JP4878736B2 - Heavy oil hydrotreating catalyst and method for producing the same - Google Patents

Heavy oil hydrotreating catalyst and method for producing the same Download PDF

Info

Publication number
JP4878736B2
JP4878736B2 JP2004066795A JP2004066795A JP4878736B2 JP 4878736 B2 JP4878736 B2 JP 4878736B2 JP 2004066795 A JP2004066795 A JP 2004066795A JP 2004066795 A JP2004066795 A JP 2004066795A JP 4878736 B2 JP4878736 B2 JP 4878736B2
Authority
JP
Japan
Prior art keywords
catalyst
metal
mass
group
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004066795A
Other languages
Japanese (ja)
Other versions
JP2005254083A (en
Inventor
隆一郎 岩本
保男 菅間
誠一郎 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Japan Petroleum Energy Center JPEC filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004066795A priority Critical patent/JP4878736B2/en
Publication of JP2005254083A publication Critical patent/JP2005254083A/en
Application granted granted Critical
Publication of JP4878736B2 publication Critical patent/JP4878736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、水素化処理触媒及びその製造方法に関し、詳しくは、重質油の水素化処理によって劣化した水素化処理触媒を再生使用するに適した水素化処理触媒及びその製造方法、並びに重質油の水素化処理方法に関する。   The present invention relates to a hydrotreating catalyst and a method for producing the same, and more particularly, to a hydrotreating catalyst suitable for reusing a hydrotreated catalyst deteriorated by hydrotreating heavy oil, a method for producing the same, and a heavy product. The present invention relates to a method for hydrotreating oil.

一般に、灯軽油等の軽質な含硫黄炭化水素の水素化処理での触媒性能の低下原因は、コーク(炭素分)の触媒上への析出であると言われている。一方、重質油の水素化処理では、軽質油とは異なり、原料油中に存在する多量のバナジウム、ニッケル等の金属不純物が、水素化処理の運転中に触媒上に蓄積することにより触媒性能が低下する。また、沸点の高い重質油の水素化処理では、軽質油より高温で運転を行う必要があるため、モリブデン等の触媒活性金属成分が凝集してしまい、さらに触媒性能の低下が進行する。また、重質油中には難脱硫性の硫黄化合物が多く含まれていることから、軽質な含硫黄化合物の水素化処理に比べてバナジウム等の蓄積の影響をより顕著に受けやすい。   In general, it is said that the cause of the decrease in the catalyst performance in the hydrotreatment of light sulfur-containing hydrocarbons such as kerosene oil is the deposition of coke (carbon content) on the catalyst. On the other hand, in the hydrotreatment of heavy oil, unlike light oil, a large amount of metal impurities such as vanadium and nickel present in the feedstock accumulate on the catalyst during the hydrotreating operation, thereby reducing the catalyst performance. Decreases. Further, in the hydrotreatment of heavy oil having a high boiling point, it is necessary to operate at a temperature higher than that of light oil, so that a catalytically active metal component such as molybdenum aggregates, and the catalytic performance further decreases. In addition, since heavy oil contains a lot of hard-to-desulfurize sulfur compounds, it is more easily affected by the accumulation of vanadium and the like than hydrogenation treatment of light sulfur-containing compounds.

また近年、環境問題の高まりから、触媒廃棄物を低減するため、水素化処理触媒の再生利用が望まれている。しかし、重質油の水素化処理の場合には、焼成によりコークは除去できるが、蓄積したバナジウムやニッケルの除去は困難であるために再生後の触媒について長時間安定して用いることは困難であり、また、触媒の摩耗強度は低下して、再生後の再充填時に、触媒粒子間隙が閉塞し、再利用時に運転ができなくなるという問題があった。
さらに、最近では、アルミナ担体に、酸化ニッケル、三酸化モリブデン、酸化マグネシウム及び五酸化リンを担持させた触媒が提案されている(特許文献1)。しかし、この方法でも、触媒再生時における摩耗強度の低下問題は解消せず、触媒の再生利用は困難であった。
Also, in recent years, due to increasing environmental problems, it is desired to recycle the hydrotreating catalyst in order to reduce catalyst waste. However, in the case of heavy oil hydrotreating, coke can be removed by calcination, but it is difficult to remove accumulated vanadium and nickel, so it is difficult to stably use the regenerated catalyst for a long time. In addition, there is a problem that the wear strength of the catalyst is lowered, and the catalyst particle gap is closed at the time of refilling after regeneration, and the operation becomes impossible at the time of reuse.
Furthermore, recently, a catalyst in which nickel oxide, molybdenum trioxide, magnesium oxide, and phosphorus pentoxide are supported on an alumina carrier has been proposed (Patent Document 1). However, even with this method, the problem of lowering the wear strength during catalyst regeneration has not been solved, and it has been difficult to recycle the catalyst.

特開平11−319567号公報JP 11-319567 A

本発明は、前記の課題を解決するためになされたもので、高活性で劣化が少なく、かつ触媒の摩耗強度が大きく、かつ重質油処理後の再生が容易な水素化処理触媒、その製造方法、及び該水素化処理触媒を用いて、重質油を水素化処理した後に、該触媒を再生した後も長期間安定して用いることができる重質油の水素化処理方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and is a hydrotreating catalyst that is highly active, has little deterioration, has a high catalyst wear strength, and can be easily regenerated after heavy oil treatment, and its production And a method for hydrotreating heavy oil that can be used stably for a long period of time after regenerating the catalyst after hydrotreating the heavy oil using the hydrotreating catalyst. With the goal.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、アルミナとマグネシアを含む担体に特定金属を担持した触媒を用いることが有効なことを見出し、本発明を完成したものである。   As a result of intensive studies to achieve the above object, the present inventors have found that it is effective to use a catalyst supporting a specific metal on a support containing alumina and magnesia, and have completed the present invention. is there.

すなわち、本発明は、
(1)マグネシウム化合物を有機酸に溶解しアルミナゲルに添加した後、400℃以上で焼成して得られた、アルミナとマグネシアを含む無機酸化物担体に、周期律表第6族金属、第9族又は第10族金属、及び第15族金属を、分子量200以上のポリエチレングリコールの存在下で担持し、400℃以上で焼成することを特徴とする重質油水素化処理触媒の製造方法、
(2)周期律表6族金属がモリブデン、第9族金属がコバルト、第10族金属がニッケル、第15族金属がリンである上記(1)に記載の重質油水素化処理触媒の製造方法、
(3)マグネシウムの含有量が、触媒全量基準で0.1質量%から10質量%である上記(1)又は(2)に記載の水素化処理触媒の製造方法、
(4)アルミナとマグネシアを含む無機酸化物担体に周期律表第6族金属、第9族又は第10族金属、及び第15族金属が担持されてなり、前記マグネシアの含有量が、触媒全量基準で0.1質量%から10質量%である重質油水素化処理触媒、
(5)上記(4)記載の触媒を用いて重質油水素化処理を行った後、焼成処理した再生重質油水素化処理触媒、
(6)バナジウムを0.1質量%から35質量%含む上記(5)記載の再生重質油水素化処理触媒、及び
(7)重質油を、上記(4)乃至(6)のいずれかに記載の触媒の存在下で水素化処理することを特徴とする重質油の水素化処理方法、
を提供するものである。
That is, the present invention
(1) A magnesium compound is dissolved in an organic acid and added to an alumina gel, and then fired at 400 ° C. or higher, and the inorganic oxide support containing alumina and magnesia is added to a Group 6 metal, 9th periodic table. A method for producing a heavy oil hydrotreating catalyst, comprising supporting a group 10 or group 10 metal and a group 15 metal in the presence of polyethylene glycol having a molecular weight of 200 or more, and calcining at 400 ° C or more,
(2) Production of heavy oil hydrotreating catalyst according to (1) above, wherein Group 6 metal of the periodic table is molybdenum, Group 9 metal is cobalt, Group 10 metal is nickel, and Group 15 metal is phosphorus. Method,
(3) The method for producing a hydrotreating catalyst according to the above (1) or (2), wherein the magnesium content is from 0.1% by mass to 10% by mass based on the total amount of the catalyst,
(4) A group 6 metal, a group 9 or 10 metal, and a group 15 metal on the periodic table are supported on an inorganic oxide support containing alumina and magnesia, and the content of the magnesia is the total amount of the catalyst. A heavy oil hydrotreating catalyst of 0.1% to 10% by weight on a basis ,
(5) A regenerated heavy oil hydrotreating catalyst that has been subjected to heavy oil hydrotreating using the catalyst described in (4) above and then calcined,
(6) The regenerated heavy oil hydrotreating catalyst according to (5) above containing 0.1% to 35% by weight of vanadium, and (7) heavy oil is any one of (4) to (6) above. Hydrotreating heavy oil, characterized in that hydrotreating is carried out in the presence of the catalyst described in 1.
Is to provide.

本発明によれば、予め調製されたアルミナとマグネシアを含む担体に、特定金属を担持した触媒を用いることによって、高活性で、かつ摩耗強度が向上した触媒が得られるので、触媒の再生使用が従来触媒より非常に容易となる。   According to the present invention, by using a catalyst containing a specific metal on a support containing alumina and magnesia prepared in advance, a catalyst having high activity and improved wear strength can be obtained. Much easier than conventional catalysts.

本発明における水素化処理触媒は、バナジウム、ニッケル等の金属分を不純物として含む残渣油など重質油の処理触媒であり、水素化脱硫、水素化脱窒素、水素化分解、水素化脱芳香族などの水素化反応に用いることができるが、特に水素化脱硫反応に有効に用いられる。
本発明における重質油水素化処理触媒は、アルミナとマグネシアを含む無機酸化物担体を調製し、該担体に特定の活性金属を担持して製造される。ここで、担体に用いられる無機酸化物としては、アルミナを含むことを必須とするが、それ以外の成分として例えばシリカ、チタニア、ジルコニアなどの無機酸化物を含んでいてもよく、或いはこれらの複合酸化物担体であってもよい。金属の分散性の観点からはアルミナ担体が好ましい。
本発明において、マグネシアを添加した無機酸化物担体を用いて、これに活性金属を担持することが必要であり、通常は担体調製時にマグネシアは添加され、このことにより触媒再生時の摩耗強度を著しく高めることができる。
The hydrotreating catalyst in the present invention is a treating catalyst for heavy oil such as residual oil containing metal components such as vanadium and nickel as impurities, and hydrodesulfurization, hydrodenitrogenation, hydrocracking, hydrodearomatic It can be used for hydrogenation reactions such as, but is particularly effective for hydrodesulfurization reactions.
The heavy oil hydrotreating catalyst in the present invention is produced by preparing an inorganic oxide support containing alumina and magnesia and supporting a specific active metal on the support. Here, it is essential that the inorganic oxide used for the carrier contains alumina, but other components such as inorganic oxides such as silica, titania and zirconia may be included, or a composite of these. It may be an oxide support. From the viewpoint of metal dispersibility, an alumina support is preferred.
In the present invention, it is necessary to support an active metal on an inorganic oxide support to which magnesia is added. Usually, magnesia is added at the time of preparing the support, which significantly increases the wear strength during catalyst regeneration. Can be increased.

前記触媒担体の調製方法は特に限定されないが、例えばアルミナゲルにマグネシウム化合物の水溶液等を添加混練させて乾燥、焼成することにより得られる。このようなマグネシウム化合物としては、塩基性炭酸マグネシウム、塩化マグネシウム、硝酸マグネシウム、硫酸マグネシウム等をマグネシア前駆体として挙げることができる。
本発明において、マグネシアを含む無機酸化物担体は、特に、塩基性炭酸マグネシウムを有機酸に溶解し、アルミナゲルに添加した後、400℃以上で焼成して調製することが好ましい。この場合、塩基性炭酸マグネシウムを溶解する有機酸としては、リンゴ酸、クエン酸などが好ましい。
また通常用いられる共沈法、ゲル混練法、ゾル・ゲル法によっても調製することができる。
The method for preparing the catalyst carrier is not particularly limited. For example, the catalyst carrier can be obtained by adding and kneading an aqueous solution of a magnesium compound to alumina gel, followed by drying and firing. Examples of such a magnesium compound include basic magnesium carbonate, magnesium chloride, magnesium nitrate, magnesium sulfate, and the like as magnesia precursors.
In the present invention, the inorganic oxide carrier containing magnesia is particularly preferably prepared by dissolving basic magnesium carbonate in an organic acid and adding it to an alumina gel, followed by baking at 400 ° C. or higher. In this case, malic acid, citric acid and the like are preferable as the organic acid that dissolves basic magnesium carbonate.
It can also be prepared by a commonly used coprecipitation method, gel kneading method, or sol-gel method.

特に、再生使用向け触媒の製造においては、アルミナゲル生成の段階でマグネシア前駆体を添加することが好ましい。アルミナ成型後に担体あるいは活性金属水溶液とともにマグネシウムを添加しても、担体との結合が少ないため再生時の摩耗強度の低下が大きく、また、モリブデン、ニッケル等と複合酸化物を形成しやすく、この場合には、マグネシアを多量に添加することで活性にも悪影響を与える場合がある。
前記担体におけるマグネシアの含有量は、触媒全量基準で0.1〜10質量%が好ましく、さらに好ましくは0.3〜5質量%、特に0.5〜2質量%が好ましい。0.1質量%以下では充分な摩耗強度が得られず、10質量%以上ではマグネシアがモリブデン、ニッケル等の担持金属と反応して複合酸化物を形成することにより活性が低下することがある。
In particular, in the production of a reusable catalyst, it is preferable to add a magnesia precursor at the stage of alumina gel formation. Even if magnesium is added together with the support or the active metal aqueous solution after molding the alumina, there is little bond with the support, so the wear strength during regeneration is greatly reduced, and it is easy to form composite oxides with molybdenum, nickel, etc. In some cases, adding a large amount of magnesia may adversely affect the activity.
The content of magnesia in the carrier is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, and particularly preferably 0.5 to 2% by mass based on the total amount of the catalyst. If it is 0.1% by mass or less, sufficient wear strength cannot be obtained, and if it is 10% by mass or more, magnesia reacts with a supported metal such as molybdenum or nickel to form a composite oxide, which may reduce the activity.

本発明の水素化処理触媒の担体形状は特に限定されず、円柱、球状、三〜六葉、ハニカム等目的とする反応形式に好適な形状を自由に選択することができる。特に固定床直接水素化脱硫反応装置では、円柱、三つ葉、四つ葉の形が好適に用いられる。   The support shape of the hydrotreating catalyst of the present invention is not particularly limited, and a shape suitable for a desired reaction mode such as a cylinder, a sphere, three to six leaves, and a honeycomb can be freely selected. In particular, in the fixed bed direct hydrodesulfurization reactor, a cylindrical shape, a three-leaf shape, and a four-leaf shape are preferably used.

前記担体は比表面積が通常、5〜500m2/g、好ましくは50〜300m2/gのものが用いられる。比表面積が5m2/g以上であると担持金属の分散性が確保され、500m2/g以下であると反応物の拡散が阻害されず好適である。細孔容積は、0.2〜1.5cm3/g、好ましくは0.3〜1.2cm3/gのものが用いられる。細孔容積が0.2cm3/g以上であると原料油中のメタル及びコークの析出により直ちに触媒細孔が埋まってしまうことがなく、また1.5cm3/g以下であると実用に耐え得る十分な触媒強度が確保され好ましい。また、細孔径は、100〜300Åの平均細孔径を有するものが好ましく、より好ましくは110〜200Åであり、さらに好ましくは120〜150Åである。これは反応物である石油留分の分子サイズに適した大きさであり十分に触媒細孔内部の反応活性点に拡散できるサイズである。これらの物性値については、細孔容積及び細孔分布は窒素による吸脱着法により測定し、BJH法[E.P.Barreff.L.G.Joyner and P.P.Halnda, J.Amer.Chem.Soc., 73,373(1951)]にて解析して求められる。比表面積は、窒素によるB.E.T.法により求められる。 The carrier having a specific surface area of usually 5 to 500 m 2 / g, preferably 50 to 300 m 2 / g is used. When the specific surface area is 5 m 2 / g or more, the dispersibility of the supported metal is secured, and when the specific surface area is 500 m 2 / g or less, diffusion of the reaction product is not hindered. The pore volume is 0.2 to 1.5 cm 3 / g, preferably 0.3 to 1.2 cm 3 / g. When the pore volume is 0.2 cm 3 / g or more, the catalyst pores are not immediately buried due to deposition of metal and coke in the raw material oil, and when the pore volume is 1.5 cm 3 / g or less, it is practically usable. Sufficient catalyst strength to be obtained is ensured and preferable. Further, the pore diameter is preferably one having an average pore diameter of 100 to 300 mm, more preferably 110 to 200 mm, and still more preferably 120 to 150 mm. This is a size suitable for the molecular size of the petroleum fraction that is a reactant, and is a size that can sufficiently diffuse to the reaction active sites inside the catalyst pores. Regarding these physical property values, the pore volume and pore distribution were measured by the adsorption / desorption method using nitrogen, and the BJH method [E. P. Barref. L. G. Joyner and P.M. P. Halnda, J .; Amer. Chem. Soc., 73, 373 (1951)]. The specific surface area is B. E. T.A. Required by law.

次に、本発明における水素化処理触媒は、前記担体に、周期表第6族金属、第9族又は第10族金属、及び第15族金属を担持させることにより製造される。ここで、第6族金属、第9族又は第10族金属、及び第15族金属は、それぞれが単独金属からなるものでもよく、複数金属を含むものであってもよい。
担持処理の含浸液に用いられる好ましい金属化合物としては、酸化物、硫酸塩、硝酸塩、炭酸塩、塩基性炭酸塩、蓚酸塩、酢酸塩、アンモニウム塩等が水溶液として用いられる。
Next, the hydrotreating catalyst in the present invention is produced by supporting the Group 6 metal, Group 9 or Group 10 metal, and Group 15 metal on the carrier. Here, each of the Group 6 metal, the Group 9 or Group 10 metal, and the Group 15 metal may be a single metal or may include a plurality of metals.
Preferable metal compounds used in the impregnation liquid for the supporting treatment include oxides, sulfates, nitrates, carbonates, basic carbonates, oxalates, acetates, ammonium salts and the like as aqueous solutions.

すなわち、触媒担体に担持される金属(担持金属)は、周期表第6族金属としてはモリブデン、タングステンなどが好ましく、特にモリブデンが好適に使用される。モリブデン化合物としては、三酸化モリブデン、パラモリブデン酸アンモニウムなどが好適である。タングステン化合物としては、三酸化タングステン、タングステン酸アンモニウムなどが好適である。
第9族金属としては、コバルトが好ましく使用される。コバルト化合物としては、炭酸コバルトや硝酸コバルトなどが好適に使用される。第10族金属としてはニッケルが好ましく使用される。ニッケル化合物としては、塩基性炭酸ニッケルや硝酸ニッケルなどが好ましい。
さらに、第15族金属としては、リンが好適に使用できる。このリン化合物としては、五酸化リン、正リン酸などが使用されるが、これを添加する場合は、触媒に担持させる金属化合物の水溶液の安定性を高めると同時に触媒成分として触媒活性を向上させる作用を有している。
That is, the metal (supported metal) supported on the catalyst carrier is preferably molybdenum, tungsten, or the like as the Group 6 metal of the periodic table, and molybdenum is particularly preferably used. As the molybdenum compound, molybdenum trioxide, ammonium paramolybdate and the like are suitable. As the tungsten compound, tungsten trioxide, ammonium tungstate and the like are suitable.
As the Group 9 metal, cobalt is preferably used. As the cobalt compound, cobalt carbonate or cobalt nitrate is preferably used. Nickel is preferably used as the Group 10 metal. As the nickel compound, basic nickel carbonate, nickel nitrate and the like are preferable.
Furthermore, phosphorus can be suitably used as the Group 15 metal. As this phosphorus compound, phosphorus pentoxide, orthophosphoric acid, or the like is used. When this is added, the stability of the aqueous solution of the metal compound supported on the catalyst is improved, and at the same time, the catalytic activity is improved as a catalyst component. Has an effect.

上記担持金属の化合物は、通常含浸法により担体に担持される。上記の第6族及び第9、10族金属ならびに第15族金属は別々に含浸してもよいが、同時に行なうのが効率的である。通常は、含浸液中の第6族金属、第9族金属、第10族金属及び第15族金属の含有量は、目標とする担持量から計算で求める。活性金属の担持量は、通常は、担体に対して、酸化物として好ましくは2〜35質量%、より好ましくは3〜25質量%の範囲である。
これらの金属を脱イオン水に溶解させた後、その含浸液の液量を、用いる担体の吸水量に等しくなるように調整した後、含浸させる。含浸時のpHは含浸液の安定性を考慮し、一般には酸性領域では1〜4、好ましくは1.5〜3.5、アルカリ領域では9〜12、好ましくは10〜11である。pHの調整は、有機酸やアンモニアなどを用いて行なうことができる。
The supported metal compound is usually supported on a carrier by an impregnation method. The Group 6 and 9, 10 and 10 metals and the Group 15 metal may be impregnated separately, but it is efficient to do so simultaneously. Usually, the contents of Group 6 metal, Group 9 metal, Group 10 metal and Group 15 metal in the impregnating solution are calculated from the target loading amount. The amount of the active metal supported is usually preferably 2 to 35% by mass, more preferably 3 to 25% by mass as an oxide based on the support.
After these metals are dissolved in deionized water, the amount of the impregnating liquid is adjusted to be equal to the water absorption amount of the carrier used, and then impregnated. In consideration of the stability of the impregnating solution, the pH at the time of impregnation is generally 1 to 4, preferably 1.5 to 3.5 in the acidic region, and 9 to 12, preferably 10 to 11 in the alkaline region. The pH can be adjusted using an organic acid or ammonia.

また、担持金属を担体に担持するに際しては、分子量が200以上のポリエチレングリコールの存在下で行うことが必要である。ポリエチレングリコールの分子量は、好ましくは分子量が200〜10,000、更に好ましくは分子量350〜6,000のものが用いられる。200以上であると触媒活性が確保され、10,000以下であると溶解性や担持工程の時間の観点から取扱いが容易となる。   Further, when supporting the supported metal on the support, it is necessary to carry out in the presence of polyethylene glycol having a molecular weight of 200 or more. The molecular weight of polyethylene glycol is preferably 200 to 10,000, more preferably 350 to 6,000. When it is 200 or more, the catalytic activity is secured, and when it is 10,000 or less, handling is easy from the viewpoint of solubility and time of the supporting process.

ポリエチレングリコールの添加量は、担体100質量部に対して好ましくは、0.5〜30質量部、更に好ましくは1〜15質量部である。0.5質量部以上であると添加効果が発揮され、30質量部以下であると担持が容易に行える。
担持方法は特に限定されないが、常圧含浸法、真空含浸法、塗布法等の公知の担持操作及びこれらを組み合わせた方法が用いられる。
The amount of polyethylene glycol added is preferably 0.5 to 30 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the carrier. When the amount is 0.5 part by mass or more, the effect of addition is exhibited, and when it is 30 parts by mass or less, the loading can be easily performed.
The supporting method is not particularly limited, and a known supporting operation such as an atmospheric pressure impregnation method, a vacuum impregnation method, a coating method, or a combination of these is used.

さらに、上記によりマグネシウムを添加して得られた担体は、400℃以上の温度で焼成することが必要である。ただし、逐次的に含浸を実施する場合は、含浸の度に400℃以上の温度で熱処理を行うことも可能であるし、複数の含浸を行った後、最後に400℃以上の温度で熱処理を行うこともできる。また、熱処理時間としては2〜48時間程度、さらに好ましくは3〜16時間程度行うことが好ましい。
焼成温度は、好ましくは400℃〜700℃で空気あるいは酸素雰囲気下行う。好ましくは、上記のポリエチレングリコールによる触媒中の残留炭素分が1.0質量%以下になるような条件で行う。
Further, the carrier obtained by adding magnesium as described above needs to be fired at a temperature of 400 ° C. or higher. However, when the impregnation is performed sequentially, it is possible to perform heat treatment at a temperature of 400 ° C. or more for each impregnation, and after performing a plurality of impregnations, finally heat treatment at a temperature of 400 ° C. or more. It can also be done. The heat treatment time is preferably about 2 to 48 hours, more preferably about 3 to 16 hours.
The firing temperature is preferably 400 ° C. to 700 ° C. in an air or oxygen atmosphere. Preferably, it is carried out under conditions such that the residual carbon content in the catalyst with the polyethylene glycol is 1.0% by mass or less.

担持金属の一つにニッケルを使用した場合、担体成分であるアルミナとスピネルを形成し不活性化することが知られている。リン化合物はこのニッケルのスピネル化を抑制する作用があり、触媒活性を向上させるが、前記ポリエチレングリコールを用いないでリン化合物を多量に用いると、ニッケル−モリブデン−リンの複合酸化物が生成するため、逆に触媒活性が低下することになる。本発明のように前記ポリエチレングリコールを添加した金属化合物水溶液を用いた場合には、リン化合物の添加量を3〜5質量%と増加させることができ、触媒活性を飛躍的に向上させることができる。   It is known that when nickel is used as one of the supported metals, spinel is formed and deactivated with alumina as a carrier component. The phosphorus compound has an action of suppressing the spinelization of nickel and improves the catalytic activity. However, when a large amount of the phosphorus compound is used without using the polyethylene glycol, a nickel-molybdenum-phosphorus composite oxide is formed. On the contrary, the catalytic activity is lowered. When the metal compound aqueous solution to which polyethylene glycol is added as in the present invention is used, the addition amount of the phosphorus compound can be increased to 3 to 5% by mass, and the catalytic activity can be greatly improved. .

本発明における水素化処理触媒は、触媒全量基準で、酸化ニッケルを1〜10質量%、三酸化モリブデンを5〜20質量%及び五酸化リンを3〜5質量%担持していることが好ましい。酸化ニッケルが1質量%以上であると十分な活性を発揮し、10質量%以下であるとメタルの凝集により低活性化することがなく好適である。三酸化モリブデンが5質量%以上であると十分な活性を発揮し、20質量%以下であるとメタルの凝集により低活性化することがなく好適である。五酸化リンが3質量%以上であるとスピネル抑制効果が十分に発揮され、5質量%以下であるとモリブデン、ニッケル等と複合酸化物を形成し低活性化することがなく好適である。   The hydrotreating catalyst in the present invention preferably supports 1 to 10% by mass of nickel oxide, 5 to 20% by mass of molybdenum trioxide, and 3 to 5% by mass of phosphorus pentoxide based on the total amount of the catalyst. When the nickel oxide content is 1% by mass or more, sufficient activity is exhibited, and when the nickel oxide content is 10% by mass or less, the activation is not reduced due to metal aggregation. When molybdenum trioxide is 5% by mass or more, sufficient activity is exhibited, and when it is 20% by mass or less, low activation due to metal aggregation is preferable. If the phosphorus pentoxide is 3% by mass or more, the effect of suppressing spinel is sufficiently exhibited, and if it is 5% by mass or less, a composite oxide with molybdenum, nickel and the like is not formed and the activation is low.

さらに、本発明における水素化処理方法は、前記触媒の存在下で、重質油の水素化脱硫などに適用される。水素化処理に用いられる重質油としては、常圧残油、減圧残油、減圧軽油、脱蝋減圧残油、アスファルテン油、タールサンド油及びこれらを一旦予備的に水素化処理した残油等が挙げられる。
本発明の触媒を用いて水素化処理を行うに際しては、水素化処理反応を行う前に触媒の活性化若しくは安定化処理として予備硫化処理を行うことが好ましい。この予備硫化処理は予備硫化剤として、硫化水素、二硫化炭素、チオフェン、ジメチルジスルフィド(DMDS)等を使用し、200〜400℃の温度範囲で行われる。
Furthermore, the hydrotreating method in the present invention is applied to hydrodesulfurization of heavy oil in the presence of the catalyst. Heavy oils used for hydroprocessing include atmospheric residual oil, vacuum residual oil, vacuum gas oil, dewaxed vacuum residual oil, asphaltene oil, tar sand oil, and residual oil that has been pre-hydrogenated once. Is mentioned.
When hydrotreating using the catalyst of the present invention, it is preferable to perform a presulfidation treatment as a catalyst activation or stabilization treatment before the hydrotreating reaction. This preliminary sulfidation treatment is performed in a temperature range of 200 to 400 ° C. using hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide (DMDS) or the like as a preliminary sulfiding agent.

本発明における水素化処理の反応条件は対象となる原料油の種類により異なるが、反応温度は好ましくは200〜500℃の範囲に選定する。反応圧力は、1.47〜24.5MPa(15〜250kg/cm2)の範囲に選定するのが好適である。
反応形式としては、特に制限はないが、通常は、固定床、移動床、沸騰床、懸濁床等の種々のプロセスが採用され、好ましくは経済性から固定床による流通方式が好適に採用される。こうした流通方式の場合には、LHSV(液空間速度)を0.1〜45(1/hr)の範囲に選定するのがよい。
水素ガスとオイルの供給割合(水素/オイル比)は通常、50〜2,000Nm3/キロリットルの範囲に選定するのが好適である。
以上のように、本発明の水素化処理触媒を用いて重質油の水素化脱硫処理を効率よく行うことができる。
The reaction conditions for hydrotreating in the present invention vary depending on the type of the target feedstock, but the reaction temperature is preferably selected in the range of 200 to 500 ° C. The reaction pressure is preferably selected in the range of 1.47 to 24.5 MPa (15 to 250 kg / cm 2 ).
The reaction format is not particularly limited, but usually, various processes such as a fixed bed, a moving bed, a boiling bed, and a suspension bed are adopted, and a flow system using a fixed bed is preferably adopted from the viewpoint of economy. The In the case of such a distribution method, LHSV (liquid space velocity) is preferably selected in the range of 0.1 to 45 (1 / hr).
The supply ratio of hydrogen gas and oil (hydrogen / oil ratio) is usually preferably selected in the range of 50 to 2,000 Nm 3 / kiloliter.
As described above, hydrodesulfurization treatment of heavy oil can be efficiently performed using the hydrotreating catalyst of the present invention.

以下、本発明の実施例及びその比較例によって本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
触媒Aの製造(担体成型前にマグネシア担持)
塩基性炭酸マグネシウムを酸化マグネシウム相当量で14.0質量部と、リンゴ酸21.5質量部と、イオン交換水100質量部を加え、水溶液pHを約5.0に調整して溶解させた。このマグネシウム水溶夜をアルミナゲルに加えてよく混合し、成型し、120℃で乾燥後、550℃で焼成して、マグネシア含有アルミナ担体Aを得た。
一方、三酸化モリブデン165.0質量部及び塩基性炭酸ニッケルをNiO相当量で39.3質量部をイオン交換水500質量部に溶解させた。溶解に際しては80〜90℃に加温し、1時間の攪拌を行った。次に、リン酸を五酸化リン相当量で50.8質量部加え、溶解を確認した後、このとき水溶液温度は約40℃に保った。次にポリエチレングリコール(分子量400)を60質量部加えることにより含浸液を調製した。
次にこの含浸液を、上記マグネシア含有アルミナ担体Aの1,000質量部の吸収率に見合った量に調整し、常圧含浸法にて担持した。この担持物を120℃で3時間乾燥して、空気中で550℃、5時間焼成して触媒Aを得た。
こうして得られた触媒Aは、乾燥質量当たり、NiOとして3.0質量%、MoO3として13.4質量%、MgOとして1.0質量%、P25として3.6質量%を含有するものであり、平均細孔径は134Å、細孔容積は0.55ミリリットル/g、比表面積は183m2/gであった。
Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof, but the present invention is not limited to these examples.
Example 1
Production of catalyst A (supported magnesia before carrier molding)
Basic magnesium carbonate was dissolved in an amount equivalent to magnesium oxide by adding 14.0 parts by mass, 21.5 parts by mass of malic acid, and 100 parts by mass of ion-exchanged water, adjusting the pH of the aqueous solution to about 5.0. This magnesium aqueous night was added to the alumina gel, mixed well, molded, dried at 120 ° C., and then fired at 550 ° C. to obtain a magnesia-containing alumina carrier A.
On the other hand, 165.0 parts by mass of molybdenum trioxide and 39.3 parts by mass of basic nickel carbonate in an amount equivalent to NiO were dissolved in 500 parts by mass of ion-exchanged water. Upon dissolution, the mixture was heated to 80 to 90 ° C. and stirred for 1 hour. Next, 50.8 parts by mass of phosphoric acid in an amount equivalent to phosphorus pentoxide was added and dissolution was confirmed. At this time, the temperature of the aqueous solution was kept at about 40 ° C. Next, an impregnating solution was prepared by adding 60 parts by mass of polyethylene glycol (molecular weight 400).
Next, this impregnation liquid was adjusted to an amount corresponding to the absorption rate of 1,000 parts by mass of the magnesia-containing alumina support A, and supported by the normal pressure impregnation method. This support was dried at 120 ° C. for 3 hours and calcined in air at 550 ° C. for 5 hours to obtain Catalyst A.
The catalyst A thus obtained contains 3.0% by mass as NiO, 13.4% by mass as MoO 3 , 1.0% by mass as MgO, and 3.6% by mass as P 2 O 5 per dry mass. are those with an average pore size of 134A, a pore volume of 0.55 ml / g, a specific surface area of 183m 2 / g.

実施例2
触媒Bの製造(担体成型前にマグネシア担持)
実施例1で、酸化マグネシウム相当量を28.0質量部とリンゴ酸43質量部とした以外は同様の操作を行い、マグネシア含有アルミナ担体Bを得た。
さらに、このマグネシア含有アルミナ担体Bに実施例1と同様の操作でニッケルーモリブデンーリンを担持して触媒Bを得た。
こうして得た触媒Bは、乾燥質量当たり、NiOとして3.2質量%、MoO3として13.2質量%、MgOとして1.9質量%、P25として3.8質量%を含有するものであり、平均細孔径は136Å、細孔容積は0.55ミリリットル/g、比表面積は185m2/gであった。
Example 2
Production of catalyst B (supporting magnesia before carrier molding)
A magnesia-containing alumina carrier B was obtained in the same manner as in Example 1 except that the equivalent amount of magnesium oxide was changed to 28.0 parts by mass and malic acid 43 parts by mass.
Further, a catalyst B was obtained by supporting nickel-molybdenum-phosphorus on this magnesia-containing alumina support B in the same manner as in Example 1.
Catalyst B thus obtained contains 3.2% by mass as NiO, 13.2% by mass as MoO 3 , 1.9% by mass as MgO, and 3.8% by mass as P 2 O 5 per dry mass. The average pore diameter was 136 mm, the pore volume was 0.55 ml / g, and the specific surface area was 185 m 2 / g.

比較例1
触媒Cの製造(担体成型後にマグネシア担持)
三酸化モリブデン165.0質量部、及びNiO相当量で39.3質量部の塩基性炭酸ニッケルをイオン交換水500質量部に溶解させた。溶解に際しては80〜90℃に加温し、1時間の攪拌を行った。次に、リン酸を五酸化リン相当量で50.8質量部加え、溶解を確認した後、塩基性炭酸マグネシウムを酸化マグネシウム相当量で14.0質量部加え、更に水溶液のpHを約2.0に調整(調整範囲としては好ましくは1.0<pH≦2.0)するためにリンゴ酸を加えた。このとき水溶液温度は約40℃に保った。
次にポリエチレングリコール(分子量400)を60質量部加えた。次にこの含浸液を担体の吸収率に見合った量に調整し、前記性状を有するアルミナ担体1,000質量部に常圧含浸法にて担持した。この担持物を120℃で3時間乾燥して、空気中で550℃、5時間焼成して触媒Cを得た。
こうして得た触媒Cは、乾燥質量当たり、NiOとして3.1質量%、MoO3として13.1質量%、MgOとして1.0質量%、P25として4.0質量%を含有するものであり、平均細孔径は130Å、細孔容積は0.54ミリリットル/g、比表面積は187m2/gであった。
Comparative Example 1
Production of catalyst C (supporting magnesia after carrier molding)
165.0 parts by mass of molybdenum trioxide and 39.3 parts by mass of NiO equivalent amount of basic nickel carbonate were dissolved in 500 parts by mass of ion-exchanged water. Upon dissolution, the mixture was heated to 80 to 90 ° C. and stirred for 1 hour. Next, 50.8 parts by mass of phosphoric acid was added in an amount equivalent to phosphorus pentoxide, and after dissolution was confirmed, 14.0 parts by mass of basic magnesium carbonate was added in an amount equivalent to magnesium oxide, and the pH of the aqueous solution was about 2. Malic acid was added to adjust to 0 (preferably the adjustment range is 1.0 <pH ≦ 2.0). At this time, the temperature of the aqueous solution was kept at about 40 ° C.
Next, 60 parts by mass of polyethylene glycol (molecular weight 400) was added. Next, the impregnation liquid was adjusted to an amount corresponding to the absorption rate of the carrier, and supported on 1,000 parts by mass of the alumina carrier having the above properties by the atmospheric pressure impregnation method. This support was dried at 120 ° C. for 3 hours and calcined in air at 550 ° C. for 5 hours to obtain Catalyst C.
Catalyst C thus obtained contains 3.1% by mass as NiO, 13.1% by mass as MoO 3 , 1.0% by mass as MgO, and 4.0% by mass as P 2 O 5 per dry mass. The average pore diameter was 130 mm, the pore volume was 0.54 ml / g, and the specific surface area was 187 m 2 / g.

比較例2
触媒Dの製造
比較例1にて、マグネシウムを添加しない以外は、同様の操作を行い、触媒Dを得た。
こうして得た触媒Dは、乾燥質量当たり、NiOとして3.0質量%、MoO3として13.2質量%、P25として3.9質量%を含有するものであり、平均細孔径は128Å、細孔容積は0.58ミリリットル/g、比表面積は180m2/gであった。
Comparative Example 2
Production of Catalyst D A catalyst D was obtained in Comparative Example 1 except that magnesium was not added.
The catalyst D thus obtained contains 3.0% by mass as NiO, 13.2% by mass as MoO 3 , and 3.9% by mass as P 2 O 5 per dry mass, and the average pore diameter is 128%. The pore volume was 0.58 ml / g, and the specific surface area was 180 m 2 / g.

実施例3及び比較例3,4
<水素化脱硫処理性能(初期の活性)の評価>
触媒A、C,Dについて、触媒充填量50cc規模の高圧固定床流通式反応装置を用い、第1表に示す中東系の重質原油から得られる常圧残油を原料として、初期脱硫性能の評価を行い、マグネシウム添加効果と添加方法の影響を比較評価した。なお、本発明の触媒は脱硫触媒であるため市販されている脱メタル触媒と組み合わせることにより評価した。
Example 3 and Comparative Examples 3 and 4
<Evaluation of hydrodesulfurization treatment performance (initial activity)>
For catalysts A, C, and D, using a high-pressure fixed-bed flow reactor with a catalyst loading of 50 cc, using normal pressure residual oil obtained from Middle Eastern heavy crude oil shown in Table 1 as the raw material, Evaluation was performed, and the effect of the magnesium addition and the influence of the addition method were compared and evaluated. In addition, since the catalyst of this invention is a desulfurization catalyst, it evaluated by combining with the commercially available demetallation catalyst.

Figure 0004878736
Figure 0004878736

反応に先立って、前処理として、該触媒にLGO(軽油)に、硫化剤であるDMDSを添加し、原料油(原料油中の硫黄濃度は2.5質量%に調整)を、水素ガスとともに250℃で24時間流通して、予備硫化した。
その後、該触媒に第1表に示す原料油を水素ガスとともに流通して以下の条件で水素化脱硫拠理を行った。
反応条件
水素分圧: 13.2MPa(135kg/cm2
液空間速度: 0.2(1/hr)
水素/オイル比: 700Nm3/キロリットル
Prior to the reaction, as a pretreatment, DMDS as a sulfiding agent is added to the LGO (light oil) to the catalyst, and the raw oil (the sulfur concentration in the raw oil is adjusted to 2.5 mass%) together with hydrogen gas. This was pre-sulfided by flowing at 250 ° C. for 24 hours.
Thereafter, the raw material oil shown in Table 1 was passed through the catalyst together with hydrogen gas, and hydrodesulfurization was performed under the following conditions.
Reaction conditions Hydrogen partial pressure: 13.2 MPa (135 kg / cm 2 )
Liquid space velocity: 0.2 (1 / hr)
Hydrogen / oil ratio: 700 Nm 3 / kiloliter

評価結果を第2表に示す。この結果より、担体成型前(担体調製時)にマグネシウムを添加した本発明の触媒A(実施例3)は、初期の水素化脱硫性能が高いことが分かる。なお、担体成型後にマグネシウムを添加した触媒C(比較例3)の初期の脱硫性能も実施例3と同程度に高いが、後述するごとく、比較例3は再生後の脱硫性能は非常に劣るものである。   The evaluation results are shown in Table 2. From this result, it can be seen that the catalyst A (Example 3) of the present invention to which magnesium was added before carrier molding (at the time of carrier preparation) has high initial hydrodesulfurization performance. In addition, although the initial desulfurization performance of the catalyst C (Comparative Example 3) added with magnesium after molding the support is as high as that of Example 3, as described later, Comparative Example 3 has very poor desulfurization performance after regeneration. It is.

Figure 0004878736
Figure 0004878736

実施例4,5及び比較例5、6
<再生触媒の摩耗強度の評価>
(1)使用済み触媒の製造
触媒A,B,C及びDの各触媒を用いて、固定床反応器を用いて第1表に示す常圧残油の水素化脱硫拠理を4,000時間行った。脱硫処理は生成油の硫黄分が一定になるように反応温度を調整しながら続けた。反応終了後、反応器中の触媒を軽油を通油することにより洗浄し、さらに窒素ガスを流通させて乾燥した触媒を抜出し、脱メタル触媒をふるいにより分離し使用済み触媒を得た。
Examples 4 and 5 and Comparative Examples 5 and 6
<Evaluation of abrasion strength of regenerated catalyst>
(1) Manufacture of spent catalyst Using catalyst A, B, C and D, the hydrodesulfurization rationale for atmospheric residue shown in Table 1 using a fixed bed reactor for 4,000 hours went. The desulfurization treatment was continued while adjusting the reaction temperature so that the sulfur content of the product oil was constant. After completion of the reaction, the catalyst in the reactor was washed by passing light oil through, and further, nitrogen gas was circulated to extract the dried catalyst, and the demetalized catalyst was separated by sieving to obtain a used catalyst.

(2)再生触媒の製造
上記で得られた使用済み各触媒を、回転式焼成炉(回転速度:5回転/分)にて100%窒素ガスを100cc/分で供給しながら300℃で1時間処理した。その後、50%窒素ガス、50%空気の混合ガスを100cc/分で供給しながら、450℃で3時間焼成した。得られた触媒を冷却後ふるい分けにより塊状物と粉化物を除去し、各再生触媒を得た。
(3)上記で得られた使用済み各触媒及び再生触媒について、組成分析(質量%)をするとともに、摩耗強度を測定した。なお、摩耗強度は、下記に示す粉化率を測定することにより求めた。
粉化率の測定法:
触媒を直径30cmの円筒形の回転体内に100g封入し、30分間、60rpmで回転させた。その後、触媒を取り出し、20メッシュのふるいでふるい、残った触媒の重量を測定した。触媒重量の減少量を粉化率として求めた。その値が小さい程、摩耗強度は大きいことを示している。
測定結果を第3表に示す。なお、比較のために、新触媒A〜Dについての組成及び摩耗強度についても併記した。
(2) Production of regenerated catalyst For each used catalyst obtained above, one hour at 300 ° C. while supplying 100% nitrogen gas at 100 cc / min in a rotary calciner (rotation speed: 5 rev / min) Processed. Thereafter, the mixture was calcined at 450 ° C. for 3 hours while supplying a mixed gas of 50% nitrogen gas and 50% air at 100 cc / min. After the obtained catalyst was cooled, the lump and powder were removed by sieving to obtain each regenerated catalyst.
(3) About each used catalyst and regenerated catalyst obtained above, while performing a composition analysis (mass%), the abrasion strength was measured. In addition, abrasion strength was calculated | required by measuring the powdering rate shown below.
Measuring method of powdering rate:
100 g of the catalyst was sealed in a cylindrical rotating body having a diameter of 30 cm and rotated at 60 rpm for 30 minutes. Thereafter, the catalyst was taken out, sieved with a 20 mesh sieve, and the weight of the remaining catalyst was measured. The reduction amount of the catalyst weight was determined as the powdering rate. The smaller the value, the greater the wear strength.
The measurement results are shown in Table 3. For comparison, the composition and wear strength of the new catalysts A to D are also shown.

Figure 0004878736
上記の結果より、本発明における実施例4,5の再生触媒では、比較例5,6の再生触媒に比べて、粉化率は小さく摩耗強度に優れていることが分かる。
Figure 0004878736
From the above results, it can be seen that the regenerated catalysts of Examples 4 and 5 in the present invention have a smaller powdering rate and superior wear strength than the regenerated catalysts of Comparative Examples 5 and 6.

実施例6及び比較例7,8
<再生触媒の水素化脱硫処理性能評価>
実施例4及び比較例5、6において製造した各再生触媒について、小型高圧固定床反応器に、その各50ccを充填した。新触媒と同様の反応条件(実施例3及び比較例3,4参照)で、水素化脱硫反応を行った。用いた原料油の性状を第4表に示す。また、脱硫性能の評価結果を第5表に示す。
Example 6 and Comparative Examples 7 and 8
<Evaluation of hydrodesulfurization performance of regenerated catalyst>
For each regenerated catalyst produced in Example 4 and Comparative Examples 5 and 6, 50 cc of each was packed in a small high-pressure fixed bed reactor. The hydrodesulfurization reaction was performed under the same reaction conditions as the new catalyst (see Example 3 and Comparative Examples 3 and 4). Table 4 shows the properties of the feedstock used. Table 5 shows the evaluation results of the desulfurization performance.

Figure 0004878736
Figure 0004878736

Figure 0004878736
Figure 0004878736

上記の結果より、マグネシアをアルミナゲルに添加して調製した担体を用いた本発明の実施例6では、再生後においても脱硫性能が高く、しかも、実施例4で説明した如く再生触媒の触媒摩耗強度も大きい。このことは、マグネシアを担体に予め添加しておくことで重油中のバナジウムとアルミナの反応が抑制されるためと考えられる。   From the above results, Example 6 of the present invention using a support prepared by adding magnesia to alumina gel has high desulfurization performance even after regeneration, and as described in Example 4, the catalyst wear of the regenerated catalyst. The strength is also great. This is presumably because the reaction between vanadium and heavy alumina in heavy oil is suppressed by adding magnesia to the carrier in advance.

本発明における水素化処理触媒は、重質油の水素化処理に用いられ、特に、再生触媒としての使用に適する。

The hydrotreating catalyst in the present invention is used for hydrotreating heavy oil, and is particularly suitable for use as a regenerated catalyst.

Claims (7)

マグネシウム化合物を有機酸に溶解しアルミナゲルに添加した後、400℃以上で焼成して得られた、アルミナとマグネシアを含む無機酸化物担体に、周期律表第6族金属、第9族又は第10族金属、及び第15族金属を、分子量200以上のポリエチレングリコールの存在下で担持し、400℃以上で焼成することを特徴とする重質油水素化処理触媒の製造方法。   An inorganic oxide carrier containing alumina and magnesia obtained by dissolving a magnesium compound in an organic acid and adding it to an alumina gel, followed by firing at 400 ° C. or higher is applied to a group 6 metal, a group 9 or a group in the periodic table. A method for producing a heavy oil hydrotreating catalyst, comprising supporting a Group 10 metal and a Group 15 metal in the presence of polyethylene glycol having a molecular weight of 200 or more and calcining at 400 ° C or more. 周期律表6族金属がモリブデン、第9族金属がコバルト、第10族金属がニッケル、第15族金属がリンである請求項1に記載の重質油水素化処理触媒の製造方法。   The method for producing a heavy oil hydrotreating catalyst according to claim 1, wherein the Group 6 metal of the periodic table is molybdenum, the Group 9 metal is cobalt, the Group 10 metal is nickel, and the Group 15 metal is phosphorus. マグネシアの含有量が、触媒全量基準で0.1質量%から10質量%である請求項1又は2に記載の水素化処理触媒の製造方法。   The method for producing a hydrotreating catalyst according to claim 1 or 2, wherein the content of magnesia is 0.1 mass% to 10 mass% based on the total amount of the catalyst. アルミナとマグネシアを含む無機酸化物担体に周期律表第6族金属、第9族又は第10族金属、及び第15族金属が担持されてなり、
前記マグネシアの含有量が、触媒全量基準で0.1質量%から10質量%である重質油水素化処理触媒。
Periodic table group 6 metal, group 9 or group 10 metal, and group 15 metal are supported on an inorganic oxide support containing alumina and magnesia,
A heavy oil hydrotreating catalyst, wherein the content of magnesia is from 0.1% by mass to 10% by mass based on the total amount of the catalyst.
請求項4記載の触媒を用いて重質油の水素化処理を行った後、焼成処理した再生重質油水素化処理触媒。   A regenerated heavy oil hydrotreating catalyst obtained by subjecting heavy oil to hydrogenation treatment using the catalyst according to claim 4 and then calcining. バナジウムを0.1質量%から35質量%含む請求項5記載の再生重質油水素化処理触媒。   The regenerated heavy oil hydrotreating catalyst according to claim 5, containing 0.1 mass% to 35 mass% of vanadium. 重質油を、請求項4乃至6のいずれかに記載の触媒の存在下で水素化処理することを特徴とする重質油の水素化処理方法。   A method for hydrotreating heavy oil, comprising hydrotreating heavy oil in the presence of the catalyst according to any one of claims 4 to 6.
JP2004066795A 2004-03-10 2004-03-10 Heavy oil hydrotreating catalyst and method for producing the same Expired - Fee Related JP4878736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066795A JP4878736B2 (en) 2004-03-10 2004-03-10 Heavy oil hydrotreating catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066795A JP4878736B2 (en) 2004-03-10 2004-03-10 Heavy oil hydrotreating catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005254083A JP2005254083A (en) 2005-09-22
JP4878736B2 true JP4878736B2 (en) 2012-02-15

Family

ID=35080344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066795A Expired - Fee Related JP4878736B2 (en) 2004-03-10 2004-03-10 Heavy oil hydrotreating catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4878736B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168257A (en) * 2007-01-15 2008-07-24 Petroleum Energy Center Hydrogenation catalyst, its manufacturing method, and hydrogenation treatment catalyst, its production method and hydrogenation treatment method of heavy oil
EP2470300B1 (en) * 2009-08-24 2022-10-05 Albemarle Europe Sprl. Solutions and catalysts comprising group vi metal, group viii metal, phosphorous and an additive
US20150251170A1 (en) * 2012-10-10 2015-09-10 Albemarle Europe Sprl Supported Hydrotreating Catalysts Having Enhanced Activity
RU2708643C1 (en) * 2019-05-15 2019-12-10 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" (ООО "РН-ЦИР") Catalytic cracking gasoline hydrotreating catalyst and a method for production thereof
CN111905838A (en) * 2020-08-19 2020-11-10 中化泉州石化有限公司 Method for preparing hydrodemetallization catalyst by using residual oil hydrogenation deactivated catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190241A (en) * 1984-03-12 1985-09-27 Nippon Oil Co Ltd Regeneration of waste hydrogenation catalyst
EP0770426B1 (en) * 1995-10-27 2003-05-14 Akzo Nobel N.V. Process for preparing a hydroprocessing catalyst from waste hydroprocessing catalyst
JPH11319567A (en) * 1998-05-11 1999-11-24 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst
JP4748497B2 (en) * 1999-07-05 2011-08-17 アルベマーレ ネザーランズ ビー.ブイ. Method for regenerating additive-containing catalyst
US6903048B2 (en) * 2001-06-27 2005-06-07 Japan Energy Corporation Method for producing hydro-refining catalyst

Also Published As

Publication number Publication date
JP2005254083A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP3606590B2 (en) Hydrogenation catalyst, its preparation and its use
JP5160705B2 (en) Novel mixed metal catalyst, its preparation by coprecipitation and its use
JP5140817B2 (en) Process for hydrorefining and / or hydroconversion of hydrocarbon feedstock using catalyst
CA2360121C (en) Hydroprocessing catalyst and use thereof
JP2002536166A (en) Manufacture of hydrotreating catalyst
EP3065867B1 (en) Process for preparing a hydrotreating catalyst
JPWO2003006156A1 (en) Hydrorefining catalyst, carrier used therefor and production method
JP4369871B2 (en) Heavy material HPC process using a mixture of catalysts
US7186329B2 (en) High-macropore hydroprocessing catalyst and its use
TW201427769A (en) Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
US4394302A (en) Hydrodesulfurization catalyst on lithium-containing support and method for its preparation
KR20200034753A (en) Hydration catalyst using titanium-containing carrier and sulfur-containing organic additive
JP4878736B2 (en) Heavy oil hydrotreating catalyst and method for producing the same
KR20200035067A (en) Hydration catalyst using titanium-containing carrier and organic additives
RU2634705C2 (en) Selenium-containing hydrotreating catalyst, its use and preparation method
JP5825572B2 (en) Method for regenerating hydrotreating catalyst
JP2008168257A (en) Hydrogenation catalyst, its manufacturing method, and hydrogenation treatment catalyst, its production method and hydrogenation treatment method of heavy oil
JPH11319567A (en) Hydrodesulfurization catalyst
JP2006061845A (en) Hydrogenation catalyst for heavy oil and manufacturing method thereof
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP2024514932A (en) Phosphorus and sodium containing catalyst and its use in hydrodesulfurization processes - Patents.com
JP3802939B2 (en) Catalyst for hydrotreating
RU2610869C2 (en) Hydroprocessing catalyst and methods of making and using such catalyst
JP4519379B2 (en) Heavy hydrocarbon oil hydrotreating catalyst
JP2005013848A (en) Carrier for hydrogenation catalyst, hydrogenation catalyst of hydrocarbon oil and hydrogenation method using the hydrogenation catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

R150 Certificate of patent or registration of utility model

Ref document number: 4878736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees