JP2006061845A - Hydrogenation catalyst for heavy oil and manufacturing method thereof - Google Patents

Hydrogenation catalyst for heavy oil and manufacturing method thereof Download PDF

Info

Publication number
JP2006061845A
JP2006061845A JP2004248022A JP2004248022A JP2006061845A JP 2006061845 A JP2006061845 A JP 2006061845A JP 2004248022 A JP2004248022 A JP 2004248022A JP 2004248022 A JP2004248022 A JP 2004248022A JP 2006061845 A JP2006061845 A JP 2006061845A
Authority
JP
Japan
Prior art keywords
catalyst
heavy oil
mass
titania
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004248022A
Other languages
Japanese (ja)
Inventor
Ryuichiro Iwamoto
隆一郎 岩本
Yasuo Sugama
保男 菅間
Yukihiro Sakota
幸広 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2004248022A priority Critical patent/JP2006061845A/en
Publication of JP2006061845A publication Critical patent/JP2006061845A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogenation catalyst for heavy oil which has high activity, hardly causes deterioration, has high abrasion resistance of the catalyst and is optimized for recycling, to provide a manufacturing method of the hydrogenation catalyst for heavy oil, and to provide a hydrogenation method for the heavy oil which can be stably used for a long term even after the recycling by using the hydrogenation catalyst. <P>SOLUTION: In the manufacturing method of the hydrogenation catalyst for heavy oil, inorganic oxide carriers containing alumina and titania are prepared, are caused to carry at least three kinds of metal elements selected from among the fourth, sixth, ninth, tenth and fifteenth groups of the periodic table thereon in the presence of polyethylene glycol of molecular weight 200 or more and are calcined at a temperature of 400°C or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水素化処理触媒及びその製造方法に関し、詳しくは、重質油の水素化処理によって劣化した水素化処理触媒を再生使用するに適した水素化処理触媒及びその製造方法、並びに重質油の水素化処理方法に関する。   The present invention relates to a hydrotreating catalyst and a method for producing the same, and more particularly, to a hydrotreating catalyst suitable for reusing a hydrotreated catalyst deteriorated by hydrotreating heavy oil, a method for producing the same, and a heavy product. The present invention relates to a method for hydrotreating oil.

一般に、灯軽油等の軽質な含硫黄炭化水素の水素化処理での触媒性能の低下原因は、コーク(炭素分)の触媒上への析出であると言われている。一方、重質油の水素化処理では、軽質油とは異なり、コークの析出に加えて原料油中に存在する多量のバナジウム、ニッケル等の金属不純物が、水素化処理の運転中に触媒上に蓄積することにより触媒性能が低下する。また、沸点の高い重質油の水素化処理では、軽質油より高温で運転を行う必要があるため、モリブデン等の触媒活性金属成分が凝集してしまい、さらに触媒性能の低下が進行する。また、重質油中には難脱硫性の硫黄化合物が多く含まれていることから、軽質な含硫黄化合物の水素化処理に比べてバナジウム等の蓄積の影響をより顕著に受けやすい。   In general, it is said that the cause of the decrease in the catalyst performance in the hydrotreatment of light sulfur-containing hydrocarbons such as kerosene oil is the deposition of coke (carbon content) on the catalyst. On the other hand, in heavy oil hydrotreating, unlike light oil, in addition to coke precipitation, a large amount of metal impurities such as vanadium, nickel, etc. present in the feedstock are deposited on the catalyst during hydrotreating operation. Accumulation reduces catalyst performance. Further, in the hydrotreatment of heavy oil having a high boiling point, it is necessary to operate at a temperature higher than that of light oil, so that a catalytically active metal component such as molybdenum aggregates, and the catalytic performance further decreases. In addition, since heavy oil contains a lot of hard-to-desulfurize sulfur compounds, it is more easily affected by the accumulation of vanadium and the like than hydrogenation treatment of light sulfur-containing compounds.

また近年、環境問題の高まりから、触媒廃棄物を低減するため、水素化処理触媒の再生利用が望まれている。しかし、重質油の水素化処理の場合には、焼成によりコークは除去できるが、蓄積したバナジウムやニッケルの除去は困難であるために再生後の触媒について長時間安定して用いることは困難であり、また、従来の重質油水素化処理触媒は、再生時に触媒の摩耗強度が低下するという難点が有った。摩耗強度が低下すると、再生後の再充填時に、触媒粒子間隙が粉化物で閉塞し、再利用時に運転ができなくなると言う問題点が生じる。
さらに、最近では、アルミナ担体に、酸化ニッケル、三酸化モリブデン、酸化マグネシウム及び五酸化リンを担持させた触媒が提案されている(特許文献1)。しかし、この方法でも、触媒再生時における摩耗強度の低下問題は解消しなかった。このため、再生利用するのに好適な改良が必要である。
また、アルミナ担体にチタニア(酸化チタン)を添加する事を特徴とする水素化処理触媒が提案されている(特許文献2)。しかし、このアルミナ担体にチタニアを担持した触媒では再生時の触媒強度抑制効果は低く、更なる改善が望まれていた。
Also, in recent years, due to increasing environmental problems, it is desired to recycle the hydrotreating catalyst in order to reduce catalyst waste. However, in the case of heavy oil hydrotreating, coke can be removed by calcination, but it is difficult to remove accumulated vanadium and nickel, so it is difficult to stably use the regenerated catalyst for a long time. In addition, the conventional heavy oil hydrotreating catalyst has a drawback in that the wear strength of the catalyst is reduced during regeneration. When the wear strength is reduced, there is a problem that the catalyst particle gap is clogged with pulverized material at the time of refilling after regeneration, and the operation becomes impossible at the time of reuse.
Furthermore, recently, a catalyst in which nickel oxide, molybdenum trioxide, magnesium oxide, and phosphorus pentoxide are supported on an alumina carrier has been proposed (Patent Document 1). However, even with this method, the problem of lowering the wear strength during catalyst regeneration has not been solved. For this reason, an improvement suitable for recycling is required.
Further, a hydrotreating catalyst characterized by adding titania (titanium oxide) to an alumina support has been proposed (Patent Document 2). However, the catalyst in which titania is supported on the alumina carrier has a low effect of suppressing the catalyst strength during regeneration, and further improvement has been desired.

特開平11−319567号公報JP 11-319567 A 特開2004−148139号公報JP 2004-148139 A

本発明は、前記の課題を解決するためになされたもので、高活性で劣化が少なく、かつ触媒の摩耗強度が大きく、かつ重質油処理後の再生が容易な水素化処理触媒、その製造方法、及び該水素化処理触媒を用いて、重質油を水素化処理した後に、該触媒を再生した後も長期間安定して用いることができる重質油の水素化処理方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and is a hydrotreating catalyst that is highly active, has little deterioration, has a high catalyst wear strength, and can be easily regenerated after heavy oil treatment, and its production And a method for hydrotreating heavy oil that can be used stably for a long period of time after regenerating the catalyst after hydrotreating the heavy oil using the hydrotreating catalyst. With the goal.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、アルミナとチタニアを含む担体に特定金属を担持した触媒を用いることが有効なことを見出し、本発明を完成したものである。   As a result of intensive studies to achieve the above object, the present inventors have found that it is effective to use a catalyst having a specific metal supported on a support containing alumina and titania, and have completed the present invention. is there.

すなわち、本発明は、
(1)アルミナとチタニアを含む無機酸化物担体を調製し、該担体に、周期律表第6族、第9族、第10族及び第15族から選ばれた少なくとも3種以上の金属を、分子量200以上のポリエチレングリコールの存在下で担持し、400℃以上で焼成することを特徴とする重質油水素化処理触媒の製造方法、
(2)アルミナとチタニアを含む無機酸化物担体が、水溶性チタン錯体をアルミナ担体に添加した後、400℃以上で焼成して得られたものである上記(1)の重質油水素化処理触媒の製造方法、
(3)前記水溶性チタン錯体が、オキシチタン錯体、ペルオキシチタン錯体又はヒドロキシチタン錯体である上記(2)の重質油水素化処理触媒の製造方法、
(4)周期律表6族金属がモリブデン、第9族金属がコバルト、第10族金属がニッケル、第15族金属がリンである上記(1)〜(3)の重質油水素化処理触媒の製造方法、
(5)チタニアの含有量が、触媒全量基準で0.1質量%から10質量%である上記(1)〜(4)の水素化処理触媒の製造方法、
(6)上記(1)〜(5)の方法により製造された重質油水素化処理触媒、
(7)上記(6)の触媒を用いて重質油の水素化処理を行った後、焼成処理した再生重質油水素化処理触媒、
(8)バナジウムを0.1質量%から35質量%含む上記(7)の再生重質油水素化処理触媒、及び
(9)重質油を、上記(6)〜(8)のいずれかの触媒の存在下で水素化処理することを特徴とする重質油の水素化処理方法、
を提供するものである。
That is, the present invention
(1) An inorganic oxide support containing alumina and titania is prepared, and at least three or more metals selected from Groups 6, 9, 10, and 15 of the periodic table are prepared on the support. A method for producing a heavy oil hydrotreating catalyst, which is supported in the presence of polyethylene glycol having a molecular weight of 200 or more and calcined at 400 ° C. or higher;
(2) The heavy oil hydrogenation treatment as described in (1) above, wherein the inorganic oxide carrier containing alumina and titania is obtained by adding a water-soluble titanium complex to the alumina carrier and calcining at 400 ° C. or higher. Production method of catalyst,
(3) The method for producing a heavy oil hydrotreating catalyst according to (2), wherein the water-soluble titanium complex is an oxytitanium complex, a peroxytitanium complex, or a hydroxytitanium complex,
(4) The heavy oil hydrotreating catalyst according to (1) to (3) above, wherein the group 6 metal in the periodic table is molybdenum, the group 9 metal is cobalt, the group 10 metal is nickel, and the group 15 metal is phosphorus. Manufacturing method,
(5) The method for producing a hydrotreating catalyst according to the above (1) to (4), wherein the content of titania is from 0.1% by mass to 10% by mass based on the total amount of the catalyst,
(6) A heavy oil hydrotreating catalyst produced by the method of (1) to (5) above,
(7) A regenerated heavy oil hydrotreating catalyst obtained by subjecting heavy oil to hydrogenation using the catalyst of (6) above and then calcined,
(8) The regenerated heavy oil hydrotreating catalyst according to (7) above containing 0.1% by mass to 35% by mass of vanadium, and (9) the heavy oil according to any one of (6) to (8) above A method of hydrotreating heavy oil, characterized by hydrotreating in the presence of a catalyst;
Is to provide.

本発明は、従来の触媒では再生時に強度低下が起るのは、重質油の水素化処理反応中に蓄積するバナジウム不純物が焼成再生時に触媒と反応して、触媒構造を破壊してしまうためであることに着目して完成したものである。担体調製時に、アルミナと強固な結合を有するチタン化合物を添加する事で、再生時の強度を高めることができ、特に、触媒担体調製時のアルミナ担体の段階で安定なチタン化合物を添加することで、強固な結合を得ることができることを見出した。   In the present invention, the strength of the conventional catalyst is reduced during regeneration because vanadium impurities accumulated during the hydrotreating reaction of heavy oil react with the catalyst during calcination regeneration and destroy the catalyst structure. It was completed by paying attention to the fact that By adding a titanium compound having a strong bond with alumina at the time of preparing the support, the strength at the time of regeneration can be increased, and in particular, by adding a stable titanium compound at the stage of the alumina support at the time of preparing the catalyst support. And found that a strong bond can be obtained.

すなわち、本発明によれば、予め調製されたアルミナとチタニアを含む担体に、特定金属を担持した触媒を用いることによって、高活性で、かつ摩耗強度が向上した触媒が得られるので、触媒の再生使用が従来の触媒よりも非常に容易となり、再生使用時の触媒は従来よりも高活性となる。   That is, according to the present invention, a catalyst having a specific metal supported on a support containing alumina and titania prepared in advance can be used to obtain a highly active catalyst with improved wear strength. The use becomes much easier than the conventional catalyst, and the catalyst at the time of regeneration is higher in activity than the conventional catalyst.

本発明における水素化処理触媒は、硫黄及びバナジウム、ニッケル等の金属分を不純物として含む残渣油など重質油の処理触媒であり、水素化脱硫、水素化脱窒素、水素化分解、水素化脱芳香族などの水素化処理反応に用いることができるが、特に水素化脱硫反応に有効に用いられる。   The hydroprocessing catalyst in the present invention is a processing catalyst for heavy oil such as residual oil containing sulfur, vanadium, nickel and other metals as impurities, and hydrodesulfurization, hydrodenitrogenation, hydrocracking, hydrodehydration. Although it can be used for a hydrotreating reaction of an aromatic or the like, it is particularly effective for a hydrodesulfurization reaction.

本発明における重質油水素化処理触媒は、アルミナとチタニアを含む無機酸化物担体を調製し、該担体に特定の活性金属を担持して製造される。ここで、担体に用いられる無機酸化物としては、表面にOH基を有するものであれがよく、特に制限はないが、本発明の目的から、アルミナ、シリカ、シリカ・アルミナ、マグネシア、酸化亜鉛、結晶性アルミノシリケート、粘土鉱物及びそれらの混合物などが好ましく使用される。中でも、金属の分散性の観点からアルミナ、特にγ‐アルミナ担体が好適である。   The heavy oil hydrotreating catalyst in the present invention is produced by preparing an inorganic oxide support containing alumina and titania and supporting the specific active metal on the support. Here, the inorganic oxide used for the carrier may be one having an OH group on the surface and is not particularly limited. For the purpose of the present invention, alumina, silica, silica-alumina, magnesia, zinc oxide, Crystalline aluminosilicates, clay minerals and mixtures thereof are preferably used. Among these, alumina, particularly γ-alumina support is preferable from the viewpoint of metal dispersibility.

本発明において、チタニアを添加した無機酸化物担体を用いて、これに活性金属を担持することが必要であり、通常は担体調製時にチタニアを添加し、このことにより触媒再生時の摩耗強度を著しく高めることができる。   In the present invention, it is necessary to support an active metal on an inorganic oxide support to which titania is added. Usually, titania is added at the time of preparing the support, which significantly increases the wear strength during catalyst regeneration. Can be increased.

添加するチタニアの量は、最終的な触媒全質量に基づき0.1〜10質量%、好ましくは0.3〜5質量%、さらに好ましくは0.5〜3質量%である。0.1%以下では十分な強度が得られず、10質量%以上ではチタニアがモリブデン、ニッケルなどと複合酸化物を形成するため、活性が低下する。   The amount of titania to be added is 0.1 to 10% by mass, preferably 0.3 to 5% by mass, and more preferably 0.5 to 3% by mass based on the final total mass of the catalyst. If it is 0.1% or less, sufficient strength cannot be obtained, and if it is 10% by mass or more, titania forms a composite oxide with molybdenum, nickel, etc., and the activity decreases.

チタニアをアルミナのような耐火性無機酸化物の成型体の担体に担持する方法としては、一般に、チタン化合物を担体ゲルに添加する混練法、チタン化合物を含む溶液を担体が吸水する量に調整して、担体に含浸させるポアフィリング法、または大過剰のチタン化合物を含む溶液に担体を浸漬する方法などがある。しかし、再生利用のためには、例えばアルミナ担体の段階で添加する事が望ましい。アルミナ成型担体にチタン含有溶液を添加することで、担体をチタニアで均一にコーティングでき、触媒の強度を向上できる。   In general, titania is supported on a carrier of a molded article of a refractory inorganic oxide such as alumina. Generally, a titanium compound is added to a carrier gel, a kneading method, and a solution containing the titanium compound is adjusted to an amount that the carrier absorbs water. Then, there are a pore filling method in which the carrier is impregnated or a method in which the carrier is immersed in a solution containing a large excess of titanium compound. However, for recycling, it is desirable to add at the stage of an alumina carrier, for example. By adding the titanium-containing solution to the alumina molded support, the support can be uniformly coated with titania, and the strength of the catalyst can be improved.

チタン含有溶液としては、金属としてチタン(イオン)のみを含む水溶液ならびに有機溶媒に溶解した有機チタン化合物溶液が用いられる。チタンを含む水溶液は特異的に加水分解を起こしやすいため、水溶液としては四塩化チタンや硫酸チタンといった強酸性のものが知られている。一方、有機チタン化合物としては、アルコキシド化合物、アセチルアセトナト化合物などが知られている。しかしながら、これらの化合物には下記の不具合がある。   As the titanium-containing solution, an aqueous solution containing only titanium (ion) as a metal and an organic titanium compound solution dissolved in an organic solvent are used. Since an aqueous solution containing titanium tends to be specifically hydrolyzed, strong acidic solutions such as titanium tetrachloride and titanium sulfate are known. On the other hand, alkoxide compounds, acetylacetonate compounds, and the like are known as organic titanium compounds. However, these compounds have the following disadvantages.

四塩化チタンや硫酸チタンの水溶液は強酸性であり取り扱いが難しいことに加え、容易に加水分解するため、pH1以下の極めて低いpH領域で担持する必要がある。しかし、このようなpH1以下の四塩化チタンなどのチタン含有水溶液であってもアルミナ等の無機酸化物やゲルと接触した際に急激に加水分解反応が生じ、アルミナの変質が起ったり、アルミナ上に均一に担持されにくいため、チタンの効果が顕著には発揮されない。また、塩素イオンや硫酸イオンは触媒活性に悪い影響を及ぼす可能性があり、さらに、塩素イオンは工業装置にとって腐食の原因になるため、いずれも含まないことが好ましい。   In addition to being strongly acidic and difficult to handle, aqueous solutions of titanium tetrachloride and titanium sulfate need to be supported in an extremely low pH range of pH 1 or lower because they are easily hydrolyzed. However, even in such a titanium-containing aqueous solution such as titanium tetrachloride having a pH of 1 or less, when it comes into contact with an inorganic oxide or gel such as alumina, a hydrolysis reaction occurs rapidly, and the alteration of alumina occurs. Since it is difficult to be uniformly supported thereon, the effect of titanium is not exhibited remarkably. In addition, chlorine ions and sulfate ions may adversely affect the catalytic activity, and further, chlorine ions cause corrosion for industrial equipment, so it is preferable that none of them be included.

一方、アルコキシド化合物やアセチルアセトナト化合物などの有機チタン化合物は塩素イオンや硫酸イオンを含まないので四塩化チタンや硫酸チタンより好ましいが、少量の水でも容易に加水分解しやすい欠点をもっている。その有機溶媒溶液は、含浸時または浸漬時に、無機酸化物に含まれる水分と接触するとチタンの水酸化物が析出するため、チタンが均一に担持されない。さらに、このような有機チタン化合物は高価であり、大量に必要とされる炭化水素油の水素化処理触媒への適用は経済上極めて困難である。   On the other hand, organotitanium compounds such as alkoxide compounds and acetylacetonato compounds are preferable to titanium tetrachloride and titanium sulfate because they do not contain chloride ions or sulfate ions, but they have a drawback that they are easily hydrolyzed even with a small amount of water. When the organic solvent solution comes into contact with moisture contained in the inorganic oxide at the time of impregnation or immersion, titanium hydroxide is precipitated, so that titanium is not uniformly supported. Furthermore, such an organic titanium compound is expensive, and it is extremely difficult to economically apply it to a hydroprocessing catalyst for a hydrocarbon oil that is required in large quantities.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、オキシチタン、ペルオキシチタン、ヒドロキシ(ヒドロキシカルボキシラト)チタン等の、水溶性チタン錯体の水溶液を使用することで、耐火性無機酸化物に、高分散にチタンを担持でき、さらに、この触媒の再生時の触媒強度低下抑制に非常に有効であることを見出した。そのような水溶性チタン錯体としてチタンペルオキソヒドロキシカルボン酸、チタンオキソヒドロキシカルボン酸や、そのアンモニウム塩が挙げられ、そのヒドロキシカルボン酸としてクエン酸、リンゴ酸、乳酸、酒石酸を挙げることができる。   As a result of intensive studies to achieve the above object, the present inventors have used an aqueous solution of a water-soluble titanium complex such as oxytitanium, peroxytitanium, hydroxy (hydroxycarboxylato) titanium, and the like. It has been found that titanium can be supported on an inorganic oxide in a highly dispersed manner, and further, it is very effective for suppressing a decrease in catalyst strength during regeneration of the catalyst. Examples of such water-soluble titanium complexes include titanium peroxohydroxycarboxylic acid, titanium oxohydroxycarboxylic acid, and ammonium salts thereof, and examples of the hydroxycarboxylic acid include citric acid, malic acid, lactic acid, and tartaric acid.

アルミナゲルへのチタン化合物の水溶液の添加方法としては、通常の含浸法などを用いることができる。添加する温度は、通常室温〜90℃であり、より好ましくは40〜80℃である。チタン化合物を添加した後、通常室温〜600℃、好ましくは200〜500℃で焼成される。
本発明の水素化処理触媒の担体形状は特に限定されないが、円柱、球状、三〜六葉、ハニカム等目的とする反応形式に好適な形状を自由に選択することができる。特に固定床直接水素化脱硫反応装置では、円柱、三つ葉、四つ葉の形が好適に用いられる。
As a method for adding the aqueous solution of the titanium compound to the alumina gel, a normal impregnation method or the like can be used. The temperature to add is normally room temperature-90 degreeC, More preferably, it is 40-80 degreeC. After adding the titanium compound, it is usually fired at room temperature to 600 ° C, preferably 200 to 500 ° C.
The support shape of the hydrotreating catalyst of the present invention is not particularly limited, but a shape suitable for a desired reaction mode such as a cylinder, a sphere, three to six leaves, and a honeycomb can be freely selected. In particular, in the fixed bed direct hydrodesulfurization reactor, a cylindrical shape, a three-leaf shape, and a four-leaf shape are preferably used.

上記のようにして得られたアルミナとチタニアを含む無機酸化物を焼成して担体とする。焼成温度は、上記のポリエチレングリコールによる触媒中の残留炭素分が1.0質量%以下になるような条件で、空気あるいは酸素雰囲気下で、通常400〜700℃が好ましく、さらに好ましくは500〜650℃である。焼成時間は通常0.5〜100時間である。   The inorganic oxide containing alumina and titania obtained as described above is fired to obtain a carrier. The calcination temperature is preferably 400 to 700 ° C., and more preferably 500 to 650, in the air or oxygen atmosphere under the condition that the residual carbon content in the catalyst with polyethylene glycol is 1.0% by mass or less. ° C. The firing time is usually 0.5 to 100 hours.

次に、本発明における水素化処理触媒は、上記のアルミナとチタニアを含む無機酸化物担体に、周期表第6族、第9族、第10族及び第15族から選ばれた少なくとも3種以上の金属を、分子量200以上のポリエチレングリコールの存在下で担持させることにより製造される。   Next, the hydrotreating catalyst in the present invention is an inorganic oxide carrier containing alumina and titania, and at least three or more selected from Group 6, Group 9, Group 10 and Group 15 of the periodic table. This metal is supported in the presence of polyethylene glycol having a molecular weight of 200 or more.

すなわち、触媒担体に担持される金属(担持金属)は、周期表第6族金属としてはモリブデン、タングステンなどが好ましく、特にモリブデンが好適に使用される。モリブデン化合物としては、三酸化モリブデン、パラモリブデン酸アンモニウムなどが好適である。タングステン化合物としては、三酸化タングステン、タングステン酸アンモニウムなどが好適である。   That is, the metal (supported metal) supported on the catalyst carrier is preferably molybdenum, tungsten, or the like as the Group 6 metal of the periodic table, and molybdenum is particularly preferably used. As the molybdenum compound, molybdenum trioxide, ammonium paramolybdate and the like are suitable. As the tungsten compound, tungsten trioxide, ammonium tungstate and the like are suitable.

第9族金属としては、コバルトが好ましく使用される。コバルト化合物としては、炭酸コバルトや硝酸コバルトなどが好適に使用される。第10族金属としてはニッケルが好ましく使用される。ニッケル化合物としては、塩基性炭酸ニッケルや硝酸ニッケルなどが好ましい。   As the Group 9 metal, cobalt is preferably used. As the cobalt compound, cobalt carbonate or cobalt nitrate is preferably used. Nickel is preferably used as the Group 10 metal. As the nickel compound, basic nickel carbonate, nickel nitrate and the like are preferable.

さらに、第15族金属としては、リンが好適に使用できる。このリン化合物としては、五酸化リン、正リン酸などが使用されるが、これを添加する場合は、触媒に担持させる金属化合物の水溶液の安定性を高めると同時に触媒成分として触媒活性を向上させる作用を有している。また、助触媒成分であるニッケルやコバルトの担持状態が改善され脱硫活性及び脱窒素活性が向上するので好ましい。   Furthermore, phosphorus can be suitably used as the Group 15 metal. As this phosphorus compound, phosphorus pentoxide, orthophosphoric acid, or the like is used. When this is added, the stability of the aqueous solution of the metal compound supported on the catalyst is improved, and at the same time, the catalytic activity is improved as a catalyst component. Has an effect. Moreover, since the carrying | support state of nickel and cobalt which is a promoter component is improved and desulfurization activity and denitrogenation activity improve, it is preferable.

担持処理の含浸液に用いられる好ましい金属化合物としては、酸化物、硫酸塩、硝酸塩、炭酸塩、塩基性炭酸塩、蓚酸塩、酢酸塩、アンモニウム塩等が水溶液として用いられる。   Preferable metal compounds used in the impregnation liquid for the supporting treatment include oxides, sulfates, nitrates, carbonates, basic carbonates, oxalates, acetates, ammonium salts and the like as aqueous solutions.

上記担持金属の化合物は、通常含浸法により担体に担持される。上記の第6族、第9族、10族ならびに第15族化合物は別々に含浸してもよいが、同時に行なうのが効率的である。通常は、含浸液中の第6族、第9族、第10族及び第15族化合物の含有量は、目標とする担持量から計算で求める。活性金属化合物の担持量については、最終触媒重量基準で、第9族および第10族は酸化物として0.1〜10質量%、好ましくは0.2〜8質量%であり、第6族はやはり酸化物として0.1〜25質量%、好ましくは0.2〜20質量%である。活性金属の総担持量は、通常は、最終触媒重量に対して、酸化物として好ましくは2〜35質量%、より好ましくは3〜25質量%の範囲である。
これらの金属を脱イオン水に溶解させた後、その含浸液の液量を、用いる担体の吸水量に等しくなるように調整した後、含浸させる。含浸時のpHは含浸液の安定性を考慮し、一般には酸性領域では1〜4、好ましくは1.5〜3.5、アルカリ領域では9〜12、好ましくは10〜11である。pHの調整は、有機酸やアンモニアなどを用いて行なうことができる。
The supported metal compound is usually supported on a carrier by an impregnation method. Although the above Group 6, Group 9, Group 10 and Group 15 compounds may be impregnated separately, it is efficient to carry out them simultaneously. Usually, the contents of Group 6, Group 9, Group 10 and Group 15 compounds in the impregnating solution are calculated from the target loading amount. Regarding the amount of active metal compound supported, Group 9 and Group 10 are 0.1 to 10% by mass, preferably 0.2 to 8% by mass as oxides, based on the weight of the final catalyst. Again, it is 0.1-25 mass% as an oxide, Preferably it is 0.2-20 mass%. The total supported amount of active metal is usually preferably 2 to 35% by mass, more preferably 3 to 25% by mass as an oxide, based on the final catalyst weight.
After these metals are dissolved in deionized water, the amount of the impregnating liquid is adjusted to be equal to the water absorption amount of the carrier used, and then impregnated. In consideration of the stability of the impregnating solution, the pH at the time of impregnation is generally 1 to 4, preferably 1.5 to 3.5 in the acidic region, and 9 to 12, preferably 10 to 11 in the alkaline region. The pH can be adjusted using an organic acid or ammonia.

また、担持金属を担体に担持するに際しては、分子量が200以上のポリエチレングリコールの存在下で行うことが必要である。ポリエチレングリコールの分子量は、好ましくは分子量が200〜1,000、更に好ましくは分子量350〜600のものが用いられる。200以上であると触媒活性が確保され、1,000以下であると溶解性や担持工程の時間の観点から取扱いが容易となる。
ポリエチレングリコールの添加量は、担体100質量部に対して好ましくは、0.5〜30質量部、更に好ましくは1〜15質量部である。0.5質量部以上であると添加効果が発揮され、30質量部以下であると担持が容易に行える。
Further, when supporting the supported metal on the support, it is necessary to carry out in the presence of polyethylene glycol having a molecular weight of 200 or more. The molecular weight of polyethylene glycol is preferably 200 to 1,000, more preferably 350 to 600. When it is 200 or more, the catalytic activity is secured, and when it is 1,000 or less, handling is easy from the viewpoint of solubility and time of the supporting step.
The amount of polyethylene glycol added is preferably 0.5 to 30 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the carrier. When the amount is 0.5 part by mass or more, the effect of addition is exhibited, and when it is 30 parts by mass or less, the loading can be easily performed.

担持金属の一つにニッケルを使用した場合、担体成分であるアルミナとスピネルを形成し不活性化することが知られている。リン化合物はこのニッケルのスピネル化を抑制する作用があり、触媒活性を向上させるが、前記ポリエチレングリコールを用いないでリン化合物を多量に用いると、ニッケル‐モリブデン‐リンの複合酸化物が生成するため、逆に触媒活性が低下することになる。本発明のように前記ポリエチレングリコールを添加した金属化合物水溶液を用いた場合には、リン化合物の添加量を3〜5質量%と増加させることができ、触媒活性を飛躍的に向上させることができる。   It is known that when nickel is used as one of the supported metals, spinel is formed and deactivated with alumina as a carrier component. Phosphorus compounds have the effect of suppressing the spinelization of nickel and improve the catalytic activity. However, if a large amount of phosphorus compound is used without using polyethylene glycol, a composite oxide of nickel-molybdenum-phosphorus is formed. On the contrary, the catalytic activity is lowered. When the metal compound aqueous solution to which polyethylene glycol is added as in the present invention is used, the addition amount of the phosphorus compound can be increased to 3 to 5% by mass, and the catalytic activity can be greatly improved. .

本発明における水素化処理触媒は、触媒全量基準で、酸化ニッケルを1〜10質量%、三酸化モリブデンを5〜20質量%及び五酸化リンを3〜5質量%担持していることが好ましい。酸化ニッケルが1質量%以上であると十分な活性を発揮し、10質量%以下であるとメタルの凝集により低活性化することがなく好適である。三酸化モリブデンが5質量%以上であると十分な活性を発揮し、20質量%以下であるとメタルの凝集により低活性化することがなく好適である。五酸化リンが3質量%以上であるとスピネル抑制効果が十分に発揮され、5質量%以下であるとモリブデン、ニッケル等と複合酸化物を形成し低活性化することがなく好適である。
担持方法は特に限定されないが、常圧含浸法、真空含浸法、塗布法等の公知の担持操作及びこれらを組み合わせた方法が用いられる。
The hydrotreating catalyst in the present invention preferably supports 1 to 10% by mass of nickel oxide, 5 to 20% by mass of molybdenum trioxide, and 3 to 5% by mass of phosphorus pentoxide based on the total amount of the catalyst. When the nickel oxide content is 1% by mass or more, sufficient activity is exhibited, and when the nickel oxide content is 10% by mass or less, the activation is not reduced due to metal aggregation. When molybdenum trioxide is 5% by mass or more, sufficient activity is exhibited, and when it is 20% by mass or less, low activation due to metal aggregation is preferable. If the phosphorus pentoxide is 3% by mass or more, the effect of suppressing spinel is sufficiently exhibited, and if it is 5% by mass or less, a composite oxide with molybdenum, nickel and the like is not formed and the activation is low.
The supporting method is not particularly limited, and a known supporting operation such as an atmospheric pressure impregnation method, a vacuum impregnation method, a coating method, or a combination of these is used.

以上のようにして得られた活性金属を担持したアルミナとチタニアを含む無機酸化物担体を用いて、バナジウム等の不純物金属を含む原料の水素化処理を行う。この時、バナジウムの許容できる蓄積量は、新触媒基準の金属蓄積量として1.5〜50質量%であり、好ましくは2〜30質量%である。本発明の水素化処理は、常圧残油、減圧残油、アスファルテン油、タールサンド油まで幅広い重質油に適用できる。   The raw material containing an impurity metal such as vanadium is hydrogenated using the inorganic oxide carrier containing alumina and titania carrying the active metal obtained as described above. At this time, the allowable accumulation amount of vanadium is 1.5 to 50% by mass, preferably 2 to 30% by mass as the metal accumulation amount based on the new catalyst. The hydrotreating of the present invention can be applied to a wide range of heavy oils from atmospheric residue, reduced residue, asphaltene oil and tar sand oil.

本発明の触媒を用いて水素化処理を行うに際しては、水素化処理反応を行う前に触媒の活性化若しくは安定化処理として予備硫化処理を行うことが好ましい。この予備硫化処理は予備硫化剤として、硫化水素、二硫化炭素、チオフェン、ジメチルジスルフィド(DMDS)等を使用し、200〜400℃の温度範囲で行われる。   When hydrotreating using the catalyst of the present invention, it is preferable to perform a presulfidation treatment as a catalyst activation or stabilization treatment before the hydrotreating reaction. This preliminary sulfidation treatment is performed in a temperature range of 200 to 400 ° C. using hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide (DMDS) or the like as a preliminary sulfiding agent.

本発明における水素化処理の反応条件は対象となる原料油の種類により異なるが、反応温度は200〜500℃、好ましくは300〜450℃、の範囲に選定する。反応圧力は、1.47〜24.5MPa(15〜250kg/cm2)の範囲に選定するのが好適である。 Although the reaction conditions for the hydrotreating in the present invention vary depending on the type of the target feedstock, the reaction temperature is selected in the range of 200 to 500 ° C, preferably 300 to 450 ° C. The reaction pressure is preferably selected in the range of 1.47 to 24.5 MPa (15 to 250 kg / cm 2 ).

反応形式としては、特に制限はないが、通常は、固定床、移動床、沸騰床、懸濁床等の種々のプロセスが採用され、好ましくは経済性から固定床による流通方式が好適に採用される。こうした流通方式の場合には、LHSV(液空間速度)を0.01〜45hr-1、好ましくは0.1〜10hr-1、の範囲に選定するのがよい。 The reaction format is not particularly limited, but usually, various processes such as a fixed bed, a moving bed, a boiling bed, and a suspension bed are adopted, and a flow system using a fixed bed is preferably adopted from the viewpoint of economy. The When these distribution schemes, LHSV (liquid hourly space velocity) of 0.01~45hr -1, and it is preferably selected in the range of 0.1 to 10 -1,.

水素ガスとオイルの供給割合(水素/オイル比)は、通常、50〜2,000Nm3/キロリットル、好ましくは300〜1,000Nm3/キロリットル、の範囲に選定するのが好適である。
以上のように、本発明の水素化処理触媒を用いて重質油の水素化脱硫処理を効率よく行うことができる。

Feed rate of the hydrogen gas and the oil (hydrogen / oil ratio) is usually, 50~2,000Nm 3 / kl, preferably preferably is to select a range 300~1,000Nm 3 / kl, of.
As described above, hydrodesulfurization treatment of heavy oil can be efficiently performed using the hydrotreating catalyst of the present invention.

以下、本発明の実施例及びその比較例によって本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof, but the present invention is not limited to these examples.

実施例1
触媒Aの調製(担体成型後にチタニア担持)
純水2リットルに水酸化ナトリウム70gを溶解させ、さらに、アルミン酸ナトリウム200gを添加して均一なアルミナ溶液(B1)を得た。また、純水2リットルに硝酸アルミニウム1,000gを溶解させ、アルミナ溶液(A1)を得た。先ず、純水4リットルを70℃に加温し、撹拌しながら、アルミナ溶液(A1)をpH3.6になるまで添加した。次に、アルミナ溶液(B1)をpH9.0になるまで添加して、5分間撹拌しながら熟成させた。続いて再びアルミナ溶液(B1)を添加してpHを3.6として、撹拌しながら5分間熟成させた。このように、pHを3.6から9.0の間で変化させる操作を計9回繰り返しベーマイトゲル水溶液を得た。
Example 1
Preparation of catalyst A (supporting titania after molding of carrier)
70 g of sodium hydroxide was dissolved in 2 liters of pure water, and 200 g of sodium aluminate was further added to obtain a uniform alumina solution (B1). Further, 1,000 g of aluminum nitrate was dissolved in 2 liters of pure water to obtain an alumina solution (A1). First, 4 liters of pure water was heated to 70 ° C., and the alumina solution (A1) was added to pH 3.6 while stirring. Next, the alumina solution (B1) was added until pH 9.0 and aged with stirring for 5 minutes. Subsequently, the alumina solution (B1) was added again to adjust the pH to 3.6 and aged for 5 minutes while stirring. Thus, the operation of changing the pH between 3.6 and 9.0 was repeated 9 times in total to obtain a boehmite gel aqueous solution.

四塩化チタン500g及び純水1リットルを氷にて冷却しておいた。純水を撹拌しておき、そこに冷却しながら徐々に四塩化チタンを滴下して、無色のチタニアゾル塩酸溶液を得た。このチタニアゾル溶液に、1.2倍当量のアンモニア水(濃度:1モル/リットル)を滴下し、1時間撹拌し、水酸化チタンのゲルを得た。そのゲルを吸引濾過で分別し、約1リットルの純水に再分散させ濾過洗浄した。この操作を洗浄液が中性になるまで4回繰り返し、塩素根を取り除いた。   500 g of titanium tetrachloride and 1 liter of pure water were cooled with ice. Pure water was stirred, and titanium tetrachloride was gradually added dropwise while cooling to obtain a colorless titania sol hydrochloric acid solution. To this titania sol solution, 1.2 times equivalent of ammonia water (concentration: 1 mol / liter) was added dropwise and stirred for 1 hour to obtain a titanium hydroxide gel. The gel was separated by suction filtration, redispersed in about 1 liter of pure water, and washed by filtration. This operation was repeated 4 times until the washing solution became neutral, and the chlorine roots were removed.

得られた水酸化チタンゲルの含水率を測定し、チタニアとして11g採取した。25質量%アンモニア水を50cm3添加し、30分間撹拌した。さらに、30質量%過酸化水素水38cm3を徐々に添加し、水酸化チタンゲルを溶解させ、チタンペルオキソチタン溶液を得た。それにクエン酸第一水和物29gを徐々に添加して、撹拌しながら徐々に昇温させ50℃にて余剰の過酸化水素を除去した。さらに、80℃にて溶液を全量が117cm3になるまで濃縮し、黄橙色透明のチタンペルオキソクエン酸アンモニウム(T1)を得た。 The water content of the obtained titanium hydroxide gel was measured, and 11 g of titania was collected. 50 cm 3 of 25% by mass aqueous ammonia was added and stirred for 30 minutes. Furthermore, 38 cm 3 of 30% by mass hydrogen peroxide water was gradually added to dissolve the titanium hydroxide gel to obtain a titanium peroxotitanium solution. 29 g of citric acid monohydrate was gradually added thereto, and the temperature was gradually raised while stirring to remove excess hydrogen peroxide at 50 ° C. Further, the solution was concentrated at 80 ° C. until the total amount became 117 cm 3 , and yellow-orange transparent titanium peroxocitrate ammonium (T1) was obtained.

上記ベーマイトゲルを濾過、脱イオン水で洗浄し、乾燥後、直径1.5mmの円柱形に押出成型した。この押出成型したベーマイトゲルを120℃で160時間乾燥後、さらに550℃で2時間焼成してアルミナ担体(A1)を得た。このアルミナ担体(A1)に、チタンペルオキソクエン酸アンモニウム(T1)のチタン量が担体基準で3質量%となる量をA1の吸水量に見合うように純水にて希釈・定容し、常圧にてA1に含浸した。その後、120℃で160時間乾燥後、450℃で16時間焼成してチタニア担持アルミナ担体(C1)を得た。   The boehmite gel was filtered, washed with deionized water, dried, and extruded into a cylindrical shape having a diameter of 1.5 mm. The extruded boehmite gel was dried at 120 ° C. for 160 hours and then calcined at 550 ° C. for 2 hours to obtain an alumina carrier (A1). To this alumina support (A1), the amount of titanium peroxocitrate ammonium (T1) with a titanium content of 3% by mass based on the support is diluted and constant volume with pure water so as to match the water absorption of A1, and normal pressure So as to impregnate A1. Then, after drying at 120 ° C. for 160 hours, baking was performed at 450 ° C. for 16 hours to obtain a titania-supported alumina carrier (C1).

次に、炭酸ニッケル69.5g(NiOとして39.7g)、三酸化モリブデン220g、正リン酸31.5g(純度85%、P25として19.5g)を純水250cm3に加えて、撹拌しながら80℃で溶解させ、室温に冷却後、再び純水を加えて250cm3に定容し、含浸液(S1)を調整した。含浸液(S1)を50cm3採取し、ポリエチレングリコール(分子量400)6gを添加して、担体(C1)100gの吸水量に見合うように純水にて希釈・定容し、常圧にて含浸し、70℃で1時間真空乾燥後、450℃で16時間熱処理し、触媒Aを調整した。
その触媒組成と物性を第3表に示す。
Next, 69.5 g of nickel carbonate (39.7 g as NiO), 220 g of molybdenum trioxide and 31.5 g of orthophosphoric acid (purity 85%, 19.5 g as P 2 O 5 ) were added to 250 cm 3 of pure water, It melt | dissolved at 80 degreeC, stirring, after cooling to room temperature, the pure water was added again and it made constant volume to 250 cm < 3 >, and the impregnation liquid (S1) was adjusted. 50 cm 3 of impregnating liquid (S1) was sampled, 6 g of polyethylene glycol (molecular weight 400) was added, diluted and constant volume with pure water to meet the water absorption of 100 g of carrier (C1), and impregnated at normal pressure. Then, after vacuum drying at 70 ° C. for 1 hour, heat treatment was performed at 450 ° C. for 16 hours to prepare Catalyst A.
The catalyst composition and physical properties are shown in Table 3.

比較例1
触媒Bの調整(アルミナ担体ゲルにチタニア担持)
実施例1において、ベーマイトゲルを濾過、脱イオン水で洗浄し、乾燥したベーマイトゲルに、チタン量が担体基準で3重量%となるようにチタンペルオキソクエン酸アンモニウム(T1)を添加、混練した後に、実施例1と同様に押出成型、乾燥、焼成してチタニア担持アルミナ担体(C2)を得た。
このC2担体に、実施例1と同様にして含浸液S1を含浸、乾燥、焼成して、触媒Bを得た。
Comparative Example 1
Preparation of catalyst B (titania supported on alumina carrier gel)
In Example 1, the boehmite gel was filtered, washed with deionized water, and after adding and kneading ammonium peroxocitrate (T1) to the dried boehmite gel so that the amount of titanium was 3% by weight based on the carrier. In the same manner as in Example 1, extrusion molding, drying and firing were carried out to obtain a titania-supported alumina carrier (C2).
The C2 carrier was impregnated with the impregnation liquid S1 in the same manner as in Example 1, dried and calcined to obtain Catalyst B.

比較例2
触媒Cの調製(チタニア添加なし)
実施例1においてアルミナ担体A1にチタンペルオキソクエン酸アンモニウムを添加しなかった他は同様の操作を行い触媒Cを得た。
Comparative Example 2
Preparation of catalyst C (without titania addition)
A catalyst C was obtained in the same manner as in Example 1 except that ammonium peroxocitrate was not added to the alumina support A1.

<水素化脱硫処理性能評価実験1>(初期の活性)
触媒A、B及びCのそれぞれについて、触媒充填量50cm3規模の高圧固定床流通式反応装置を用い、表1に示す中東系の重質原油から得られる常圧残油を原料とした初期脱硫性能の評価を行い、チタニア添加効果と添加方法の影響を比較評価した。なお、本発明の触媒は脱硫触媒であるため脱メタル触媒(NiOとして1.5質量%及びMoO3として4.5質量%担持)と組み合わせることにより評価した。
<Hydrodesulphurization treatment performance evaluation experiment 1> (initial activity)
For each of Catalysts A, B, and C, initial desulfurization using atmospheric residual oil obtained from Middle Eastern heavy crude oil shown in Table 1 using a high-pressure fixed-bed flow reactor with a catalyst filling amount of 50 cm 3 The performance was evaluated, and the titania addition effect and the influence of the addition method were compared and evaluated. Incidentally, the catalyst of the present invention was evaluated by combining a demetalization catalyst for a desulfurization catalyst (1.5% by weight and a MoO 3 4.5 wt% on the NiO).

Figure 2006061845
Figure 2006061845

(1−1)前処理
反応に先立って、前処理として、LGO(軽油)にDMDSを添加して、硫黄濃度を2.5質量%に調整した原料油を、水素ガスとともに250℃で24時間該触媒に流通して、触媒を予備硫化した。
(1-1) Pretreatment Prior to reaction, as a pretreatment, DMDS is added to LGO (light oil) to adjust the sulfur concentration to 2.5% by mass with hydrogen gas at 250 ° C. for 24 hours. Through the catalyst, the catalyst was presulfided.

(1−2)脱硫試験
該触媒に表1に示す原料油を水素ガスとともに流通して以下の条件で水素化脱硫処理を行った。
反応条件 水素分圧: 135kg/cm2
液空間速度: 0.2hr-1
水素/オイル比: 700Nm3/キロリットル
評価結果を表2に示す。チタンを添加する事により初期は高い水素化脱硫性能が得られることが判る。また、初期段階では添加方法による差はあまり認められなかった。
(1-2) Desulfurization test The raw oil shown in Table 1 was passed through the catalyst together with hydrogen gas, and hydrodesulfurization treatment was performed under the following conditions.
Reaction conditions Hydrogen partial pressure: 135 kg / cm 2
Liquid space velocity: 0.2 hr -1
Hydrogen / oil ratio: 700 Nm 3 / kiloliter Table 2 shows the evaluation results. It can be seen that high hydrodesulfurization performance can be obtained in the initial stage by adding titanium. In addition, at the initial stage, there was not much difference due to the addition method.

Figure 2006061845
Figure 2006061845

<水素化脱硫書誌性能評価実験2>(再生後の活性)
(2−1)(使用済み触媒の製造)
触媒A、B及びCの各触媒を用いて、固定床反応器を用いて表1に示す常圧残油の水素化脱硫処理を4000時間行った。脱硫処理は生成油の硫黄分が一定になるように反応温度を調整しながら続けた。反応終了後、反応器中の触媒に軽油を通油することにより洗浄し、さらに窒素ガスを流通させて乾燥した触媒を抜出し、脱メタル触媒をふるいにより分離し、それぞれ使用済み触媒A、B及びCを得た。
<Hydrodesulphurization bibliographic performance evaluation experiment 2> (Activity after regeneration)
(2-1) (Production of spent catalyst)
Using the catalysts A, B, and C, hydrodesulfurization treatment of atmospheric residue shown in Table 1 was performed for 4000 hours using a fixed bed reactor. The desulfurization treatment was continued while adjusting the reaction temperature so that the sulfur content of the product oil was constant. After completion of the reaction, washing is performed by passing light oil through the catalyst in the reactor, and further, nitrogen gas is circulated to remove the dried catalyst, and the demetalized catalyst is separated by sieving, and used catalysts A, B and C was obtained.

(2−2)(再生触媒の製造)
上記で得られた各使用済み触媒を、回転式焼成炉(回転速度:5rpm)にて100%窒素ガスを100cm3/分で供給しながら300℃で1時間処理した。その後、50%窒素ガス、50%空気の混合ガスを100cm3/分で供給しながら、450℃で3時間焼成した。得られた触媒を冷却後、ふるい分けにより塊状物と粉化物を除去し、それぞれ再生触媒A、B及びCとした。
(2-2) (Production of regenerated catalyst)
Each used catalyst obtained above was treated at 300 ° C. for 1 hour while supplying 100% nitrogen gas at 100 cm 3 / min in a rotary calciner (rotation speed: 5 rpm). Then, it baked at 450 degreeC for 3 hours, supplying the mixed gas of 50% nitrogen gas and 50% air at 100 cm < 3 > / min. After cooling the obtained catalyst, the lump and powder were removed by sieving to obtain regenerated catalysts A, B and C, respectively.

(2−3)(粉化率の測定方法)
各触媒の粉化率は、触媒35gを20メッシュの篩にいれ100回振る。篩に残った触媒の内、30gを秤量して、直径30cm、幅20cmの円筒形の回転器に入れ、60rpmで180分間回転させる。得られた試料を20メッシュの篩に入れ、100回振る。粉の量を測る。容器に付いた粉も、刷毛を使って全て篩に入れる。触媒重量の減少量を粉化率として求めた。この値が小さい程、磨耗強度が大きいことを示している。
(2-3) (Measurement method of powdering rate)
As for the pulverization rate of each catalyst, 35 g of the catalyst is put on a 20 mesh sieve and shaken 100 times. 30 g of the catalyst remaining on the sieve is weighed and placed in a cylindrical rotator having a diameter of 30 cm and a width of 20 cm, and rotated at 60 rpm for 180 minutes. The obtained sample is put on a 20 mesh sieve and shaken 100 times. Measure the amount of flour. Also put all powder on the container into the sieve using a brush. The reduction amount of the catalyst weight was determined as the powdering rate. The smaller this value, the greater the wear strength.

(2−4)(組成と磨耗強度の測定結果)
新触媒と再生触媒の組成、物性及び磨耗強度を表3に示す。
(2-4) (Measurement results of composition and wear strength)
Table 3 shows the composition, physical properties, and wear strength of the new catalyst and the regenerated catalyst.

Figure 2006061845
Figure 2006061845

(2−5)(再生触媒の評価)
再生触媒A、B及びCのそれぞれについて、小型高圧固定床反応器に50cm3を充填した。新触媒と同様の反応条件で、水素化脱硫反応を行った。用いた原料油の性状を表4に、評価結果を表5に示す。
(2-5) (Evaluation of regenerated catalyst)
For each of the regenerated catalysts A, B and C, a small high pressure fixed bed reactor was packed with 50 cm 3 . Hydrodesulfurization reaction was performed under the same reaction conditions as the new catalyst. Table 4 shows the properties of the raw material oil used, and Table 5 shows the evaluation results.

Figure 2006061845
Figure 2006061845

Figure 2006061845
Figure 2006061845

チタニアをアルミナ担体に添加して調製したチタニア担持アルミナ担体を用いた本発明の触媒A及び再生触媒Aは、触媒B、触媒C,再生触媒B及び再生触媒Cよりも、磨耗強度が高く、脱硫性能も高活性である。このことは、チタニアを担体に予め添加してチタニアをアルミナ担体に均一にコーティングすることによって、重質油中のバナジウムとアルミナの反応を抑制しているものと考えられる。   Catalyst A and regenerated catalyst A of the present invention using a titania-supported alumina support prepared by adding titania to an alumina support have higher wear strength than catalyst B, catalyst C, regenerated catalyst B and regenerated catalyst C, and desulfurization The performance is also highly active. This is considered that the reaction of vanadium and alumina in heavy oil is suppressed by adding titania to the carrier in advance and uniformly coating titania on the alumina carrier.

本発明における水素化処理触媒は、重質油の水素化処理に用いられ、特に、再生触媒としての使用に適する。

The hydrotreating catalyst in the present invention is used for hydrotreating heavy oil, and is particularly suitable for use as a regenerated catalyst.

Claims (9)

アルミナとチタニアを含む無機酸化物担体を調製し、該担体に、周期律表第6族、第9族、第10族及び第15族から選ばれた少なくとも3種以上の金属を、分子量200以上のポリエチレングリコールの存在下で担持することを特徴とする重質油水素化処理触媒の製造方法。   An inorganic oxide support containing alumina and titania is prepared, and at least three or more metals selected from Groups 6, 9, 10, and 15 of the periodic table are prepared on the support, and a molecular weight of 200 or more. A method for producing a heavy oil hydrotreating catalyst, which is supported in the presence of polyethylene glycol. アルミナとチタニアを含む無機酸化物担体が、水溶性チタン錯体をアルミナ担体に添加した後、400℃以上で焼成して得られたものである請求項1記載の重質油水素化処理触媒の製造方法。   2. The production of a heavy oil hydrotreating catalyst according to claim 1, wherein the inorganic oxide support containing alumina and titania is obtained by adding a water-soluble titanium complex to the alumina support and calcining at 400 ° C. or higher. Method. 前記水溶性チタン錯体が、オキシチタン錯体、ペルオキシチタン錯体又はヒドロキシチタン錯体である請求項2記載の重質油水素化処理触媒の製造方法。   The method for producing a heavy oil hydrotreating catalyst according to claim 2, wherein the water-soluble titanium complex is an oxytitanium complex, a peroxytitanium complex, or a hydroxytitanium complex. 周期律表6族金属がモリブデン、第9族金属がコバルト、第10族金属がニッケル、第15族金属がリンである請求項1乃至3のいずれかに記載の重質油水素化処理触媒の製造方法。   The heavy oil hydrotreating catalyst according to any one of claims 1 to 3, wherein the Group 6 metal of the periodic table is molybdenum, the Group 9 metal is cobalt, the Group 10 metal is nickel, and the Group 15 metal is phosphorus. Production method. チタニアの含有量が、触媒全量基準で0.1質量%から10質量%である請求項1乃至4のいずれかに記載の水素化処理触媒の製造方法。   The method for producing a hydrotreating catalyst according to any one of claims 1 to 4, wherein the content of titania is from 0.1% by mass to 10% by mass based on the total amount of the catalyst. 請求項1乃至5のいずれかに記載の方法により製造された重質油水素化処理触媒。   A heavy oil hydrotreating catalyst produced by the method according to claim 1. 請求項6記載の触媒を用いて重質油の水素化処理を行った後、焼成処理した再生重質油水素化処理触媒。   A regenerated heavy oil hydrotreating catalyst obtained by subjecting heavy oil to hydrogenation treatment using the catalyst according to claim 6 and then calcining. バナジウムを0.1質量%から35質量%含む請求項7記載の再生重質油水素化処理触媒。   The regenerated heavy oil hydrotreating catalyst according to claim 7, comprising 0.1 mass% to 35 mass% of vanadium. 重質油を、請求項6乃至8のいずれかに記載の触媒の存在下で水素化処理することを特徴とする重質油の水素化処理方法。

A method for hydrotreating heavy oil, comprising hydrotreating heavy oil in the presence of the catalyst according to any one of claims 6 to 8.

JP2004248022A 2004-08-27 2004-08-27 Hydrogenation catalyst for heavy oil and manufacturing method thereof Pending JP2006061845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248022A JP2006061845A (en) 2004-08-27 2004-08-27 Hydrogenation catalyst for heavy oil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248022A JP2006061845A (en) 2004-08-27 2004-08-27 Hydrogenation catalyst for heavy oil and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006061845A true JP2006061845A (en) 2006-03-09

Family

ID=36108766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248022A Pending JP2006061845A (en) 2004-08-27 2004-08-27 Hydrogenation catalyst for heavy oil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006061845A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013502321A (en) * 2009-08-24 2013-01-24 アルベマール・ユーロプ・エスピーアールエル Solutions and catalysts containing Group 6 metals, Group 8 metals and phosphorus
WO2014013784A1 (en) 2012-07-19 2014-01-23 千代田化工建設株式会社 Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
FR2998488A1 (en) * 2012-11-29 2014-05-30 IFP Energies Nouvelles HYDROTREATMENT CATALYST FROM ALUMIN GEL AND METHOD OF PREPARING SUCH A CATALYST
FR2999454A1 (en) * 2012-12-18 2014-06-20 IFP Energies Nouvelles New catalyst comprising at least one element of group VIB, optionally at least one element of group VIII, phosphorous and at least one aluminosilicate oxide support, useful for hydrotreating heavy hydrocarbon feedstocks
FR2999453A1 (en) * 2012-12-18 2014-06-20 IFP Energies Nouvelles RESIDUAL HYDROTREATMENT CATALYST COMPRISING VANADIUM AND USE THEREOF IN A RESIDUAL HYDROCONVERSION PROCESS
JP2021511954A (en) * 2018-01-22 2021-05-13 サゾル ジャーマニー ゲーエムベーハー Carrier and manufacturing method of catalyst containing uniformly distributed titanium dioxide
US11661554B2 (en) 2020-11-05 2023-05-30 Jgc Catalysts And Chemicals Ltd. Hydrotreating catalyst for heavy hydrocarbon oil, method for producing the same, and method for hydrotreating heavy hydrocarbon oil

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9254478B2 (en) 2009-08-24 2016-02-09 Albemarle Corporation Solutions and catalysts comprising group VI metal, group VIII metal, phosphorus and an additive
US10173201B2 (en) 2009-08-24 2019-01-08 Albemarle Europe Sprl Solutions and catalysts comprising group VI metal, group VIII metal, phosphorus and an additive
JP2013502321A (en) * 2009-08-24 2013-01-24 アルベマール・ユーロプ・エスピーアールエル Solutions and catalysts containing Group 6 metals, Group 8 metals and phosphorus
WO2014013784A1 (en) 2012-07-19 2014-01-23 千代田化工建設株式会社 Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
US10071370B2 (en) 2012-07-19 2018-09-11 Chiyoda Corporation Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
WO2014083273A1 (en) * 2012-11-29 2014-06-05 IFP Energies Nouvelles Hydrotreatment catalyst comprising a support obtained from an alumina gel and method for preparing said catalyst
CN104812480A (en) * 2012-11-29 2015-07-29 Ifp新能源公司 Hydrotreatment catalyst comprising a support obtained from an alumina gel and method for preparing the catalyst
US9931617B2 (en) 2012-11-29 2018-04-03 IFP Energies Nouvelles Hydrotreatment catalyst comprising a support obtained from an alumina gel and method for preparing said catalyst
WO2014083252A1 (en) * 2012-11-29 2014-06-05 IFP Energies Nouvelles Hydrotreatment catalyst comprising a support obtained from an alumina gel and method for preparing said catalyst
FR2998488A1 (en) * 2012-11-29 2014-05-30 IFP Energies Nouvelles HYDROTREATMENT CATALYST FROM ALUMIN GEL AND METHOD OF PREPARING SUCH A CATALYST
FR2999453A1 (en) * 2012-12-18 2014-06-20 IFP Energies Nouvelles RESIDUAL HYDROTREATMENT CATALYST COMPRISING VANADIUM AND USE THEREOF IN A RESIDUAL HYDROCONVERSION PROCESS
EP2745931A1 (en) 2012-12-18 2014-06-25 IFP Energies nouvelles Device for hydrotreating of hyrocarbon residues comprising vanadium and use thereof in a method for hydrocoversion of waste
FR2999454A1 (en) * 2012-12-18 2014-06-20 IFP Energies Nouvelles New catalyst comprising at least one element of group VIB, optionally at least one element of group VIII, phosphorous and at least one aluminosilicate oxide support, useful for hydrotreating heavy hydrocarbon feedstocks
JP2021511954A (en) * 2018-01-22 2021-05-13 サゾル ジャーマニー ゲーエムベーハー Carrier and manufacturing method of catalyst containing uniformly distributed titanium dioxide
JP7407117B2 (en) 2018-01-22 2023-12-28 サゾル ジャーマニー ゲーエムベーハー Catalyst carrier containing uniformly distributed titanium dioxide and manufacturing method
US11661554B2 (en) 2020-11-05 2023-05-30 Jgc Catalysts And Chemicals Ltd. Hydrotreating catalyst for heavy hydrocarbon oil, method for producing the same, and method for hydrotreating heavy hydrocarbon oil

Similar Documents

Publication Publication Date Title
US8664146B2 (en) Catalyst composition preparation and use
JP5160705B2 (en) Novel mixed metal catalyst, its preparation by coprecipitation and its use
JP5140817B2 (en) Process for hydrorefining and / or hydroconversion of hydrocarbon feedstock using catalyst
WO2011040224A1 (en) Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
EP3065868B1 (en) Process for preparing a hydrotreating catalyst
JP5517541B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
CA2508630A1 (en) Hydro processing of hydrocarbon using a mixture of catalysts
US4394302A (en) Hydrodesulfurization catalyst on lithium-containing support and method for its preparation
JP5841481B2 (en) Method for hydrotreating heavy residual oil
JP2006061845A (en) Hydrogenation catalyst for heavy oil and manufacturing method thereof
TW201427769A (en) Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
RU2634705C2 (en) Selenium-containing hydrotreating catalyst, its use and preparation method
JP3692207B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
JP4878736B2 (en) Heavy oil hydrotreating catalyst and method for producing the same
JP2013027838A (en) Method of regenerating hydrogenation catalyst
JPH09248460A (en) Catalyst for hydrogenating treatment of heavy oil and hydrogenating treatment method
JP2008168257A (en) Hydrogenation catalyst, its manufacturing method, and hydrogenation treatment catalyst, its production method and hydrogenation treatment method of heavy oil
JP3802939B2 (en) Catalyst for hydrotreating
JP5841480B2 (en) Method for hydrotreating heavy residual oil
JP4369165B2 (en) Titanium-containing support, method for producing the same, hydrotreating catalyst for hydrocarbon oil, and hydrotreating method using the same
JP2004148139A (en) Regenerated catalyst for hydrogenating heavy oil and method for hydrotreating heavy oil by using the same
JP3812374B2 (en) Heavy hydrocarbon oil hydrodemetallation catalyst
JP2013212447A (en) Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst
JP2001104789A (en) Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst
JPH09276712A (en) Catalyst for hydrogenation and metal removal of heavy oil and its production