JP5517541B2 - Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same - Google Patents

Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same Download PDF

Info

Publication number
JP5517541B2
JP5517541B2 JP2009227465A JP2009227465A JP5517541B2 JP 5517541 B2 JP5517541 B2 JP 5517541B2 JP 2009227465 A JP2009227465 A JP 2009227465A JP 2009227465 A JP2009227465 A JP 2009227465A JP 5517541 B2 JP5517541 B2 JP 5517541B2
Authority
JP
Japan
Prior art keywords
mass
catalyst
titania
carrier
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009227465A
Other languages
Japanese (ja)
Other versions
JP2011072928A (en
Inventor
浩幸 関
義明 福井
正典 吉田
勝吾 田河
智靖 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Eneos Corp
Original Assignee
Catalysts and Chemicals Industries Co Ltd
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009227465A priority Critical patent/JP5517541B2/en
Application filed by Catalysts and Chemicals Industries Co Ltd, JXTG Nippon Oil and Energy Corp filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to PCT/JP2010/065785 priority patent/WO2011040224A1/en
Priority to US13/498,165 priority patent/US9067191B2/en
Priority to EP10820343.1A priority patent/EP2484745B1/en
Priority to CN201080044048.2A priority patent/CN102575175B/en
Priority to SG2012018552A priority patent/SG179173A1/en
Priority to DK10820343.1T priority patent/DK2484745T3/en
Priority to SG10201406228YA priority patent/SG10201406228YA/en
Publication of JP2011072928A publication Critical patent/JP2011072928A/en
Application granted granted Critical
Publication of JP5517541B2 publication Critical patent/JP5517541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、炭化水素油の水素化脱硫触媒およびその製造方法に関し、さらに詳しくは、炭化水素油、特に軽油留分の水素化処理反応に使用され、高い脱硫活性を示すシリカ−チタニア−アルミナ担体に活性成分を担持した水素化脱硫触媒およびその製造方法に関する。   The present invention relates to a hydrodesulfurization catalyst for hydrocarbon oils and a method for producing the same, and more particularly to a silica-titania-alumina support that is used in a hydrotreating reaction of hydrocarbon oils, particularly gas oil fractions, and exhibits high desulfurization activity. The present invention relates to a hydrodesulfurization catalyst having an active component supported thereon and a method for producing the same.

従来、炭化水素油の水素化処理を目的として使用されてきた触媒には、アルミナ、アルミナ−シリカ、チタニア、アルミナ−チタニアなどの多孔性無機酸化物からなる担体に、周期表第VIA族及び第VIII族から選ばれた金属成分を担持した触媒が広く使用されている。
現在、環境保護の観点から燃料油の硫黄分の品質規制が強化されている。特に、軽油中の硫黄分は10質量ppm以下という厳しい規制となっている。このため、この規制に対応できるよう軽油超深度脱硫触媒の開発が進んでいる。
Conventionally, catalysts that have been used for the hydrotreatment of hydrocarbon oils include carriers of porous inorganic oxides such as alumina, alumina-silica, titania, alumina-titania, periodic table groups VIA and Catalysts carrying a metal component selected from Group VIII are widely used.
At present, the quality regulation of sulfur content in fuel oil is being strengthened from the viewpoint of environmental protection. In particular, the sulfur content in light oil is strictly regulated to 10 mass ppm or less. For this reason, development of a light oil ultra-deep desulfurization catalyst is progressing so that it can respond to this regulation.

チタニア担体は、アルミナ担体と比べ高脱硫性能を示すことが知られているが、一般的に比表面積が小さく、また高温での熱安定性が低いといった問題があった。チタニア含有触媒としては、チタニアゲルを用いてチタニア担体を調製する製法(特許文献1参照)、水溶性チタニア化合物をアルミナ担体に担持させアルミナ−チタニア担体を調製する製法(特許文献2参照)などが知られている。特許文献1に記載の触媒は、高価なチタニアが多く含有されており、従来のアルミナ担体を用いた触媒と比較して、価格が高くなると共に、嵩密度が高くなっていた。また、特許文献2に記載の触媒は、担体の吸水率分しかチタニアを担持できないため、チタニアを担体に高担持させるには担持工程を繰り返す必要があり、工業的に製造するには高価となっていた。また、アルミナ調製時にチタニアを混合させアルミナ中にチタニアを高分散させる製法(特許文献3参照)などもある。本製法は、チタニアをアルミナ中に高分散させることができるが、チタニアの含有量が増えるにつれチタニアの結晶化が進み易くなり比表面積が低下し、細孔分布のシャープネスが悪くなるという欠点があるうえ、これまで10質量ppm規制に対応できる十分な性能を有する触媒ではなかった。   The titania support is known to exhibit high desulfurization performance as compared with the alumina support, but generally has a problem that the specific surface area is small and the thermal stability at high temperature is low. Known titania-containing catalysts include a production method for preparing a titania carrier using titania gel (see Patent Document 1), a production method for preparing an alumina-titania carrier by supporting a water-soluble titania compound on an alumina carrier (see Patent Document 2), and the like. It has been. The catalyst described in Patent Document 1 contains a lot of expensive titania, and the price is high and the bulk density is high as compared with a catalyst using a conventional alumina carrier. In addition, since the catalyst described in Patent Document 2 can carry titania only for the water absorption rate of the carrier, it is necessary to repeat the carrying process to make titania highly loaded on the carrier, which is expensive for industrial production. It was. There is also a production method (see Patent Document 3) in which titania is mixed during alumina preparation and titania is highly dispersed in alumina. This manufacturing method can highly disperse titania in alumina. However, as the titania content increases, the titania crystallization easily proceeds, the specific surface area decreases, and the sharpness of the pore distribution deteriorates. In addition, it has not been a catalyst having sufficient performance to meet the 10 ppm by mass regulation so far.

特開2005−336053号公報JP 2005-336053 A 特開2005−262173号公報JP 2005-262173 A 特開平10−118495号公報Japanese Patent Laid-Open No. 10-118495

本発明の目的は、アルミナを主成分とし、シリカおよびチタニアを含有する高比表面積の担体を使用した安価で高性能な炭化水素油、特に軽油留分の水素化脱硫触媒およびその製造方法の提供にある。   An object of the present invention is to provide a low-cost and high-performance hydrocarbon oil, particularly a hydrodesulfurization catalyst for a gas oil fraction, and a method for producing the same, using a carrier having a high specific surface area containing alumina and silica and titania as a main component. It is in.

本発明者らは鋭意研究した結果、特定の構造を有するシリカ−チタニア−アルミナ担体を用い、かつ所定の性状を有する水素化脱硫触媒とすることにより、脱硫性能が大きく向上し、前記課題を達成し得ることを見出した。   As a result of diligent research, the inventors of the present invention have achieved a significant improvement in desulfurization performance by using a silica-titania-alumina support having a specific structure and a hydrodesulfurization catalyst having a predetermined property, thereby achieving the above object. I found out that I could do it.

即ち、本発明は、X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニアの(110)面の結晶構造を示す回折ピーク面積の合計の面積が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/4以下であるシリカ−チタニア−アルミナ担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持してなる炭化水素油の水素化脱硫触媒であって、(a)比表面積(SA)が150m/g以上、(b)全細孔容積(PVo)が0.30ml/g以上、(c)平均細孔直径(PD)が6〜15nm(60〜150Å)の範囲、および(d)平均細孔径(PD)±30%の細孔直径の細孔容積(PVp)の占める割合が全細孔容積(PVo)の70%以上であることを特徴とする炭化水素油の水素化脱硫触媒に関する。 That is, the present invention is the total area of the diffraction peak area showing the crystal structure of the anatase titania (101) plane and the diffraction peak area showing the crystal structure of the (110) plane of rutile titania as measured by X-ray diffraction analysis. Is selected from the group VIA and the group VIII of the periodic table as a silica-titania-alumina support having a diffraction peak area of ¼ or less with respect to the diffraction peak area indicating the aluminum crystal structure attributed to the γ-alumina (400) plane. A hydrodesulfurization catalyst for hydrocarbon oil supporting at least one metal component, wherein (a) specific surface area (SA) is 150 m 2 / g or more, (b) total pore volume (PVo) is Pore volume of 0.30 ml / g or more, (c) average pore diameter (PD) in the range of 6 to 15 nm (60 to 150 mm), and (d) pore diameter of average pore diameter (PD) ± 30% (PVp About hydrodesulfurization catalyst for hydrocarbon oil, wherein the ratio of is more than 70% of the total pore volume (PVo).

また、本発明は、珪酸イオンの存在下で、塩基性アルミニウム塩水溶液と、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液とを、pHが6.5〜9.5になるように混合して水和物を得る第1工程と、前記水和物を順次洗浄、成型、乾燥及び焼成して担体を得る第2工程と、前記担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持する第3工程とを有することを特徴とする前記の炭化水素油の水素化脱硫触媒の製造方法に関する。   In the present invention, a basic aluminum salt aqueous solution and a mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt are mixed in the presence of silicate ions so that the pH is 6.5 to 9.5. A first step for obtaining a hydrate, a second step for obtaining a carrier by washing, molding, drying and calcining the hydrate sequentially, and the carrier comprises at least one selected from Group VIA and Group VIII of the periodic table. And a third step of supporting one type of metal component. The present invention relates to a method for producing a hydrodesulfurization catalyst for hydrocarbon oils.

本発明の水素化脱硫触媒は、炭化水素油、特に軽油留分の水素化処理において高い脱硫活性を示し、極めて有効である。また、本発明の水素化脱硫触媒の製造方法においては、担体中にチタンを高分散することができるため、アルミナやシリカと比較して高価なチタンを比較的少ない量で高性能を示すことが可能となり、安価で高性能な触媒を得ることができる。   The hydrodesulfurization catalyst of the present invention exhibits high desulfurization activity in hydrotreating hydrocarbon oils, particularly gas oil fractions, and is extremely effective. Further, in the method for producing a hydrodesulfurization catalyst of the present invention, titanium can be highly dispersed in the support, and therefore, high performance can be achieved with a relatively small amount of expensive titanium compared to alumina or silica. This makes it possible to obtain an inexpensive and high-performance catalyst.

実施例1における担体aのX線回折分析結果を示す図である。FIG. 4 is a diagram showing the result of X-ray diffraction analysis of a carrier a in Example 1.

以下、本発明の好適な実施の形態について、詳細に説明する。
本発明の水素化脱硫触媒は、X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニア(110)面の結晶構造を示す回折ピーク面積の合計の面積が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/4以下であるシリカ−チタニア−アルミナ担体に、周期表第VIA族(IUPAC 第6族)及び第VIII族(IUPAC 第8族〜第10族)から選ばれる少なくとも1種の金属成分が担持されたものであり、かつ、比表面積(SA)が150m/g以上、全細孔容積(PVo)が0.30ml/g以上、平均細孔直径(PD)が6〜15nm(60〜150Å)の範囲、平均細孔径(PD)±30%の細孔直径の細孔容積(PVp)の占める割合が全細孔容積(PVo)の70%以上のものである。
Hereinafter, preferred embodiments of the present invention will be described in detail.
The hydrodesulfurization catalyst of the present invention is the sum of the diffraction peak area showing the crystal structure of the anatase-type titania (101) plane and the diffraction peak area showing the crystal structure of the rutile-type titania (110) plane measured by X-ray diffraction analysis. The silica-titania-alumina support whose area is 1/4 or less with respect to the diffraction peak area showing the aluminum crystal structure attributed to the γ-alumina (400) plane is a group VIA (IUPAC No. 6) of the periodic table. Group) and at least one metal component selected from Group VIII (IUPAC Group 8 to Group 10) and a specific surface area (SA) of 150 m 2 / g or more, Pore volume with a volume (PVo) of 0.30 ml / g or more, an average pore diameter (PD) in the range of 6 to 15 nm (60 to 150 mm), and an average pore diameter (PD) of ± 30%. Proportion of (PVP) is of more than 70% of the total pore volume (PVo).

本発明の水素化脱硫触媒におけるシリカ−チタニア−アルミナ担体は、シリカを担体基準でSiOとして1〜10質量%含有することが好ましく、2〜7質量%含有することがより好ましく、2〜5質量%含有することが更に好ましい。シリカ含有量が1質量%未満では、比表面積が低くなる上、担体を焼成する際にチタニア粒子が凝集しやすくなり、X線回折分析により測定されるアナターゼ型チタニア及びルチル型チタニアの結晶構造を示す回折ピーク面積が大きくなる。また、シリカの含有量が10質量%を超える場合には、得られる担体の細孔分布のシャープネスが悪くなり所望の脱硫活性が得られないことがある。 The silica-titania-alumina carrier in the hydrodesulfurization catalyst of the present invention preferably contains 1 to 10% by mass, more preferably 2 to 7% by mass of silica as SiO 2 based on the carrier. More preferably, it is contained by mass%. When the silica content is less than 1% by mass, the specific surface area becomes low, and the titania particles tend to aggregate when the carrier is baked, and the crystal structures of anatase titania and rutile titania measured by X-ray diffraction analysis are obtained. The diffraction peak area shown increases. On the other hand, when the content of silica exceeds 10% by mass, the sharpness of the pore distribution of the obtained carrier is deteriorated and the desired desulfurization activity may not be obtained.

また、本発明でのシリカ−チタニア−アルミナ担体は、チタニアを担体基準でTiOとして3〜40質量%含有することが好ましく、より好ましくは15〜35質量%、さらに好ましくは15〜25質量%含有するのが望ましい。チタニアの含有量が3質量%より少ない場合には、チタニア成分の添加効果が少なく、得られる触媒は所望の脱硫活性が得られないことがある。また、チタニアの含有量が40質量%より多い場合には、触媒の機械的強度が低くなる虞がある上、担体を焼成したときにチタニア粒子の結晶化が進み易くなるため比表面積が低くなり、チタニア量を増やした分の経済性に見合うだけの脱硫性能が発揮されず、本発明目的である安価で高性能な触媒とならず好ましくない。 Further, the silica-titania-alumina carrier in the present invention preferably contains 3 to 40% by mass of titania as TiO 2 based on the carrier, more preferably 15 to 35% by mass, and further preferably 15 to 25% by mass. It is desirable to contain. When the titania content is less than 3% by mass, the addition effect of the titania component is small, and the obtained catalyst may not obtain the desired desulfurization activity. Further, when the titania content is more than 40% by mass, the mechanical strength of the catalyst may be lowered, and the crystallization of titania particles is facilitated when the support is fired, so that the specific surface area is lowered. The desulfurization performance corresponding to the economical efficiency of the increased titania amount is not exhibited, and it is not preferable because it is not an inexpensive and high-performance catalyst that is the object of the present invention.

さらに、本発明でのシリカ−チタニア−アルミナ担体は、アルミナを担体基準でAlとして50〜96質量%含有することが好ましく、より好ましくは58〜83質量%、さらに好ましくは70〜83質量%含有するのが望ましい。ここで、アルミナの含有量が50質量%未満の場合には、触媒劣化が大きくなる傾向にあるので好ましくない。また、アルミナの含有量が96質量%より多い場合には、触媒性能が低下する傾向にあるため好ましくない。 Furthermore, the silica-titania-alumina carrier in the present invention preferably contains 50 to 96% by mass of alumina as Al 2 O 3 based on the carrier, more preferably 58 to 83% by mass, and still more preferably 70 to 83%. It is desirable to contain by mass. Here, when the content of alumina is less than 50% by mass, catalyst deterioration tends to increase, such being undesirable. Moreover, when there is more content of alumina than 96 mass%, since there exists a tendency for catalyst performance to fall, it is unpreferable.

本発明の水素化脱硫触媒は、前記のシリカ−チタニア−アルミナ担体に周期表第VIA族(IUPAC 第6族)及び第VIII族(IUPAC 第8族〜第10族)から選ばれる少なくとも1種以上の金属成分が担持されたものである。
周期表第VIA族の金属成分としては、モリブデン(Mo)、タングステン(W)等を例示することができ、周期表第VIII族の金属成分としては、コバルト(Co)、ニッケル(Ni)等を例示することができる。これらの金属成分は1種を単独で又は2種以上を組合せて用いても良い。触媒性能の点から、金属成分としては、ニッケル−モリブデン、コバルト−モリブデン、ニッケル−モリブデン−コバルト、ニッケル−タングステン、コバルト−タングステン、ニッケル−タングステン−コバルト等の組合せが好ましく、特に、ニッケル−モリブデン、コバルト−モリブデン、ニッケル−モリブデン−コバルトの組合せがより好ましい。
The hydrodesulfurization catalyst of the present invention is at least one selected from Group VIA (IUPAC Group 6) and Group VIII (IUPAC Group 8 to Group 10) of the periodic table on the silica-titania-alumina support. The metal component is supported.
Examples of the metal component of Group VIA of the periodic table include molybdenum (Mo) and tungsten (W). Examples of the metal component of Group VIII of the periodic table include cobalt (Co) and nickel (Ni). It can be illustrated. These metal components may be used alone or in combination of two or more. From the viewpoint of catalyst performance, the metal component is preferably a combination of nickel-molybdenum, cobalt-molybdenum, nickel-molybdenum-cobalt, nickel-tungsten, cobalt-tungsten, nickel-tungsten-cobalt, etc. A combination of cobalt-molybdenum and nickel-molybdenum-cobalt is more preferable.

金属成分の担持量は、触媒基準で、酸化物として、1〜35質量%の範囲が好ましく、15〜30質量%の範囲がさらに好ましい。特に、周期表第VIA族の金属成分は、酸化物として、好ましくは10〜30質量%の範囲、より好ましくは13〜24質量%の範囲、周期表第VIII族の金属成分は、酸化物として、好ましくは1〜10質量%の範囲、より好ましくは2〜6質量%の範囲にあることが望ましい。   The supported amount of the metal component is preferably in the range of 1 to 35% by mass and more preferably in the range of 15 to 30% by mass as the oxide on the catalyst basis. In particular, the metal component of Group VIA of the periodic table is preferably in the range of 10 to 30% by mass, more preferably in the range of 13 to 24% by mass, and the metal component of Group VIII of the periodic table is as oxide. , Preferably it is in the range of 1-10% by mass, more preferably in the range of 2-6% by mass.

本発明の水素化脱硫触媒が周期表第VIA族の金属成分を含有する場合は、酸を用いて該金属成分を溶解させることが好ましい。ここで酸としては、リン酸および/または有機酸を使用することが好ましい。
リン酸を用いる場合、周期表第VIA族の金属成分100質量%に対してリンは酸化物換算で3〜25質量%のリン酸を担持させることが好ましく、より好ましくは10〜15質量%の範囲で担持されることが好ましい。担持量が25質量%を超えると触媒性能が低下する傾向にあるので好ましくなく、3質量%未満だと担持金属溶液の安定性が悪くなり好ましくない。
また、有機酸を用いる場合、有機酸は好ましくは周期表第VIA族の金属成分に対し35〜75質量%、より好ましくは55〜65質量%の範囲で担持されることが好ましい。有機酸が周期表第VIA族の金属成分に対し75質量%を超えると該金属成分を含有した溶液(以下、「担持金属含有溶液」ともいう。)の粘度が上がり、製造での含浸工程が困難になるため好ましくなく、35質量%未満だと担持金属含有溶液の安定性が悪くなる上、触媒性能が低下する傾向にあり好ましくない。
When the hydrodesulfurization catalyst of the present invention contains a metal component of Group VIA of the periodic table, it is preferable to dissolve the metal component using an acid. Here, it is preferable to use phosphoric acid and / or an organic acid as the acid.
When using phosphoric acid, phosphorus preferably supports 3 to 25% by mass of phosphoric acid, more preferably 10 to 15% by mass based on 100% by mass of the metal component of Group VIA of the periodic table. It is preferable to be carried in a range. If the loading amount exceeds 25% by mass, the catalyst performance tends to decrease, which is not preferable. If the loading amount is less than 3% by mass, the stability of the supported metal solution deteriorates, which is not preferable.
When an organic acid is used, the organic acid is preferably supported in a range of 35 to 75% by mass, more preferably 55 to 65% by mass with respect to the metal component of Group VIA of the periodic table. When the organic acid exceeds 75% by mass relative to the metal component of Group VIA of the periodic table, the viscosity of the solution containing the metal component (hereinafter also referred to as “supported metal-containing solution”) increases, and the impregnation step in the production is performed. It is not preferable because it becomes difficult, and if it is less than 35% by mass, the stability of the supported metal-containing solution is deteriorated and the catalyst performance tends to be deteriorated.

なお、上記担体に、上記金属成分、あるいはさらにリンおよび/または有機酸を担持・含有させる方法は特に限定されず、上記金属成分を含む化合物、あるいはさらにリンを含む化合物および/または有機酸を用いた含浸法(平衡吸着法、ポアフィリング法、初期湿潤法)、イオン交換法等の公知の方法を用いることができる。ここで、含浸法とは、担体に活性金属を含む溶液を含浸させた後、乾燥、焼成する方法のことである。
含浸法では、周期表第VIA族の金属成分と周期表第VIII族の金属成分とを同時に担持することが好ましい。別々に金属を担持すると、脱硫活性または脱窒素活性が不充分になることがある。担持を含浸法により行う場合には、担体上での周期表第VIA族の金属成分の分散性が高くなって、得られる触媒の脱硫活性および脱窒素活性がより高くなることから、酸の共存下、好ましくはリン酸または有機酸の共存下で行う。その際、周期表第VIA族の金属成分100質量%に対して3〜25質量%のリン酸又は35〜75質量%の有機酸を添加することが好ましい。ここで、有機酸としてはカルボン酸化合物が好ましく、具体的にはクエン酸、リンゴ酸、酒石酸、グルコン酸などが挙げられる。
The method for supporting and containing the metal component or further phosphorus and / or organic acid on the carrier is not particularly limited, and a compound containing the metal component, or a compound containing phosphorus and / or an organic acid is used. Well-known methods such as an impregnation method (equilibrium adsorption method, pore filling method, initial wet method), ion exchange method and the like can be used. Here, the impregnation method is a method of impregnating a support containing a solution containing an active metal, followed by drying and firing.
In the impregnation method, it is preferable to simultaneously support a metal component of Group VIA of the periodic table and a metal component of Group VIII of the periodic table. If the metals are supported separately, the desulfurization activity or denitrification activity may be insufficient. When the loading is carried out by the impregnation method, the dispersibility of the metal component of Group VIA of the periodic table on the support becomes high, and the desulfurization activity and denitrogenation activity of the resulting catalyst become higher. The reaction is preferably carried out in the presence of phosphoric acid or organic acid. In that case, it is preferable to add 3-25 mass% phosphoric acid or 35-75 mass% organic acid with respect to 100 mass% of periodic table VIA group metal components. Here, the organic acid is preferably a carboxylic acid compound, and specific examples thereof include citric acid, malic acid, tartaric acid, and gluconic acid.

本発明の水素化脱硫触媒は、BET法で測定した比表面積(SA)が150m/g以上であることが必要であり、好ましくは170m/g以上である。比表面積(SA)が150m/g未満では、脱硫反応の活性点が少なくなり、脱硫性能が低下する虞があるため好ましくない。一方、上限については特に制限はないが、比表面積(SA)が250m/gを超えると触媒強度が低下する傾向にあるので、250m/g以下であることが好ましく、230m/g以下がより好ましい。 The hydrodesulfurization catalyst of the present invention needs to have a specific surface area (SA) measured by the BET method of 150 m 2 / g or more, preferably 170 m 2 / g or more. If the specific surface area (SA) is less than 150 m 2 / g, the active point of the desulfurization reaction is decreased, and there is a possibility that the desulfurization performance may be deteriorated. On the other hand, the upper limit is not particularly limited, but when the specific surface area (SA) exceeds 250 m 2 / g, the catalyst strength tends to decrease. Therefore, the upper limit is preferably 250 m 2 / g or less, and 230 m 2 / g or less. Is more preferable.

また、本発明の水素化脱硫触媒は、水銀圧入法(水銀の接触角:135度、表面張力:480dyn/cm)により測定した全細孔容積(PVo)が0.30ml/g以上であることが必要であり、好ましくは0.35ml/g以上である。一方、上限については特に制限はないが、全細孔容積(PVo)が0.60ml/gを超えると触媒強度が低下する傾向にあるので、0.60ml/g以下であることが好ましく、0.50ml/g以下がより好ましい。   The hydrodesulfurization catalyst of the present invention has a total pore volume (PVo) measured by a mercury intrusion method (mercury contact angle: 135 degrees, surface tension: 480 dyn / cm) of 0.30 ml / g or more. Is preferably 0.35 ml / g or more. On the other hand, the upper limit is not particularly limited, but when the total pore volume (PVo) exceeds 0.60 ml / g, the catalyst strength tends to decrease. Therefore, the upper limit is preferably 0.60 ml / g or less. More preferably, it is 50 ml / g or less.

更に、本発明の水素化脱硫触媒は、平均細孔直径(PD)が6〜15nm(60〜150Å)の範囲であることが必要であり、好ましくは6.5〜11nmの範囲である。平均細孔直径(PD)が6nm未満では、細孔が小さいため、原料油との反応性が悪くなることがあり、また、15nmを超えるものは製造的に困難であると共に、比表面積が小さくなり、触媒性能が悪くなる傾向がある。なお、全細孔容積(PVo)は、細孔直径が測定上の定量限界である4.1nm(41Å)以上の細孔を表し、平均細孔直径(PD)は、全細孔容積(PVo)の50%に相当する細孔直径を表す。   Further, the hydrodesulfurization catalyst of the present invention needs to have an average pore diameter (PD) in the range of 6 to 15 nm (60 to 150 mm), preferably in the range of 6.5 to 11 nm. When the average pore diameter (PD) is less than 6 nm, the pores are small, so the reactivity with the raw material oil may be deteriorated, and those exceeding 15 nm are difficult to produce and the specific surface area is small. Therefore, the catalyst performance tends to deteriorate. The total pore volume (PVo) represents pores having a pore diameter of 4.1 nm (41 cm) or more, which is the quantification limit in measurement, and the average pore diameter (PD) is the total pore volume (PVo). ) Represents the pore diameter corresponding to 50%.

また、本発明の水素化脱硫触媒は、平均細孔直径(PD)±30%の細孔直径を有する細孔容積(PVp)の全細孔容積(PVo)に対して占める割合(PVp/PVo)が70%以上であることが必要であり、80%以上であることが好ましく、その細孔分布はシャープである。PVp/PVoが70%未満では、触媒の細孔分布がブロードになり、所望の脱硫性能が得られないことがある。   In addition, the hydrodesulfurization catalyst of the present invention has a ratio (PVp / PVo) of the pore volume (PVp) having an average pore diameter (PD) ± 30% to the total pore volume (PVo). ) Must be 70% or more, preferably 80% or more, and its pore distribution is sharp. When PVp / PVo is less than 70%, the pore distribution of the catalyst becomes broad and the desired desulfurization performance may not be obtained.

また、本発明の水素化脱硫触媒の担体は、X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニア(110)面の結晶構造を示す回折ピーク面積の合計の面積(以下、「チタニア回折ピーク面積」ともいう。)が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積(以下、「アルミナ回折ピーク面積」ともいう。)に対して、1/4以下であることが必要であり、1/5以下であるのが好ましく、1/6以下であるのがより好ましい。ここで、アルミナ回折ピーク面積に対するチタニア回折ピーク面積(チタニア回折ピーク面積/アルミナ回折ピーク面積)が1/4より大きい場合は、チタニアの結晶化が進み反応に有効な細孔が減少する。そのためチタニア量を増やしても、その経済性に見合う分の脱硫性能が発揮されず、本発明の目的である安価で高性能な触媒とならない。   Further, the carrier of the hydrodesulfurization catalyst of the present invention has a diffraction peak area showing the crystal structure of the anatase titania (101) plane and a diffraction structure showing the crystal structure of the rutile titania (110) plane measured by X-ray diffraction analysis. The total peak area (hereinafter also referred to as “titania diffraction peak area”) is a diffraction peak area (hereinafter referred to as “alumina diffraction peak area”) indicating the aluminum crystal structure attributed to the γ-alumina (400) plane. ), It is necessary to be 1/4 or less, preferably 1/5 or less, and more preferably 1/6 or less. Here, when the titania diffraction peak area with respect to the alumina diffraction peak area (titania diffraction peak area / alumina diffraction peak area) is larger than 1/4, crystallization of titania proceeds and pores effective for the reaction decrease. Therefore, even if the amount of titania is increased, the desulfurization performance corresponding to the economic efficiency is not exhibited, and the inexpensive and high-performance catalyst which is the object of the present invention is not obtained.

ここで、アナターゼ型チタニア(101)面の結晶構造を示す回折ピークは2θ=25.5°で測定したものであり、ルチル型チタニア(110)面の結晶構造を示す回折ピークは、2θ=27.5°で測定したものである。また、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピークは2θ=45.9°で測定したものである。
それぞれの回折ピーク面積の算出方法は、X線回折装置でX線回折分析によって得られたグラフを最小二乗法によりフィッティングしベースライン補正を行い、最大ピーク値からベースラインまでの高さを求め(ピーク強度W)得られたピーク強度の半分の値(1/2W)のときのピーク幅(半値幅)を求め、この半値幅とピーク強度との積を回折ピーク面積とした。求めた各回折ピーク面積から、「チタニア回折ピーク面積/アルミナ回折ピーク面積」を算出した。
Here, the diffraction peak indicating the crystal structure of the anatase titania (101) plane was measured at 2θ = 25.5 °, and the diffraction peak indicating the crystal structure of the rutile titania (110) plane was 2θ = 27. Measured at 5 °. The diffraction peak showing the aluminum crystal structure attributed to the γ-alumina (400) plane is measured at 2θ = 45.9 °.
Each diffraction peak area is calculated by fitting a graph obtained by X-ray diffraction analysis with an X-ray diffractometer using the least square method and correcting the baseline to obtain the height from the maximum peak value to the baseline ( Peak intensity W) A peak width (half-value width) at a half value (1/2 W) of the obtained peak intensity was determined, and the product of this half-value width and peak intensity was defined as a diffraction peak area. From the obtained diffraction peak areas, “titania diffraction peak area / alumina diffraction peak area” was calculated.

本発明の水素化脱硫触媒は、炭化水素油、特に軽油留分の水素化処理に好適に使用される。該触媒を使用した水素化脱硫処理は、固定床反応装置に触媒を充填して水素雰囲気下、高温高圧条件で行なわれる。
軽油留分としては、原油の常圧蒸留装置から得られる直留軽油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油、減圧重質軽油あるいは脱硫重油を接触分解して得られる接触分解軽油、減圧重質軽油あるいは脱硫重油を水素化分解して得られる水素化分解軽油等が挙げられる。
The hydrodesulfurization catalyst of this invention is used suitably for the hydroprocessing of hydrocarbon oil, especially a light oil fraction. The hydrodesulfurization treatment using the catalyst is carried out under a high-temperature and high-pressure condition in a hydrogen atmosphere by filling the catalyst in a fixed bed reactor.
Gas oil fractions include straight-run light oil obtained from a crude oil atmospheric distillation apparatus, straight-run heavy oil obtained from an atmospheric distillation apparatus and residual oil obtained by treating the crude oil with a vacuum distillation apparatus, Examples include catalytic cracking gas oil obtained by catalytic cracking of light diesel oil or desulfurized heavy oil, hydrocracked gas oil obtained by hydrocracking depressurized heavy gas oil or desulfurized heavy oil, and the like.

反応圧力(水素分圧)は3.0〜15.0MPaであることが好ましく、より好ましくは4.0〜10.0MPaである。反応圧力が3.0MPa未満では脱硫および脱窒素が著しく低下する傾向にあり、また、15.0MPaを超えると水素消費が大きくなり運転コストが増加するので好ましくない。
反応温度は300〜420℃であることが好ましく、より好ましくは320〜380℃である。反応温度が300℃未満では脱硫および脱窒素活性が著しく低下する傾向にあり実用的でない。また、反応温度が420℃を超えると触媒劣化が顕著になると共に、反応装置の耐熱温度(通常約425℃)に近づくため好ましくない。
液空間速度は特に制限されないが、0.5〜4.0h−1であることが好ましく、より好ましくは0.5〜2.0h−1である。液空間速度が0.5h−1未満では処理量が低いので生産性が低くなり実用的ではない。また、液空間速度が4.0h−1を超えると反応温度が高くなり、触媒劣化が速くなるので好ましくない。
水素/油比は120〜420NL/Lであることが好ましく、より好ましくは170〜340NL/Lである。水素/油比が120NL/L未満では脱硫率が低下するので好ましくない。また、420NL/Lを超えても脱硫活性に大きな変化がなく、運転コストが増加するだけなので好ましくない。
The reaction pressure (hydrogen partial pressure) is preferably 3.0 to 15.0 MPa, more preferably 4.0 to 10.0 MPa. If the reaction pressure is less than 3.0 MPa, desulfurization and denitrogenation tend to be remarkably reduced, and if it exceeds 15.0 MPa, hydrogen consumption increases and the operating cost increases, which is not preferable.
The reaction temperature is preferably 300 to 420 ° C, more preferably 320 to 380 ° C. If the reaction temperature is less than 300 ° C., the desulfurization and denitrification activities tend to be remarkably lowered, which is not practical. Further, when the reaction temperature exceeds 420 ° C., catalyst deterioration becomes remarkable, and it approaches the heat resistant temperature of the reaction apparatus (usually about 425 ° C.), which is not preferable.
But not liquid hourly space velocity particularly limited, is preferably a 0.5~4.0H -1, more preferably 0.5~2.0h -1. If the liquid space velocity is less than 0.5 h −1 , the throughput is low and the productivity is low, which is not practical. Further, if the liquid space velocity exceeds 4.0 h −1 , the reaction temperature is increased, and the catalyst deterioration is accelerated.
The hydrogen / oil ratio is preferably 120 to 420 NL / L, more preferably 170 to 340 NL / L. A hydrogen / oil ratio of less than 120 NL / L is not preferable because the desulfurization rate decreases. Moreover, even if it exceeds 420 NL / L, since there is no big change in desulfurization activity and only an operating cost increases, it is not preferable.

次に、本発明の水素化脱硫触媒の製造方法について説明する。
本発明の水素化脱硫触媒の製造方法は、珪酸イオンの存在下で、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液(以下、単に「混合水溶液」ともいう。)と、塩基性アルミニウム塩水溶液とを、pHが6.5〜9.5になるように混合して水和物を得る第1工程と、前記水和物を順次洗浄、成型、乾燥、及び焼成して担体を得る第2工程と、前記担体に、周期表第VIA族(IUPAC 第6族)及び第VIII族(IUPAC 第8族〜第10族)から選ばれる少なくとも1種の金属成分を担持する第3工程とを有する。以下、それぞれの工程について説明する。
Next, the manufacturing method of the hydrodesulfurization catalyst of this invention is demonstrated.
The method for producing a hydrodesulfurization catalyst of the present invention comprises a mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt (hereinafter also simply referred to as “mixed aqueous solution”), a basic aluminum salt aqueous solution, in the presence of silicate ions. The first step of obtaining a hydrate by mixing the hydrate so that the pH is 6.5 to 9.5, and the second step of obtaining a carrier by sequentially washing, molding, drying and baking the hydrate And a third step of supporting at least one metal component selected from Group VIA (IUPAC Group 6) and Group VIII (IUPAC Group 8 to Group 10) on the carrier. Hereinafter, each process will be described.

(第1工程)
まず、珪酸イオンの存在下で、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液(これは酸性の水溶液である。)と、塩基性アルミニウム塩水溶液(これはアルカリ性の水溶液である。)とを、pHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.5〜7.5になるように混合して、シリカ、チタニア及びアルミナを含む水和物を得る。
(First step)
First, in the presence of silicate ions, a mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt (this is an acidic aqueous solution) and a basic aqueous aluminum salt solution (this is an alkaline aqueous solution), Mixing so that the pH is 6.5 to 9.5, preferably 6.5 to 8.5, more preferably 6.5 to 7.5, to obtain a hydrate containing silica, titania and alumina. .

この工程では、(1)珪酸イオンを含む塩基性アルミニウム塩水溶液に、混合水溶液を添加する場合と、(2)珪酸イオンを含む混合水溶液に、塩基性アルミニウム塩水溶液を添加する場合とがある。
ここで、(1)の場合、塩基性アルミニウム塩水溶液に含有される珪酸イオンは、塩基性または中性のものが使用できる。塩基性の珪酸イオン源としては、珪酸ナトリウムなどの水中で珪酸イオンを生じる珪酸化合物が使用可能である。また、(2)の場合、チタニウム鉱酸塩及び酸性アルミニウム塩水溶液の混合液に含有される珪酸イオンは、酸性または中性のものが使用できる。酸性の珪酸イオン源としては、珪酸などの水中で珪酸イオンを生じる珪酸化合物が使用可能である。
In this step, (1) a mixed aqueous solution may be added to the basic aluminum salt aqueous solution containing silicate ions, and (2) a basic aluminum salt aqueous solution may be added to the mixed aqueous solution containing silicate ions.
Here, in the case of (1), the silicate ion contained in the basic aluminum salt aqueous solution can be basic or neutral. As the basic silicate ion source, a silicate compound that generates silicate ions in water such as sodium silicate can be used. In the case of (2), the silicate ions contained in the mixed solution of the titanium mineral acid salt and the acidic aluminum salt aqueous solution can be acidic or neutral. As the acidic silicate ion source, a silicate compound that generates silicate ions in water such as silicic acid can be used.

塩基性アルミニウム塩としては、アルミン酸ナトリウム、アルミン酸カリウムなどが好適に使用される。また、酸性アルミニウム塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウムなどが好適に使用され、チタニウム鉱酸塩としては、四塩化チタン、三塩化チタン、硫酸チタン、硝酸チタンなどが例示され、特に硫酸チタンは安価であるので好適に使用される。   As the basic aluminum salt, sodium aluminate, potassium aluminate or the like is preferably used. Further, as the acidic aluminum salt, aluminum sulfate, aluminum chloride, aluminum nitrate and the like are preferably used, and as the titanium mineral acid salt, titanium tetrachloride, titanium trichloride, titanium sulfate, titanium nitrate and the like are exemplified. Titanium is preferably used because it is inexpensive.

例えば、所定量の塩基性の珪酸イオンを含有する塩基性アルミニウム塩水溶液を攪拌機付きタンクに張り込み、通常40〜90℃、好ましくは50〜70℃に加温して保持し、この溶液の温度±5℃、好ましくは±2℃、より好ましくは±1℃に加温した所定量のチタニウム鉱酸塩及び酸性アルミニウム塩水溶液の混合水溶液をpHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.5〜7.5になるように、通常5〜20分、好ましくは7〜15分で連続添加し沈殿を生成させ、水和物のスラリーを得る。ここで、塩基性アルミニウム塩水溶液への混合水溶液の添加は、時間が長くなると擬ベーマイトの他にバイヤライトやギブサイトなどの好ましくない結晶物が生成することがあるので、15分以下が望ましく、13分以下がさらに望ましい。バイヤライトやギブサイトは、焼成した時に比表面積が低下するので、好ましくない。   For example, a basic aluminum salt aqueous solution containing a predetermined amount of basic silicate ions is placed in a tank equipped with a stirrer, and is usually kept at 40 to 90 ° C., preferably 50 to 70 ° C., and the temperature of this solution ± A mixed aqueous solution of a predetermined amount of a titanium mineral acid salt and an acidic aluminum salt aqueous solution heated to 5 ° C., preferably ± 2 ° C., more preferably ± 1 ° C. has a pH of 6.5 to 9.5, preferably 6.5. It is added continuously in 5 to 20 minutes, preferably 7 to 15 minutes so as to be ˜8.5, more preferably 6.5 to 7.5, to form a precipitate, thereby obtaining a hydrate slurry. Here, the addition of the mixed aqueous solution to the basic aluminum salt aqueous solution is desirably 15 minutes or less because undesirable crystals such as bayerite and gibbsite may be generated in addition to pseudoboehmite as time goes on. More preferably less than a minute. Bayerite and gibbsite are not preferred because their specific surface area decreases when fired.

(第2工程)
第1工程で得られた水和物のスラリーを、所望により熟成した後、洗浄して副生塩を除き、シリカ、チタニア及びアルミナを含む水和物のスラリーを得る。得られた水和物のスラリーを、所望によりさらに加熱熟成した後、慣用の手段により、例えば、加熱捏和して成型可能な捏和物とした後、押出成型などにより所望の形状に成型し、通常70〜150℃、好ましくは90〜130℃で乾燥した後、更に400〜800℃、好ましくは450〜600℃で、0.5〜10時間、好ましくは2〜5時間焼成して、シリカ、チタニア及びアルミナを含むシリカ−チタニア−アルミナ担体を得る。
(Second step)
The hydrate slurry obtained in the first step is aged as desired, and then washed to remove by-product salts to obtain a hydrate slurry containing silica, titania and alumina. The obtained hydrate slurry is further heat-aged if desired, and then, by conventional means, for example, heat-kneaded to form a kneaded product, which is then molded into a desired shape by extrusion molding or the like. In general, after drying at 70 to 150 ° C., preferably 90 to 130 ° C., it is further calcined at 400 to 800 ° C., preferably 450 to 600 ° C., for 0.5 to 10 hours, preferably 2 to 5 hours to obtain silica. A silica-titania-alumina support containing titania and alumina is obtained.

(第3工程)
得られたシリカ−チタニア−アルミナ担体に、周期表第VIA族及び第VIII族から選ばれた少なくとも1種の金属成分を上述したとおり、慣用の手段(含浸法、浸漬法など)で担持した後、通常400〜800℃、好ましくは450〜600℃で、0.5〜10時間、好ましくは2〜5時間焼成し、本発明の水素化脱硫触媒を製造する。
金属成分の原料としては、例えば、硝酸ニッケル、炭酸ニッケル、硝酸コバルト、炭酸コバルト、三酸化モリブデン、モリブデン酸アンモン、パラタングステン酸アンモンなどが好ましく使用される。
(Third step)
After loading the obtained silica-titania-alumina support with at least one metal component selected from Group VIA and Group VIII of the periodic table by conventional means (impregnation method, dipping method, etc.) as described above. In general, it is calcined at 400 to 800 ° C., preferably 450 to 600 ° C., for 0.5 to 10 hours, preferably 2 to 5 hours to produce the hydrodesulfurization catalyst of the present invention.
As a raw material for the metal component, for example, nickel nitrate, nickel carbonate, cobalt nitrate, cobalt carbonate, molybdenum trioxide, ammonium molybdate, and ammonium paratungstate are preferably used.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらのものに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[実施例1:水素化脱硫触媒aの調製]
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.16kgを入れ、イオン交換水41kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液7.38kgを13kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合し、60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、シリカ、チタニア、及びアルミナを含有する水和物スラリーaを調製した。
[Example 1: Preparation of hydrodesulfurization catalyst a]
A tank with a steam jacket with a capacity of 100 L is charged with 8.16 kg of 22 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, diluted with 41 kg of ion-exchanged water, and then 5 mass% silicic acid in terms of SiO 2 concentration. 1.80 kg of sodium solution was added with stirring and heated to 60 ° C. to prepare a basic aluminum salt aqueous solution. Further, 10 kg of an acidic aluminum salt aqueous solution obtained by diluting 7.38 kg of an aluminum sulfate aqueous solution of 7% by mass in terms of Al 2 O 3 concentration with 13 kg of ion-exchanged water, and 1.82 kg of 33% by mass of titanium sulfate in terms of TiO 2 concentration. The aqueous solution of titanium mineral salt dissolved in the ion-exchanged water was mixed and heated to 60 ° C. to prepare a mixed aqueous solution. Water containing silica, titania, and alumina is added to the tank containing the basic aqueous aluminum salt solution at a constant rate using a roller pump until the pH is 7.2 (addition time: 10 minutes). A Japanese slurry a was prepared.

得られた水和物スラリーaを攪拌しながら60℃で1時間熟成した後、平板フィルターを用いて脱水し、更に、0.3質量%アンモニア水溶液150Lで洗浄した。洗浄後のケーキ状のスラリーをAl濃度換算で10質量%となるようにイオン交換水で希釈した後、15質量%アンモニア水でpHを10.5に調整した。これを還流機付熟成タンクに移し、攪拌しながら95℃で10時間熟成した。熟成終了後のスラリーを脱水し、スチームジャケットを備えた双腕式ニーダーにて練りながら所定の水分量まで濃縮捏和した。得られた捏和物を押出成型機にて直径が1.8mmの円柱形状に成型し、110℃で乾燥した。乾燥した成型品は電気炉で550℃の温度で3時間焼成し、担体aを得た。担体aは、シリカがSiO濃度換算で3質量%(担体基準)、チタニアがTiO濃度換算で20質量%(担体基準)、アルミニウムがAl濃度換算で77質量%(担体基準)含有されていた。 The obtained hydrate slurry a was aged at 60 ° C. for 1 hour with stirring, dehydrated using a flat plate filter, and further washed with 150 L of a 0.3 mass% aqueous ammonia solution. The cake-like slurry after washing was diluted with ion-exchanged water so as to be 10% by mass in terms of Al 2 O 3 concentration, and then the pH was adjusted to 10.5 with 15% by mass ammonia water. This was transferred to an aging tank equipped with a reflux machine and aged at 95 ° C. for 10 hours with stirring. The slurry after completion of aging was dehydrated and concentrated and kneaded to a predetermined moisture content while kneading with a double-arm kneader equipped with a steam jacket. The obtained kneaded product was molded into a cylindrical shape having a diameter of 1.8 mm by an extrusion molding machine and dried at 110 ° C. The dried molded product was baked in an electric furnace at a temperature of 550 ° C. for 3 hours to obtain a carrier a. As for the carrier a, silica is 3% by mass in terms of SiO 2 (support standard), titania is 20% by mass in terms of TiO 2 (support standard), and aluminum is 77% by mass in terms of Al 2 O 3 concentration (support standard). Contained.

また、担体aをリガク社製のX線回折装置RINT2100にて、X線回折分析を行った(以下の実施例についても同様である)。その結果を図1に示す。ここで、得られたグラフを最小二乗法によりフィッティングし、ベースライン補正を行い2θ=25.5°に示されるアナターゼ型チタニア(101)面に帰属されるピークの半値幅を求め、この半値幅とベースラインからのピーク強度との積をアナターゼ型チタニア回折ピーク面積とした。同様に2θ=27.5°に示されるルチル型チタニア(110)面に帰属されるピークの半減値を求め、この半減値とベースラインからのピーク強度との積をルチル型チタニア回折ピーク面積とした。ここで、アナターゼ型チタニア回折ピーク面積とルチル型チタニア回折ピーク面積との合計の面積を、チタニア回折ピーク面積とした。なお、担体aにおいては、ルチル型チタニアのピークは検出されなかった。更に、2θ=45.9°に示されるγ−アルミナ(400)面に帰属されるピークの半減値を求め、この半減値とベースラインからのピーク強度との積をアルミナ回折ピーク面積とした。担体aは、アナターゼ型チタニア及びルチル型チタニアの結晶構造を示す回折ピーク面積が、アルミニウムに帰属される結晶構造を示す回折ピーク面積に対して、1/8であった(チタニア回折ピーク面積/アルミナ回折ピーク面積=1/8。以下同様)。   Further, the carrier a was subjected to X-ray diffraction analysis with an RINT2100 X-ray diffractometer manufactured by Rigaku (the same applies to the following examples). The result is shown in FIG. Here, the obtained graph was fitted by the least square method, the baseline was corrected, and the half width of the peak attributed to the anatase-type titania (101) surface indicated by 2θ = 25.5 ° was obtained. And the peak intensity from the baseline was defined as the anatase titania diffraction peak area. Similarly, the half value of the peak attributed to the rutile-type titania (110) plane shown at 2θ = 27.5 ° is obtained, and the product of this half-value and the peak intensity from the baseline is the rutile-type titania diffraction peak area. did. Here, the total area of the anatase type titania diffraction peak area and the rutile type titania diffraction peak area was defined as the titania diffraction peak area. In carrier a, no rutile-type titania peak was detected. Further, the half value of the peak attributed to the γ-alumina (400) plane shown at 2θ = 45.9 ° was determined, and the product of this half value and the peak intensity from the baseline was defined as the alumina diffraction peak area. In carrier a, the diffraction peak area showing the crystal structure of anatase titania and rutile type titania was 1/8 of the diffraction peak area showing the crystal structure belonging to aluminum (titania diffraction peak area / alumina). Diffraction peak area = 1/8.

更に、三酸化モリブデン306gと炭酸コバルト68gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リン酸68gを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して水素化脱硫触媒a(以下、単に「触媒a」ともいう。以下の実施例についても同様である。)を得た。触媒aの金属成分は、MoOが22質量%(触媒基準)で、CoOが3質量%(触媒基準)で、Pが3質量%(触媒基準)であった。触媒aの性状を表1に示す。 Further, 306 g of molybdenum trioxide and 68 g of cobalt carbonate were suspended in 500 ml of ion-exchanged water, and the suspension was heated at 95 ° C. for 5 hours so that the liquid volume did not decrease, and then heated. 68 g of phosphoric acid was added and dissolved to prepare an impregnation solution. The impregnating solution is spray impregnated on 1000 g of support a, dried at 250 ° C., and further calcined in an electric furnace at 550 ° C. for 1 hour to be hydrodesulfurized catalyst a (hereinafter also simply referred to as “catalyst a”. The same applies to the examples of the above. The metal component of the catalyst a was 22% by mass of MoO 3 (based on catalyst), 3% by mass of CoO (based on catalyst), and 3% by mass of P 2 O 5 (based on catalyst). Table 1 shows the properties of the catalyst a.

[実施例2:水素化脱硫触媒bの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.49kgを入れ、イオン交換水37kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液10.62kgを19kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン0.91kgを5kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーbを調製した点が、実施例1と異なる。
[Example 2: Preparation of hydrodesulfurization catalyst b]
(1) Add 8.49 kg of 22 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, dilute with 37 kg of ion-exchanged water, and then stir 1.80 kg of 5 mass% sodium silicate solution in terms of SiO 2 concentration. And the basic aluminum salt aqueous solution prepared by heating to 60 ° C., and (2) an acid obtained by diluting 10.62 kg of a 7 mass% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration with 19 kg of ion-exchanged water. A mixed aqueous solution prepared by mixing an aqueous solution of aluminum salt and an aqueous solution of titanium mineral acid obtained by dissolving 0.91 kg of 33 wt% titanium sulfate in terms of TiO 2 concentration in 5 kg of ion-exchanged water has a constant pH. The difference from Example 1 is that the hydrate slurry b was prepared by adding until 7.2.

実施例1と同様にして、水和物スラリーbから担体bを調製した。担体bは、SiO濃度が3質量%(担体基準)、TiO濃度が10質量%(担体基準)、アルミニウムがAl濃度換算で87質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、アナターゼ型チタニア及びルチル型チタニアの結晶構造を示す回折ピークが検出されず、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/4未満であった。
実施例1と同様にして、担体bから触媒bを製造した。触媒bは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表1に触媒bの性状を示す。
In the same manner as in Example 1, carrier b was prepared from hydrate slurry b. In the carrier b, the SiO 2 concentration was 3% by mass (carrier standard), the TiO 2 concentration was 10% by mass (carrier standard), and the aluminum was 87% by mass in terms of Al 2 O 3 (carrier standard).
Further, as a result of X-ray diffraction analysis (not shown) as in Example 1, a diffraction peak showing the crystal structure of anatase titania and rutile titania was not detected, and titania diffraction peak area / alumina diffraction peak area Was less than ¼.
In the same manner as in Example 1, catalyst b was produced from carrier b. The catalyst b contained 22% by mass of MoO 3 (catalyst reference), 3% by mass of CoO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Table 1 shows the properties of the catalyst b.

[実施例3:水素化脱硫触媒cの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.82kgを入れ、イオン交換水44kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液4.14kgを7kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン2.73kgを15kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーcを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーcから担体cを調製した。担体cは、SiO濃度が3質量%(担体基準)、TiO濃度が30質量%(担体基準)、アルミニウムがAl濃度換算で67質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/5であった。
実施例1と同様にして、担体cから触媒cを製造した。触媒cは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表1に触媒cの性状を示す。
[Example 3: Preparation of hydrodesulfurization catalyst c]
(1) 7.82 kg of 22 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration was added, diluted with 44 kg of ion-exchanged water, and then 1.80 kg of 5 mass% sodium silicate solution in terms of SiO 2 concentration was stirred. And the basic aluminum salt aqueous solution prepared by heating to 60 ° C. and (2) an acid obtained by diluting 4.14 kg of an aluminum sulfate aqueous solution of 7% by mass in terms of Al 2 O 3 concentration with 7 kg of ion-exchanged water. A mixed aqueous solution prepared by mixing an aqueous aluminum salt solution and an aqueous titanium mineral salt solution obtained by dissolving 2.73 kg of 33 wt% titanium sulfate in terms of TiO 2 concentration in 15 kg of ion-exchanged water has a pH at a constant rate. The point which added until it became 7.2 and the hydrate slurry c was prepared differs from Example 1. FIG.
In the same manner as in Example 1, carrier c was prepared from hydrate slurry c. In the carrier c, the SiO 2 concentration was 3% by mass (carrier standard), the TiO 2 concentration was 30% by mass (carrier standard), and the aluminum was 67% by mass (carrier standard) in terms of Al 2 O 3 concentration.
Moreover, as a result of performing X-ray diffraction analysis in the same manner as in Example 1 (not shown), the titania diffraction peak area / alumina diffraction peak area was 1/5.
In the same manner as in Example 1, catalyst c was produced from support c. The catalyst c contained 22% by mass of MoO 3 (catalyst reference), 3% by mass of CoO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Table 1 shows the properties of the catalyst c.

[比較例1:水素化脱硫触媒dの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.82kgを入れ、イオン交換水34kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液に、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液13.86kgを25kgのイオン交換水で希釈した酸性アルミニウム塩水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーdを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーdから担体dを調製した。担体dは、SiO濃度が3質量%(担体基準)、TiO濃度が0質量%(担体基準)、アルミニウムがAl濃度換算で97質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、アナターゼ型チタニア及びルチル型チタニアの結晶構造を示す回折ピークが検出されず、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/4未満であった。
更に、実施例1と同様にして、担体dから触媒dを製造した。触媒dは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表1に触媒dの性状を示す。
[Comparative Example 1: Preparation of hydrodesulfurization catalyst d]
(1) After putting 8.82 kg of 22% by mass sodium aluminate aqueous solution in terms of Al 2 O 3 concentration and diluting with 34 kg of ion-exchanged water, 1.80 kg of 5% by mass sodium silicate solution in terms of SiO 2 concentration was stirred. To the basic aluminum salt aqueous solution prepared by heating to 60 ° C. and (2) acidified by diluting 13.86 kg of a 7 mass% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration with 25 kg of ion-exchanged water. The point that the aqueous solution of aluminum salt was added at a constant rate until the pH reached 7.2 to prepare the hydrate slurry d was different from Example 1.
In the same manner as in Example 1, carrier d was prepared from hydrate slurry d. In the carrier d, the SiO 2 concentration was 3% by mass (carrier standard), the TiO 2 concentration was 0% by mass (carrier standard), and the aluminum was 97% by mass in terms of Al 2 O 3 concentration (carrier standard).
Further, as a result of X-ray diffraction analysis (not shown) as in Example 1, a diffraction peak showing the crystal structure of anatase titania and rutile titania was not detected, and titania diffraction peak area / alumina diffraction peak area Was less than ¼.
Further, in the same manner as in Example 1, a catalyst d was produced from the carrier d. The catalyst d contained 22% by mass of MoO 3 (catalyst reference), 3% by mass of CoO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Table 1 shows the properties of the catalyst d.

[比較例2:水素化脱硫触媒eの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.09kgを入れ、イオン交換水47kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液に、(2)TiO濃度換算で33質量%の硫酸チタン4.09kgを23kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーeを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーeから担体eを調製した。担体eは、SiO濃度が3質量%(担体基準)、TiO濃度が45質量%(担体基準)、アルミニウムがAl濃度換算で52質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/3であった。
更に、実施例1と同様にして、担体eから触媒eを製造した。触媒eは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表1に触媒eの性状を示す。
[Comparative Example 2: Preparation of hydrodesulfurization catalyst e]
(1) Add 7.09 kg of 22 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, dilute with 47 kg of ion-exchanged water, and then stir 1.80 kg of 5 mass% sodium silicate solution in terms of SiO 2 concentration. (2) Titanium mineral salt obtained by dissolving 4.09 kg of 33% by mass of titanium sulfate in terms of TiO 2 concentration in 23 kg of ion-exchanged water. The point that the aqueous solution was added at a constant rate until the pH became 7.2 to prepare the hydrate slurry e was different from Example 1.
In the same manner as in Example 1, carrier e was prepared from hydrate slurry e. In the carrier e, the SiO 2 concentration was 3% by mass (carrier standard), the TiO 2 concentration was 45% by mass (carrier standard), and the aluminum was 52% by mass (carrier standard) in terms of Al 2 O 3 concentration.
Moreover, as a result of conducting an X-ray diffraction analysis in the same manner as in Example 1 (not shown), the titania diffraction peak area / alumina diffraction peak area was 1/3.
Further, in the same manner as in Example 1, a catalyst e was produced from the carrier e. The catalyst e contained 22% by mass of MoO 3 (catalyst reference), 3% by mass of CoO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Table 1 shows the properties of the catalyst e.

[実施例4:水素化脱硫触媒fの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.79kgを入れ、イオン交換水40kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液4.20kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液6.81kgを12kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーfを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーfから担体fを調製した。担体fは、SiO濃度が7質量%(担体基準)、TiO濃度が20質量%(担体基準)、アルミニウムがAl濃度換算で73質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/8であった。
更に、実施例1と同様にして、担体fから触媒fを製造した。触媒fは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表2に触媒fの性状を示す。
[Example 4: Preparation of hydrodesulfurization catalyst f]
(1) Add 7.79 kg of 22% by mass sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, dilute with 40 kg of ion-exchanged water, and then stir 4.20 kg of 5% by mass sodium silicate solution in terms of SiO 2 concentration. The basic aluminum salt aqueous solution prepared by heating and heating to 60 ° C., and (2) an acid obtained by diluting 6.81 kg of a 7 mass% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration with 12 kg of ion-exchanged water A mixed aqueous solution prepared by mixing an aqueous aluminum salt solution and an aqueous titanium mineral salt solution in which 1.82 kg of 33 mass% titanium sulfate in terms of TiO 2 concentration is dissolved in 10 kg of ion-exchanged water, has a pH at a constant rate. The difference from Example 1 is that hydrate slurry f was prepared by adding until 7.2.
In the same manner as in Example 1, the carrier f was prepared from the hydrate slurry f. In the carrier f, the SiO 2 concentration was 7% by mass (carrier standard), the TiO 2 concentration was 20% by mass (carrier standard), and the aluminum was 73% by mass (carrier standard) in terms of Al 2 O 3 concentration.
Moreover, as a result of performing X-ray diffraction analysis in the same manner as in Example 1 (not shown), the titania diffraction peak area / alumina diffraction peak area was 1/8.
Further, a catalyst f was produced from the carrier f in the same manner as in Example 1. The catalyst f contained 22% by mass of MoO 3 (catalyst reference), 3% by mass of CoO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Table 2 shows the properties of the catalyst f.

[実施例5:水素化脱硫触媒gの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.52kgを入れ、イオン交換水40kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液6.00kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液6.38kgを11kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーgを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーgから担体gを調製した。担体gは、SiO濃度が10質量%(担体基準)、TiO濃度が20質量%(担体基準)、アルミニウムがAl濃度換算で70質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/8であった。
更に、実施例1と同様にして、担体gから触媒gを製造した。触媒gは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表2に触媒gの性状を示す。
[Example 5: Preparation of hydrodesulfurization catalyst g]
(1) Add 7.52 kg of 22% by mass sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, dilute with 40 kg of ion-exchanged water, and then stir 6.00 kg of 5% by mass sodium silicate solution in terms of SiO 2 concentration. The basic aluminum salt aqueous solution prepared by heating and heating to 60 ° C., and (2) an acid obtained by diluting 6.38 kg of a 7% by mass aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration with 11 kg of ion-exchanged water A mixed aqueous solution prepared by mixing an aqueous aluminum salt solution and an aqueous titanium mineral salt solution in which 1.82 kg of 33 mass% titanium sulfate in terms of TiO 2 concentration is dissolved in 10 kg of ion-exchanged water, has a pH at a constant rate. The difference from Example 1 is that hydrate slurry g was prepared by adding until 7.2.
In the same manner as in Example 1, carrier g was prepared from hydrate slurry g. The carrier g had a SiO 2 concentration of 10% by mass (carrier standard), a TiO 2 concentration of 20% by mass (carrier standard), and aluminum in terms of Al 2 O 3 concentration of 70% by mass (carrier standard).
Moreover, as a result of performing X-ray diffraction analysis in the same manner as in Example 1 (not shown), the titania diffraction peak area / alumina diffraction peak area was 1/8.
Further, in the same manner as in Example 1, catalyst g was produced from carrier g. Catalyst g contained 22% by mass of MoO 3 (catalyst reference), 3% by mass of CoO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Table 2 shows the properties of catalyst g.

[比較例3:水素化脱硫触媒hの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.43kgを入れ、イオン交換水41kgで希釈後、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液7.81kgを14kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーhを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーhから担体hを調製した。担体hは、SiO濃度が0質量%(担体基準)、TiO濃度が20質量%(担体基準)、アルミニウムがAl濃度換算で80質量%(担体基準)であった。また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/4であった。
更に、実施例1と同様にして、担体hから触媒hを製造した。触媒hは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表2に触媒hの性状を示す。
[Comparative Example 3: Preparation of hydrodesulfurization catalyst h]
(1) A basic aluminum salt aqueous solution prepared by adding 8.43 kg of a 22% by mass sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, diluting with 41 kg of ion-exchanged water and heating to 60 ° C., (2 ) 10 kg of an acidic aluminum salt aqueous solution obtained by diluting 7.81 kg of an aluminum sulfate aqueous solution of 7% by mass in terms of Al 2 O 3 with 14 kg of ion-exchanged water and 1.82 kg of 33% by mass of titanium sulfate in terms of TiO 2 concentration The hydrate slurry h was prepared by adding a mixed aqueous solution prepared by mixing an aqueous solution of titanium mineral salt dissolved in ion-exchanged water to a pH of 7.2 at a constant rate. Different from Example 1.
The carrier h was prepared from the hydrate slurry h in the same manner as in Example 1. In the carrier h, the SiO 2 concentration was 0% by mass (carrier standard), the TiO 2 concentration was 20% by mass (carrier standard), and the aluminum was 80% by mass (carrier standard) in terms of Al 2 O 3 concentration. Moreover, as a result of performing X-ray diffraction analysis in the same manner as in Example 1 (not shown), the titania diffraction peak area / alumina diffraction peak area was 1/4.
Further, a catalyst h was produced from the carrier h in the same manner as in Example 1. The catalyst h contained 22% by mass of MoO 3 (catalyst reference), 3% by mass of CoO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Table 2 shows the properties of catalyst h.

[比較例4:水素化脱硫触媒iの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.07kgを入れ、イオン交換水40kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液9.00kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液5.67kgを10kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液とを、一定速度でpHが7.2となるまで添加して、水和物スラリーiを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーiから担体iを調製した。担体iは、SiO濃度が15質量%(担体基準)、TiO濃度が20質量%(担体基準)、アルミニウムがAl濃度換算で65質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/8であった。
更に、実施例1と同様にして、担体iから触媒iを製造した。触媒iは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表2に触媒iの性状を示す。
[Comparative Example 4: Preparation of hydrodesulfurization catalyst i]
(1) Add 7.07 kg of 22 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, dilute with 40 kg of ion-exchanged water, and then stir 9.00 kg of 5 mass% sodium silicate solution in terms of SiO 2 concentration. The basic aluminum salt aqueous solution prepared by heating and heating to 60 ° C., and (2) an acid obtained by diluting 5.67 kg of 7 mass% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration with 10 kg of ion-exchanged water An aqueous solution of aluminum salt and a mixed aqueous solution prepared by mixing 1.82 kg of 33 wt% titanium sulfate in terms of TiO 2 concentration with 10 kg of ion-exchanged water and mixed with an aqueous solution of titanium mineral salt at a constant speed Is different from Example 1 in that the hydrate slurry i was prepared by adding the hydrate slurry to 7.2.
In the same manner as in Example 1, carrier i was prepared from hydrate slurry i. The carrier i had a SiO 2 concentration of 15% by mass (carrier standard), a TiO 2 concentration of 20% by mass (carrier standard), and an aluminum content of 65% by mass in terms of Al 2 O 3 (carrier standard).
Moreover, as a result of performing X-ray diffraction analysis in the same manner as in Example 1 (not shown), the titania diffraction peak area / alumina diffraction peak area was 1/8.
Further, in the same manner as in Example 1, catalyst i was produced from carrier i. The catalyst i contained 22% by mass of MoO 3 (catalyst reference), 3% by mass of CoO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Table 2 shows the properties of catalyst i.

[実施例6:水素化脱硫触媒jの調製]
担体は実施例1の担体aを用いた。
三酸化モリブデン278gと炭酸コバルト114gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リン酸68gと硝酸76gとを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して水素化脱硫触媒jを得た。触媒jの金属成分は、MoOが20質量%(触媒基準)で、CoOが5質量%(触媒基準)で、Pが3質量%(触媒基準)であった。触媒jの性状を表3に示す。
[Example 6: Preparation of hydrodesulfurization catalyst j]
The carrier a of Example 1 was used as the carrier.
After suspending 278 g of molybdenum trioxide and 114 g of cobalt carbonate in 500 ml of ion-exchanged water and heating this suspension at 95 ° C. for 5 hours so that the liquid volume does not decrease, the suspension is heated, and then phosphoric acid. 68 g and 76 g of nitric acid were added and dissolved to prepare an impregnating solution. This impregnating solution was spray impregnated on 1000 g of carrier a, dried at 250 ° C., and further calcined at 550 ° C. for 1 hour in an electric furnace to obtain hydrodesulfurization catalyst j. The metal components of the catalyst j were 20% by mass of MoO 3 (catalyst reference), 5% by mass of CoO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Table 3 shows the properties of the catalyst j.

[実施例7:水素化脱硫触媒kの調製]
担体は実施例1の担体aを用いた。
三酸化モリブデン278gと炭酸コバルト114gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リン酸68gとリンゴ酸174gとを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して水素化脱硫触媒kを得た。触媒kの金属成分は、MoOが20質量%(触媒基準)で、CoOが5質量%(触媒基準)で、Pが3質量%(触媒基準)であった。触媒kの性状を表3に示す。
[Example 7: Preparation of hydrodesulfurization catalyst k]
The carrier a of Example 1 was used as the carrier.
After suspending 278 g of molybdenum trioxide and 114 g of cobalt carbonate in 500 ml of ion-exchanged water and heating the suspension at 95 ° C. for 5 hours so that the liquid volume does not decrease, phosphoric acid is added. 68 g and 174 g of malic acid were added and dissolved to prepare an impregnation solution. This impregnating solution was spray impregnated on 1000 g of support a, dried at 250 ° C., and further calcined at 550 ° C. for 1 hour in an electric furnace to obtain a hydrodesulfurization catalyst k. The metal component of the catalyst k was 20% by mass of MoO 3 (catalyst reference), 5% by mass of CoO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Properties of catalyst k are shown in Table 3.

[実施例8:水素化脱硫触媒lの調製]
担体は実施例1の担体aを用いた。
三酸化モリブデン267gと炭酸コバルト109gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リンゴ酸167gを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して水素化脱硫触媒lを得た。触媒lの金属成分は、MoOが20質量%(触媒基準)で、CoOが5質量%(触媒基準)で、Pが0質量%(触媒基準)であった。触媒lの性状を表3に示す。
[Example 8: Preparation of hydrodesulfurization catalyst 1]
The carrier a of Example 1 was used as the carrier.
After 267 g of molybdenum trioxide and 109 g of cobalt carbonate were suspended in 500 ml of ion-exchanged water, this suspension was heated at 95 ° C. for 5 hours so that the liquid volume did not decrease, and then heated, followed by malic acid. 167 g was added and dissolved to prepare an impregnating solution. This impregnating solution was spray impregnated on 1000 g of carrier a, dried at 250 ° C., and further calcined in an electric furnace at 550 ° C. for 1 hour to obtain a hydrodesulfurization catalyst l. The metal component of the catalyst 1 was 20% by mass (catalyst reference) of MoO 3 , 5% by mass (catalyst reference) of CoO, and 0% by mass (catalyst reference) of P 2 O 5 . The properties of catalyst 1 are shown in Table 3.

[実施例9:水素化脱硫触媒mの調製]
担体は実施例1の担体aを用いた。
三酸化モリブデン306gと炭酸ニッケル76gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リン酸68gを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して水素化脱硫触媒mを得た。触媒mの金属成分は、MoOが22質量%(触媒基準)で、NiOが3質量%(触媒基準)で、Pが3質量%(触媒基準)であった。触媒mの性状を表3に示す。
[Example 9: Preparation of hydrodesulfurization catalyst m]
The carrier a of Example 1 was used as the carrier.
After suspending 306 g of molybdenum trioxide and 76 g of nickel carbonate in 500 ml of ion-exchanged water and heating this suspension at 95 ° C. for 5 hours so that the liquid volume does not decrease, phosphoric acid is added. 68 g was added and dissolved to prepare an impregnating solution. The impregnating solution was impregnated with 1000 g of carrier a by spraying, dried at 250 ° C., and further calcined in an electric furnace at 550 ° C. for 1 hour to obtain a hydrodesulfurization catalyst m. The metal components of the catalyst m were 22% by mass of MoO 3 (catalyst reference), 3% by mass of NiO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Table 3 shows the properties of the catalyst m.

[実施例10:水素化脱硫触媒nの調製]
(1)Al濃度換算で7質量%の硫酸アルミニウム水溶液7.17kgを13kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液を混合し、さらにSiO濃度換算で4.8質量%珪酸液1.88kgを混合して作製した混合水溶液に、(2)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.22kgを入れ、イオン交換水41kgで希釈後、60℃に加温して作製した塩基性アルミニウム塩水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーnを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーnから担体nを調製した。担体nは、SiO濃度が3質量%(担体基準)、TiO濃度が20質量%(担体基準)、アルミニウムがAl濃度換算で77質量%(担体基準)であった。また、実施例1と同様に担体nのX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/7であった。
実施例1と同様にして、担体nから触媒nを製造した。触媒nは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表3に触媒nの性状を示す。
[Example 10: Preparation of hydrodesulfurization catalyst n]
(1) An acidic aluminum salt aqueous solution obtained by diluting 7.17 kg of an aluminum sulfate aqueous solution of 7% by mass in terms of Al 2 O 3 with 13 kg of ion-exchanged water, and 1.82 kg of 33% by mass of titanium sulfate in terms of TiO 2 concentration Was mixed with an aqueous solution of titanium mineral salt dissolved in 10 kg of ion-exchanged water, and further mixed with 1.88 kg of a 4.8% by mass silicic acid solution in terms of SiO 2 concentration. (2) Al 2 O A basic aluminum salt aqueous solution prepared by adding 8.22 kg of 22 mass% sodium aluminate aqueous solution in terms of 3 concentrations, diluted with 41 kg of ion-exchanged water, and heated to 60 ° C. has a pH of 7.2 at a constant rate. The difference from Example 1 is that the hydrate slurry n was added until
In the same manner as in Example 1, carrier n was prepared from hydrate slurry n. The carrier n had a SiO 2 concentration of 3% by mass (carrier standard), a TiO 2 concentration of 20% by mass (carrier standard), and aluminum 77% by mass (based on the carrier) in terms of Al 2 O 3 concentration. Further, as a result of X-ray diffraction analysis of the carrier n as in Example 1 (not shown), the titania diffraction peak area / alumina diffraction peak area was 1/7.
In the same manner as in Example 1, catalyst n was produced from carrier n. The catalyst n contained 22% by mass of MoO 3 (catalyst reference), 3% by mass of CoO (catalyst reference), and 3% by mass of P 2 O 5 (catalyst reference). Table 3 shows the properties of catalyst n.

[試験例1]
触媒a〜nを使用して、次の性状を有する原料油をザイテル社製の水素化脱硫装置により水素化処理した。ここで、生成油の硫黄分が7質量ppmとなる温度(以下、「反応温度」という)を求め、各触媒の脱硫性能を比較した。なお、水素化処理反応は以下の条件で行った。この結果を表1〜3に示す。
《原料油の性状》
原料油 :直留軽油(沸点範囲208〜390℃)
密度@15℃ :0.8493g/cm
硫黄分 :1.32質量%
窒素分 :105質量ppm
《反応条件》
液空間速度 :1.0hr−1
水素圧力 :4.9MPa
水素/油比 :250NL/L
[Test Example 1]
Using the catalysts a to n, a raw material oil having the following properties was hydrotreated with a hydrodesulfurization apparatus manufactured by Zeitel. Here, the temperature (hereinafter referred to as “reaction temperature”) at which the sulfur content of the product oil becomes 7 mass ppm was determined, and the desulfurization performance of each catalyst was compared. The hydrotreatment reaction was performed under the following conditions. The results are shown in Tables 1-3.
<Properties of raw oil>
Raw material oil: straight run diesel oil (boiling point range 208-390 ° C)
Density @ 15 ° C .: 0.8493 g / cm 3
Sulfur content: 1.32% by mass
Nitrogen content: 105 ppm by mass
<Reaction conditions>
Liquid space velocity: 1.0 hr −1
Hydrogen pressure: 4.9 MPa
Hydrogen / oil ratio: 250 NL / L

Figure 0005517541
Figure 0005517541
Figure 0005517541
Figure 0005517541
Figure 0005517541
Figure 0005517541

表1は、担体中のチタニア量の影響を確認した結果である。担体中のチタニア量が増えると脱硫性能が向上するが、40%を超えると細孔分布のシャープネスが悪くなるため性能が低下した。表2は、担体中のシリカ量の影響を確認した結果である。担体中のシリカ量も10%を超えると細孔分布のシャープネスが悪くなるため性能が低下した。表3は担持する金属成分の影響を確認した結果である。ニッケル−モリブデン、コバルト−モリブデンいずれも高い脱硫性能を有している。また、金属成分と同時にリン酸および/または有機酸を含有しても高い脱硫性能を有している結果となった。さらに、担体調製の際に酸溶液を塩基性溶液に添加する製法と塩基性溶液に酸溶液に添加する製法といずれも高い脱硫性能を示した。
以上の結果により、本発明の触媒は、生成油の硫黄分が7質量ppmとなる温度が低く、脱硫活性に優れていることが分かった。また、本発明の担体は、安価なアルミナが主成分であり従来のアルミナ及びアルミナシリカ系触媒と比較して大幅に生産コストが向上せず、安価で高性能な触媒であると言える。
Table 1 shows the results of confirming the influence of the amount of titania in the carrier. When the amount of titania in the support increases, the desulfurization performance improves, but when it exceeds 40%, the sharpness of the pore distribution deteriorates and the performance deteriorates. Table 2 shows the results of confirming the influence of the amount of silica in the support. When the amount of silica in the carrier also exceeds 10%, the sharpness of the pore distribution deteriorates and the performance deteriorates. Table 3 shows the results of confirming the influence of the supported metal component. Both nickel-molybdenum and cobalt-molybdenum have high desulfurization performance. Moreover, even if it contained phosphoric acid and / or organic acid simultaneously with the metal component, it resulted in having high desulfurization performance. Furthermore, both the production method of adding the acid solution to the basic solution and the production method of adding the acid solution to the basic solution during the carrier preparation showed high desulfurization performance.
From the above results, it was found that the catalyst of the present invention has a low temperature at which the sulfur content of the product oil becomes 7 mass ppm and is excellent in desulfurization activity. Further, the carrier of the present invention is an inexpensive and high-performance catalyst whose main component is inexpensive alumina and does not significantly increase the production cost as compared with conventional alumina and alumina-silica catalysts.

本発明の水素化脱硫触媒は、特に軽油留分の水素化処理において高い脱硫活性を有し、産業上きわめて有用である。   The hydrodesulfurization catalyst of the present invention has a high desulfurization activity particularly in the hydrotreatment of a light oil fraction, and is extremely useful industrially.

Claims (4)

シリカ、チタニア及びアルミナを含む水和物のスラリーを焼成して得られるシリカ−チタニア−アルミナ担体であって、X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニア(110)面の結晶構造を示す回折ピーク面積の合計の面積が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/4以下であり、アルミナの含有量がAl として55〜89質量%であり、かつシリカの含有量がSiO として1〜10質量%であり、かつチタニアの含有量がTiO として10〜35質量%であるシリカ−チタニア−アルミナ担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持してなる炭化水素油の水素化脱硫触媒であって、(a)比表面積(SA)が150m/g以上、(b)全細孔容積(PVo)が0.30ml/g以上、(c)平均細孔直径(PD)が6〜15nm(60〜150Å)の範囲、および(d)平均細孔径(PD)±30%の細孔直径の細孔容積(PVp)の占める割合が全細孔容積(PVo)の70%以上であることを特徴とする炭化水素油の水素化脱硫触媒。 A silica-titania-alumina support obtained by firing a hydrate slurry containing silica, titania and alumina , a diffraction peak showing the crystal structure of the anatase-type titania (101) surface measured by X-ray diffraction analysis The total area of the diffraction peak area showing the crystal structure of the area and the rutile-type titania (110) plane is ¼ or less than the diffraction peak area showing the aluminum crystal structure attributed to the γ-alumina (400) plane , and the content of alumina is 55-89 wt% as Al 2 O 3, and the content of the silica is 1 to 10 mass% as SiO 2, and 10 to 35 the content of titania as TiO 2 silica is a mass% - titania - alumina support, carry at least one metal component selected from group VIA and group VIII of the periodic table A hydrodesulfurization catalyst for hydrocarbon oils comprising, (a) a specific surface area (SA) is 150 meters 2 / g or more, (b) the total pore volume (PVo) is 0.30 ml / g or more, (c) average The pore diameter (PD) is in the range of 6 to 15 nm (60 to 150 mm), and (d) the ratio of the pore diameter (PVp) of the average pore diameter (PD) ± 30% of the pore diameter is the total pore volume. A hydrodesulfurization catalyst for hydrocarbon oil, characterized by being 70% or more of (PVo). 前記周期表第VIA族及び第VIII族から選ばれる金属成分が、モリブデン、タングステン、コバルトおよびニッケルから選ばれることを特徴とする請求項1に記載の炭化水素油の水素化脱硫触媒。 The hydrodesulfurization catalyst for hydrocarbon oil according to claim 1, wherein the metal component selected from Group VIA and Group VIII of the periodic table is selected from molybdenum, tungsten, cobalt, and nickel. 前記周期表第VIA族及び第VIII族から選ばれる金属成分の担持量が、触媒基準で、酸化物として1〜35質量%の範囲であることを特徴とする請求項1又は請求項2に記載の炭化水素油の水素化脱硫触媒。 3. The supported amount of a metal component selected from Group VIA and Group VIII of the periodic table is in the range of 1 to 35% by mass as an oxide on a catalyst basis. Hydrocarbon oil hydrodesulfurization catalyst. 珪酸イオンの存在下で、塩基性アルミニウム塩水溶液と、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液とを、pHが6.5〜9.5になるように混合して水和物を得る第1工程と、前記水和物を順次洗浄、成型、乾燥及び焼成して担体を得る第2工程と、前記担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持する第3工程とを有することを特徴とする請求項1〜請求項のいずれかに記載の炭化水素油の水素化脱硫触媒の製造方法。 In the presence of silicate ions, a basic aluminum salt aqueous solution and a mixed aqueous solution of titanium mineral acid and acidic aluminum salt are mixed so that the pH is 6.5 to 9.5 to obtain a hydrate. A first step, a second step of sequentially washing, molding, drying and firing the hydrate to obtain a carrier; and at least one metal component selected from Group VIA and Group VIII of the periodic table in the carrier. It has the 3rd process to carry | support, The manufacturing method of the hydrodesulfurization catalyst of the hydrocarbon oil in any one of Claims 1-3 characterized by the above-mentioned.
JP2009227465A 2009-09-30 2009-09-30 Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same Active JP5517541B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009227465A JP5517541B2 (en) 2009-09-30 2009-09-30 Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
US13/498,165 US9067191B2 (en) 2009-09-30 2010-09-14 Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
EP10820343.1A EP2484745B1 (en) 2009-09-30 2010-09-14 Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
CN201080044048.2A CN102575175B (en) 2009-09-30 2010-09-14 Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
PCT/JP2010/065785 WO2011040224A1 (en) 2009-09-30 2010-09-14 Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
SG2012018552A SG179173A1 (en) 2009-09-30 2010-09-14 Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
DK10820343.1T DK2484745T3 (en) 2009-09-30 2010-09-14 HYDRO DEVULATION CATALYST FOR A CARBOHYDRATE OIL, METHOD OF MANUFACTURE AND PROCEDURE FOR HYDRO REFINING
SG10201406228YA SG10201406228YA (en) 2009-09-30 2010-09-14 Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009227465A JP5517541B2 (en) 2009-09-30 2009-09-30 Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011072928A JP2011072928A (en) 2011-04-14
JP5517541B2 true JP5517541B2 (en) 2014-06-11

Family

ID=44017503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009227465A Active JP5517541B2 (en) 2009-09-30 2009-09-30 Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same

Country Status (1)

Country Link
JP (1) JP5517541B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5922372B2 (en) 2011-10-24 2016-05-24 日揮触媒化成株式会社 Hydrotreating catalyst and method for producing the same
JP6013259B2 (en) 2013-04-03 2016-10-25 日揮触媒化成株式会社 Hydrotreating catalyst support, method for producing the same, hydrotreating catalyst, and method for producing the same
JP6216658B2 (en) * 2014-02-24 2017-10-18 Jxtgエネルギー株式会社 Catalyst for hydrorefining of vacuum gas oil and method for producing the same
JP6284403B2 (en) 2014-03-27 2018-02-28 Jxtgエネルギー株式会社 Hydrocarbon oil hydrodesulfurization catalyst
CA2985154C (en) * 2015-05-15 2023-09-26 Huntsman P&A Germany Gmbh Powdered titanium oxide, processes for preparing the same and the use thereof
JP6916021B2 (en) 2017-03-30 2021-08-11 Eneos株式会社 Method for producing hydrodesulfurization catalyst of hydrocarbon oil and hydrodesulfurization catalyst
CN114433112B (en) * 2020-11-06 2024-06-14 宁波中科远东催化工程技术有限公司 Coke oven gas hydrodesulfurization catalyst and preparation method thereof
CN114602483B (en) * 2022-03-10 2023-08-18 福州大学 Hydrodesulfurization catalyst for catalytically cracked gasoline and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3738371B2 (en) * 1995-03-27 2006-01-25 中部電力株式会社 Method for producing titania-based catalyst
US7943115B2 (en) * 2001-07-27 2011-05-17 Chiyoda Corporation Porous 4 group metal oxide and method for preparation thereof
JP3781417B2 (en) * 2002-06-28 2006-05-31 千代田化工建設株式会社 Porous titanium oxide carrier, catalyst using the same, and method for producing porous titanium oxide carrier
JP5013658B2 (en) * 2004-03-11 2012-08-29 Jx日鉱日石エネルギー株式会社 Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil

Also Published As

Publication number Publication date
JP2011072928A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
WO2011040224A1 (en) Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
JP5517541B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP6489990B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
WO2011162228A1 (en) Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
JP5922372B2 (en) Hydrotreating catalyst and method for producing the same
JP6681259B2 (en) Hydroprocessing catalyst for hydrocarbon oil, method for producing the same, and hydroprocessing method
JP5610874B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
WO2016189982A1 (en) Hydrotreating catalyst for hydrocarbon oil, process for producing same, and hydrotreating method
WO2010109823A1 (en) Hydrorefining catalyst, method for producing same, and process for hydrorefining hydrocarbon oil
JP6284403B2 (en) Hydrocarbon oil hydrodesulfurization catalyst
JP6216658B2 (en) Catalyst for hydrorefining of vacuum gas oil and method for producing the same
JP5841481B2 (en) Method for hydrotreating heavy residual oil
WO2018180377A1 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing hydrodesulfurization catalyst
JP5340101B2 (en) Hydrorefining method of hydrocarbon oil
JP2016007552A (en) Hydrodesulfurization catalyst for hydrocarbon oil, manufacturing method thereof, and hydrodesulfurization method
JP5610875B2 (en) Hydrorefining method of hydrocarbon oil
JP5841480B2 (en) Method for hydrotreating heavy residual oil
JP6251107B2 (en) Hydrocarbon oil hydrodesulfurization catalyst
JP5193103B2 (en) Method for producing hydrotreating catalyst
JP2017113715A (en) Hydrogen treatment catalyst and manufacturing method therefor
JP2014173026A (en) Hydrogenation purification method for light gas oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5517541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250