JP6013259B2 - Hydrotreating catalyst support, method for producing the same, hydrotreating catalyst, and method for producing the same - Google Patents
Hydrotreating catalyst support, method for producing the same, hydrotreating catalyst, and method for producing the same Download PDFInfo
- Publication number
- JP6013259B2 JP6013259B2 JP2013077930A JP2013077930A JP6013259B2 JP 6013259 B2 JP6013259 B2 JP 6013259B2 JP 2013077930 A JP2013077930 A JP 2013077930A JP 2013077930 A JP2013077930 A JP 2013077930A JP 6013259 B2 JP6013259 B2 JP 6013259B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- hydrotreating catalyst
- carrier
- range
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 199
- 238000004519 manufacturing process Methods 0.000 title claims description 43
- 239000007864 aqueous solution Substances 0.000 claims description 67
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 54
- 238000002835 absorbance Methods 0.000 claims description 52
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 52
- 239000011148 porous material Substances 0.000 claims description 51
- 239000002184 metal Substances 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 39
- 238000002360 preparation method Methods 0.000 claims description 39
- 239000002002 slurry Substances 0.000 claims description 35
- 230000000737 periodic effect Effects 0.000 claims description 30
- 239000002131 composite material Substances 0.000 claims description 27
- 230000002378 acidificating effect Effects 0.000 claims description 25
- 150000003839 salts Chemical class 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 19
- 239000000243 solution Substances 0.000 claims description 15
- 239000003513 alkali Substances 0.000 claims description 11
- 150000004645 aluminates Chemical class 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims description 11
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 9
- 239000000017 hydrogel Substances 0.000 claims description 9
- 238000000862 absorption spectrum Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000005984 hydrogenation reaction Methods 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 150000007942 carboxylates Chemical class 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 238000010571 fourier transform-infrared absorption spectrum Methods 0.000 claims description 3
- 229910021472 group 8 element Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 68
- 239000000203 mixture Substances 0.000 description 28
- 238000004458 analytical method Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 22
- 230000000694 effects Effects 0.000 description 21
- 238000001179 sorption measurement Methods 0.000 description 18
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 17
- 239000003921 oil Substances 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 238000005259 measurement Methods 0.000 description 13
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 229910010413 TiO 2 Inorganic materials 0.000 description 11
- 238000006477 desulfuration reaction Methods 0.000 description 11
- 230000023556 desulfurization Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 10
- 229910000348 titanium sulfate Inorganic materials 0.000 description 10
- 239000004215 Carbon black (E152) Substances 0.000 description 9
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 9
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 9
- 239000004327 boric acid Substances 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 9
- 150000002430 hydrocarbons Chemical class 0.000 description 9
- 238000004898 kneading Methods 0.000 description 9
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 9
- 230000032683 aging Effects 0.000 description 8
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 8
- 239000011574 phosphorus Substances 0.000 description 8
- 229910001388 sodium aluminate Inorganic materials 0.000 description 8
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 7
- -1 phosphorus compound Chemical class 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 229910052809 inorganic oxide Inorganic materials 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 3
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 3
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000176 sodium gluconate Substances 0.000 description 3
- 229940005574 sodium gluconate Drugs 0.000 description 3
- 235000012207 sodium gluconate Nutrition 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 239000006012 monoammonium phosphate Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical class [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
- B01J27/19—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/036—Precipitation; Co-precipitation to form a gel or a cogel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/26—Aluminium-containing silicates, i.e. silico-aluminates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/08—Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
- C01B35/10—Compounds containing boron and oxygen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/12—Silica and alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/20—Sulfiding
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Silicon Compounds (AREA)
Description
本発明は、水素化処理触媒用担体、その製造方法、水素化処理触媒、およびその製造方法に関する。 The present invention relates to a carrier for a hydrotreating catalyst, a method for producing the same, a hydrotreating catalyst, and a method for producing the same.
従来、炭化水素油の水素化処理触媒として、アルミナ担体に周期表第VIA族および周期表第VIII族から選ばれた活性金属成分を担持した触媒が広く使用されている。また、前記の触媒成分の他に第3成分としてシリカやリン酸化物などを含む水素化処理触媒についても種々提案されている。 Conventionally, as a hydrotreating catalyst for hydrocarbon oil, a catalyst in which an active metal component selected from Group VIA of the periodic table and Group VIII of the periodic table is supported on an alumina carrier has been widely used. In addition to the catalyst components described above, various hydrotreating catalysts containing silica, phosphorus oxide, or the like as a third component have been proposed.
例えば、特許文献1には、炭化水素転化プロセスにおいて使用される触媒として、5〜50質量%のAl2O3、10〜90重量%のSiO2、および5〜40質量%のP2O5を含む燐、珪素、およびアルミニウム酸化物のアモルファス固溶体で構成される触媒複合体が記載されている。また、アルミナ・ヒドロゾル、シリカ・ヒドロゾルおよび燐化合物の混合物を作成し、粒子を作成するためにその混合物をゲル化し、燐、珪素およびアルミニウム酸化物をつくるためにそれらの粒子をか焼するステップで構成される前記触媒複合体の調製方法も開示されており、いずれもゾルの形で混合した後、ゲル化している。 For example, Patent Document 1 discloses that as a catalyst used in the hydrocarbon conversion process, 5 to 50% by mass of Al 2 O 3 , 10 to 90% by weight of SiO 2 , and 5 to 40% by mass of P 2 O 5. A catalyst composite composed of an amorphous solid solution of phosphorus, silicon, and aluminum oxide containing is described. Also, in the steps of making a mixture of alumina hydrosol, silica hydrosol and phosphorus compound, gelling the mixture to make particles, and calcining those particles to make phosphorus, silicon and aluminum oxides. A method for preparing the catalyst composite is also disclosed, both of which are mixed in the form of a sol and then gelled.
また、特許文献2には、第VIII族非貴金属の酸化物2.5〜6質量%、第VIB族金属の酸化物13〜24質量%、シリカ0〜2質量%、およびリン酸化物0〜2質量%を担持した、170〜220m2/gの全表面積、0.6〜0.8cm3/gの全細孔容積、および全細孔容積の約33%未満が直径約100Å未満の一次ミクロポアとして存在し、全細孔容積の少なくとも約41%が直径約100〜200Åの二次ミクロポアとして存在し、全細孔容積の約16〜26%が直径≧200Åのメソポアとして存在するような細孔径分布を有する多孔質アルミナ担体の触媒の存在下に炭化水素原料を供給して水素化処理する方法が記載されている。 Patent Document 2 discloses that Group VIII non-noble metal oxide 2.5 to 6% by mass, Group VIB metal oxide 13 to 24% by mass, silica 0 to 2% by mass, and phosphorus oxide 0 to A total surface area of 170-220 m 2 / g loaded with 2% by weight, a total pore volume of 0.6-0.8 cm 3 / g, and less than about 33% of the total pore volume is less than about 100 mm in diameter primary Present as micropores, such that at least about 41% of the total pore volume exists as secondary micropores with a diameter of about 100-200 mm, and about 16-26% of the total pore volume exists as mesopores with a diameter ≧ 200 mm. A method is described in which a hydrocarbon raw material is supplied in the presence of a catalyst of a porous alumina carrier having a pore size distribution and hydrotreated.
上記した、従来の水素化処理触媒は実装置で工業的に使用する場合、工業触媒としての触媒性状、活性などの点で必ずしも満足のいくものではなく、改善が望まれていた。
そこで、本願出願人は特許文献3において、シリカヒドロゲルが懸濁した、リン酸イオンを含有するアルミニウム塩水溶液と中和剤とをpHが6.5〜8.5になるように混合して水和物を得、該水和物を洗浄した後、成形、乾燥、焼成することによって、有効細孔容積割合が高く、高い比表面積を有し、強度に優れるとともに、脱硫活性および分解活性が向上した触媒が得られることを開示している。
When the above-mentioned conventional hydrotreating catalyst is industrially used in an actual apparatus, it is not always satisfactory in terms of catalyst properties and activity as an industrial catalyst, and improvement has been desired.
Therefore, the applicant of the present application in Patent Document 3 mixed an aqueous solution of an aluminum salt containing phosphate ions, in which silica hydrogel is suspended, and a neutralizing agent so that the pH is 6.5 to 8.5. After obtaining a hydrate and washing the hydrate, it is molded, dried, and calcined to have a high effective pore volume ratio, a high specific surface area, excellent strength, and improved desulfurization activity and decomposition activity. The obtained catalyst is disclosed.
また、本願出願人は特許文献4において、アルミナと、シリカ、チタニア、リン酸化物、ボリア、ジルコニア、セリアおよびマグネシアから選ばれる1種以上の酸化物とからなる複合酸化物担体と、周期表第VIA族金属の硫化物と、周期表第VIII金属の硫化物と炭素質とからなる水素化脱硫触媒を開示している。このとき、グルコン酸ナトリウムを含むアルミン酸ナトリウム水溶液と硫酸アルミニウム水溶液とを混合して熟成し、温水洗浄した後、シリカゾルを添加し、ついで、熟成、混練等してシリカ−アルミナ担体を調製している。この担体を用いると、アンモニア吸着熱の高い酸量の割合が低下し、過分解による液収率の低下、活性の低下が抑制された触媒が得られることを開示している。 Further, the applicant of the present application disclosed in Patent Document 4 a composite oxide support composed of alumina and one or more oxides selected from silica, titania, phosphorous oxide, boria, zirconia, ceria and magnesia, and a periodic table. A hydrodesulfurization catalyst comprising a sulfide of a group VIA metal, a sulfide of a metal of group VIII of the periodic table and a carbonaceous material is disclosed. At this time, a sodium aluminate aqueous solution containing sodium gluconate and an aluminum sulfate aqueous solution are mixed and ripened, washed with warm water, added with silica sol, then ripened, kneaded, etc. to prepare a silica-alumina carrier. Yes. It is disclosed that when this carrier is used, a ratio of a high acid amount of ammonia adsorption heat is decreased, and a catalyst in which a decrease in liquid yield and a decrease in activity due to excessive decomposition are suppressed can be obtained.
また、特許文献5には、シリカ−チタニア−アルミナ担体に周期表第VIA族および周期表第VIII族から選ばれる少なくとも1種の金属を担持した水素化脱硫触媒において、アナターゼ型およびルチル型チタニアのピーク面積をγ−アルミナのピーク面積の1/4以下とすることによってチタニア量を増やしても有効な細孔容積が減少しない高性能な触媒が開示されている。 Further, Patent Document 5 discloses a hydrodesulfurization catalyst in which at least one metal selected from Group VIA and Group VIII of the periodic table is supported on a silica-titania-alumina carrier, and anatase type and rutile type titania. A high-performance catalyst is disclosed in which the effective pore volume does not decrease even when the amount of titania is increased by setting the peak area to ¼ or less of the peak area of γ-alumina.
特許文献6には、リン酸化物を含む無機酸化物担体上に、周期表第8族金属から選ばれる少なくとも1種を含む化合物、モリブデン化合物、リン化合物および有機酸を含有する溶液を用い、モリブデン、第8族金属、リン酸化物を酸化物換算で所定量含み、有機酸由来の炭素を所定量含有する水素化処理触媒の製造方法が開示されている。また、このとき、リン酸化物を含む無機酸化物担体を、無機酸化物の原料とリン酸化物の原料とを混練法により調製することが開示されている。このとき、得られる触媒は炭化水素油中の硫黄化合物および窒素化合物を従来の触媒より低減できることも開示されている。また、このとき、無機酸化物はアルミナを主成分とし、これにゼオライト、ボリア、シリカおよびジルコニアから選ばれる少なくとも1種を含むことが推奨されている。 Patent Document 6 uses a solution containing a compound containing at least one selected from Group 8 metals of a periodic table, a molybdenum compound, a phosphorus compound, and an organic acid on an inorganic oxide support containing a phosphorus oxide. In addition, a method for producing a hydrotreating catalyst containing a predetermined amount of Group 8 metal and phosphorus oxide in terms of oxide and containing a predetermined amount of carbon derived from an organic acid is disclosed. At this time, it is disclosed that an inorganic oxide carrier containing a phosphorus oxide is prepared by kneading an inorganic oxide raw material and a phosphorus oxide raw material. At this time, it is also disclosed that the resulting catalyst can reduce sulfur compounds and nitrogen compounds in hydrocarbon oils as compared to conventional catalysts. At this time, it is recommended that the inorganic oxide contains alumina as a main component and contains at least one selected from zeolite, boria, silica and zirconia.
特許文献7には、担体基準でチタン原子を酸化物換算で0.1〜10質量%、リン酸化物を10質量%以下含む担体上に、周期表第VIA族から選ばれる少なくとも1種、周期表第VIII族金属から選ばれる少なくとも1種、有機酸由来の炭素およびリン酸化物を所定量担持した触媒が開示されている。このとき、触媒は炭化水素油中の硫黄化合物および窒素化合物の低減効果に優れていることが報告されている。
このとき、無機酸化物担体の製造方法としては、アルミナ原量には、各種アルミナゲルを用いることができ、他の酸化物成分としては各種酸化物成分の粉末を用いることが記載されている。具体的には、アルミナゲル、チタン酸化物またはチタン化合物の溶液、リン酸化物の原料を混練することが記載されている。
Patent Document 7 discloses that on a support containing 0.1 to 10% by mass of titanium atom in terms of oxide and 10% by mass or less of phosphorus oxide based on the carrier, at least one selected from Group VIA of the periodic table, the period A catalyst is disclosed in which a predetermined amount of at least one selected from Group VIII metals, carbons derived from organic acids, and phosphorus oxides are supported. At this time, it is reported that the catalyst is excellent in the effect of reducing sulfur compounds and nitrogen compounds in hydrocarbon oil.
At this time, as a method for producing an inorganic oxide carrier, it is described that various alumina gels can be used as the raw alumina amount, and powders of various oxide components can be used as the other oxide components. Specifically, it is described that an alumina gel, a solution of titanium oxide or a titanium compound, and a raw material of phosphorus oxide are kneaded.
一方、環境問題等から水素化処理生成油中の硫黄濃度をできるだけ下げることが求められている。これに対して、上記した各種の水素化処理触媒においても脱硫活性(水素化活性)は未だ十分ではない。 On the other hand, it is required to reduce the sulfur concentration in the hydrotreated product oil as much as possible due to environmental problems. On the other hand, desulfurization activity (hydrogenation activity) is still not sufficient in the various hydrotreatment catalysts described above.
本発明は、脱硫活性(水素化活性)に優れる水素化処理触媒が得られる水素化処理触媒用担体、その製造方法、水素化処理触媒、およびその製造方法を提供することを目的とする。 An object of this invention is to provide the support | carrier for hydroprocessing catalysts from which the hydroprocessing catalyst excellent in desulfurization activity (hydrogenation activity) is obtained, its manufacturing method, a hydroprocessing catalyst, and its manufacturing method.
上記課題に鑑み、鋭意検討した結果、アルミナを主成分とし、これに少なくともアルミナ以外の第1の酸化物成分、第2の酸化物成分とを含む担体の調製において、アルミナと第1の酸化物成分を含む複合酸化物ゲルを調製し、その後、第2の酸化物成分を添加して調製した担体は、担持した活性金属成分が微粒子状で高分散した触媒となり、反応前に予備硫化した際の硫化度が向上し、脱硫活性に優れた触媒が得られることを見出して本発明を完成するに至った。すなわち、本発明は、以下に示すような水素化処理触媒用担体、その製造方法、水素化処理触媒、およびその製造方法を提供するものである。
(1)アルミナ系複合酸化物からなる水素化処理触媒用担体であって、透過型フーリエ変換赤外吸収スペクトル測定装置(FT−IR)により測定した酸性OH基に起因する当該担体単位表面積当たりの吸光度(OHAS)が0.04〜0.1m−2の範囲にあり、前記FT−IRにより測定した塩基性OH基に起因する当該担体単位表面積当たりの吸光度(OHBS)が0.01〜0.02m−2の範囲にあることを特徴とする水素化処理触媒用担体。
(但し、前記酸性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3670〜3695cm−1の範囲にあり、前記塩基性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3760〜3780cm−1の範囲にある。)
As a result of intensive investigations in view of the above problems, in the preparation of a carrier containing alumina as a main component and containing at least a first oxide component and a second oxide component other than alumina, alumina and the first oxide are prepared. The composite oxide gel containing the component is prepared, and then the carrier prepared by adding the second oxide component becomes a catalyst in which the supported active metal component is in the form of fine particles and is highly dispersed. As a result, it was found that a catalyst having an improved desulfurization degree and an excellent desulfurization activity was obtained, and the present invention was completed. That is, the present invention provides a support for a hydrotreating catalyst as shown below, a method for producing the same, a hydrotreating catalyst, and a method for producing the same.
(1) A carrier for a hydrotreating catalyst comprising an alumina-based composite oxide, which is per unit surface area of the carrier due to acidic OH groups measured by a transmission type Fourier transform infrared absorption spectrum measuring device (FT-IR). The absorbance (OH AS ) is in the range of 0.04 to 0.1 m −2 , and the absorbance (OH BS ) per unit surface area of the carrier due to the basic OH group measured by the FT-IR is 0.01 to A carrier for hydrotreating catalyst, which is in the range of 0.02 m -2 .
(However, the wave number of the maximum peak position of the absorption spectrum due to the acidic OH group is in the range of 3670 to 3695 cm −1 , and the wave number of the maximum peak position of the absorption spectrum due to the basic OH group is 3760 to 3780 cm − In the range of 1 .
(2)前記塩基性OH基の吸光度(OHBS)と前記酸性OH基の前記吸光度(OHAS)との比(OHBS)/(OHAS)が0.2〜0.5の範囲にあり、当該担体の比表面積が250〜500m2/gの範囲にあることを特徴とする上述の(1)に記載の水素化処理触媒用担体。
(3)前記酸性OH基の当該担体単位質量当たりの吸光度(OHAW)が10〜30g−1の範囲にあり、前記塩基性OH基の当該担体単位質量当たりの吸光度(OHBW)が4〜6.5g−1の範囲にあり、前記塩基性OH基の前記吸光度(OHBW)と前記酸性OH基の前記吸光度(OHAW)との比(OHBW)/(OHAW)が0.2〜0.5の範囲にあることを特徴とする上述の(1)または(2)に記載の水素化処理触媒用担体。
(4)前記アルミナ系複合酸化物が、アルミナとアルミナ以外の第1酸化物とアルミナ以外の第2酸化物とからなり、前記第1酸化物がSi、Ti、およびZrから選ばれる少なくとも1種の元素の酸化物であり、前記第2酸化物がBおよびPから選ばれる少なくとも1種の元素の酸化物であることを特徴とする請求項1〜請求項3のいずれかに記載の水素化処理触媒用担体。
(5)前記第1酸化物の含有量が前記アルミナ系複合酸化物基準で1〜10質量%の範囲にあり、前記第2酸化物の含有量が前記アルミナ系複合酸化物基準で1〜5質量%の範囲にあり、前記アルミナの含有量が前記アルミナ系複合酸化物基準で85〜98質量%の範囲にあることを特徴とする請求項4に記載の水素化処理触媒用担体。
(6)当該担体の細孔容積(PV)が0.5〜1.5mL/gの範囲にあり、当該担体の平均細孔径(DP)が60〜150Åの範囲にあることを特徴とする請求項1〜請求項5のいずれかに記載の水素化処理触媒用担体。
(2) The ratio (OH BS ) / (OH AS ) of the absorbance (OH BS ) of the basic OH group and the absorbance (OH AS ) of the acidic OH group is in the range of 0.2 to 0.5. The support for a hydrotreating catalyst according to (1) above, wherein the specific surface area of the support is in the range of 250 to 500 m 2 / g.
(3) The absorbance (OH AW ) of the acidic OH group per unit mass of the carrier is in the range of 10 to 30 g −1 , and the absorbance (OH BW ) of the basic OH group per unit mass of the carrier is 4 to 4 The ratio (OH BW ) / (OH AW ) of the absorbance (OH BW ) of the basic OH group and the absorbance (OH AW ) of the acidic OH group is in the range of 6.5 g −1. The carrier for a hydrotreating catalyst according to the above (1) or (2), which is in the range of -0.5.
(4) The alumina-based composite oxide includes alumina, a first oxide other than alumina, and a second oxide other than alumina, and the first oxide is at least one selected from Si, Ti, and Zr. The hydrogenation according to any one of claims 1 to 3, wherein the second oxide is an oxide of at least one element selected from B and P. Treatment catalyst carrier.
(5) The content of the first oxide is in the range of 1 to 10% by mass on the basis of the alumina composite oxide, and the content of the second oxide is 1 to 5 on the basis of the alumina composite oxide. The support for a hydrotreating catalyst according to claim 4, wherein the content of alumina is in the range of 85% by mass to 98% by mass based on the alumina-based composite oxide.
(6) The pore volume (PV) of the carrier is in the range of 0.5 to 1.5 mL / g, and the average pore diameter (D P ) of the carrier is in the range of 60 to 150 mm. The carrier for a hydrotreating catalyst according to any one of claims 1 to 5.
(7)上述の(1)〜(6)のいずれかに記載の水素化処理触媒用担体に、周期表第VIA族から選ばれる少なくとも1種の元素と、周期表第VIII族から選ばれる少なくとも1種の元素とを担持したことを特徴とする水素化処理触媒。
(8)前記周期表第VIA族から選ばれる元素がCr、Mo、およびWのいずれかであり、前記周期表第VIII族から選ばれる元素がCoまたはNiのいずれかであることを特徴とする請求項7に記載の水素化処理触媒。
(9)前記周期表第VIA族元素の担持量(酸化物換算)が、前記担体(酸化物換算)100質量部に対して10〜60質量部の範囲にあり、前記周期表第VIII族元素の担持量(酸化物換算)が、前記担体(酸化物換算)100質量部に対して1〜20質量部の範囲にあることを特徴とする請求項6〜請求項8のいずれかに記載の水素化処理触媒。
(10)上述の(4)または(5)に記載の水素化処理触媒用担体の製造方法であって、アルミン酸アルカリ水溶液(A液)と、アルミニウム塩水溶液と前記第1酸化物用金属塩水溶液との混合水溶液(B液)とを混合して複合酸化物ヒドロゲル(水和物)スラリーを調製するスラリー調製工程Aと、前記工程において、あるいは前記工程後に前記第2酸化物用金属塩を添加する第2酸化物用金属塩添加工程とを実施することを特徴とする水素化処理触媒用担体の製造方法。
(11)上述の(4)または(5)に記載の水素化処理触媒用担体の製造方法であって、アルミン酸アルカリ水溶液(A液)と、アルミニウム塩水溶液と前記第2酸化物用金属塩水溶液との混合水溶液(C液)とを混合して複合酸化物ヒドロゲル(水和物)スラリーを調製するスラリー調製工程Bと、前記工程において、あるいは前記工程後に前記第1酸化物用金属塩を添加する第1酸化物用金属塩添加工程とを実施することを特徴とする水素化処理触媒用担体の製造方法。
(12)前記スラリー調製工程Aまたは前記スラリー調製工程Bにおけるアルミン酸アルカリ水溶液(A液)がカルボン酸塩を含むことを特徴とする上述の(10)または(11)に記載の水素化処理触媒用担体の製造方法。
(13)上述の(1)〜(6)のいずれかに記載の水素化処理触媒用担体を、周期表第VIA族から選ばれる少なくとも1種の元素を含んだ水溶液と、周期表第VIII族から選ばれる少なくとも1種の元素を含んだ水溶液に含浸し、次いで乾燥することを特徴とする水素化処理触媒の製造方法。
(14)前記乾燥する際の温度が105〜300℃の範囲にあることを特徴とする上述の(13)に記載の水素化処理触媒の製造方法。
(15)前記乾燥に次いで、当該触媒をさらに硫化することを特徴とする上述の(13)または(14)に記載の水素化処理触媒の製造方法。
(7) The hydrotreating catalyst support according to any one of (1) to (6) above, at least one element selected from Group VIA of the periodic table and at least selected from Group VIII of the periodic table A hydrotreating catalyst characterized by supporting one kind of element.
(8) The element selected from Group VIA of the periodic table is any of Cr, Mo, and W, and the element selected from Group VIII of the periodic table is any of Co or Ni The hydrotreating catalyst according to claim 7.
(9) The supported amount (oxide equivalent) of the Group VIA element of the periodic table is in the range of 10 to 60 parts by mass with respect to 100 parts by mass of the carrier (oxide equivalent), and the Group VIII element of the periodic table The amount of supported (in oxide equivalent) is in the range of 1 to 20 parts by mass with respect to 100 parts by mass of the carrier (in oxide equivalent). 9. Hydroprocessing catalyst.
(10) A method for producing a hydrotreating catalyst support as described in (4) or (5) above, comprising an alkali aluminate aqueous solution (A solution), an aluminum salt aqueous solution, and the first oxide metal salt A slurry preparation step A in which a mixed oxide hydrogel (hydrate) slurry is prepared by mixing a mixed aqueous solution (solution B) with an aqueous solution, and the metal salt for the second oxide in the step or after the step. A method for producing a carrier for a hydrotreating catalyst, comprising performing a step of adding a metal salt for a second oxide to be added.
(11) A method for producing a hydrotreating catalyst support according to (4) or (5) above, comprising an alkali aluminate aqueous solution (A solution), an aluminum salt aqueous solution, and the metal salt for the second oxide. A slurry preparation step B in which a mixed oxide hydrogel (hydrate) slurry is prepared by mixing a mixed aqueous solution (solution C) with an aqueous solution, and the metal salt for the first oxide in the step or after the step. The manufacturing method of the support | carrier for hydroprocessing catalysts characterized by performing the metal salt addition process for the 1st oxide to add.
(12) The hydrotreating catalyst according to (10) or (11) above, wherein the alkali aluminate aqueous solution (solution A) in the slurry preparation step A or the slurry preparation step B contains a carboxylate. A method for producing a carrier.
(13) The hydrotreating catalyst support according to any one of (1) to (6) above, an aqueous solution containing at least one element selected from Group VIA of the periodic table, and Group VIII of the periodic table A method for producing a hydrotreating catalyst comprising impregnating an aqueous solution containing at least one element selected from the following, followed by drying.
(14) The method for producing a hydroprocessing catalyst as described in (13) above, wherein the drying temperature is in the range of 105 to 300 ° C.
(15) The method for producing a hydrotreating catalyst according to the above (13) or (14), wherein the catalyst is further sulfided after the drying.
本発明の水素化処理触媒用担体によれば、担持した活性金属成分が微粒子状で高分散した触媒となるので、反応前に予備硫化した際の硫化度が向上し、脱硫活性に優れた水素化処理触媒を提供できる。また、本発明の水素化処理触媒用担体の製造方法によれば、上述した当該担体を簡便に製造できる。さらに、本発明の水素化処理触媒の製造方法によれば、当該触媒を簡便に製造できる。 According to the carrier for hydrotreating catalyst of the present invention, the supported active metal component becomes a finely dispersed catalyst in the form of fine particles, so that the degree of sulfidation when pre-sulfurized before the reaction is improved and hydrogen having excellent desulfurization activity is obtained. A chemical treatment catalyst can be provided. Moreover, according to the method for producing a hydrotreating catalyst support of the present invention, the above-described support can be easily produced. Furthermore, according to the method for producing a hydrotreating catalyst of the present invention, the catalyst can be easily produced.
以下、本発明の好適な実施形態について詳細に説明する。まず、本発明に係る水素化処理触媒用担体について説明する。
[水素化処理触媒用担体]
本発明に係る水素化処理触媒用担体(以下、単に「本担体」ともいう。)は、アルミナ系複合酸化物からなり、透過型フーリエ変換赤外吸収スペクトル測定装置(FT−IR)により測定した酸性OH基に起因する本担体単位表面積当たりの吸光度(OHAS)と、前記FT−IRにより測定した塩基性OH基に起因する本担体単位表面積当たりの吸光度(OHBS)が所定の範囲にあることが必要である。
具体的には、OHASが0.04〜0.1m−2の範囲にあり、OHBSが0.01〜0.02m−2の範囲にあることが必要であり、OHASとOHBSがこの範囲にあることで、触媒担体表面における活性金属の分散性が向上し、脱硫性能が大幅に向上する。
ここで、前記酸性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3670〜3695cm−1の範囲にあり、前記塩基性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3760〜3780cm−1の範囲にある。なお、上記したFT−IRによる測定法に関しては後述する。
Hereinafter, preferred embodiments of the present invention will be described in detail. First, the hydrotreating catalyst support according to the present invention will be described.
[Support for hydrotreating catalyst]
The support for hydrotreating catalyst according to the present invention (hereinafter also simply referred to as “the present support”) is made of an alumina-based composite oxide, and measured with a transmission type Fourier transform infrared absorption spectrum measuring apparatus (FT-IR). The absorbance per unit surface area of the carrier due to the acidic OH group (OH AS ) and the absorbance per unit surface area of the carrier due to the basic OH group measured by FT-IR (OH BS ) are within a predetermined range. It is necessary.
Specifically, there OH AS within a range of 0.04~0.1m -2, OH BS is required to be in the range of 0.01~0.02m -2, OH AS and OH BS is By being in this range, the dispersibility of the active metal on the surface of the catalyst carrier is improved, and the desulfurization performance is greatly improved.
Here, the wave number of the maximum peak position of the absorption spectrum due to the acidic OH group is in the range of 3670 to 3695 cm −1 , and the wave number of the maximum peak position of the absorption spectrum due to the basic OH group is 3760 to 3780 cm −. It is in the range of 1 . The above-described measurement method using FT-IR will be described later.
また、OHBSとOHASとの比(OHBS)/(OHAS)が0.2〜0.5の範囲にあり、本担体の比表面積が250〜500m2/gの範囲にあると、本担体表面における活性金属の分散性がより向上するので好ましい。
さらに、前記酸性OH基の本担体単位質量当たりの吸光度(OHAW)が10〜30g−1の範囲にあり、前記塩基性OH基の本担体単位質量当たりの吸光度(OHBW)が4〜6.5g−1の範囲にあり、OHBWとOHAWとの比(OHBW)/(OHAW)が0.2〜0.5の範囲にあると、本担体表面における活性金属の分散性がさらに向上するので好ましい。
When the ratio of OH BS to OH AS (OH BS ) / (OH AS ) is in the range of 0.2 to 0.5, and the specific surface area of the support is in the range of 250 to 500 m 2 / g, This is preferable because the dispersibility of the active metal on the surface of the carrier is further improved.
Further, the absorbance (OH AW ) of the acidic OH group per unit mass of the carrier is in the range of 10 to 30 g −1 , and the absorbance (OH BW ) of the basic OH group per unit mass of the carrier is 4 to 6 in the range of .5G -1, the ratio of the OH BW and OH AW (OH BW) / ( OH AW) is in the range of 0.2 to 0.5, the dispersibility of the active metal in the support surface Since it improves further, it is preferable.
前記したアルミナ系複合酸化物は、アルミナとアルミナ以外の第1酸化物とアルミナ以外の第2酸化物とからなることが好ましい。具体的には、前記第1酸化物がSi、Ti、およびZrから選ばれる少なくとも1種の元素の酸化物であり、前記第2酸化物がBおよびPから選ばれる少なくとも1種の元素の酸化物であることが、後に担持する金属成分を高分散状態で担持することができ、活性が高く、長寿命の触媒が得られるので好ましい。
さらに、この第1酸化物の含有量が、前記したアルミナ系複合酸化物基準で1〜10質量%の範囲にあると、後に担持する金属成分をより高分散状態で担持でき、より活性が高く、長寿命の触媒が得られるので好ましく、同様に前記第2酸化物の含有量も、前記アルミナ系複合酸化物基準で1〜10質量%の範囲にあると、後に担持する金属成分を高分散状態で担持することができ、より活性が高く、長寿命の触媒が得られるので好ましい。また、前記アルミナの含有量は、前記アルミナ系複合酸化物基準で80〜98質量%の範囲にあることが好ましい。
The above-mentioned alumina-based composite oxide is preferably composed of alumina, a first oxide other than alumina, and a second oxide other than alumina. Specifically, the first oxide is an oxide of at least one element selected from Si, Ti, and Zr, and the second oxide is an oxidation of at least one element selected from B and P It is preferable that the metal component to be supported later can be supported in a highly dispersed state, and a catalyst having a high activity and a long life can be obtained.
Furthermore, when the content of the first oxide is in the range of 1 to 10% by mass based on the above-mentioned alumina-based composite oxide, the metal component to be supported later can be supported in a highly dispersed state, and the activity is higher. It is preferable because a long-life catalyst is obtained. Similarly, when the content of the second oxide is in the range of 1 to 10% by mass based on the alumina-based composite oxide, the metal component to be supported later is highly dispersed. This is preferable because it can be supported in a state and a catalyst having higher activity and a longer life can be obtained. Moreover, it is preferable that content of the said alumina exists in the range of 80-98 mass% on the basis of the said alumina type complex oxide.
本担体の細孔容積(PV)は、0.5〜1.5mL/gの範囲にあることが好ましい。細孔容積が0.5mL/g以上であると、金属成分をより高分散状態で担持でき、さらに水素化触媒として用いたときに炭化水素油がより拡散しやすくなる。また、細孔容積が1.5mL/g以下であると、担体および触媒(成型体)の強度もより優れたものになる。
本担体の平均細孔径(DP)は、触媒の比表面積および炭化水素油の拡散の観点より、60〜150Åの範囲にあることが好ましい。平均細孔径が60Å以上であると、水素化触媒としたときに炭化水素油がより拡散しやすくなる。また、平均細孔径が150Å以下であると、担体および触媒(成型体)の強度もより優れたものになる。
細孔容積と平均細孔径の測定法は後述する。
The pore volume (PV) of the carrier is preferably in the range of 0.5 to 1.5 mL / g. When the pore volume is 0.5 mL / g or more, the metal component can be supported in a highly dispersed state, and the hydrocarbon oil is more easily diffused when used as a hydrogenation catalyst. Further, when the pore volume is 1.5 mL / g or less, the strength of the carrier and the catalyst (molded body) is further improved.
The average pore diameter (D P ) of the support is preferably in the range of 60 to 150 mm from the viewpoint of the specific surface area of the catalyst and the diffusion of the hydrocarbon oil. When the average pore diameter is 60 mm or more, the hydrocarbon oil is more easily diffused when the hydrogenation catalyst is used. Further, when the average pore diameter is 150 mm or less, the strength of the carrier and the catalyst (molded product) is further improved.
The method for measuring the pore volume and the average pore diameter will be described later.
〔水素化処理触媒用担体の製造方法〕
本担体の第1の製造方法では、アルミン酸アルカリ水溶液(A液)と、アルミニウム塩水溶液と上述の第1酸化物用金属塩水溶液との混合水溶液(B液)とを混合して複合酸化物ヒドロゲル(水和物)スラリーを調製するスラリー調製工程Aと、前記工程において、あるいは前記工程後に上述の第2酸化物用金属塩を添加する第2酸化物用金属塩添加工程とを実施する。例えば、以下のような各工程を実施することにより本担体を簡便に製造することができる。第1の製造方法の詳細は後述の実施例にて説明する。
[Method for producing carrier for hydrotreating catalyst]
In the first production method of the carrier, a mixed oxide is prepared by mixing an alkali aluminate aqueous solution (liquid A), a mixed aqueous solution (liquid B) of an aluminum salt aqueous solution and the above-described metal salt aqueous solution for the first oxide. A slurry preparation step A for preparing a hydrogel (hydrate) slurry, and a second oxide metal salt addition step in which the above-described second oxide metal salt is added in the step or after the step are performed. For example, the carrier can be easily produced by carrying out the following steps. Details of the first manufacturing method will be described in the examples described later.
(a)アルミン酸アルカリ水溶液(A液)と、アルミニウム塩水溶液と第1酸化物用金属塩水溶液との混合水溶液(B液)とを混合して複合酸化物ヒドロゲル(水和物)スラリーを調製する工程(スラリー調製工程A)
(b)熟成する工程(第1熟成工程)
(c)洗浄する工程
(d)熟成する工程(第2熟成工程)
(e)混練・濃縮する工程(第1混練工程)
(f)混練する工程(第2混練工程)
(g)成型する工程
(h)加熱処理(乾燥および焼成)する工程
(i)第2酸化物用金属塩(例えばオキソ酸塩)水溶液を添加する工程
(A) A mixed oxide hydrogel (hydrate) slurry is prepared by mixing an alkali aluminate aqueous solution (liquid A) and a mixed aqueous solution (liquid B) of an aluminum salt aqueous solution and a metal salt aqueous solution for the first oxide. Step (Slurry Preparation Step A)
(B) Aging step (first aging step)
(C) Cleaning step (d) Aging step (second aging step)
(E) Step of kneading and concentrating (first kneading step)
(F) Kneading step (second kneading step)
(G) Step of molding (h) Step of heat treatment (drying and firing) (i) Step of adding an aqueous metal salt (for example, oxoacid salt) solution for the second oxide
上述の各工程のうち、工程(a)と工程(i)以外は必ずしも全てが必要ではない。目的に応じて適宜選択すればよい。また、上記工程(i)は、工程(a)〜(e)の少なくともいずれかの工程において実施してもよいし、あるいは工程(a)〜(e)の少なくともいずれかの工程の後に実施してもよい。 Of the above-mentioned steps, not all steps (a) and (i) are necessarily required. What is necessary is just to select suitably according to the objective. The step (i) may be performed in at least one of the steps (a) to (e) or after at least one of the steps (a) to (e). May be.
本担体の第2の製造方法では、アルミン酸アルカリ水溶液(A液)と、アルミニウム塩水溶液と第2酸化物用金属塩水溶液との混合水溶液(C液)とを混合して複合酸化物ヒドロゲル(水和物)スラリーを調製するスラリー調製工程Bと、前記工程において、あるいは前記工程後に前記第1酸化物用金属塩を添加する第1酸化物用金属塩添加工程とを実施する。例えば、以下のような各工程を実施することにより本担体を簡便に製造することができる。第2の製造方法の詳細は後述の実施例にて説明する。 In the second production method of the carrier, an alkali aluminate aqueous solution (liquid A) and a mixed aqueous solution (liquid C) of an aluminum salt aqueous solution and a metal salt aqueous solution for the second oxide are mixed to form a composite oxide hydrogel ( Hydrate) A slurry preparation step B for preparing a slurry and a metal salt addition step for the first oxide in which the metal salt for the first oxide is added in the step or after the step are performed. For example, the carrier can be easily produced by carrying out the following steps. Details of the second manufacturing method will be described in the following examples.
(j)アルミン酸アルカリ水溶液(A液)と、アルミニウム塩水溶液と第2酸化物用金属塩(オキソ酸塩)水溶液との混合水溶液(C液)とを混合して複合酸化物ヒドロゲル(水和物)スラリーを調製する工程(スラリー調製工程B)。
(k)熟成する工程(第1熟成工程)
(l)洗浄する工程
(m)熟成する工程(第2熟成工程)
(n)混練・濃縮する工程(第1混練工程)
(o)混練する工程(第2混練工程)
(p)成型する工程
(q)加熱処理(乾燥および焼成)する工程
(r)第1酸化物用金属塩水溶液を添加する工程
(J) A mixed oxide hydrogel (hydration) by mixing an alkali aluminate aqueous solution (liquid A) and a mixed aqueous solution (liquid C) of an aluminum salt aqueous solution and a metal salt solution for second oxide (oxo acid salt). Product) A step of preparing a slurry (slurry preparation step B).
(K) Aging step (first aging step)
(L) Cleaning step (m) Aging step (second aging step)
(N) Kneading / concentrating step (first kneading step)
(O) Kneading step (second kneading step)
(P) Step of molding (q) Step of heat treatment (drying and firing) (r) Step of adding a metal salt aqueous solution for the first oxide
上述の各工程のうち、工程(j)と工程(r)以外は必ずしも全てが必要ではない。目的に応じて適宜選択すればよい。また、上記工程(r)は、工程(j)〜(n)の少なくともいずれかの工程において実施してもよいし、あるいは工程(j)〜(n)の少なくともいずれかの工程の後に実施してもよい。
ここで、上記した第1の製造方法においても第2の製造方法においても、スラリー調製工程Aやスラリー調製工程Bにおけるアルミン酸アルカリ水溶液(A液)がカルボン酸塩を含むと、アルミナゲルの粒子成長を制御でき、比表面積の大きな担体(触媒)を調製できる点で好ましい。
Of the steps described above, not all of the steps except step (j) and step (r) are necessarily required. What is necessary is just to select suitably according to the objective. The step (r) may be performed in at least one of the steps (j) to (n) or after at least one of the steps (j) to (n). May be.
Here, in both the first manufacturing method and the second manufacturing method described above, when the alkali aluminate aqueous solution (liquid A) in the slurry preparation step A or the slurry preparation step B contains a carboxylate, the particles of alumina gel This is preferable because growth can be controlled and a carrier (catalyst) having a large specific surface area can be prepared.
〔水素化処理触媒およびその製造方法〕
上述した水素化処理触媒用担体に、周期表第VIA族から選ばれる少なくとも1種の元素と、周期表第VIII族から選ばれる少なくとも1種の元素とを担持することで本発明の水素化処理触媒(以下、「本触媒」ともいう。)を得ることができる。
また、前記した周期表第VIA族から選ばれる元素としては、Cr、Mo、およびWのいずれかであることが水素化脱硫活性の観点より好ましく、前記周期表第VIII族から選ばれる元素はCoまたはNiのいずれかであることが水素化脱硫活性の観点より好ましい。
本触媒では、周期表第VIA族元素の担持量(酸化物換算)が、本担体(酸化物換算)100質量部に対して10〜60質量部の範囲にあることが脱硫活性および触媒寿命の観点より好ましく、周期表第VIII族元素の担持量(酸化物換算)が、本担体(酸化物換算)100質量部に対して1〜20質量部の範囲にあることが脱硫活性および触媒寿命の観点より好ましい。
[Hydroprocessing catalyst and method for producing the same]
The above-described hydrotreating catalyst support supports at least one element selected from Group VIA of the periodic table and at least one element selected from Group VIII of the periodic table to thereby carry out the hydroprocessing of the present invention. A catalyst (hereinafter also referred to as “the present catalyst”) can be obtained.
The element selected from Group VIA of the periodic table is preferably Cr, Mo, or W from the viewpoint of hydrodesulfurization activity, and the element selected from Group VIII of the periodic table is Co. Or Ni is preferred from the viewpoint of hydrodesulfurization activity.
In the present catalyst, the amount of the VIA group element supported (in oxide equivalent) is in the range of 10 to 60 parts by mass with respect to 100 parts by mass of the present support (in oxide equivalent). From the viewpoint, it is preferable that the supported amount (in oxide equivalent) of the Group VIII element of the periodic table is in the range of 1 to 20 parts by mass with respect to 100 parts by mass of the present support (in oxide equivalent). More preferable from the viewpoint.
本触媒は、本担体を、周期表第VIA族から選ばれる少なくとも1種の元素を含んだ水溶液と、周期表第VIII族から選ばれる少なくとも1種の元素を含んだ水溶液に含浸し、次いで乾燥することで簡便に得られる。また、乾燥する際の温度が105〜300℃の範囲であることが好ましい。この乾燥に次いで、本触媒をさらに硫黄含有ガス等により硫化処理することが脱硫効果向上の観点より好ましい。 The catalyst impregnates the support with an aqueous solution containing at least one element selected from Group VIA of the periodic table and an aqueous solution containing at least one element selected from Group VIII of the periodic table, and then dried. It is easily obtained by doing. Moreover, it is preferable that the temperature at the time of drying is the range of 105-300 degreeC. Subsequent to this drying, it is preferable from the viewpoint of improving the desulfurization effect that the present catalyst is further subjected to sulfiding treatment with a sulfur-containing gas or the like.
以下に実施例および比較例を示し、本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、触媒担体における酸性OH基の吸光度、塩基性OH基の吸光度、細孔容積および平均細孔径については、以下のようにして測定した。 EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited thereby. The absorbance of the acidic OH group, the absorbance of the basic OH group, the pore volume and the average pore diameter in the catalyst support were measured as follows.
[細孔容積および平均細孔径]
水銀圧入法(水銀の接触角:150度、表面張力:480dyn/cm)によって測定した。細孔容積は細孔直径40Å以上の細孔の容積とし、平均細孔径は細孔容積の50%に相当する細孔直径とした。
[Pore volume and average pore diameter]
It was measured by a mercury intrusion method (mercury contact angle: 150 degrees, surface tension: 480 dyn / cm). The pore volume was a pore volume having a pore diameter of 40 mm or more, and the average pore diameter was a pore diameter corresponding to 50% of the pore volume.
[酸性OH基の吸光度、塩基性OH基の吸光度]
透過型フーリエ変換赤外分光計(日本分光(株)製:FT-IR/6100)にて、以下のようにして酸性OH基の極大ピーク波数、その波数における吸光度、塩基性OH基の極大ピーク波数、その波数における吸光度を測定した。
(測定法)
試料20mgを成型容器(内径20mmφ)に充填して4ton/cm2(39227N/cm2)で加圧圧縮し、薄い円盤状に成型した。この成型体を、真空度が1.0×10−3Pa以下の条件下、500℃で2時間保持した後、室温に冷却して吸光度を測定した。
具体的には、TGS検出器にて、分解能4cm―1、積算回数を200回とし、波数範囲3000〜4000cm―1でベースライン補正し、その後、比表面積で補正した。吸光度は、単位表面積当りおよび単位質量当りに換算した。
単位表面積当たりの吸光度(m―2)=吸光度/成型体質量/比表面積
単位質量当たりの吸光度(g−1)=吸光度/成型体質量
なお、以下の実施例・比較例いずれにおいても酸性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3670〜3695cm−1の範囲にあり、塩基性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3760〜3780cm−1の範囲にあった。
[Absorbance of acidic OH group, Absorbance of basic OH group]
Using a transmission type Fourier transform infrared spectrometer (manufactured by JASCO Corporation: FT-IR / 6100), the maximum peak wave number of the acidic OH group, the absorbance at that wave number, the maximum peak of the basic OH group Wave number and absorbance at the wave number were measured.
(Measurement method)
20 mg of a sample was filled in a molding container (inner diameter 20 mmφ) and compressed with 4 ton / cm 2 (39227 N / cm 2 ), and molded into a thin disk shape. This molded body was held at 500 ° C. for 2 hours under a condition where the degree of vacuum was 1.0 × 10 −3 Pa or less, and then cooled to room temperature, and the absorbance was measured.
Specifically, in TGS detector, resolution 4 cm -1, the number of integrations is 200 times baseline corrected wavenumber range 3000~4000Cm -1, then corrected with a specific surface area. Absorbance was converted per unit surface area and per unit mass.
Absorbance per unit surface area (m −2 ) = Absorbance / Molded body mass / Specific surface area Absorbance per unit mass (g −1 ) = Absorbance / Molded body mass Acidic OH groups in the following examples and comparative examples wave number of maximum peak position of the absorption spectrum due to is in the range of 3670~3695cm -1, wave number of the maximum peak position of the absorption spectrum due to the basic OH groups was in the range of 3760~3780cm -1.
[実施例1]
〔水素化処理触媒用担体(1)の調製〕(第1の製造方法)
(工程(a))
100Lスチームジャケット付きタンクに、濃度がAl2O3換算で22質量%のアルミン酸ナトリウム水溶液8.78kgを入れ、イオン交換水で希釈して29.83kgとした。次に、この溶液に濃度26質量%のグルコン酸ナトリウム水溶液109.6gを加え、撹拌しながら60℃に加温して濃度がAl2O3換算で5質量%アルミン酸ナトリウム水溶液を調製した。
別途、濃度がAl2O3換算で7質量%の硫酸アルミニウム水溶液13.13kgをイオン交換水23.64kgで希釈した硫酸アルミニウム水溶液と、TiO2濃度換算で33質量%の硫酸チタン272.7gを1.53kgのイオン交換水に溶解したTiO2換算で5質量%の硫酸チタン水溶液1.80kgとを混合し、60℃に加温した硫酸アルミニウム・硫酸チタン混合水溶液を調製した。
次に、前記濃度5質量%のアルミン酸ナトリウム水溶液を撹拌しながら、これに硫酸アルミニウム・硫酸チタン混合水溶液を一定速度、10分間で添加して、Al2O3・TiO2としての濃度が3.8質量%のアルミナ・チタニア複合酸化物水和物スラリーを調製した。このとき、スラリーのpHは7.2であった。
[Example 1]
[Preparation of Hydrotreating Catalyst Support (1)] (First Production Method)
(Process (a))
A tank with a 100 L steam jacket was charged with 8.78 kg of a sodium aluminate aqueous solution having a concentration of 22% by mass in terms of Al 2 O 3 and diluted with ion-exchanged water to 29.83 kg. Next, 109.6 g of a 26 mass% sodium gluconate aqueous solution was added to this solution and heated to 60 ° C. with stirring to prepare a 5 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 .
Separately, an aluminum sulfate aqueous solution obtained by diluting 13.13 kg of an aluminum sulfate aqueous solution having a concentration of 7% by mass in terms of Al 2 O 3 with 23.64 kg of ion-exchanged water, and 272.7 g of titanium sulfate having a concentration of 33% by mass in terms of TiO 2 concentration. An aluminum sulfate / titanium sulfate mixed aqueous solution heated to 60 ° C. was prepared by mixing 1.80 kg of a 5 mass% titanium sulfate aqueous solution in terms of TiO 2 dissolved in 1.53 kg of ion exchange water.
Next, while stirring the sodium aluminate aqueous solution having a concentration of 5% by mass, an aluminum sulfate / titanium sulfate mixed aqueous solution is added thereto at a constant rate for 10 minutes, so that the concentration as Al 2 O 3 · TiO 2 is 3 An alumina / titania composite oxide hydrate slurry of 8 mass% was prepared. At this time, the pH of the slurry was 7.2.
(工程(b))
アルミナ・チタニア複合酸化物水和物スラリーを、撹拌しながら60℃で60分間熟成した。
(工程(c))
熟成したアルミナ・チタニア複合酸化物水和物スラリーを脱水した後、濃度0.3質量%のアンモニア水溶液1.5Lで洗浄した。
(工程(d))
洗浄したケーキ状スラリーに、濃度がAl2O3換算で10質量%になるようにイオン交換水で希釈してスラリー化した後、濃度15質量%のアンモニア水を添加してpH10.5に調製し、撹拌しながら95℃で10時間熟成した。
(工程(e))
熟成したスラリーをスチームジャケット付き双腕式ニーダーで練りながら加温し、固形分の濃度が33質量%となるまで濃縮した。
(工程(f)および工程(i))
加熱を停止し、ホウ酸107.1gを添加して更に30分間捏和した。
(工程(g))
得られた捏和物をスクリュウ式押出機で径が1.8mmの円柱状に成型した。
(工程(h))
成型物を110℃で12時間乾燥した後、長さが3mmになるようにカッティングし、550℃で3時間焼成してチタニア−ボリア−アルミナからなる水素化処理触媒用担体(1)を調製した。
(Process (b))
The alumina / titania composite oxide hydrate slurry was aged at 60 ° C. for 60 minutes with stirring.
(Process (c))
The aged alumina / titania composite oxide hydrate slurry was dehydrated and washed with 1.5 L of an aqueous ammonia solution having a concentration of 0.3% by mass.
(Process (d))
The washed cake-like slurry is diluted with ion-exchanged water so as to have a concentration of 10% by mass in terms of Al 2 O 3 and slurried, and then adjusted to pH 10.5 by adding 15% by mass of ammonia water. The mixture was aged at 95 ° C. for 10 hours with stirring.
(Process (e))
The aged slurry was heated while being kneaded with a double-arm kneader with a steam jacket, and concentrated until the solid content was 33% by mass.
(Step (f) and step (i))
Heating was stopped and 107.1 g boric acid was added and kneaded for an additional 30 minutes.
(Process (g))
The obtained kneaded product was molded into a cylindrical shape having a diameter of 1.8 mm with a screw type extruder.
(Process (h))
The molded product was dried at 110 ° C. for 12 hours, then cut to a length of 3 mm, and calcined at 550 ° C. for 3 hours to prepare a hydrotreating catalyst support (1) composed of titania-boria-alumina. .
上述の工程により得られた水素化処理触媒用担体(1)について、チタニア(TiO2)、ボリア(B2O3)およびアルミナ(Al2O3)の各含有量を分析した。また、細孔容積、平均細孔径を測定した。これらの結果を表1に示す。 The hydrotreating catalyst support (1) obtained by the above-described steps was analyzed for the contents of titania (TiO 2 ), boria (B 2 O 3 ), and alumina (Al 2 O 3 ). Moreover, the pore volume and the average pore diameter were measured. These results are shown in Table 1.
〔水素化処理触媒(1)の調製〕
1Lビーカーにイオン交換水450gを入れ、三酸化モリブデン355.6g、炭酸コバルト135.8gを加え、ついで、リン酸72.9g、クエン酸133.3gを加え、95℃で3時間撹拌して溶解させ含浸液(1)を調製した。
水素化処理触媒用担体(1)500gをビーカーに採り、この担体の全細孔容積(担体重量x細孔容積x係数)に相当する含浸液604.3gを徐々に滴下して吸収させた後、120℃で2時間乾燥して水素化処理触媒(1)を調製した。
得られた水素化処理触媒(1)について、組成分析を行い、担体100質量部あたりの金属酸化物としての含有量を測定した。
(Preparation of hydrotreating catalyst (1))
Add 450 g of ion-exchanged water to a 1 L beaker, add 355.6 g of molybdenum trioxide and 135.8 g of cobalt carbonate, add 72.9 g of phosphoric acid and 133.3 g of citric acid, and dissolve by stirring at 95 ° C. for 3 hours. An impregnation liquid (1) was prepared.
After 500 g of the hydrotreating catalyst support (1) was put in a beaker, 604.3 g of impregnating liquid corresponding to the total pore volume (support weight x pore volume x coefficient) of this support was gradually dropped and absorbed. The hydrotreating catalyst (1) was prepared by drying at 120 ° C. for 2 hours.
The obtained hydrotreating catalyst (1) was subjected to composition analysis, and the content as a metal oxide per 100 parts by mass of the support was measured.
また、以下の方法で一酸化窒素(NO)吸着量を測定した。結果を表1に示す。
〔一酸化窒素(NO)吸着量(測定法)〕
水素化処理触媒(1)を60メッシュ以下に粉砕し、約0.2gを石英製の測定セルに封入し、全自動触媒ガス吸着量装置(大倉理研(株)製:機種R6015)に充填した後、5体積%硫化水素/95体積%水素気流中、320℃で1時間硫化処理を行なった。
その後、ヘリウム気流中NOガス(NO濃度10体積%)をパルスで導入し、触媒1gあたりに吸着するNOガス量を測定した。
NO分子は、触媒上の活性金属の反応活性点に吸着するため、この吸着量により活性金属の分散性を評価することができる。
Moreover, the nitrogen monoxide (NO) adsorption amount was measured by the following method. The results are shown in Table 1.
[Nitric oxide (NO) adsorption amount (measurement method)]
The hydrotreating catalyst (1) was pulverized to 60 mesh or less, and about 0.2 g was sealed in a quartz measuring cell and filled into a fully automatic catalytic gas adsorption device (Okura Riken Co., Ltd. model R6015). Thereafter, sulfiding treatment was performed at 320 ° C. for 1 hour in a 5 vol% hydrogen sulfide / 95 vol% hydrogen stream.
Thereafter, NO gas (NO concentration: 10% by volume) in a helium stream was introduced in pulses, and the amount of NO gas adsorbed per 1 g of the catalyst was measured.
Since NO molecules are adsorbed on the reaction active sites of the active metal on the catalyst, the dispersibility of the active metal can be evaluated by the amount of adsorption.
また、以下の条件で触媒性能を評価した。結果を表1に示す。
〔触媒性能評価〕
まず、以下の条件で硫化処理を行った。
固定床流通式反応装置に水素化処理触媒(1)50ccを充填した。次に、下記原料油(直留軽油)に硫化剤としてジメチルジスルフィドを濃度が1.0質量%となるように加えた炭化水素油を用い、20℃/hrで300℃まで昇温し、300℃で20時間保持して硫化処理を行った。
LHSV :1.0hr−1
H2/Oil :250Nm3/kL
PpH2(水素分圧):4.5MPa
次に、直留軽油の水素化処理を行い、脱硫活性を測定した。反応は、固定床流通式反応装置を用いて、次の反応条件で行った。
LHSV :1.0hr−1
H2/Oil :250Nm3/kL
PpH2(水素分圧):4.5MPa
また、使用した原料油(直留軽油)の性状を以下に示す。
密度(15℃):0.8468g/cm3
硫黄分 :1.13質量%
窒素分 :83質量ppm
反応温度を300〜360℃の範囲で10℃間隔で変更し、各温度での生成油中の硫黄分濃度を分析し、生成油中の硫黄分が8質量ppmとなる温度を測定した。結果を表1に示す。
Moreover, the catalyst performance was evaluated under the following conditions. The results are shown in Table 1.
[Catalyst performance evaluation]
First, sulfuration treatment was performed under the following conditions.
A fixed bed flow reactor was charged with 50 cc of the hydrotreating catalyst (1). Next, using a hydrocarbon oil obtained by adding dimethyl disulfide as a sulfiding agent to the following raw material oil (straight-run gas oil) to a concentration of 1.0 mass%, the temperature was raised to 300 ° C. at 20 ° C./hr, The sulfurating treatment was carried out by maintaining at 20 ° C. for 20 hours.
LHSV: 1.0 hr −1
H 2 / Oil: 250 Nm 3 / kL
PpH 2 (hydrogen partial pressure): 4.5 MPa
Next, hydrogenation of straight run diesel oil was performed and desulfurization activity was measured. The reaction was performed under the following reaction conditions using a fixed bed flow reactor.
LHSV: 1.0 hr −1
H 2 / Oil: 250 Nm 3 / kL
PpH 2 (hydrogen partial pressure): 4.5 MPa
Moreover, the property of the used raw material oil (straight-run gas oil) is shown below.
Density (15 ° C.): 0.8468 g / cm 3
Sulfur content: 1.13% by mass
Nitrogen content: 83 mass ppm
The reaction temperature was changed in the range of 300 to 360 ° C. at 10 ° C. intervals, the sulfur content concentration in the produced oil at each temperature was analyzed, and the temperature at which the sulfur content in the produced oil was 8 ppm by mass was measured. The results are shown in Table 1.
[実施例2]
〔水素化処理触媒用担体(2)の調製〕(第1の製造方法)
実施例1の(工程(a))において、濃度がTiO2換算で5質量%の硫酸チタン水溶液872.4gを用い、(工程(f)および工程(i))でホウ酸51.9gを添加した以外は実施例1と同様にして水素化処理触媒用担体(2)を調製した。
得られた水素化処理触媒用担体(2)について、組成分析を行うとともに、細孔容積、平均細孔径、酸性OH基の吸光度および塩基性OH基の吸光度を測定した。結果を表1に示す。
[Example 2]
[Preparation of Hydrotreating Catalyst Support (2)] (First Production Method)
In (Step (a)) of Example 1, 872.4 g of a titanium sulfate aqueous solution having a concentration of 5% by mass in terms of TiO 2 was used, and 51.9 g of boric acid was added in (Step (f) and Step (i)). A hydrotreating catalyst support (2) was prepared in the same manner as in Example 1 except that.
The obtained hydrotreating catalyst support (2) was subjected to composition analysis, and the pore volume, average pore diameter, absorbance of acidic OH groups, and absorbance of basic OH groups were measured. The results are shown in Table 1.
〔水素化処理触媒(2)の調製〕
実施例1において、水素化処理触媒用担体(2)を用いた以外は同様にして水素化処理触媒(2)を調製した。
得られた水素化処理触媒(2)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
(Preparation of hydrotreating catalyst (2))
A hydrotreating catalyst (2) was prepared in the same manner as in Example 1 except that the hydrotreating catalyst support (2) was used.
The obtained hydrotreating catalyst (2) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[実施例3]
〔水素化処理触媒用担体(3)の調製〕(第1の製造方法)
実施例1の(工程(a))において、濃度がTiO2換算で5質量%の硫酸チタン水溶液5.24kgを用い、(工程(f)および工程(i))でホウ酸231.3gを添加した以外は実施例1と同様にして水素化処理触媒用担体(3)を調製した。
得られた水素化処理触媒用担体(3)について、組成分析を行うとともに、細孔容積、平均細孔径、酸性OH基の吸光度および塩基性OH基の吸光度を測定した。結果を表1に示す。
[Example 3]
[Preparation of Hydrotreating Catalyst Support (3)] (First Production Method)
In Example 1 (step (a)), 5.24 kg of titanium sulfate aqueous solution having a concentration of 5% by mass in terms of TiO 2 was used, and 231.3 g of boric acid was added in (step (f) and step (i)). A hydrotreating catalyst support (3) was prepared in the same manner as in Example 1 except that.
The obtained hydrotreating catalyst support (3) was subjected to composition analysis, and the pore volume, average pore diameter, absorbance of acidic OH groups, and absorbance of basic OH groups were measured. The results are shown in Table 1.
〔水素化処理触媒(3)の調製〕
実施例1において、水素化処理触媒用担体(3)を用いた以外は同様にして水素化処理触媒(3)を調製した。
得られた水素化処理触媒(3)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
(Preparation of hydrotreating catalyst (3))
A hydrotreating catalyst (3) was prepared in the same manner as in Example 1, except that the hydrotreating catalyst support (3) was used.
The obtained hydrotreating catalyst (3) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[実施例4]
〔水素化処理触媒用担体(4)の調製〕(第1の製造方法)
実施例1の工程(a)において、TiO2換算で5質量%の硫酸チタン水溶液1.80kgの代わりにSiO2換算で濃度5質量%の珪酸ナトリウム水溶液1.80gを用い、攪拌しながらAl2O3換算で濃度5質量%アルミン酸ナトリウム水溶液に加え、60℃に加温する以外は実施例1と同様にして水素化処理触媒用担体(4)を調製した。
得られた水素化処理触媒用担体(4)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
[Example 4]
[Preparation of carrier for hydrotreating catalyst (4)] (first production method)
In the process of Example 1 (a), using a concentration of 5 wt% aqueous solution of sodium silicate 1.80g in terms of SiO 2 instead of 5% by weight of aqueous solution of titanium sulfate 1.80kg in terms of TiO 2, while stirring Al 2 A carrier for hydrotreating catalyst (4) was prepared in the same manner as in Example 1 except that it was added to a sodium aluminate aqueous solution having a concentration of 5% by mass in terms of O 3 and heated to 60 ° C.
The resulting hydrotreating catalyst support (4) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
〔水素化処理触媒(4)の調製〕
実施例1において、水素化処理触媒用担体(4)を用いた以外は同様にして水素化処理触媒(4)を調製した。
得られた水素化処理触媒(4)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
(Preparation of hydrotreating catalyst (4))
A hydrotreating catalyst (4) was prepared in the same manner as in Example 1, except that the hydrotreating catalyst support (4) was used.
The obtained hydrotreating catalyst (4) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[実施例5]
〔水素化処理触媒用担体(5)の調製〕(第1の製造方法)
実施例1の(工程(f)および工程(i))において、ホウ酸107.1gの代わりにP2O5換算で61質量%のリン酸1アンモニウム98.4gを用いた以外は実施例1と同様にして水素化処理触媒用担体(5)を調製した。
得られた水素化処理触媒用担体(5)について、組成分析を行うとともに、細孔容積、平均細孔径、酸性OH基の吸光度および塩基性OH基の吸光度を測定した。結果を表1に示す。
[Example 5]
[Preparation of Hydrotreating Catalyst Support (5)] (First Production Method)
In Example 1 (step (f) and step (i)), Example 1 was used except that 98.4 g of 61 mass% monoammonium phosphate in terms of P 2 O 5 was used instead of 107.1 g of boric acid. In the same manner as above, a hydrotreating catalyst support (5) was prepared.
The obtained hydrotreating catalyst support (5) was subjected to composition analysis, and the pore volume, average pore diameter, absorbance of acidic OH groups, and absorbance of basic OH groups were measured. The results are shown in Table 1.
〔水素化処理触媒(5)の調製〕
実施例1において、水素化処理触媒用担体(5)を用いた以外は同様にして水素化処理触媒(5)を調製した。
得られた水素化処理触媒(5)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
(Preparation of hydrotreating catalyst (5))
A hydrotreating catalyst (5) was prepared in the same manner as in Example 1 except that the hydrotreating catalyst support (5) was used.
The resulting hydrotreating catalyst (5) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[実施例6]
〔水素化処理触媒用担体(6)の調製〕(第1の製造方法)
実施例5の(工程(f)および工程(i))において、B2O3換算で56質量%のホウ酸107.1gの代わりに、(工程(d)および工程(i))において、洗浄したケーキ状スラリーにP2O5濃度として61%濃度のリン酸98.4gを加えた以外は実施例1と同様にして水素化処理触媒用担体(6)を調製した。
得られた水素化処理触媒用担体(6)について、組成分析を行うとともに、細孔容積、平均細孔径、酸性OH基の吸光度および塩基性OH基の吸光度を測定した。結果を表1に示す。
[Example 6]
[Preparation of Hydrotreating Catalyst Support (6)] (First Production Method)
In Example 5 (step (f) and step (i)), instead of 107.1 g of boric acid of 56% by mass in terms of B 2 O 3 , washing in (step (d) and step (i)) was performed. A hydrotreating catalyst support (6) was prepared in the same manner as in Example 1 except that 98.4 g of phosphoric acid having a 61% concentration as P 2 O 5 concentration was added to the cake-like slurry.
The resulting hydrotreating catalyst support (6) was subjected to composition analysis, and the pore volume, average pore diameter, absorbance of acidic OH groups, and absorbance of basic OH groups were measured. The results are shown in Table 1.
〔水素化処理触媒(6)の調製〕
実施例1において、水素化処理触媒用担体(6)を用いた以外は同様にして水素化処理触媒(6)を調製した。
得られた水素化処理触媒(6)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
(Preparation of hydrotreating catalyst (6))
A hydrotreating catalyst (6) was prepared in the same manner as in Example 1, except that the hydrotreating catalyst support (6) was used.
The obtained hydrotreating catalyst (6) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[実施例7]
〔水素化処理触媒用担体(7)の調製〕(第2の製造方法)
(工程(j))
100Lスチームジャケット付きタンクに、濃度がAl2O3換算で22質量%のアルミン酸ナトリウム水溶液8.78kgを入れ、イオン交換水で希釈して29.83kgとした。ついで、この溶液に濃度26質量%のグルコン酸ナトリウム水溶液109.6gを加え、撹拌しながら60℃に加温して濃度がAl2O3換算で5質量%アルミン酸ナトリウム水溶液を調製した。
別途、濃度がAl2O3換算で7質量%の硫酸アルミニウム水溶液13.13kgをイオン交換水23.64kgで希釈した硫酸アルミニウム水溶液と、濃度がP2O5換算で61質量%のリン酸147.5gとを混合し、60℃に加温した硫酸アルミニウム・リン酸混合水溶液を調製した。
次に、前記した濃度5質量%のアルミン酸ナトリウム水溶液を撹拌しながら、これに硫酸アルミニウム・リン酸混合水溶液を一定速度、10分間で添加して、Al2O3・P2O5としての濃度が3.8質量%のアルミナ・リン複合酸化物水和物スラリーを調製した。このとき、スラリーのpHは7.2であった。
[Example 7]
[Preparation of Hydrotreating Catalyst Support (7)] (Second Production Method)
(Process (j))
A tank with a 100 L steam jacket was charged with 8.78 kg of a sodium aluminate aqueous solution having a concentration of 22% by mass in terms of Al 2 O 3 and diluted with ion-exchanged water to 29.83 kg. Next, 109.6 g of a sodium gluconate aqueous solution with a concentration of 26% by mass was added to this solution, and heated to 60 ° C. with stirring to prepare a 5% by mass aqueous sodium aluminate solution in terms of Al 2 O 3 .
Separately, an aluminum sulfate aqueous solution obtained by diluting 13.13 kg of an aluminum sulfate aqueous solution having a concentration of 7% by mass in terms of Al 2 O 3 with 23.64 kg of ion-exchanged water, and phosphoric acid 147 having a concentration of 61% by mass in terms of P 2 O 5. 0.5 g was mixed and an aluminum sulfate / phosphoric acid mixed aqueous solution heated to 60 ° C. was prepared.
Next, while stirring the sodium aluminate aqueous solution having a concentration of 5% by mass, an aluminum sulfate / phosphoric acid mixed aqueous solution was added thereto at a constant rate for 10 minutes to obtain Al 2 O 3 .P 2 O 5 . An alumina / phosphorus composite oxide hydrate slurry having a concentration of 3.8% by mass was prepared. At this time, the pH of the slurry was 7.2.
(工程(k))
アルミナ・リン複合酸化物水和物スラリーを、撹拌しながら60℃で60分間熟成した。
(工程(l))
熟成したアルミナ・リン複合酸化物水和物スラリーを脱水した後、濃度0.3質量%のアンモニア水溶液1.5Lで洗浄した。
(工程(m))
洗浄したケーキ状スラリーに濃度がAl2O3換算で10質量%になるようにイオン交換水で希釈してスラリー化した後、濃度15質量%のアンモニア水を添加してpH10.5に調製し、撹拌しながら95℃で10時間熟成した。
(工程(n))
熟成したスラリーをスチームジャケット付き双腕式ニーダーで練りながら加温し、固形分の濃度が33質量%となるまで濃縮した。
(工程(o)および工程(r))
加熱を停止し、TiO2換算で2質量%のペルオキソチタン酸溶液3.0kgを添加して更に30分間捏和した。
(工程(p))
得られた捏和物をスクリュウ式押出機で径が1.8mm、長さ3mmの円柱状に成型した。
(工程(q))
成型物を110℃で12時間乾燥した後、550℃で3時間焼成してチタニア−リン酸化物−アルミナからなる水素化処理触媒用担体(7)を調製した。
(Process (k))
The alumina / phosphorus composite oxide hydrate slurry was aged at 60 ° C. for 60 minutes with stirring.
(Process (l))
The aged alumina / phosphorus composite oxide hydrate slurry was dehydrated and washed with 1.5 L of an aqueous ammonia solution having a concentration of 0.3% by mass.
(Process (m))
The washed cake-like slurry is diluted with ion-exchanged water so as to have a concentration of 10% by mass in terms of Al 2 O 3 and then slurried. Then, ammonia water with a concentration of 15% by mass is added to adjust the pH to 10.5. The mixture was aged at 95 ° C. for 10 hours with stirring.
(Process (n))
The aged slurry was heated while being kneaded with a double-arm kneader with a steam jacket, and concentrated until the solid content was 33% by mass.
(Step (o) and step (r))
The heating was stopped, 3.0 kg of a 2 mass% peroxotitanic acid solution in terms of TiO 2 was added, and the mixture was further kneaded for 30 minutes.
(Process (p))
The obtained kneaded material was molded into a cylindrical shape having a diameter of 1.8 mm and a length of 3 mm with a screw type extruder.
(Process (q))
The molded product was dried at 110 ° C. for 12 hours and then calcined at 550 ° C. for 3 hours to prepare a carrier (7) for hydrotreating catalyst comprising titania-phosphorus oxide-alumina.
上述の工程により得られた水素化処理触媒用担体(7)について、組成分析を行うとともに、細孔容積、平均細孔径、酸性OH基の吸光度および塩基性OH基の吸光度を測定した。結果を表1に示す。 The hydrotreating catalyst support (7) obtained by the above-described steps was subjected to composition analysis, and the pore volume, average pore diameter, acid OH group absorbance, and basic OH group absorbance were measured. The results are shown in Table 1.
〔水素化処理触媒(7)の調製〕
実施例1において、水素化処理触媒用担体(7)を用いた以外は同様にして水素化処理触媒(7)を調製した。
得られた水素化処理触媒(7)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
(Preparation of hydrotreating catalyst (7))
A hydrotreating catalyst (7) was prepared in the same manner as in Example 1, except that the hydrotreating catalyst support (7) was used.
The obtained hydrotreating catalyst (7) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[実施例8]
実施例1の水素化処理触媒用担体(1)を用い、以下のように水素化処理触媒を調製した。
〔水素化処理触媒(8)の調製〕
1Lビーカーにイオン交換水500gを入れ、三酸化モリブデン295.8g、炭酸コバルト117.4gを加え、ついで、リン酸69.3g、クエン酸105.6gを加え、95℃で3時間撹拌して溶解させ含浸液(2)を調製した。
次に、含浸液(2)を用いた以外は実施例1と同様にして水素化処理触媒(8)を調製した。
得られた水素化処理触媒(8)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
[Example 8]
Using the hydrotreating catalyst support (1) of Example 1, a hydrotreating catalyst was prepared as follows.
(Preparation of hydrotreating catalyst (8))
Add 500 g of ion-exchanged water to a 1 L beaker, add 295.8 g of molybdenum trioxide and 117.4 g of cobalt carbonate, then add 69.3 g of phosphoric acid and 105.6 g of citric acid, and dissolve by stirring at 95 ° C. for 3 hours. An impregnation liquid (2) was prepared.
Next, a hydrotreating catalyst (8) was prepared in the same manner as in Example 1 except that the impregnation liquid (2) was used.
The obtained hydrotreating catalyst (8) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[実施例9]
実施例1の水素化処理触媒用担体(1)を用い、以下のように水素化処理触媒を調製した。
〔水素化処理触媒(9)の調製〕
1Lビーカーにイオン交換水400gを入れ、三酸化モリブデン448.0g、炭酸コバルト 173.3gを加え、ついで、リン酸91.8g、クエン酸156.0gを加え、95℃で3時間撹拌して溶解して含浸液(3)を調製した。
次に、含浸液(3)を用いた以外は実施例1と同様にして水素化処理触媒(9)を調製した。
得られた水素化処理触媒(9)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
[Example 9]
Using the hydrotreating catalyst support (1) of Example 1, a hydrotreating catalyst was prepared as follows.
(Preparation of hydrotreating catalyst (9))
Add 400 g of ion-exchanged water to a 1 L beaker, add 448.0 g of molybdenum trioxide and 173.3 g of cobalt carbonate, add 91.8 g of phosphoric acid and 156.0 g of citric acid, and stir at 95 ° C. for 3 hours to dissolve. Thus, an impregnation liquid (3) was prepared.
Next, a hydrotreating catalyst (9) was prepared in the same manner as in Example 1 except that the impregnation liquid (3) was used.
The obtained hydrotreating catalyst (9) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[比較例1]
〔水素化処理触媒用担体(R1)の調製〕
実施例1の(工程(f)および工程(i))でホウ酸を使用しなかった以外は実施例1と同様にして水素化処理触媒用担体(R1)を調製した。
得られた水素化処理触媒用担体(R1)について、組成分析を行うとともに、細孔容積、平均細孔径、酸性OH基の吸光度および塩基性OH基の吸光度を測定した。結果を表1に示す。
[Comparative Example 1]
[Preparation of Hydrotreating Catalyst Support (R1)]
A hydrotreating catalyst support (R1) was prepared in the same manner as in Example 1 except that boric acid was not used in (Step (f) and Step (i)) of Example 1.
The obtained hydrotreating catalyst support (R1) was subjected to composition analysis, and the pore volume, average pore diameter, absorbance of acidic OH groups, and absorbance of basic OH groups were measured. The results are shown in Table 1.
〔水素化処理触媒(R1)の調製〕
実施例1において、水素化処理触媒用担体(R1)を用いた以外は同様にして水素化処理触媒(R1)を調製した。
得られた水素化処理触媒(R1)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
[Preparation of hydrotreating catalyst (R1)]
A hydrotreating catalyst (R1) was prepared in the same manner as in Example 1 except that the hydrotreating catalyst support (R1) was used.
The obtained hydrotreating catalyst (R1) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[比較例2]
〔水素化処理触媒用担体(R2)の調製〕
実施例1の(工程(a))で濃度がTiO2換算で5質量%の硫酸チタン水溶液1.90kgを用い、(工程(f)および工程(i))でホウ酸395.8gを添加した以外は実施例1と同様にして水素化処理触媒用担体(R2)を調製した。
得られた水素化処理触媒用担体(R2)について、組成分析を行うとともに、細孔容積、平均細孔径、酸性OH基の吸光度および塩基性OH基の吸光度を測定した。結果を表1に示す。
[Comparative Example 2]
[Preparation of hydrotreating catalyst support (R2)]
In Example 1, (Step (a)), 1.90 kg of an aqueous titanium sulfate solution having a concentration of 5% by mass in terms of TiO 2 was used, and 395.8 g of boric acid was added in (Step (f) and Step (i)). A hydrotreating catalyst support (R2) was prepared in the same manner as in Example 1 except for the above.
The resulting hydrotreating catalyst support (R2) was subjected to composition analysis, and the pore volume, average pore diameter, absorbance of acidic OH groups, and absorbance of basic OH groups were measured. The results are shown in Table 1.
〔水素化処理触媒(R2)の調製〕
実施例1において、水素化処理触媒用担体(R2)を用いた以外は同様にして水素化処理触媒(R2)を調製した。
得られた水素化処理触媒(R2)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
[Preparation of hydrotreating catalyst (R2)]
A hydrotreating catalyst (R2) was prepared in the same manner as in Example 1 except that the hydrotreating catalyst support (R2) was used.
The obtained hydrotreating catalyst (R2) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[比較例3]
〔水素化処理触媒用担体(R3)の調製〕
実施例1の(工程(a))で、濃度がTiO2換算で5質量%の硫酸チタン水溶液10.96kgを用い、(工程(f)および工程(i))でホウ酸456.7gを添加した以外は実施例1と同様にして水素化処理触媒用担体(R3)を調製した。
得られた水素化処理触媒用担体(R3)について、組成分析を行うとともに、細孔容積、平均細孔径、酸性OH基の吸光度および塩基性OH基の吸光度を測定した。結果を表1に示す。
〔水素化処理触媒(R3)の調製〕
実施例1において、水素化処理触媒用担体(R3)を用いた以外は同様にして水素化処理触媒(R3)を調製した。
得られた水素化処理触媒(R3)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
[Comparative Example 3]
[Preparation of Hydrotreating Catalyst Support (R3)]
In Example 1 (Step (a)), 109.6 kg of a titanium sulfate aqueous solution having a concentration of 5% by mass in terms of TiO 2 was used, and 456.7 g of boric acid was added in (Step (f) and Step (i)). A hydrotreating catalyst support (R3) was prepared in the same manner as in Example 1 except that.
The resulting hydrotreating catalyst support (R3) was subjected to composition analysis, and the pore volume, average pore diameter, absorbance of acidic OH groups, and absorbance of basic OH groups were measured. The results are shown in Table 1.
[Preparation of hydrotreating catalyst (R3)]
A hydrotreating catalyst (R3) was prepared in the same manner as in Example 1 except that the hydrotreating catalyst support (R3) was used.
The obtained hydrotreating catalyst (R3) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[比較例4]
〔水素化処理触媒用担体(R4)の調製〕
比較例3の(工程(a))で、濃度がTiO2換算で5質量%の硫酸チタン水溶液10.96kgを用いることなく、(工程(f)および工程(i))でホウ酸383.1gを添加した以外は比較例3と同様にして水素化処理触媒用担体(R4)を調製した。
得られた水素化処理触媒用担体(R4)について、組成分析を行うとともに、細孔容積、平均細孔径、酸性OH基の吸光度および塩基性OH基の吸光度を測定した。結果を表1に示す。
[Comparative Example 4]
[Preparation of Hydrotreating Catalyst Support (R4)]
In Comparative Example 3 (Step (a)), 383.1 g of boric acid was used in (Step (f) and Step (i)) without using 10.96 kg of a titanium sulfate aqueous solution having a concentration of 5% by mass in terms of TiO 2. A hydrotreating catalyst support (R4) was prepared in the same manner as in Comparative Example 3 except that was added.
The resulting hydrotreating catalyst support (R4) was subjected to composition analysis, and the pore volume, average pore diameter, absorbance of acidic OH groups, and absorbance of basic OH groups were measured. The results are shown in Table 1.
〔水素化処理触媒(R4)の調製〕
実施例1において、水素化処理触媒用担体(R4)を用いた以外は同様にして水素化処理触媒(R4)を調製した。
得られた水素化処理触媒(R4)について、組成分析を行うとともに、一酸化窒素(NO)吸着量の測定と性能評価を行った。結果を表1に示す。
[Preparation of hydrotreating catalyst (R4)]
A hydrotreating catalyst (R4) was prepared in the same manner as in Example 1 except that the hydrotreating catalyst support (R4) was used.
The obtained hydrotreating catalyst (R4) was subjected to composition analysis and measurement of nitrogen monoxide (NO) adsorption and performance evaluation. The results are shown in Table 1.
[評価結果]
表1の実施例1〜9からわかるように、本発明に係る水素化処理触媒用担体を用いた水素化処理触媒は、触媒担体表面における酸性OH基および塩基性OH基に起因する吸光度が所定の範囲にあるので脱硫活性(水素化活性)に優れている。一方、前記した吸光度が所定の範囲から外れている比較例1〜4では脱硫活性が劣る。
[Evaluation results]
As can be seen from Examples 1 to 9 in Table 1, the hydrotreating catalyst using the hydrotreating catalyst support according to the present invention has a predetermined absorbance due to acidic OH groups and basic OH groups on the catalyst support surface. Therefore, it is excellent in desulfurization activity (hydrogenation activity). On the other hand, desulfurization activity is inferior in Comparative Examples 1 to 4 in which the absorbance described above is out of the predetermined range.
Claims (15)
透過型フーリエ変換赤外吸収スペクトル測定装置(FT−IR)により測定した酸性OH基に起因する当該担体単位表面積当たりの吸光度(OHAS)が0.04〜0.1m−2の範囲にあり、
前記FT−IRにより測定した塩基性OH基に起因する当該担体単位表面積当たりの吸光度(OHBS)が0.01〜0.02m−2の範囲にある
ことを特徴とする水素化処理触媒用担体。
(但し、前記酸性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3670〜3695cm−1の範囲にあり、前記塩基性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3760〜3780cm−1の範囲にある。) A support for hydroprocessing catalyst comprising an alumina-based composite oxide,
The absorbance per unit surface area of the carrier (OH AS ) due to the acidic OH group measured by a transmission type Fourier transform infrared absorption spectrum measuring apparatus (FT-IR) is in the range of 0.04 to 0.1 m −2 ,
The carrier for a hydrotreating catalyst, wherein the absorbance per unit surface area of the carrier (OH BS ) caused by the basic OH group measured by FT-IR is in the range of 0.01 to 0.02 m -2. .
(However, the wave number of the maximum peak position of the absorption spectrum due to the acidic OH group is in the range of 3670 to 3695 cm −1 , and the wave number of the maximum peak position of the absorption spectrum due to the basic OH group is 3760 to 3780 cm − In the range of 1 .
当該担体の比表面積が250〜500m2/gの範囲にある
ことを特徴とする請求項1に記載の水素化処理触媒用担体。 Absorbance of the basic OH groups (OH BS) and the absorbance of the acid OH group (OH AS) ratio of (OH BS) / (OH AS ) is in the range of 0.2 to 0.5,
The specific surface area of the said support | carrier exists in the range of 250-500 m < 2 > / g. The support | carrier for hydroprocessing catalysts of Claim 1 characterized by the above-mentioned.
前記塩基性OH基の当該担体単位質量当たりの吸光度(OHBW)が4〜6.5g−1の範囲にあり、
前記塩基性OH基の前記吸光度(OHBW)と前記酸性OH基の前記吸光度(OHAW)との比(OHBW)/(OHAW)が0.2〜0.5の範囲にある
ことを特徴とする請求項1または請求項2に記載の水素化処理触媒用担体。 The absorbance per unit mass of the acidic OH group (OH AW ) is in the range of 10 to 30 g −1 ,
The absorbance per unit weight of the basic OH group (OH BW ) is in the range of 4 to 6.5 g −1 ;
The ratio (OH BW ) / (OH AW ) of the absorbance (OH BW ) of the basic OH group and the absorbance (OH AW ) of the acidic OH group is in the range of 0.2 to 0.5. The carrier for a hydroprocessing catalyst according to claim 1 or 2, characterized in that
前記第1酸化物がSi、Ti、およびZrから選ばれる少なくとも1種の元素の酸化物であり、
前記第2酸化物がBおよびPから選ばれる少なくとも1種の元素の酸化物である
ことを特徴とする請求項1〜請求項3のいずれかに記載の水素化処理触媒用担体。 The alumina-based composite oxide is composed of a first oxide other than alumina and alumina and a second oxide other than alumina,
The first oxide is an oxide of at least one element selected from Si, Ti, and Zr;
The carrier for a hydrotreating catalyst according to any one of claims 1 to 3, wherein the second oxide is an oxide of at least one element selected from B and P.
前記第2酸化物の含有量が前記アルミナ系複合酸化物基準で1〜5質量%の範囲にあり、
前記アルミナの含有量が前記アルミナ系複合酸化物基準で5〜98質量%の範囲にある
ことを特徴とする請求項4に記載の水素化処理触媒用担体。 The content of the first oxide is in the range of 1 to 10% by mass based on the alumina-based composite oxide,
The content of the second oxide is in the range of 1 to 5 mass% based on the alumina-based composite oxide,
The support for a hydrotreating catalyst according to claim 4, wherein the content of the alumina is in the range of 5 to 98% by mass based on the alumina-based composite oxide.
当該担体の平均細孔径(DP)が60〜150Åの範囲にある
ことを特徴とする請求項1〜請求項5のいずれかに記載の水素化処理触媒用担体。 The pore volume (PV) of the carrier is in the range of 0.5 to 1.5 mL / g,
Mean pore diameter (D P) is hydrotreating catalyst carrier according to any one of claims 1 to 5, characterized in that the range of 60~150Å of the carrier.
周期表第VIA族から選ばれる少なくとも1種の元素と、周期表第VIII族から選ばれる少なくとも1種の元素とを担持した
ことを特徴とする水素化処理触媒。 The hydrotreating catalyst support according to any one of claims 1 to 6,
A hydrotreating catalyst comprising: at least one element selected from Group VIA of the periodic table and at least one element selected from Group VIII of the periodic table.
前記周期表第VIII族から選ばれる元素がCoまたはNiのいずれかである
ことを特徴とする請求項7に記載の水素化処理触媒。 The element selected from Group VIA of the periodic table is any one of Cr, Mo, and W;
The hydroprocessing catalyst according to claim 7, wherein the element selected from Group VIII of the periodic table is either Co or Ni.
前記周期表第VIII族元素の担持量(酸化物換算)が、前記担体(酸化物換算)100質量部に対して1〜20質量部の範囲にある
ことを特徴とする請求項6〜請求項8のいずれかに記載の水素化処理触媒。 The amount of the periodic table group VIA element supported (oxide conversion) is in the range of 10 to 60 parts by mass with respect to 100 parts by mass of the support (oxide conversion),
The amount of the Periodic Table Group VIII element supported (in oxide equivalent) is in the range of 1 to 20 parts by mass with respect to 100 parts by mass of the carrier (in oxide equivalent). The hydrotreating catalyst according to any one of 8.
アルミン酸アルカリ水溶液(A液)と、アルミニウム塩水溶液と前記第1酸化物用金属塩水溶液との混合水溶液(B液)とを混合して複合酸化物ヒドロゲル(水和物)スラリーを調製するスラリー調製工程Aと、
前記工程において、あるいは前記工程後に前記第2酸化物用金属塩を添加する第2酸化物用金属塩添加工程とを実施する
ことを特徴とする水素化処理触媒用担体の製造方法。 A method for producing a hydrotreating catalyst support according to claim 4 or 5,
A slurry for preparing a composite oxide hydrogel (hydrate) slurry by mixing an alkali aluminate aqueous solution (A solution), a mixed aqueous solution (B solution) of an aluminum salt aqueous solution and the metal salt aqueous solution for the first oxide. Preparation step A;
A method for producing a carrier for a hydrotreating catalyst, comprising performing a second oxide metal salt addition step of adding the second oxide metal salt in the step or after the step.
アルミン酸アルカリ水溶液(A液)と、アルミニウム塩水溶液と前記第2酸化物用金属塩水溶液との混合水溶液(C液)とを混合して複合酸化物ヒドロゲル(水和物)スラリーを調製するスラリー調製工程Bと、
前記工程において、あるいは前記工程後に前記第1酸化物用金属塩を添加する第1酸化物用金属塩添加工程とを実施する
ことを特徴とする水素化処理触媒用担体の製造方法。 A method for producing a hydrotreating catalyst support according to claim 4 or 5,
A slurry for preparing a composite oxide hydrogel (hydrate) slurry by mixing an alkali aluminate aqueous solution (liquid A) and a mixed aqueous solution (liquid C) of an aluminum salt aqueous solution and the metal salt aqueous solution for the second oxide. Preparation step B;
A method for producing a carrier for a hydrotreating catalyst, comprising performing a first oxide metal salt addition step of adding the first oxide metal salt in the step or after the step.
ことを特徴とする請求項10または請求項11に記載の水素化処理触媒用担体の製造方法。 The method for producing a carrier for a hydrotreating catalyst according to claim 10 or 11, wherein the alkali aluminate aqueous solution (liquid A) in the slurry preparation step A or the slurry preparation step B contains a carboxylate. .
周期表第VIA族から選ばれる少なくとも1種の元素を含んだ水溶液と、周期表第VIII族から選ばれる少なくとも1種の元素を含んだ水溶液に含浸し、次いで乾燥する
ことを特徴とする水素化処理触媒の製造方法。 The carrier for hydroprocessing catalyst according to any one of claims 1 to 6,
Hydrogenation characterized by impregnating an aqueous solution containing at least one element selected from Group VIA of the periodic table and an aqueous solution containing at least one element selected from Group VIII of the periodic table and then drying. A method for producing a treated catalyst.
ことを特徴とする請求項13に記載の水素化処理触媒の製造方法。 The method for producing a hydrotreating catalyst according to claim 13, wherein the drying temperature is in the range of 105 to 300 ° C.
ことを特徴とする請求項13または請求項14に記載の水素化処理触媒の製造方法。 The method for producing a hydrotreating catalyst according to claim 13 or 14, wherein the catalyst is further sulfided after the drying.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013077930A JP6013259B2 (en) | 2013-04-03 | 2013-04-03 | Hydrotreating catalyst support, method for producing the same, hydrotreating catalyst, and method for producing the same |
CN201480019501.2A CN105102123B (en) | 2013-04-03 | 2014-03-27 | Hydrotreating catalyst carrier, its manufacture method, hydrotreating catalyst and its manufacture method |
RU2015146990A RU2660430C2 (en) | 2013-04-03 | 2014-03-27 | Hydrogenation catalyst carrier, its production method, hydrogenation catalyst and the hydrogenation catalyst production method |
PCT/JP2014/058807 WO2014162967A1 (en) | 2013-04-03 | 2014-03-27 | Carrier for hydrogenation catalysts, method for producing same, hydrogenation catalyst and method for producing hydrogenation catalyst |
KR1020157031471A KR102194110B1 (en) | 2013-04-03 | 2014-03-27 | Carrier for hydrogenation catalysts, method for producing same, hydrogenation catalyst and method for producing hydrogenation catalyst |
TW103112490A TWI635170B (en) | 2013-04-03 | 2014-04-03 | Carrier for hydrogenation treatment catalyst, production method thereof, hydrogenation treatment catalyst, and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013077930A JP6013259B2 (en) | 2013-04-03 | 2013-04-03 | Hydrotreating catalyst support, method for producing the same, hydrotreating catalyst, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014200729A JP2014200729A (en) | 2014-10-27 |
JP6013259B2 true JP6013259B2 (en) | 2016-10-25 |
Family
ID=51658265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013077930A Active JP6013259B2 (en) | 2013-04-03 | 2013-04-03 | Hydrotreating catalyst support, method for producing the same, hydrotreating catalyst, and method for producing the same |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP6013259B2 (en) |
KR (1) | KR102194110B1 (en) |
CN (1) | CN105102123B (en) |
RU (1) | RU2660430C2 (en) |
TW (1) | TWI635170B (en) |
WO (1) | WO2014162967A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102463310B1 (en) * | 2015-05-27 | 2022-11-04 | 니끼 쇼꾸바이 카세이 가부시키가이샤 | Hydroprocessing catalyst for hydrocarbon oil, its manufacturing method and hydroprocessing method |
JP6660896B2 (en) * | 2016-02-01 | 2020-03-11 | 日揮触媒化成株式会社 | Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method |
SG11201806008PA (en) * | 2016-02-01 | 2018-08-30 | Jgc Catalysts & Chemicals Ltd | Hydrogenation treatment catalyst for hydrocarbon oil, method for producing the same, and hydrogenation treatment method |
CN106311263B (en) * | 2016-07-29 | 2018-10-23 | 武汉凯迪工程技术研究总院有限公司 | High load amount boron modification Hydrobon catalyst and preparation method thereof |
RU2766506C1 (en) * | 2021-04-08 | 2022-03-15 | федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» | Method of producing aluminium oxide-based supports for catalysts of oil refining processes |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4390414A (en) * | 1981-12-16 | 1983-06-28 | Exxon Research And Engineering Co. | Selective dewaxing of hydrocarbon oil using surface-modified zeolites |
US4758330A (en) * | 1987-03-11 | 1988-07-19 | Phillips Petroleum Company | Hydrotreating employing silica-modified alumina |
JP2557599B2 (en) | 1992-08-27 | 1996-11-27 | ユーオーピー | Catalytic composite composed of phosphorus, silicon, and aluminum oxide amorphous solid solution |
US5468371A (en) | 1994-04-11 | 1995-11-21 | Texaco Inc. | Catalyst for residual conversion demonstrating reduced toluene insolubles |
RU2155637C2 (en) * | 1998-10-26 | 2000-09-10 | Общество с ограниченной ответственностью "Научно-внедренческая фирма "Катализатор" | Hydrodesulfuration catalyst for oil fractions |
RU2143948C1 (en) * | 1998-11-02 | 2000-01-10 | Закрытое акционерное общество "Катализаторная компания" | Carrier and catalyst for heterogeneous reactions |
JP3881162B2 (en) | 2000-07-12 | 2007-02-14 | 触媒化成工業株式会社 | Hydrotreating shaped catalyst and process |
CN1242847C (en) * | 2003-05-31 | 2006-02-22 | 中国石油化工股份有限公司 | Aluminum carrier containing silicon-phosphorus composite auxiliary and its preparation |
US7790652B2 (en) * | 2003-09-17 | 2010-09-07 | Shell Oil Company | Process and catalyst for the hydroconversion of a heavy hydrocarbon feedstock |
JP4864106B2 (en) | 2004-03-26 | 2012-02-01 | コスモ石油株式会社 | Method for producing hydrocarbon oil hydrotreating catalyst |
CN100421784C (en) * | 2005-04-27 | 2008-10-01 | 中国石油化工股份有限公司 | Alumina dry glue containing silicon and boron and production thereof |
WO2007032232A1 (en) * | 2005-09-12 | 2007-03-22 | Petroleum Energy Center | Catalyst composition for hydrogenation treatment of hydrocarbon and hydrogenation treatment method |
JP5354976B2 (en) * | 2007-10-23 | 2013-11-27 | 出光興産株式会社 | Catalyst for producing light olefins and method for producing light olefins |
JP5517541B2 (en) | 2009-09-30 | 2014-06-11 | Jx日鉱日石エネルギー株式会社 | Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same |
JP5697009B2 (en) | 2009-10-20 | 2015-04-08 | 日揮触媒化成株式会社 | Hydrocarbon oil hydrodesulfurization catalyst |
CN102049264B (en) * | 2009-10-27 | 2012-09-12 | 中国石油化工股份有限公司 | Hydrodesulphurization catalyst and preparation method thereof |
CN102145306B (en) * | 2010-02-05 | 2013-05-01 | 中国石油化工股份有限公司 | Method for adjusting properties of alumina carrier by selecting hydrated alumina with different grain size, carrier obtained by method and application |
CN103079697B (en) * | 2010-06-25 | 2015-07-01 | 吉坤日矿日石能源株式会社 | Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil |
CN102045926A (en) * | 2010-11-04 | 2011-05-04 | 郑飞轮 | Wiring method for remote switch |
JP5815321B2 (en) | 2011-07-29 | 2015-11-17 | コスモ石油株式会社 | Hydrocarbon oil hydrotreating catalyst, hydrocarbon oil hydrotreating catalyst production method, and hydrocarbon oil hydrotreating method |
-
2013
- 2013-04-03 JP JP2013077930A patent/JP6013259B2/en active Active
-
2014
- 2014-03-27 KR KR1020157031471A patent/KR102194110B1/en active IP Right Grant
- 2014-03-27 WO PCT/JP2014/058807 patent/WO2014162967A1/en active Application Filing
- 2014-03-27 RU RU2015146990A patent/RU2660430C2/en active
- 2014-03-27 CN CN201480019501.2A patent/CN105102123B/en active Active
- 2014-04-03 TW TW103112490A patent/TWI635170B/en active
Also Published As
Publication number | Publication date |
---|---|
JP2014200729A (en) | 2014-10-27 |
CN105102123B (en) | 2018-04-03 |
RU2015146990A (en) | 2017-05-11 |
TWI635170B (en) | 2018-09-11 |
KR102194110B1 (en) | 2020-12-23 |
RU2660430C2 (en) | 2018-07-06 |
TW201446957A (en) | 2014-12-16 |
CN105102123A (en) | 2015-11-25 |
KR20150138342A (en) | 2015-12-09 |
WO2014162967A1 (en) | 2014-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9975112B2 (en) | Mixed oxides of transition metals, hydrotreatment catalysts obtained therefrom, and preparation process comprising sol-gel processes | |
JP6134334B2 (en) | Silica-containing alumina support, catalyst produced therefrom and method of use thereof | |
TWI617660B (en) | Hydrodesulfurization catalyst for light oil, and hydrotreating method of light oil | |
RU2713205C2 (en) | Powdered titanium oxide, methods for production thereof and use thereof | |
JP5922372B2 (en) | Hydrotreating catalyst and method for producing the same | |
JP6013259B2 (en) | Hydrotreating catalyst support, method for producing the same, hydrotreating catalyst, and method for producing the same | |
JP6660896B2 (en) | Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method | |
JP2015526278A (en) | Improved residual hydrotreating catalyst containing titania | |
KR102608017B1 (en) | Hydrocarbon oil catalyst, production method, and hydrogenation method thereof | |
JPWO2016189982A1 (en) | Hydrocarbon hydrotreating catalyst, its production method and hydrotreating method | |
JP4916157B2 (en) | Alumina support for hydrodemetallation catalyst, production method thereof, and hydrodemetallation catalyst using the same | |
JP5517541B2 (en) | Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same | |
TW201601835A (en) | Hydrodesulfurization catalyst for hydrocarbon oil | |
WO2018180377A1 (en) | Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing hydrodesulfurization catalyst | |
JP6646349B2 (en) | Method for producing catalyst for hydrodesulfurization of hydrocarbon oil and method for hydrodesulfurization of hydrocarbon oil | |
JP4503327B2 (en) | Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil | |
JP2000135437A (en) | Hydrogenation catalyst and its production | |
JP4519379B2 (en) | Heavy hydrocarbon oil hydrotreating catalyst | |
WO2023033172A1 (en) | Catalyst for hydrotreatment of heavy hydrocarbon oil and method for producing same, and method for hydrotreatment of heavy hydrocarbon oil | |
JP5031790B2 (en) | Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil | |
JP2022061721A (en) | Hydrogenation catalyst of hydrocarbon oil and manufacturing method of hydrogenation catalyst | |
JP2023150709A (en) | Manufacturing method of catalyst carrier for hydrolyzing carbonyl sulfide or carbon disulfide, catalyst carrier and catalyst containing the catalyst carrier | |
JP2024095213A (en) | Catalyst for hydrotreating hydrocarbon oil, and producing method thereof | |
JP2024095212A (en) | Carrier for catalyst for hydrotreating hydrocarbon oil, and producing method thereof, catalyst for hydrotreating hydrocarbon oil, and producing method thereof | |
JP2023142910A (en) | Silicon scavenger for hydrogenation treatment, manufacturing method thereof, hydrogenation treatment method of hydrocarbon oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6013259 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |