2 O 3 is supported.
Of P 2 O 5 and B 2 O
In Example 1 in which 3 % was simultaneously supported by 1%, the activity was greatly improved, and a relative activity of 114% was exhibited. This tendency is 33
It becomes remarkable as the temperature rises from 0 ° C. to 340 ° C., and further to 350 ° C., indicating that the relative activity value is greatly increased. This means that the content of sulfur in the product oil is 0.05%
B 2 O in the ultra-deep desulfurization region where the mass
3 effectively acts, and particularly suggests that the effect becomes remarkable when coexisting with P 2 O 5 .

【0042】表4は、本発明の触媒のB含有量依
存性を確認するもので、Bを含まない比較例2の
CoMoP/Al触媒の脱硫活性を基準にし、こ
れを100としたときの相対活性を示している。表4か
ら明らかなように、330℃において、Pを3%
とBを1%同時に担持した実施例1では111%
の相対活性を示し、Bを3%に増加した実施例3
では117%の相対活性を示し、Bをさらに5%
に増加した実施例4では108%の相対活性を示した。
一方、B担持量を10%にした比較例5では、B
を含まない比較例2の基準触媒より活性が悪く、
98%の相対活性を示した。また、PとB
の共存の相乗効果は、330℃から340℃、さらに3
50℃と高温になるに従い、顕著に観察された。以上か
ら、PとBを共存させると活性が向上する
が、B含有量が多すぎると悪くなり、配合量には
最適な範囲が存在することが判る。
Table 4 confirms the B 2 O 3 content dependency of the catalyst of the present invention, based on the desulfurization activity of the CoMoP / Al 2 O 3 catalyst of Comparative Example 2 containing no B 2 O 3. , The relative activity when this is set to 100. As is apparent from Table 4, at 330 ° C., P 2 O 5 was 3%
In Example 1 where 1% and B 2 O 3 were simultaneously supported, 111%
Shows the relative activity, Example 3 was increased B 2 O 3 3%
Shows 117% relative activity and B 2 O 3
Example 4 showed a relative activity of 108%.
On the other hand, in Comparative Example 5 in which the amount of B 2 O 3 carried was 10%, B
Less active than the reference catalyst of Comparative Example 2 containing no 2 O 3 ,
It showed a relative activity of 98%. Also, P 2 O 5 and B 2 O 3
The synergistic effect of the coexistence of
As the temperature increased to 50 ° C., it was remarkably observed. From the above, it can be seen that the activity is improved when P 2 O 5 and B 2 O 3 coexist, but it becomes worse when the B 2 O 3 content is too large, and there is an optimum range for the compounding amount.

【0043】[0043]

【発明の効果】以上詳述したように、本発明によれば、
炭化水素油の水素化脱硫に高活性を示す触媒を実現する
ことができ、これにより硫黄含有量の少ない燃料油を提
供することができる。
As described in detail above, according to the present invention,
A catalyst exhibiting high activity for hydrodesulfurization of hydrocarbon oils can be realized, thereby providing a fuel oil having a low sulfur content.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10G 45/12 C10G 45/12 A (72)発明者 藤川 貴志 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 Fターム(参考) 4G069 AA04 AA08 BA01A BA01B BA07A BA07B BB02A BB02B BC57A BC59B BC65A BC67B BC69A BD03A BD03B BD07A BD07B CC02 DA06 FB14 FC08 4H029 CA00 DA00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10G 45/12 C10G 45/12 A (72) Inventor Takashi Fujikawa 1134-2 Gongendo, Satte City, Saitama 4G069 AA04 AA08 BA01A BA01B BA07A BA07B BB02A BB02B BC57A BC59B BC65A BC67B BC69A BD03A BD03B BD07A BD07B CC02 DA06 FB14 FC08 4H029 CA00 DA00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ又はアルミナを主成分とする無
機酸化物からなる担体に、酸化物換算で、触媒全量に対
し、周期律表第VIA族金属元素から選択される少なく
とも1種を10〜30mass%、周期律表第VIII
族金属元素から選択される少なくとも1種を1〜10m
ass%、燐を1〜7mass%、及びホウ素を0.5
〜7mass%担持させてなる炭化水素油用水素化処理
触媒。
1. A support made of alumina or an inorganic oxide containing alumina as a main component, wherein at least one element selected from Group VIA metal elements of the periodic table is used in an amount of 10 to 30 mass in terms of oxide, based on the total amount of the catalyst. %, Periodic Table VIII
At least one member selected from the group consisting of group 1 to 10 m
ass%, 1-7 mass% of phosphorus, and 0.5% of boron.
A hydrotreating catalyst for hydrocarbon oils supported by about 7 mass%.
【請求項2】 担体が、触媒全量に対し、ゼオライトを
1〜15mass%含むことを特徴とする請求項1記載
の炭化水素油用水素化処理触媒。
2. The hydrotreating catalyst for hydrocarbon oil according to claim 1, wherein the support contains 1 to 15 mass% of zeolite based on the total amount of the catalyst.
【請求項3】 担体に、周期律表第VIA族金属元素か
ら選択される少なくとも1種の化合物及び周期律表第V
III族金属元素から選択される少なくとも1種の化合
物と共に、燐化合物及びホウ素化合物を含む含浸液を含
浸することを特徴とする請求項1記載の炭化水素油用水
素化処理触媒の製造方法。
3. A carrier comprising at least one compound selected from Group VIA metal elements of the periodic table and V
The method for producing a hydrotreating catalyst for a hydrocarbon oil according to claim 1, wherein an impregnating liquid containing a phosphorus compound and a boron compound is impregnated with at least one compound selected from Group III metal elements.
【請求項4】 担体が、触媒全量に対し、ゼオライトを
1〜15mass%含むことを特徴とする請求項3記載
の炭化水素油用水素化処理触媒の製造方法。
4. The method for producing a hydrotreating catalyst for hydrocarbon oil according to claim 3, wherein the support contains 1 to 15 mass% of zeolite based on the total amount of the catalyst.
JP10267837A 1998-09-22 1998-09-22 Hydrogen treating catalyst for hydrocarbon oil and its production Pending JP2000093804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267837A JP2000093804A (en) 1998-09-22 1998-09-22 Hydrogen treating catalyst for hydrocarbon oil and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10267837A JP2000093804A (en) 1998-09-22 1998-09-22 Hydrogen treating catalyst for hydrocarbon oil and its production

Publications (1)

Publication Number Publication Date
JP2000093804A true JP2000093804A (en) 2000-04-04

Family

ID=17450320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267837A Pending JP2000093804A (en) 1998-09-22 1998-09-22 Hydrogen treating catalyst for hydrocarbon oil and its production

Country Status (1)

Country Link
JP (1) JP2000093804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212448A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Hydrodenitrogenation catalyst, production method of hydrodenitrogenation catalyst and manufacturing method of light oil base material
US11318453B2 (en) 2009-04-21 2022-05-03 Albemarle Catalysts Company B.V. Hydrotreating catalyst containing phosphorus and boron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318453B2 (en) 2009-04-21 2022-05-03 Albemarle Catalysts Company B.V. Hydrotreating catalyst containing phosphorus and boron
JP2013212448A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Hydrodenitrogenation catalyst, production method of hydrodenitrogenation catalyst and manufacturing method of light oil base material

Similar Documents

Publication Publication Date Title
US4003828A (en) Catalyst and process for removing sulfur and metal contaminants from hydrocarbon feedstocks
EP0665280B1 (en) Process for producing a hydrodesulfurization catalyst
JP2832033B2 (en) Method for catalytic hydroprocessing of hydrocarbon oils containing nitrogen or sulfur
EP0469675B1 (en) Hydrodesulphurization process
US5215955A (en) Resid catalyst with high metals capacity
US4455390A (en) Catalyst and method for impregnating at a pH less than one
US5135902A (en) Nickel-tungsten-phosphorus catalyst
WO2003000410A1 (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
US4568450A (en) Hydrocarbon conversion process
US4392985A (en) Hydrocarbon conversion catalyst and method of preparation
US5001101A (en) Sulfiding of hydrogel derived catalysts
US4832826A (en) Hydrotreating with catalysts prepared from hydrogels
EP0266012B1 (en) Process for preparing hydrotreating catalysts from hydrogels
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
US4716140A (en) Hydrotreating catalysts prepared from hydrogels
JP3676869B2 (en) Method for producing hydrodesulfurization catalyst for hydrocarbon oil
JP2000093804A (en) Hydrogen treating catalyst for hydrocarbon oil and its production
JP4916370B2 (en) Process for hydrotreating diesel oil
EP2723494B1 (en) Method of making a hydroprocessing catalyst
US4743359A (en) Reforming and related processes
US5062947A (en) Sulfiding of hydrogel derived catalysts
WO1999019061A1 (en) Hydrotreating catalyst for heavy oil, carrier for the catalyst, and process for the preparation of the catalyst
JP2921379B2 (en) Hydrodesulfurization of gas oil
JP4444690B2 (en) Hydrotreating catalyst precursor, method for producing the same, and method for producing refined hydrocarbon oil
JP2996435B2 (en) Hydrodesulfurization of gas oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814