JPS60193539A - Composition having fibrous clay mineral - Google Patents

Composition having fibrous clay mineral

Info

Publication number
JPS60193539A
JPS60193539A JP59049919A JP4991984A JPS60193539A JP S60193539 A JPS60193539 A JP S60193539A JP 59049919 A JP59049919 A JP 59049919A JP 4991984 A JP4991984 A JP 4991984A JP S60193539 A JPS60193539 A JP S60193539A
Authority
JP
Japan
Prior art keywords
composition
clay mineral
fibrous
pore volume
fibrous clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59049919A
Other languages
Japanese (ja)
Other versions
JPH0530501B2 (en
Inventor
Madoka Kawakami
川上 円
Tatsuo Morimoto
達雄 森本
Munekazu Nakamura
宗和 中村
Takeo Ono
健雄 小野
Yoshihiro Oguchi
大口 善弘
Taketo Higashi
日樫 武人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP59049919A priority Critical patent/JPS60193539A/en
Publication of JPS60193539A publication Critical patent/JPS60193539A/en
Publication of JPH0530501B2 publication Critical patent/JPH0530501B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain a catalyst for having excellent durability, activity and mechanical strength for hydrogenation of a heavy gravity hydrocarbon oil by consisting said catalyst of fibrous clay mineral consisting essentially of Mg silicate and inorg. oxide. CONSTITUTION:1-100pts.wt. times of water is added to fibrous clay mineral (e.g., sepiolite) having a double chain structure consisting essentially of Mg silicate and is strongly agitated until an increase in viscosity of the formed pasty material with time is eliminated, thereby forming the pasty material of the clay mineral in which the fiber bundles are highly opened. Inorg. oxide such as silica or inorg. hydroxide such as boehmite is uniformly mixed therewith and the mixture is dehydrated to 40-80wt% moisture. The dehydrated mixture is molded, dried and calcined at 200-800 deg.C. As a result, the compsn. in which the pore volume of the entire compsn. is larger by at least 0.05cc/g than the arithmetic weighted mean of the pore volume possessed by the above-described fibrous clay mineral and inorg. oxide is obtd.

Description

【発明の詳細な説明】 本発明は、マグネシウムシリケートを主成分とする複鎖
構造を有する繊維性粘土鉱物と無機酸化物からなる新規
な構造の組成物、その製造方法及びそれを触媒担体とし
て用いる重質炭化水素油の水素化処理用触媒に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a composition with a novel structure consisting of a fibrous clay mineral with a double-chain structure mainly composed of magnesium silicate and an inorganic oxide, a method for producing the same, and the use of the same as a catalyst carrier. The present invention relates to a catalyst for hydrotreating heavy hydrocarbon oil.

常圧蒸留残渣油や、減圧蒸留残渣油の他、石炭や、ター
ルサンド、オイルサンドからの抽出重質油などの重質炭
化水素油には、通常、多量のアスファルテン、重金属、
イオウ化合物、窒素化合物等の汚染成分が含まれていて
、その有効利用を著しく妨げている。従来、このような
重質炭化水素油を付加価値の高い製品として有効利用す
るために、重質炭化水素油を水素の存在下、触媒と接触
させて、前記汚染物質を除去したり(水素化精製)、あ
るいは軽質化油に分解させたり(水素化分解)すること
が広く研究され、また実際に行われているが、未だ満足
すべき結果は得られておらず、種々の改良が要望されて
いる。このような重質炭化水素油を接触的に水素化処理
する場合、その最も大きな技術課題は、耐久性及び活性
にすぐれた触媒開発である。即ち、前記水素化処理は、
固定床や沸とう床等の反応形式により一般に行われるが
、この場合1重質炭化水素油中に含まれるアスファルテ
ンが巨大分子であり、触媒細孔内の活性点への拡散がし
にくいため、その水素化分解反応が阻害されると共に、
このアスファルテンの存在により、コークの生成が促進
され、触媒活性が低下するという問題があり、また、重
質炭化水素油中の重金属が触媒表面上に堆積するために
、触媒寿命が著しく短縮されてしまうという問題がある
。従って、これらの問題を解決し得る触媒開発が大きな
課題になっている。
In addition to atmospheric distillation residue oil and vacuum distillation residue oil, heavy hydrocarbon oils such as heavy oil extracted from coal, tar sands, and oil sands usually contain large amounts of asphaltenes, heavy metals,
It contains contaminants such as sulfur compounds and nitrogen compounds, which significantly hinders its effective use. Conventionally, in order to effectively utilize such heavy hydrocarbon oils as products with high added value, heavy hydrocarbon oils are brought into contact with a catalyst in the presence of hydrogen to remove the pollutants (hydrogenation). Refining) or cracking into light oil (hydrocracking) has been widely researched and is actually being carried out, but satisfactory results have not yet been obtained, and various improvements are desired. ing. When catalytically hydrotreating such heavy hydrocarbon oils, the biggest technical challenge is the development of a catalyst with excellent durability and activity. That is, the hydrogenation treatment is
This is generally carried out using a fixed bed or boiling bed reaction method, but in this case, the asphaltene contained in the heavy hydrocarbon oil is a macromolecule and difficult to diffuse into the active sites in the catalyst pores. The hydrogenolysis reaction is inhibited, and
The presence of asphaltenes promotes coke formation and reduces catalyst activity, and heavy metals in heavy hydrocarbon oils accumulate on the catalyst surface, significantly shortening catalyst life. There is a problem with putting it away. Therefore, the development of catalysts that can solve these problems has become a major issue.

−アスファルテン、重金属、イオウ分、窒素分等を多量
に含有する重質炭化水素油の水素化精製や水素化分解に
用いる触媒に対しては、一般に次のような特性を有する
ことが望まれている。第1に、長期間に亘り安定した触
媒活性を保つために、重金属が相当量堆積し得るに充分
な大きさの細孔容積を有することである。第2には、重
質炭化水素油中の巨大分子の拡散に有利に適合し得る大
細孔径を有することである。大細孔径の触媒はまた、金
属コーク等の堆積物による触媒の表面細孔の閉塞を防ぐ
点でも有利といえる。さらに、第3には、上記如くの大
細孔容積、大細孔径を有しながらも、充分な機械的強度
を有することである。
- Catalysts used for hydrorefining and hydrocracking of heavy hydrocarbon oils containing large amounts of asphaltenes, heavy metals, sulfur, nitrogen, etc. are generally desired to have the following characteristics: There is. First, it must have a pore volume large enough to allow heavy metals to be deposited in significant amounts in order to maintain stable catalytic activity over a long period of time. Second, it has a large pore size that can be advantageously adapted to the diffusion of macromolecules in heavy hydrocarbon oils. A catalyst with a large pore size is also advantageous in that it prevents the surface pores of the catalyst from being blocked by deposits such as metal coke. Furthermore, thirdly, it has sufficient mechanical strength while having the large pore volume and large pore diameter as described above.

従来、上記の観点から、重質炭化水素油の水素化精製に
あたり、粘土鉱物と無機酸化物とが混在する組成物を担
体とする触媒が有効であるとして、いくつかの触媒が提
案されている。例えば、特開昭52−71403号公報
によれば、無機酸化物担体にセピオライトを混合した触
媒が提案され、この触媒によると脱硫能に対する脱メタ
ル能の選択性を向上させることができる。また、特公昭
52−82690号公報によれば、アルミナ、粘土鉱物
および触媒金属よりなる重質炭化水素油の水素化脱硫、
水素化脱金属、水素化脱金属に有効な触媒が開示されて
いる。前記した2種の触媒は、脱硫ないしは脱メタルを
目的としたものである。
Conventionally, from the above point of view, several catalysts have been proposed as catalysts having a composition containing a mixture of clay minerals and inorganic oxides as a carrier are effective for hydrorefining heavy hydrocarbon oils. . For example, JP-A-52-71403 proposes a catalyst in which sepiolite is mixed with an inorganic oxide carrier, and this catalyst can improve the selectivity of demetalization ability with respect to desulfurization ability. Furthermore, according to Japanese Patent Publication No. 52-82690, hydrodesulfurization of heavy hydrocarbon oil consisting of alumina, clay minerals and catalytic metals,
Hydrodemetalization and catalysts effective for hydrodemetallization are disclosed. The above two types of catalysts are intended for desulfurization or demetalization.

一方、特開昭57−122949号公報によれば、繊維
状クレーロッドと予備焼成した無機酸化物とから成る組
成物を担体とした触媒組成物が、炭化水素油の水素化脱
金属、水素化脱硫および水素化分解等の水素化処理に使
用できるとしている。上記の触媒は小細孔径と大細孔径
との両方に細孔容積のピークを有するいわゆるbimo
da Q型のものであるが、処理対象とする炭化水素油
が重質炭化水素油である場合には、反応に関与する分子
のサイズが広範囲にわたるため、このようなりimod
a Q型の触媒は、多量のアスファルテンや重金属等を
含有する重質炭化水油の水素化処理用触媒としては、中
途半端な活性とならざるを得ない。また、特開昭56−
76245号公報、特開昭56−76246号公報によ
れば、粘土鉱物および無機酸化物が混在する組成物を担
体とする触媒を提示している。この触媒は重質炭化水素
油の水素化処理に有効であり、かつ粘土鉱物単独で発現
する細孔構造を損なうことなしに、無機酸化物を添加す
ることにより触媒の表面活性を向上させている。しかも
実用に耐え得る機械的強度を有するとしている。しかし
、このような触媒技術によれば、触媒表面活性を向上さ
せる目的で添加する無機酸化物の組成物中に占める割合
を増加させると、粘土鉱物の有する細孔構造が損なわれ
てしまうために1重質油の水素化処理に高い表面活性を
示す無機酸化物の特性を充分に発現することが難かしく
なる。
On the other hand, according to Japanese Patent Application Laid-Open No. 57-122949, a catalyst composition using a composition comprising a fibrous clay rod and a precalcined inorganic oxide as a carrier is used for hydrodemetalization and hydrogenation of hydrocarbon oil. It is said that it can be used for hydroprocessing such as desulfurization and hydrocracking. The above catalyst has a so-called bimo pore volume peak at both small and large pore diameters.
da Q type, but when the hydrocarbon oil to be treated is heavy hydrocarbon oil, the molecules involved in the reaction have a wide range of sizes, so this kind of imod
A Q-type catalyst has only moderate activity as a catalyst for hydrotreating heavy hydrocarbon oils containing large amounts of asphaltenes, heavy metals, and the like. Also, JP-A-56-
According to JP-A No. 76245 and JP-A No. 76246/1983, catalysts are proposed in which a composition containing a clay mineral and an inorganic oxide is used as a carrier. This catalyst is effective in the hydrogenation treatment of heavy hydrocarbon oils, and the surface activity of the catalyst is improved by adding inorganic oxides without damaging the pore structure developed by clay minerals alone. . Moreover, it is said to have mechanical strength that can withstand practical use. However, according to such catalyst technology, if the proportion of the inorganic oxide added in the composition for the purpose of improving the catalyst surface activity is increased, the pore structure of the clay mineral will be damaged. 1. It becomes difficult to fully exhibit the characteristics of inorganic oxides that exhibit high surface activity in the hydrogenation treatment of heavy oil.

本発明者らは、従来技術に見られる前記欠点を克服した
重質炭化水素油の水素化処理用触媒を開発すべく鋭意研
究を重ねた。その結果、重質炭化水素油の水素化分解、
水素化精製に有効な細孔容積、細孔径を有し、かつ、水
素化処理反応に高い表面活性を示すと共に、実用に耐え
るに充分な機械的強度を有する新規な組成物を見出した
The present inventors have conducted extensive research in order to develop a catalyst for hydrotreating heavy hydrocarbon oils that overcomes the above-mentioned drawbacks found in the prior art. As a result, hydrocracking of heavy hydrocarbon oil,
We have discovered a new composition that has pore volume and pore diameter effective for hydrorefining, exhibits high surface activity for hydrotreating reactions, and has sufficient mechanical strength to withstand practical use.

即ち、本発明によれば、マグネシウムシリケートを主成
分とする複鎖構造を有する繊維性粘土鉱物と無機酸化物
とからなり、該繊維性粘土鉱物の繊維束は高度に解繊さ
れて、全組成物の細孔容積(pv)が、前記繊維性粘土
鉱物および無機酸化物の有する細孔容積の算術加重平均
値(PVav)よりも少なくとも0.05cc/ g大
きいことを特徴とする繊維性粘土鉱物を含有する組成物
が提供される。
That is, according to the present invention, the fiber bundles of the fibrous clay mineral are made of an inorganic oxide and a fibrous clay mineral having a double-chain structure mainly composed of magnesium silicate, and the fiber bundles of the fibrous clay mineral are highly defibrated to reduce the total composition. A fibrous clay mineral, characterized in that the pore volume (pv) of the substance is at least 0.05 cc/g larger than the arithmetic weighted average value (PVav) of the pore volumes of the fibrous clay mineral and the inorganic oxide. A composition containing the following is provided.

一般に、二種類以上の大きさの異なる粒子を混合するこ
とによって得られる組成物の細孔容積は、大きい粒子の
空げき部分に小さい粒子がはいりこむ場合には、成分そ
れぞれの細孔容積の算術加重平均値よりも小さくなり、
一方、大きい粒子で構成される空げき部分に小さな粒子
がはいりこめない場合には、成分それぞれの細孔容積の
ほぼ算術加重平均値となる。
In general, the pore volume of a composition obtained by mixing two or more types of particles of different sizes is calculated by calculating the pore volume of each component when small particles fit into the voids of large particles. is smaller than the weighted average value,
On the other hand, if small particles cannot fit into the voids made up of large particles, the pore volume of each component becomes approximately the arithmetic weighted average value.

−しかしながら、本発明の組成物は、原料となる粘土鉱
物を、本来構成している繊維束の形態でなく、該繊維束
を十分解繊することによって得られる個々の繊維の形態
で使用し、これらに無機酸化物を複合化させたものであ
る為、従来技術による、単に粘土鉱物と無機酸化物とを
混合する場合や、不十分に解繊された粘土鉱物と無機酸
化物とを複合化することによって得られる組成物では発
現し得なかった以下の如き特性を有する。
-However, the composition of the present invention uses the clay mineral as a raw material not in the form of the fiber bundle that it originally constitutes, but in the form of individual fibers obtained by sufficiently defibrating the fiber bundle, Since these are combined with inorganic oxides, there are cases where clay minerals and inorganic oxides are simply mixed using conventional technology, and cases where insufficiently defibrated clay minerals and inorganic oxides are combined. It has the following properties that could not be expressed by the composition obtained by doing so.

本発明組成物の第1の特性は、繊維性粘土および無機酸
化物の有する細孔容積の算術加重平均値よりも大なる細
孔容積を有する点である。即ち、PV 1cc/gの細
孔容積を有する繊維性粘土およびPV 2 cc/gの
細孔容積を有する無機酸化物とが、該繊維性粘土の組成
物中に占める重量分率かりである比率で存在する場合、
本発明組成物の細孔容積PVcc/gは PV>PVav=W−PV t +(1−W) PV 
2 (1)となる。
The first characteristic of the composition of the present invention is that it has a pore volume larger than the arithmetic weighted average value of the pore volumes of the fibrous clay and the inorganic oxide. That is, the proportion by weight of the fibrous clay having a pore volume of PV 1 cc/g and the inorganic oxide having a pore volume of PV 2 cc/g in the composition of the fibrous clay. If it exists in
The pore volume PVcc/g of the composition of the present invention is PV>PVav=W-PV t + (1-W) PV
2 (1).

また、本発明組成物の細孔容積の原料成分の算術加重平
均値に対する増加量は、下記(2)式で表わされること
を見出した。
It has also been found that the amount of increase in the pore volume of the composition of the present invention relative to the arithmetic weighted average value of the raw material components is expressed by the following formula (2).

PV PVav−KW(1−1)=K(W −1+l”
 ) (2)Pv:組成物細孔容積(cc/g) PVav :繊維性粘土を無機酸化物との細孔容積の算
術加重平均値(cc/g) w 二組酸物中の繊維性粘土重量分率 K :繊維性粘土の繊維性係数(cc/g)前記式(2
)で示される通り、本発明組成物の細孔容積増大量は、
後記する繊維性係数(K)、および繊維性粘土を混合し
た重量分率によってめられる。本発明組成物の特性を顕
著に発現させるためには、細孔容積増大量が0.05c
c/g以上であることが好ましく、より好ましくはO,
Ice/g以上であることが望ましい。
PV PVav-KW(1-1)=K(W-1+l"
) (2) Pv: Composition pore volume (cc/g) PVav: Arithmetic weighted average value of pore volume of fibrous clay with inorganic oxide (cc/g) w Fibrous clay in two sets of acids Weight fraction K: fibrous coefficient of fibrous clay (cc/g) from the above formula (2
), the amount of increase in pore volume of the composition of the present invention is
It is determined by the fibrous coefficient (K) described later and the weight fraction of the fibrous clay mixed. In order to significantly express the characteristics of the composition of the present invention, the pore volume increase amount must be 0.05c.
c/g or more, more preferably O,
It is desirable that it be at least Ice/g.

本発明組成物の第2の特性は、所望の細孔容積の触媒を
得るために、特定の繊維性粘土係数を有する繊維性粘土
を選ぶと、組成物中のその割合を任意に選択することが
できることである。即ち、本発明組成物の場合、繊維性
粘土と無機酸化物との混合比率の広い範囲にわたって、
大細孔径の細孔容積を有し得る点である。さらに、第3
の特性は、混合比率の広い範囲にわたり大細孔容積を有
しながらも、本組成物の機械的強度が大きい点である。
A second characteristic of the composition of the present invention is that once a fibrous clay with a specific fibrous clay coefficient is selected, its proportion in the composition can be arbitrarily selected in order to obtain a catalyst with a desired pore volume. This is something that can be done. That is, in the case of the composition of the present invention, over a wide range of mixing ratios of fibrous clay and inorganic oxide,
It is possible to have a pore volume with a large pore diameter. Furthermore, the third
The characteristics of this composition are that it has a large pore volume over a wide range of mixing ratios, and yet has high mechanical strength.

これは、高度に分散された繊維性粒子が無機酸化物の中
に存在し、該繊維性粒子があたかもコンクリートにおけ
る鉄筋の如き効果を発現するためであると考えられる。
This is thought to be because highly dispersed fibrous particles exist in the inorganic oxide, and the fibrous particles exhibit an effect similar to reinforcing bars in concrete.

本発明組成物が前記の如き特異な特性を有するのは、以
下の如き理由によると考えられる。即ち、本発明組成物
は、高度に分散された繊維性粘土による三次元構造を有
しており、かつ、無機酸化物粒子がその三次元構造を保
持するための補強作用を成す為、乾燥、焼成工程におい
て水分が除去される際に働く水の表面張力による細孔の
収縮に拮抗する作用を有し、その結果該三次元構造が保
たれる為に、前述の如き単に粘土鉱物と無機酸化物とを
混合することにより得られる組成物では全く発現し得な
かった上記の如き特性を有するものと考えらる。この様
な特性の発現は、上述した様に、本発明に用いた繊維性
粘土鉱物の性質に主に起因し、前記式(2)中の繊維性
粘土の繊維性係数(K)がこの粘土鉱物の繊維性とその
繊維の分散性の双方に基づく性質を表わしている。この
係数の大小は繊維性粘土鉱物の繊維性の大小および個々
の繊維の分散度合の大小を表わしている。すなわち、繊
維性係数(K)が大きければ粘土鉱物の繊維が長く、繊
維性が発達しており、小さければ繊維が短かく、繊維性
が発達していない。また、同じ繊維性の粘土鉱物の場合
で繊維性係数(K)が大きい場合には繊維性粘土鉱物の
個々の繊維が良く分散されていることを示している。本
発明における繊維性粘土鉱物の繊維性係数は、正確には
、多数の組成物を製造し、これら組成物の細孔容積値を
用いて前記式(2)から得ることができる。し゛かし、
発明者等は、この関係を検討し、一般に繊維性粘土鉱物
を機械的に分散させ、そのコロイド溶液の粘度が粘土鉱
物の繊維性および個々の繊維の分散度合に密接に関係し
ていることも見出した。すなわち、繊維性が大きく、か
つ、繊維が長いほど粘度は増大し、あるいは、分散度合
の良いほど粘度は大きくなる。従って、繊維性係数(K
)も、粘土鉱物を分散させた後のそのコロイド溶液の粘
度と密接な関係にあることが判った。そのため繊維性粘
土鉱物中の繊維を良く分散させた後、そのコロイド溶液
の粘度と繊維性係数(K)の関係をめておけば、繊維性
粘土鉱物のコロイド溶液の粘度を測定するという簡便な
方法により、該粘土鉱物の繊維性と分散度合とを総合的
にみることが出来、繊維性係数を容易に推定することが
可能である。
The reason why the composition of the present invention has the above-mentioned unique properties is considered to be due to the following reasons. That is, the composition of the present invention has a three-dimensional structure made of highly dispersed fibrous clay, and the inorganic oxide particles have a reinforcing effect to maintain the three-dimensional structure. It has the effect of counteracting the shrinkage of pores due to the surface tension of water that acts when water is removed during the firing process, and as a result, the three-dimensional structure is maintained. It is thought that it has the above-mentioned properties that could not be exhibited at all in a composition obtained by mixing the above-mentioned substances. As mentioned above, the manifestation of such characteristics is mainly due to the properties of the fibrous clay mineral used in the present invention, and the fibrous coefficient (K) of the fibrous clay in the above formula (2) is It expresses the properties based on both the fibrous nature of the mineral and the dispersibility of its fibers. The magnitude of this coefficient represents the degree of fibrousness of the fibrous clay mineral and the degree of dispersion of individual fibers. That is, if the fibrous coefficient (K) is large, the fibers of the clay mineral are long and the fibrous property is developed, and if the fibrous coefficient (K) is small, the fibers are short and the fibrous property is not developed. Further, in the case of the same fibrous clay mineral, if the fibrous coefficient (K) is large, it indicates that the individual fibers of the fibrous clay mineral are well dispersed. To be more precise, the fibrous coefficient of the fibrous clay mineral in the present invention can be obtained from the above formula (2) by manufacturing a large number of compositions and using the pore volume values of these compositions. However,
The inventors studied this relationship and found that fibrous clay minerals are generally mechanically dispersed, and that the viscosity of the colloidal solution is closely related to the fibrous nature of the clay mineral and the degree of dispersion of individual fibers. I found it. That is, the greater the fibrous nature and the longer the fibers, the greater the viscosity, or the better the degree of dispersion, the greater the viscosity. Therefore, the fibrous coefficient (K
) was also found to be closely related to the viscosity of the colloidal solution after dispersing the clay mineral. Therefore, after the fibers in the fibrous clay mineral are well dispersed, if the relationship between the viscosity of the colloidal solution and the fibrous coefficient (K) is known, it is easy to measure the viscosity of the colloidal solution of the fibrous clay mineral. By using this method, the fibrous properties and degree of dispersion of the clay mineral can be seen comprehensively, and the fibrous coefficient can be easily estimated.

この粘土鉱物コロイド溶液の粘度と繊維性係数の関係を
図面に示した。この図面に示した関係は以下の様な方法
によりめたものである。
The relationship between the viscosity and fibrous coefficient of this clay mineral colloidal solution is shown in the drawing. The relationships shown in this drawing were established in the following manner.

(1)粘土鉱物のコロイド溶液の粘度 粘土鉱物に対し、固形分濃度が4重量%となるべく水を
加え、この混合物8kgを一三井三池製作所製のトリボ
ナル湿式微粉砕機(固定刃と回転刃の間げき0.5mm
、回転刃回転数150叶ρm)に投入し、10分間剪断
力を加えながら解繊した後、得られたコロイド溶液の室
温における粘度を、リオン[製回転粘度計により測定し
た。
(1) Viscosity of a colloidal solution of clay minerals Add water to the clay minerals as much as possible to make the solid content concentration 4% by weight. Gap 0.5mm
The colloidal solution was placed in a rotating blade (rotating speed: 150 m) and defibrated for 10 minutes while applying a shearing force, and the viscosity of the obtained colloidal solution at room temperature was measured using a rotational viscometer manufactured by Rion.

(2)繊維性係数 前述の方法で得られた粘土鉱物のコロイド溶液を用いて
、多種の組成物を製造し、その組成物の細孔容積値を測
定し、前記(2)式から繊維性係数(K)を算出する。
(2) Fibrous coefficient Using the colloidal solution of clay mineral obtained by the method described above, various compositions were manufactured, and the pore volume values of the compositions were measured. Calculate the coefficient (K).

図面に示した繊維性係数(K)と粘土鉱物コロイド溶液
の粘度との関係は繊維性粘土鉱物の繊維性の違いを表わ
している。これに加え、繊維性粘土鉱物の個々の繊維の
分散性についても図面の相関関係は良く一致する。従っ
て、繊維性粘土の繊維束で解繊する操作が不十分な方法
ではコロイド溶液の粘度は大きくならず、繊維性係数(
K)の小さい、すなわち繊維をあまり解繊していない粘
土鉱物であることが明らかとなる。この様な場合は。
The relationship between the fibrous coefficient (K) and the viscosity of the clay mineral colloid solution shown in the drawing represents the difference in the fibrous properties of the fibrous clay minerals. In addition, the correlation between the drawings also agrees well with the dispersibility of individual fibers of the fibrous clay mineral. Therefore, if the fibrous clay fiber bundle is insufficiently defibrated, the viscosity of the colloidal solution will not increase, and the fibrous coefficient (
It is clear that the clay mineral has a small K), that is, the fibers are not fibrillated very much. In such a case.

繊維性粘土および無機酸化物の有する細孔容積の算術加
重平均値よりも0.05cc/g大きな細孔容積を有す
る組成物は得られなくなる。
A composition having a pore volume 0.05 cc/g larger than the arithmetic weighted average value of the pore volumes of the fibrous clay and the inorganic oxide can no longer be obtained.

次に、本発明組成物の製造方法について説明する。この
場合、特に、粘土鉱物を構成する繊維束を解繊し、繊維
性粘土を得る工程および、該粘土と無機酸化物を混合す
る工程は極めて重要である。
Next, a method for producing the composition of the present invention will be explained. In this case, in particular, the step of defibrating the fiber bundles constituting the clay mineral to obtain fibrous clay and the step of mixing the clay with the inorganic oxide are extremely important.

本発明組成物は、以下の一連の工程によって製造するこ
とができる。
The composition of the present invention can be manufactured by the following series of steps.

(a)繊維性粘土鉱物としてマグネシウムシリケートを
主成分とする複鎖構造を有する粘土鉱物をそのままある
いは粉砕し、該粘土鉱物に対して1〜100倍、望まし
くは5〜50倍の重量の水を加え、この粘土鉱物−水混
合物を強攪拌することにより、繊維束が解繊され、高度
に繊維が分散されたペースト状物を生成する工程。この
場合、強攪拌は、ペースト状物粘度の経時的増加が実質
的になくなるまで行う。
(a) As a fibrous clay mineral, a clay mineral with a double-chain structure mainly composed of magnesium silicate is used as it is or is crushed, and water is added in an amount of 1 to 100 times, preferably 5 to 50 times the weight of the clay mineral. In addition, the fiber bundles are defibrated by strongly stirring the clay mineral-water mixture to produce a paste-like material in which the fibers are highly dispersed. In this case, strong stirring is performed until the viscosity of the paste material substantially disappears over time.

(b)工程(a)かのらペースト状物に対し、無機酸化
物又は無機水酸化物をそのまま又はスラリーとして添加
し、充分混合する工程。
(b) Step (a) Adding an inorganic oxide or inorganic hydroxide as it is or as a slurry to the paste-like material and mixing thoroughly.

(c)工程(b)で得られるペースト状混合物を含水率
が40〜80重量%になるまで脱水する工程、(d)工
程(c)からのペースト状混合物を成形した後、該成形
物を固形分量が30重量%以上になるまで乾燥し、さら
に、200〜8oo℃の温度範囲で0.1〜10時間焼
成する工程。
(c) dehydrating the pasty mixture obtained in step (b) until the water content becomes 40 to 80% by weight; (d) molding the pasty mixture from step (c); A process of drying until the solid content becomes 30% by weight or more, and then firing at a temperature range of 200 to 80°C for 0.1 to 10 hours.

前記工程(a)が本発明組成物の第1成分たる繊維束が
高度に解繊された繊維性粘土を得る工程であり、大なる
繊維性係数を有する繊維性粘土を得る為には、この工程
においては粘土鉱物に充分な剪断力を加え、繊維束を高
度に解繊することが必要である。
The step (a) is a step for obtaining a fibrous clay in which the fiber bundles, which are the first component of the composition of the present invention, are highly defibrated. In the process, it is necessary to apply sufficient shearing force to the clay mineral to highly defibrate the fiber bundles.

本発明で用いる繊維性粘土鉱物は、具体的には、セピオ
ライト、アタパルジャイト、パリゴスカイトと呼ばれる
多孔性マグネシウムシリケートである。本発明の場合、
このような粘土鉱物の単独あるいは混合物を、そのまま
あるいは粉砕したもの、特に望ましくは粒径40メツシ
ュ以上20c■以下の顆粒状に粗砕したものに対し、1
−100倍望ましくは5〜50倍の重量の水を加え、こ
の混合物をコロイドミルや、ホモジナイザー等の強い剪
断力を加え得る湿式粉砕機にて攪拌しながら繊維を分散
する。
The fibrous clay mineral used in the present invention is specifically a porous magnesium silicate called sepiolite, attapulgite, or palygoskite. In the case of the present invention,
1 of these clay minerals alone or as a mixture, either as they are or in pulverized form, particularly preferably in the form of granules with a particle size of 40 mesh or more and 20 cm or less.
-100 times the weight, preferably 5 to 50 times the weight of water is added, and the fibers are dispersed while stirring the mixture using a colloid mill or a wet grinder capable of applying strong shearing force, such as a homogenizer.

繊維が分散されるに従い、混合物はゲル状を呈するよう
になり、その粘度が著しく増加していく。
As the fibers are dispersed, the mixture becomes gel-like and its viscosity increases significantly.

このような状態は、剪断力により粘土鉱物の繊維束が個
々の繊維に解繊され、かつ、この繊維が分散されつつあ
る状態であり、言え換えれば、粘土の繊維性係数が増大
しつつある状態であるといえる。攪拌が充分に行なわれ
ると、粘度の経時的増加はほとんど見られなくなり、こ
のような段階で、充分大なる繊維性係数を有する所望の
ペースト状繊維性粘土が得られる。本発明の場合、一般
的には、0.2以上好ましくは0.4以上の繊維性係数
(K)を有する解繊された粘土とするのがよい。
In this state, the fiber bundles of clay minerals are being defibrated into individual fibers by shearing force, and these fibers are being dispersed. In other words, the fibrous coefficient of the clay is increasing. It can be said that it is a state. If stirring is carried out sufficiently, the viscosity will hardly increase over time, and at this stage, a desired pasty fibrous clay having a sufficiently large fibrous coefficient can be obtained. In the case of the present invention, it is generally preferable to use a defibrated clay having a fibrous coefficient (K) of 0.2 or more, preferably 0.4 or more.

上記の方法で得られたペースト状粘土は、工程(b)に
示した方法で無機酸化物又は無機水酸化物と混合される
。この場合、無機酸化物としては、例えば、アルミナ、
マグネシア、ボリア、シリカ、チタニアおよびジルコニ
アの中から選ばれる一種あるいはこれらの混合物等が好
ましく使用されるが、もちろん、これらのものに限定さ
れるものではない。触媒担体として公知の無機酸化物は
一般に適用可能である。また、無機水酸化物としては、
例えば、ギブサイト、バイアライト、ノルドストランダ
イト、ベーマイト、擬ベーマイト、ジアスボア、無定性
ア・ルミナゲル等のアルミナ水和物の他、水酸化マグネ
シウム、シリカゾル、水酸化チタン、水酸膜ジルコニウ
ム等が挙げられる6本発明の場合、前記した無機酸化物
や無機水酸化物は、粉末状で工程(a)からのペースト
状粘土に加えることができるが、一般には、スラリーと
して添加するのが好ましい。無機水酸化物を含む木スラ
リーは、水中において、加水分解性の金属塩、例えば、
塩化物、硫酸塩、硝酸塩等を加水分解することによって
得ることができる。
The pasty clay obtained by the above method is mixed with an inorganic oxide or an inorganic hydroxide in the method shown in step (b). In this case, examples of the inorganic oxide include alumina,
One selected from magnesia, boria, silica, titania, and zirconia or a mixture thereof is preferably used, but the material is not limited to these. Inorganic oxides known as catalyst supports are generally applicable. In addition, as inorganic hydroxide,
Examples include alumina hydrates such as gibbsite, viarite, nordstrandite, boehmite, pseudoboehmite, diasbore, and amorphous alumina gel, as well as magnesium hydroxide, silica sol, titanium hydroxide, and hydroxide film zirconium. 6 In the case of the present invention, the above-mentioned inorganic oxides and inorganic hydroxides can be added in powder form to the paste clay from step (a), but it is generally preferable to add them as a slurry. Wood slurry containing inorganic hydroxides is treated with hydrolyzable metal salts, e.g.
It can be obtained by hydrolyzing chlorides, sulfates, nitrates, etc.

前記した無機酸化物又は無機水酸化物の細孔容積は、本
発明の組成物の細孔容積を大ならしめるために、大なる
ことが望ましいが、極端に大きい場合には、繊維性粘土
の強い補強効果をうけても、組成物として強度が不充分
になるため、一般には、0.2〜2.0cc/gの範囲
にあることが望ましい。
The pore volume of the inorganic oxide or inorganic hydroxide described above is desirably large in order to increase the pore volume of the composition of the present invention, but if it is extremely large, the pore volume of the fibrous clay Even if it has a strong reinforcing effect, the strength of the composition will be insufficient, so it is generally desirable to have a content in the range of 0.2 to 2.0 cc/g.

前記無機酸化物又は無機水酸化物をペースト状粘土に混
合する場合、無機酸化物又は無機水酸化物の添加割合は
、前記式(2)で表わされる細孔容積増加量が所望範囲
になるように選定する。この場合、両者の物性を選定す
ることによって希望する組成物の細孔容積に対して広範
囲にわたる混合比率が可能となる。
When the inorganic oxide or inorganic hydroxide is mixed into the paste clay, the addition ratio of the inorganic oxide or inorganic hydroxide is adjusted so that the amount of increase in pore volume expressed by the above formula (2) falls within the desired range. be selected. In this case, by selecting the physical properties of both, a wide range of mixing ratios can be achieved with respect to the pore volume of the desired composition.

本発明においては、前記式(2)から示されるように、
2成分細孔容積算術加重平均値に対する本組成物細孔容
積の増加量は両組酸物の混合率によって異なるが、本発
明で目的とする0、05cc/g以上の増加量を与え得
る混合率は、繊維性係数が0.7〜0.9の範囲である
場合、繊維性粘土の重量分にして約0.08〜0.92
と広範囲に変化させることができる。このことは本発明
の大きな利点であるが、このように広範囲の混合が可能
である理由は、繊維性粘土の繊維性および分散性を、該
粘土のコロイド溶液の粘度によって総合的に判断し、充
分に解繊され、繊維が分散された粘土を使用することに
よるものである。
In the present invention, as shown from the above formula (2),
The amount of increase in the pore volume of the present composition relative to the arithmetic weighted average value of the pore volumes of the two components varies depending on the mixing ratio of both groups of acids, but the mixture can provide an increase of 0.05 cc/g or more, which is the objective of the present invention. The ratio is approximately 0.08 to 0.92 by weight of fibrous clay when the fibrous index is in the range of 0.7 to 0.9.
and can be varied over a wide range. This is a great advantage of the present invention, but the reason why such a wide range of mixing is possible is that the fibrous properties and dispersibility of the fibrous clay are comprehensively judged by the viscosity of the colloidal solution of the clay. This is done by using clay that has been sufficiently defibrated and has fibers dispersed in it.

本発明において、繊維性粘土および無機酸化物又は水酸
化物を選定し、混合する際、所望の細孔容積を有する組
成物を得る為の混合比率は、特定の値に限定される。こ
こで特に注目すべきは、所望の細孔容積の組成物を得る
為に、2つの異なった比率での混合が可能である場合が
存在することである。例えば、0.8なる繊維性係数を
有し、0 、88cc/gなる細孔容積を有する繊維性
粘土および0.8cc/gの細孔容積を有する無機酸化
物又は無機水酸化物を用いて1.1.0cc/gの細孔
容積を有する組成物を得ようとする際、前記式(2)に
よれば、繊維性粘土の重量分率で、0.32または0.
78という2つの混合比率での混合が可能であり、いず
れの場合でも1゜Occ/gの細孔容積を有し算術加重
平均に対する細孔容積の増加量がそれぞれ0.17cc
/gおよび0.14cc/Hの組成物が得られる。しか
し、これ以外の混合比率では、所望の組成物は得られな
1\。
In the present invention, when selecting and mixing fibrous clay and inorganic oxide or hydroxide, the mixing ratio for obtaining a composition having a desired pore volume is limited to a specific value. It is particularly noteworthy here that there are cases where it is possible to mix two different proportions in order to obtain a composition with a desired pore volume. For example, using a fibrous clay with a fibrous index of 0.8 and a pore volume of 0.88 cc/g and an inorganic oxide or hydroxide with a pore volume of 0.8 cc/g. When trying to obtain a composition having a pore volume of 1.1.0 cc/g, according to the above formula (2), the weight fraction of the fibrous clay is 0.32 or 0.32 cc/g.
It is possible to mix at two mixing ratios of 78, and in both cases the pore volume is 1° Occ/g, and the increase in pore volume relative to the arithmetic weighted average is 0.17 cc in each case.
/g and 0.14 cc/H of the composition is obtained. However, if the mixing ratio is other than this, the desired composition cannot be obtained1\.

本発明の製造においてこのような特徴的な2成芳混合が
なされるのは、本発明成分の細孔容積値Pvが2成分の
細孔容積値の算術加重平均値PVavより゛ も大であ
るという、本発明組成物の特異な特性1;よるものであ
る。
The reason why such a characteristic binary aromatic mixture is produced in the production of the present invention is that the pore volume value Pv of the component of the present invention is larger than the arithmetic weighted average value PVav of the pore volume values of the two components. This is due to the unique characteristic 1 of the composition of the present invention.

次に、前記のようにして混合されたスラリー状の粘土−
無機水酸化物混合物は、脱水、成形、乾燥、焼成の工程
を経て、本発明の組成物となる。
Next, the slurry-like clay mixed as described above is
The inorganic hydroxide mixture becomes the composition of the present invention through the steps of dehydration, molding, drying, and baking.

また、本組成物を触媒化する際には、該組成物番二対し
、金属、酸化物あるいは硫化物の形で存在する水素化活
性金属成分、例えば、周期律表Vl−B族および■族元
素から選ばれる少なくとも1種の触媒金属成分を担持せ
しめる。これら触媒金属成分は、具体的には、モリブテ
ン、クロム、コノ(ルト、ニッケル、タングステン、ノ
ベナジウムおよび銅などである。このような触媒金属成
分を担持せしめるための方法は、従来公知であり、含浸
法、スプレー法等各種の方法で行うことができる。
In addition, when catalyzing the present composition, hydrogenation-active metal components present in the form of metals, oxides or sulfides, such as groups Vl-B and group I of the periodic table, may be added to the composition. At least one catalyst metal component selected from the elements is supported. Specifically, these catalytic metal components include molybdenum, chromium, copper, nickel, tungsten, novenadium, and copper. Methods for supporting such catalytic metal components are conventionally known, such as impregnation. It can be carried out by various methods such as method, spray method, etc.

本発明組成物は、0.6〜2.0(:c/gの細孔容積
The composition of the present invention has a pore volume of 0.6 to 2.0 (c/g).

200人以上平均細孔直径を有することが望ましい。It is desirable to have an average pore diameter of 200 or more.

また、該組成物の粗孔分布はその細孔容積の少なくとも
50%が200人よりも大きい細孔直径を有することが
望ましく、更に望ましくは細孔容積の少なくとも30%
が400Å以上の細孔直径を有するものである。また、
本発明の組成物は大きな細孔容積を有するにもかかわら
ず、良好な機械的強度(SC5)を有するという特徴を
有している。例えば、本発明の場合、P%IO,9cc
/g以上で、SC5O,5kg/lff112以上の強
度を持つ組成物を得ることができる。
Preferably, the pore distribution of the composition is such that at least 50% of the pore volume has a pore diameter greater than 200 pores, and more preferably at least 30% of the pore volume.
has a pore diameter of 400 Å or more. Also,
The composition of the invention is characterized by good mechanical strength (SC5) despite having a large pore volume. For example, in the case of the present invention, P%IO, 9cc
/g or more, a composition having a strength of SC5O, 5 kg/lff112 or more can be obtained.

この場合、機械的強度(SCS)は、次のようにして測
定される。
In this case, mechanical strength (SCS) is measured as follows.

即ち、サンプルを450℃にて1時間焼成し、デシ空気
圧で定速加圧圧縮するシリンダーで加圧し、サンプル粒
子が破壊される時の荷重を測定する。
That is, the sample is fired at 450° C. for 1 hour, then pressurized with a cylinder that compresses at a constant speed using Deci air pressure, and the load at which the sample particles are destroyed is measured.

機械的強度はこの様な測定を一つのサンプルについて5
0粒行ない、その平均破壊荷重をllIn1当りの粒子
長さに対して表示したものであり、粒子径が異なる場合
には直径1mmφに換算した値である。
Mechanical strength is determined by performing such measurements on one sample.
The average breaking load is expressed with respect to the particle length per llIn, and when the particle diameters are different, the values are converted to a diameter of 1 mmφ.

本発明の望ましい態様によれば、アルミナ70〜80重
量%、PV O,9〜lcc/g、 SC3O,5kg
/mm”以上の組成物が提供され、この組成物は、特に
、重質炭化水素油の水素化処理用触媒担体として好適で
ある。
According to a preferred embodiment of the present invention, alumina 70-80% by weight, PV O, 9-lcc/g, SC3O, 5 kg
/mm'' or more is provided, and this composition is particularly suitable as a catalyst support for the hydrotreatment of heavy hydrocarbon oils.

本発明組成物は、一般的に、重質炭化水素油を対象とす
る水素化精製あるいは水素化分解用触媒担体として極め
て有効である。
The composition of the present invention is generally extremely effective as a catalyst carrier for hydrorefining or hydrocracking of heavy hydrocarbon oils.

即ち、本組成物は、その成分の細孔容積算術加重平均値
よりも大なる細孔容積を有するという特性を有すること
から、比較的容易に充分な大きさの細孔容積を発現させ
ることが可能であるが、このように大細孔容積を有する
触媒組成物は、重質炭化水素に含有される重金属の堆積
あるいはコークの析出による被毒に対し、強い耐性を示
し、長期間の安定した活性を保ち得る。また、本組成物
が上記の特性を有するのは、繊維性粘土が個々の繊維の
形態でかつ充分に分散されて組成物中に存在する為であ
るが、それ故、本発明組成物は細孔の迷宮度が小さく、
各細孔が反応に有効に使用され得るものと考えられる。
That is, since the present composition has the property of having a pore volume larger than the arithmetic weighted average value of the pore volumes of its components, it is possible to relatively easily develop a sufficiently large pore volume. However, catalyst compositions with such large pore volumes exhibit strong resistance to poisoning due to the deposition of heavy metals contained in heavy hydrocarbons or coke precipitation, and are stable over long periods of time. Can remain active. Furthermore, the present composition has the above-mentioned properties because the fibrous clay is present in the composition in the form of individual fibers and is sufficiently dispersed. The labyrinth degree of the hole is small,
It is believed that each pore can be effectively used for the reaction.

また、細孔容積の50%以上が200人よりも大きな細
孔直径を有する為に、重質炭化水素油中の巨大分子の活
性点への拡散が速やかであると共に、重金属やコーク等
の細孔内堆積が均一になり易く、そのため、本発明組成
物は、触媒表面積の有効度が高いといえる。また、本発
明組成物において、細孔容積の30%以上が400人よ
りも大なる直径のものは、重質炭化水素油中の巨大分子
の細孔的拡散がさらにしやすくなる為、分子の拡散抵抗
が大きくなる高温条件下で行なわれる水素化分解処理用
触媒として、特に有効であるといえる。さらに、本発明
によれば、繊維性粘土の細孔構造特性を高め、かつ、組
成物中の無機酸化物の混合比率を広範囲にとることが可
能である為、本発明組成物は水素化処理反応に対する高
い表面活性を有する。
In addition, since more than 50% of the pore volume has a pore diameter larger than 200 pores, macromolecules in heavy hydrocarbon oil can quickly diffuse to the active sites, and fine particles such as heavy metals and coke can be absorbed quickly. The deposition within the pores tends to be uniform, and therefore, it can be said that the composition of the present invention has a high degree of effectiveness in terms of catalyst surface area. In addition, in the composition of the present invention, if 30% or more of the pore volume has a diameter larger than 400 pores, the macromolecules in the heavy hydrocarbon oil will more easily diffuse through the pores. It can be said that it is particularly effective as a catalyst for hydrocracking treatment carried out under high temperature conditions where diffusion resistance increases. Furthermore, according to the present invention, it is possible to improve the pore structure characteristics of the fibrous clay and to adjust the mixing ratio of inorganic oxides in the composition over a wide range, so that the composition of the present invention can be hydrogenated. Has high surface activity for reactions.

本発明の触媒を用い、通常の水素化処理条件のもとで重
質炭化水素油を水素と接触させることにより、重質炭化
水素油中のアスファルテン1重金属、硫黄分等を除去し
、コンラドソン残留炭素分の低減、比重、粘度の低下を
はかりうると共に、高沸点の重質炭化水素油を低沸点炭
化水素油に転化することが可能である。
By contacting heavy hydrocarbon oil with hydrogen under normal hydrotreating conditions using the catalyst of the present invention, asphaltenes, heavy metals, sulfur, etc. in the heavy hydrocarbon oil can be removed, and Conradson residues can be removed. It is possible to reduce the carbon content, specific gravity, and viscosity, and to convert high boiling point heavy hydrocarbon oil into low boiling point hydrocarbon oil.

以上、本発明の組成物およびその製造方法ならびに効果
、適用分野などについて記載して来たが、更に本発明を
明確にするため、以下の実施例を挙げる。この実施例は
本発明を具体的に説明するものであって、これら実施例
によって本発明が限定されるべきものではない。
The composition of the present invention, its manufacturing method, effects, fields of application, etc. have been described above, but in order to further clarify the present invention, the following examples are given. These Examples specifically explain the present invention, and the present invention should not be limited by these Examples.

繊維性粘土の調製例1 スペイン産セピオライトをそのままクラッシャーにて粗
砕し、約48メツシユ以上約30+m以下の粒径のセピ
オライト顆粒を得た。該セピオライト顆粒400gと約
8Qの市水を■三井三池製作所製トリゴナル湿式微粉砕
機に投入し、10分間激しく攪拌し、ペースト状物を得
た。
Preparation Example 1 of Fibrous Clay Spanish sepiolite was crushed as it was in a crusher to obtain sepiolite granules having a particle size of about 48 mesh to about 30+m. 400 g of the sepiolite granules and about 8 Q of city water were put into a Trigonal wet pulverizer manufactured by Mitsui Miike Manufacturing Co., Ltd. and vigorously stirred for 10 minutes to obtain a paste.

次に、このペースト状物を減圧濾過器により濾過脱水し
、約1100gのケーキを得た。このケーキを1 、2
n++++φの円柱型に押し出し成形し、得られた成形
物を約120℃で3時間熱風乾燥した後、約500℃で
3時間焼成し、繊維性粘土焼成物Iを得た。
Next, this paste-like material was filtered and dehydrated using a vacuum filter to obtain about 1100 g of cake. This cake 1, 2
The molded product was extruded into a cylindrical shape of n++++φ, dried with hot air at about 120° C. for 3 hours, and then fired at about 500° C. for 3 hours to obtain fibrous clay fired product I.

繊維性粘土の調製例2 前記繊維性粘土の調製例1で用いたと同じスペイン産セ
ピオライトを、特開昭58−51939号公報に開示さ
れた方法に準拠して精製したものを用い、繊維性粘土の
調製例1と同様の方法で繊維性粘土焼成物■を得た。
Preparation Example 2 of Fibrous Clay Using the same Spanish sepiolite used in Preparation Example 1 of the fibrous clay, purified according to the method disclosed in JP-A-58-51939, fibrous clay was prepared. Fibrous clay fired product (2) was obtained in the same manner as in Preparation Example 1.

繊維性粘土の調製例3 韓国産セピオライトを用いた以外は同様にして、繊維性
粘土の調製例1と同様の方法で、繊維性粘土焼成物■を
得た。
Preparation Example 3 of Fibrous Clay Fibrous clay fired product (2) was obtained in the same manner as in Preparation Example 1 of Fibrous Clay except that Korean sepiolite was used.

繊維性粘土の調製例4 米国のエンゲルハルト社からSoQ 5peedi D
riとして市販されているアタパルジャイトを用い、繊
維性粘土の調製例1と同様の方法で繊維性粘土焼成物■
を得た。
Preparation Example 4 of Fibrous Clay SoQ 5peedi D from Engelhardt, USA
Using attapulgite commercially available as ri, a fired fibrous clay product ■
I got it.

以上の繊維性粘土の調製例に示した繊維性粘土焼成物I
、■、■、■の性状、繊維性粘土の繊維性係数および調
製過程で得られたペースト状物の室温における粘度測定
値を表−1に示す。
Fibrous clay fired product I shown in the above fibrous clay preparation example
Table 1 shows the properties of , ■, ■, ■, the fibrous coefficient of the fibrous clay, and the measured viscosity at room temperature of the paste obtained in the preparation process.

なお、本明細書に用いられる細孔構造にかかる測定値は
、イタリア国CARLOERBA社製ポロシメーターを
用い、水銀圧入法により細孔直径75Å以上の細孔部分
の測定値である。
Note that the measured values regarding the pore structure used in this specification are the values measured for a pore portion having a pore diameter of 75 Å or more by mercury porosimetry using a porosimeter manufactured by CARLOERBA, Italy.

表−1 無機水酸化物含有スラリー調製例1 特開昭55−27830号公報に開示されるアルミナ担
体の製造方法に従い、原料として硫酸アルミニウムおよ
びアルミン酸ナトリウムを用い、水酸化アルミニウム含
有スラリーa、 b、 cを得た。これらスラリーを脱
水し、濾過洗浄した後、押し出し成形し、約120℃で
3時間乾燥し、さらに約500”Cで3時間焼成して、
それぞれアルミナA、 B、 Cを得た。
Table-1 Inorganic hydroxide-containing slurry preparation example 1 According to the method for producing an alumina carrier disclosed in JP-A-55-27830, aluminum sulfate and sodium aluminate were used as raw materials to prepare aluminum hydroxide-containing slurries a and b. , obtained c. These slurries were dehydrated, filtered and washed, extruded, dried at about 120°C for 3 hours, and further calcined at about 500"C for 3 hours.
Alumina A, B, and C were obtained, respectively.

無機水酸化物含有スラリー調製例2 AQ203換算濃度8重量%のアルミン酸ナトリウム1
30kgおよび市水300 Qを容積7ooQの反応器
に投入し、約100℃に加温した。この反応器に、AQ
203換算20換算20硫景アルミニウムを約200k
g/hrの定速度で約60分間連続的に投入し、水酸化
アルミニウム含有スラリーdを得た。このスラリーから
無機水酸化物含有スラリー調製例1の方法と同様にして
アルミナDを得た。
Inorganic hydroxide-containing slurry preparation example 2 Sodium aluminate 1 with a concentration of 8% by weight in terms of AQ203
30 kg and 300 Q of city water were charged into a reactor having a volume of 7 ooQ, and heated to about 100°C. In this reactor, AQ
203 equivalent 20 equivalent 20 sukkai aluminum approximately 200k
The slurry d was continuously charged at a constant rate of g/hr for about 60 minutes to obtain aluminum hydroxide-containing slurry d. Alumina D was obtained from this slurry in the same manner as in inorganic hydroxide-containing slurry preparation example 1.

無機水酸化物含有スラリー調製例3 四塩化チタン100gを市水約800ccに溶解し、さ
らに、該溶液に28重量%のアンモニア水を、pHが8
になるまで加えた後、約100’Cで20時間熟成させ
、水酸化チタン含有スラリーeを得た。このスラリーか
ら無機水酸化物含有スラリー調製例1の方法と同様にし
て、チタニアEを得た。
Inorganic hydroxide-containing slurry preparation example 3 100 g of titanium tetrachloride was dissolved in about 800 cc of city water, and 28% by weight aqueous ammonia was added to the solution until the pH was 8.
After addition, the slurry was aged at about 100'C for 20 hours to obtain titanium hydroxide-containing slurry e. Titania E was obtained from this slurry in the same manner as in inorganic hydroxide-containing slurry preparation example 1.

以上の無機水酸化物含有スラリー調製例に示した無機酸
化物A−Hの性状を表−2に示す。
Table 2 shows the properties of the inorganic oxides A-H shown in the above inorganic hydroxide-containing slurry preparation examples.

表−2 実施例1 繊維性粘土の調製例1で述べたと同様のセビオライトペ
ースト状物と水酸化アルミニウム含有スラリーaとを、
表−3に示した混合比率で、固形分総重量が約40gに
なるべく混合し、さらに約1.8Qの水を加え、バドル
ミキサーで約1分間攪拌した。
Table 2 Example 1 Seviolite paste similar to that described in Preparation Example 1 of fibrous clay and aluminum hydroxide-containing slurry a were
The mixture was mixed at the mixing ratio shown in Table 3 so that the total solid weight was about 40 g, and about 1.8 Q of water was added, followed by stirring for about 1 minute using a paddle mixer.

これら混合物を減圧濾過器により脱水し、約130gの
ケーキを得た。以下、繊維性粘土の調製例1と同様の方
法で成形、乾燥、焼成し、組成物(1)を得た。
The mixture was dehydrated using a vacuum filter to obtain about 130 g of cake. Thereafter, it was molded, dried, and fired in the same manner as in Preparation Example 1 of Fibrous Clay to obtain Composition (1).

実施例2 表−3に示した混合割合で繊維性粘土の調製例2で述、
べたと同様のセビオライトペースト状物と水酸化アルミ
ニウム含有スラリーbとを用い、また、同調製例3で述
べたと同様のセビオライトペースト状物と水酸化アルミ
ニウム含有スラリー〇とを用い、実施例1と同様の方法
でそれぞれ組成物(2)、(3)を得た。また、同調製
例4で述べたと同様のアタパルジャイトペースト状物と
水酸化アルミニウム含有スラリーdとして用い、また、
同調製例1で述べたと同様のセピオライト状物と水酸化
チタン含有スラリー〇とを用い、実施例1と同様の方法
で、それぞれ組成物(4)、(5)を得た。
Example 2 As described in Preparation Example 2 of fibrous clay at the mixing ratio shown in Table 3,
Example 1 was prepared by using the same Seviolite paste and aluminum hydroxide-containing slurry b as described in Preparation Example 3, and using the same Seviolite paste and aluminum hydroxide-containing slurry 〇 as described in Preparation Example 3. Compositions (2) and (3) were obtained in the same manner as above. In addition, the same attapulgite paste and aluminum hydroxide-containing slurry d as described in Preparation Example 4 were used, and
Compositions (4) and (5) were obtained in the same manner as in Example 1 using the same sepiolite-like material and titanium hydroxide-containing slurry ○ as described in Preparation Example 1.

比較例1 繊維性粘土の調製例2で用いたスペイン産セピオライト
を40メツシユ以下の微細粒子状に粉砕し、このセピオ
ライト粉末に、水酸化アルミニウム含有スラリーCを脱
水して得られたケーキを、セビオライトとアルミナの重
量比が3:1となるべく加え、さらに含水量が約63重
量%となるべく水を加え、この混合物を混線器にて約1
時間混練し、混練物を得た。以下、この混練物を成形、
乾燥、焼成し、組成物(6)を得た。また、上記セピオ
ライト粉末に水酸化アルミニウム含有スラリ二から得ら
れるケーキを加えずに、上記と同様にして粘土鉱物焼成
物■を得た。
Comparative Example 1 The Spanish sepiolite used in Fibrous Clay Preparation Example 2 was ground into fine particles of 40 mesh or less, and the cake obtained by dehydrating aluminum hydroxide-containing slurry C was added to the sepiolite powder. and alumina so that the weight ratio is 3:1, and further water is added so that the water content is about 63% by weight, and this mixture is mixed with a mixer to
The mixture was kneaded for hours to obtain a kneaded product. Below, this kneaded material is molded,
It was dried and fired to obtain a composition (6). Further, a fired clay mineral product (2) was obtained in the same manner as above without adding the cake obtained from the aluminum hydroxide-containing slurry to the sepiolite powder.

以上の実施例および比較例に示した組成物(1)〜(6
)の性状、細孔容積の算術加重平均値に対する増加量お
よび前記式(2)から計算される細孔容積値(PV=K
(W−W” )+PVav)を表−3にまとめて示した
Compositions (1) to (6) shown in the above Examples and Comparative Examples
), the amount of increase in pore volume with respect to the arithmetic weighted average value, and the pore volume value calculated from the above formula (2) (PV=K
(W−W”)+PVav) are summarized in Table 3.

前記表−3かられかるように、本発明の組成物(1)〜
(5)の有する細孔容積はいずれも式(2)により得ら
れる細孔容積値にほぼ一致する。また、組成物(1)〜
(5)は、繊維性粘土および無機酸化物の細孔容積加重
平均値(PVav)より0.05cc/g以上太きい細
孔容積を有している。特に、大きい繊維性係数を有する
繊維性粘土■、■を用いた組成物(2)、(3)は、算
術加重平均値よりも0.2cc/g以上大きい細孔容積
を有している。これに対し、比較例の組成物(6)の細
孔容積は、算術加重平均値よりも小とくなっている。
As shown in Table 3 above, compositions (1) to 1 of the present invention
The pore volumes of (5) all approximately match the pore volume values obtained by equation (2). Moreover, composition (1) -
(5) has a pore volume that is 0.05 cc/g or more larger than the pore volume weighted average value (PVav) of the fibrous clay and the inorganic oxide. In particular, compositions (2) and (3) using fibrous clays (1) and (2) having a large fibrous coefficient have pore volumes that are 0.2 cc/g or more larger than the arithmetic weighted average value. On the other hand, the pore volume of Comparative Example Composition (6) is smaller than the arithmetic weighted average value.

また、組成物(1)の如く、繊維性粘土の混合率の小さ
い場合であっても、あるいは、組成物(2)、(5)の
如く無機酸化物が比較的小細孔型のものがあっても、本
発明の場合の組成物はいずれも大綱孔径側の細孔容積を
太く有している。さらに、本発明の組成物(1)〜(5
)は大きい細孔容積を有するにもかかられす、繊維性粘
土の混入により、機械的強度が増大している。例えば、
組成物(1)は、/ 無機酸化物Aに繊維性粘土を20重量%混入したのみで
あるが、無機酸化物Aに比して、細孔容積が増加してい
るにもかかわらず、強度は著しく向上している。
Furthermore, even when the mixing ratio of fibrous clay is small as in composition (1), or when the inorganic oxide is of relatively small pore type as in compositions (2) and (5), Even if there is, all the compositions of the present invention have a larger pore volume on the outer diameter side. Furthermore, compositions (1) to (5) of the present invention
) has a large pore volume, and its mechanical strength is increased due to the inclusion of fibrous clay. for example,
Composition (1) is a mixture of only 20% by weight of fibrous clay in inorganic oxide A, but compared to inorganic oxide A, although the pore volume is increased, the strength is has improved significantly.

実施例3 モリブデン酸アンモニウム12.0gに温水60ccを
加え、更に蒸留水30ccに硝酸コバルト12.6gを
溶解して得た水溶液を加え、混合しさらに28重量%の
濃度のアンモニア水を45cc加えた。かかる液にさら
に蒸留水を加え、混合液体積を150ccに調整した。
Example 3 60 cc of warm water was added to 12.0 g of ammonium molybdate, and an aqueous solution obtained by dissolving 12.6 g of cobalt nitrate in 30 cc of distilled water was added, mixed, and 45 cc of aqueous ammonia with a concentration of 28% by weight was added. . Distilled water was further added to the liquid to adjust the mixed liquid volume to 150 cc.

かかる液を30cc分取し、更に得られた組成物(1)
30gに均一に含浸せしめ、1昼夜密封放置した後、約
120℃にて3時間熱風乾燥し、さらに約500℃にて
3時間焼成し、触媒(イ)を得た。
30 cc of this liquid was collected and the resulting composition (1)
After 30 g of the catalyst was uniformly impregnated and left sealed for one day and night, it was dried with hot air at about 120°C for 3 hours and further calcined at about 500°C for 3 hours to obtain catalyst (a).

比較例2 無機酸化物を含有しない前記繊維性粘土焼成物■、およ
び比較例1の組成物(6)に、実施例3と同様の方法で
触媒金属を担持させ、それぞれ触媒(ロ)、(ハ)を得
た。
Comparative Example 2 Catalytic metals were supported on the fired fibrous clay material (1) containing no inorganic oxide and the composition (6) of Comparative Example 1 in the same manner as in Example 3, and catalysts (2) and (2) were supported, respectively. c) was obtained.

以上の実施例1および比較例に示した触媒(イ)、(ロ
)、(ハ)の性状を表−4に示す。
Table 4 shows the properties of catalysts (a), (b), and (c) shown in Example 1 and Comparative Example above.

表−4 実施例4 触媒(イ)、(ロ)、(ハ)を用いて表−5に示す性状
を持つ重質炭化水素油を、表−6の反応条件下で、触媒
充填量30ccの反応器を有する固定床流通式反応装置
により水素化処理した。通油開始後約300時間経過後
反応生成物をサンプリングし、分析に供した。水素化処
理の結果を表−7に示す。
Table 4 Example 4 Using catalysts (a), (b), and (c), heavy hydrocarbon oil having the properties shown in table 5 was treated under the reaction conditions shown in table 6 with a catalyst loading of 30 cc. Hydrogenation was carried out using a fixed bed flow reactor equipped with a reactor. About 300 hours after the start of oil passage, the reaction product was sampled and subjected to analysis. The results of the hydrogenation treatment are shown in Table-7.

表−5 表−6 表−7 表−3および表−4から示される通り、本発明の触媒組
成物(イ)は、無機酸化物含有率が大きいにもかかわら
ず、重質炭化水素油の水素化処理に適切な細孔構造を有
する。また、表−7に示される通り、本触媒組成物(イ
)は、無機酸化物を含有しない触媒(ロ)および比較例
2の触媒(ハ)に比して、アスファルテン分解反応、脱
メタル反応および脱硫反応のすべてにわたり、高い反応
活性を示している。
Table 5 Table 6 Table 7 As shown in Tables 3 and 4, the catalyst composition (a) of the present invention has a high content of inorganic oxides, but it is effective against heavy hydrocarbon oils. It has a pore structure suitable for hydrogenation treatment. In addition, as shown in Table 7, the present catalyst composition (a) was more effective in asphaltene decomposition reaction and demetalization reaction than the catalyst containing no inorganic oxide (b) and the catalyst (c) of Comparative Example 2. It shows high reaction activity in all types of desulfurization and desulfurization reactions.

また、通油開始後600時間経過後、水素化処理に用い
た触媒(イ)および(ハ)を取出し、この使用済触媒粒
子内におけるバナジウムの堆積状態をX線マイクロアナ
ライザにより分析し、この分析値に基づき触媒有効係数
を算出し、該触媒細孔の有効度をめた。これによれば、
細孔容積が算術加重平均値よりも小さい触媒(ハ)の有
効係数は0.66であったのに対し1本発明の触媒(イ
)は、平均細孔直径が触媒(ハ)に比して小さいにもか
かわらず0.78もの大きな有効係数を示した。このこ
とから、本発明の組成物は、その細孔容積が算術加重平
均値よりも増大する為に、細孔が極めて有効に使用され
ていることが示された。
In addition, after 600 hours had passed after the start of oil passage, the catalysts (a) and (c) used in the hydrogenation treatment were taken out, and the state of vanadium deposited within the spent catalyst particles was analyzed using an X-ray microanalyzer. A catalyst effectiveness coefficient was calculated based on the value, and the effectiveness of the catalyst pores was determined. According to this,
The effectiveness coefficient of the catalyst (c) whose pore volume was smaller than the arithmetic weighted average value was 0.66, whereas the catalyst (a) of the present invention had an average pore diameter smaller than that of the catalyst (c). Although it was small, it showed a large effective coefficient of 0.78. This indicates that the composition of the present invention has a pore volume larger than the arithmetic weighted average value, so that the pores are used extremely effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、粘土鉱物のコロイド溶液の粘度と、該粘土の繊
維性係数との関係を示したものである。 特許出願人 千代田化工建設株式会社 代理人弁理士池浦敏明
The drawing shows the relationship between the viscosity of a colloidal solution of clay minerals and the fibrous coefficient of the clay. Patent applicant Toshiaki Ikeura, patent attorney representing Chiyoda Corporation

Claims (8)

【特許請求の範囲】[Claims] (1)マグネシウムシリケートを主成分とする複鎖構造
を有する繊維性粘土鉱物と無機酸化物とからなり、該繊
維性粘土鉱物の繊維束は高度に解繊されて、全組成物の
細孔容積(PV)が、前記繊維性粘土鉱物および無機酸
化物の有する細孔容積の算術加重平均値(PVav)よ
りも少なくとも0.05cc/g大きいことを特徴とす
る繊維性粘土鉱物を含有する組成物。
(1) Consisting of a fibrous clay mineral with a double-chain structure mainly composed of magnesium silicate and an inorganic oxide, the fiber bundles of the fibrous clay mineral are highly fibrillated to reduce the pore volume of the entire composition. A composition containing a fibrous clay mineral, wherein (PV) is at least 0.05 cc/g larger than the arithmetic weighted average value (PVav) of pore volumes of the fibrous clay mineral and the inorganic oxide. .
(2) 0.6〜2.0cc/gの細孔容積(PV)を
有し、かつ細孔容積の少なくとも50%が200人より
大きい細孔直径を有する特許請求の範囲第1項の組成物
(2) The composition of claim 1 having a pore volume (PV) of 0.6 to 2.0 cc/g, and at least 50% of the pore volume having a pore diameter greater than 200 cc/g. thing.
(3)細孔容f* (PV) (7)少なくとも30%
が400人よりも大きい細孔直径を有する特許請求の範
囲第2項の組成物。
(3) Pore volume f* (PV) (7) At least 30%
The composition of claim 2, wherein the composition has a pore diameter of greater than 400 pores.
(4)マグネシウムシリケートを主成分とする複鎖構造
を有する繊維性粘土鉱物と無機酸化物と水素化活性金属
成分とからなり、該繊維性粘土鉱物の繊維束は高度に解
繊されて、全組成物の細孔容積(PV)が、前記繊維性
粘土鉱物および無機酸化物の有する細孔容積の算術加重
平均値(PVav)よりも少なくとも0.05cc/g
大きいことを特徴とする重質炭化水素油の水素化処理用
触媒。
(4) Consisting of a fibrous clay mineral with a double-chain structure mainly composed of magnesium silicate, an inorganic oxide, and a hydrogenation-active metal component, the fiber bundles of the fibrous clay mineral are highly defibrated and completely The pore volume (PV) of the composition is at least 0.05 cc/g greater than the arithmetic weighted average value (PVav) of the pore volumes of the fibrous clay mineral and the inorganic oxide.
A catalyst for hydrotreating heavy hydrocarbon oil characterized by its large size.
(5) 0.6〜2.0cc/gの細孔容積(PV)を
有し、かっ細孔容積の少なくとも50%が200人より
大きい細孔直径を有する特許請求の範囲第4項の組成物
(5) The composition of claim 4 having a pore volume (PV) of 0.6 to 2.0 cc/g, with at least 50% of the pore volume having a pore diameter greater than 200 cc/g. thing.
(6)細孔容積(PV)の少なくとも30%が400人
よりも大きい細孔直径を有する特許請求の範囲第5項の
組成物。
(6) The composition of claim 5, wherein at least 30% of the pore volume (PV) has a pore diameter greater than 400 pores.
(7)マグネシウムシリケートを主成分とする複鎖構造
を有する繊維性粘土鉱物と無機酸化物とからなる組成物
を製造する方法において、 (a)該繊維性粘土鉱物に対し1〜100重景倍の水を
加え、生成ペースト状物の粘度の経時的増加が実質的に
なくなるまで、強攪拌して、繊維束が高度に解繊された
粘土鉱物のペースト状物を生成する工程、 (b)前記工程(a)で得られるペースト状物に対し、
無機酸化物又は無機水酸化物を均一に混合する工程、 (c)前記工程(b)で得られる混合物を、含水率40
〜80重量%になるまで脱水する工程、(d)前記工程
(c)で得られる混合物を成形した後、固形分量が30
重量%以上になるまで乾燥し、さらに200〜800℃
の温度で焼成する工程からなり、全組成物の細孔容積(
pv)が前記繊維作土鉱物および無機酸化物の有する細
孔容積の算術加重平均値(pvav)よりも少なくとも
0.05cc/g大きい組成物を得ることを特徴とする
繊維性粘土鉱物を含有する組成物の製造方法。
(7) In a method for producing a composition comprising a fibrous clay mineral having a double-chain structure containing magnesium silicate as a main component and an inorganic oxide, (a) 1 to 100 magnifications relative to the fibrous clay mineral; of water and stirring vigorously until the viscosity of the produced paste substantially disappears over time to produce a clay mineral paste in which the fiber bundles are highly defibrated; (b) For the paste obtained in step (a),
a step of uniformly mixing an inorganic oxide or an inorganic hydroxide; (c) the mixture obtained in step (b) has a moisture content of 40
(d) After molding the mixture obtained in step (c), the solid content is 30% by weight.
Dry until it reaches % by weight or more, and then heat at 200 to 800℃.
The pore volume of the entire composition (
a fibrous clay mineral, characterized in that a composition is obtained in which the pv) is at least 0.05 cc/g greater than the arithmetic weighted average value (pvav) of the pore volumes of the fibrous clay mineral and the inorganic oxide. Method for producing the composition.
(8)該組成物中の粘土鉱物と無機酸化物の混合割合が
、式 %式% (式中、K:繊維性粘土の繊維性係数 W:組成物中の繊維性粘土重量分率) を満足させる割合である特許請求の範囲第7項の方法。
(8) The mixing ratio of clay minerals and inorganic oxides in the composition is determined by the formula % (where K: fibrous coefficient of fibrous clay W: weight fraction of fibrous clay in the composition). 8. The method of claim 7, wherein the ratio is satisfactory.
JP59049919A 1984-03-15 1984-03-15 Composition having fibrous clay mineral Granted JPS60193539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049919A JPS60193539A (en) 1984-03-15 1984-03-15 Composition having fibrous clay mineral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049919A JPS60193539A (en) 1984-03-15 1984-03-15 Composition having fibrous clay mineral

Publications (2)

Publication Number Publication Date
JPS60193539A true JPS60193539A (en) 1985-10-02
JPH0530501B2 JPH0530501B2 (en) 1993-05-10

Family

ID=12844416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049919A Granted JPS60193539A (en) 1984-03-15 1984-03-15 Composition having fibrous clay mineral

Country Status (1)

Country Link
JP (1) JPS60193539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209410A1 (en) * 2021-03-31 2022-10-06 日揮触媒化成株式会社 Hydrotreatment catalyst for hydrocarbon oil and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676245A (en) * 1979-11-27 1981-06-23 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation catalyst for heavy hydrocarbon oil and preparation thereof
JPS5676246A (en) * 1979-11-27 1981-06-23 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation catalyst for heavy hydrocarbon oil and preparation thereof
JPS5692991A (en) * 1979-12-27 1981-07-28 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation treatment using composite catalyst
JPS5695985A (en) * 1979-12-29 1981-08-03 Chiyoda Chem Eng & Constr Co Ltd Hydrotreating of heavy hydrocarbon oil
JPS57123290A (en) * 1981-01-25 1982-07-31 Chiyoda Chem Eng & Constr Co Ltd Method for converting heavy hydrocarbon oil into light fractions
JPS57122949A (en) * 1981-01-21 1982-07-31 Chevron Res Fibriform clay composition containing preparator ily burnt oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676245A (en) * 1979-11-27 1981-06-23 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation catalyst for heavy hydrocarbon oil and preparation thereof
JPS5676246A (en) * 1979-11-27 1981-06-23 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation catalyst for heavy hydrocarbon oil and preparation thereof
JPS5692991A (en) * 1979-12-27 1981-07-28 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation treatment using composite catalyst
JPS5695985A (en) * 1979-12-29 1981-08-03 Chiyoda Chem Eng & Constr Co Ltd Hydrotreating of heavy hydrocarbon oil
JPS57122949A (en) * 1981-01-21 1982-07-31 Chevron Res Fibriform clay composition containing preparator ily burnt oxide
JPS57123290A (en) * 1981-01-25 1982-07-31 Chiyoda Chem Eng & Constr Co Ltd Method for converting heavy hydrocarbon oil into light fractions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209410A1 (en) * 2021-03-31 2022-10-06 日揮触媒化成株式会社 Hydrotreatment catalyst for hydrocarbon oil and method for producing same

Also Published As

Publication number Publication date
JPH0530501B2 (en) 1993-05-10

Similar Documents

Publication Publication Date Title
US6043187A (en) Catalyst for hydrotreating hydrocarbon feeds in a fixed bed reactor
CA2755651C (en) A high surface area composition for use in the catalytic hydroconversion of a heavy hydrocarbon feedstock, a method making such composition and its use
EP2750792B1 (en) Catalyst support and catalysts prepared therefrom
KR102139390B1 (en) A hydroprocessing catalyst and process for treating heavy hydrocarbon feedstocks
WO2001094012A1 (en) Hydrofining catalyst and hydrofining process
US6132597A (en) Hydrotreating hydrocarbon feeds in an ebullating bed reactor
US4701435A (en) Catalyst and method of preparation from a naturally occurring material
US4375406A (en) Fibrous clay compositions containing precalcined oxides
JPH0510974B2 (en)
JPH0263553A (en) Residue hydrotreating catalyst, production thereof and catalytic hydrotreatment of hydrocarbon containing oil using said catalyst
CA2853105C (en) A self-activating hydroprocessing catalyst and process for treating heavy hydrocarbon feedstocks
US4364857A (en) Fibrous clay mixtures
TWI651406B (en) Catalytic conversion process for microcarbon residue of heavy hydrocarbon feed and low surface area catalyst composition used therein
US9114386B2 (en) Self-activating hydroprocessing catalyst and process for treating heavy hydrocarbon feedstocks
JPS60193539A (en) Composition having fibrous clay mineral
JP5645652B2 (en) Hydrocarbon hydrotreating catalyst and hydrotreating method using the same
US10220374B2 (en) Activation of a self-activating hydroprocessing catalyst with steam
Ying et al. Hydrodemetallisation of residual oil with catalysts using fibrillar alumina as carrier material
US20220062871A1 (en) Heavy hydrocarbon hydroprocessing catalyst and methods of making and using thereof
JPS60193540A (en) Catalyst composition for hydrogenating heavy hydrocarbonic oil
JPS63256135A (en) Catalyst and manufacture thereof
JPWO2001094012A1 (en) Hydrorefining catalyst and hydrorefining method
JPS60216846A (en) Hydrocracking catalyst of heavy hydrocarbon oil and process for using the catalyst