JP4369871B2 - Heavy material HPC process using a mixture of catalysts - Google Patents
Heavy material HPC process using a mixture of catalysts Download PDFInfo
- Publication number
- JP4369871B2 JP4369871B2 JP2004558008A JP2004558008A JP4369871B2 JP 4369871 B2 JP4369871 B2 JP 4369871B2 JP 2004558008 A JP2004558008 A JP 2004558008A JP 2004558008 A JP2004558008 A JP 2004558008A JP 4369871 B2 JP4369871 B2 JP 4369871B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- weight
- pore volume
- diameter
- total pore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 244
- 239000000203 mixture Substances 0.000 title claims description 60
- 238000000034 method Methods 0.000 title claims description 49
- 239000000463 material Substances 0.000 title description 9
- 239000011148 porous material Substances 0.000 claims description 110
- 229910052751 metal Inorganic materials 0.000 claims description 53
- 239000002184 metal Substances 0.000 claims description 53
- 239000004215 Carbon black (E152) Substances 0.000 claims description 21
- 229930195733 hydrocarbon Natural products 0.000 claims description 21
- 150000002430 hydrocarbons Chemical class 0.000 claims description 21
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 239000011593 sulfur Substances 0.000 claims description 9
- 238000009835 boiling Methods 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 239000004615 ingredient Substances 0.000 claims 4
- 229910052738 indium Inorganic materials 0.000 claims 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 45
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 42
- 239000000243 solution Substances 0.000 description 23
- 239000000377 silicon dioxide Substances 0.000 description 22
- 239000003921 oil Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 17
- 239000000499 gel Substances 0.000 description 16
- 239000013049 sediment Substances 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 230000003197 catalytic effect Effects 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 238000005470 impregnation Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000011574 phosphorus Substances 0.000 description 9
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 229910052698 phosphorus Inorganic materials 0.000 description 8
- -1 VIB metals Chemical class 0.000 description 7
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 229910001388 sodium aluminate Inorganic materials 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000004115 Sodium Silicate Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 150000002823 nitrates Chemical class 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052911 sodium silicate Inorganic materials 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000012378 ammonium molybdate tetrahydrate Substances 0.000 description 3
- FIXLYHHVMHXSCP-UHFFFAOYSA-H azane;dihydroxy(dioxo)molybdenum;trioxomolybdenum;tetrahydrate Chemical compound N.N.N.N.N.N.O.O.O.O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O FIXLYHHVMHXSCP-UHFFFAOYSA-H 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000004517 catalytic hydrocracking Methods 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QGAVSDVURUSLQK-UHFFFAOYSA-N ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- XUFUCDNVOXXQQC-UHFFFAOYSA-L azane;hydroxy-(hydroxy(dioxo)molybdenio)oxy-dioxomolybdenum Chemical compound N.N.O[Mo](=O)(=O)O[Mo](O)(=O)=O XUFUCDNVOXXQQC-UHFFFAOYSA-L 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- XVBXOXSGLCFKBN-UHFFFAOYSA-N ethane-1,2-diamine tetrahydrochloride Chemical compound Cl.Cl.Cl.Cl.NCCN XVBXOXSGLCFKBN-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/02—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
- C10G49/04—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、重質炭化水素油を水素化処理するための方法に関し、特に、2つの触媒の混合物を使用して重質炭化水素油の水素化処理における有利な効果を得るところの方法に関する。本発明はまた、そのような方法での使用に適する触媒の混合物に関する。 The present invention relates to a process for hydrotreating heavy hydrocarbon oils, and more particularly to a process that uses a mixture of two catalysts to obtain advantageous effects in the hydrotreating of heavy hydrocarbon oils. The invention also relates to a mixture of catalysts suitable for use in such a process.
特に、本発明は、製造される沈降物の量を制限しながら、水素化脱硫(HDS)、水素化脱金属(HDM)、アスファルテン減少(HDAsp)および/または軽質生成物への転化を行うために、硫黄、金属、およびアスファルテンなどの多量の不純物を含む重質炭化水素油を水素化処理するために適する方法に関する。供給物はコンラドソン残留炭素(CCR)および窒素などの他の汚染物をも含み得、残留炭素減少(HDCCR)および水素化脱窒素(HDN)も所望のプロセスであり得る。 In particular, the present invention provides hydrodesulfurization (HDS), hydrodemetallation (HDM), asphaltene reduction (HDAsp) and / or conversion to light products while limiting the amount of sediment produced. In particular, it relates to a method suitable for hydrotreating heavy hydrocarbon oils containing large amounts of impurities such as sulfur, metals, and asphaltenes. The feed may also contain other contaminants such as Conradson residual carbon (CCR) and nitrogen, and residual carbon reduction (HDCR) and hydrodenitrogenation (HDN) may also be the desired process.
沸点が538℃以上である成分を50重量%以上含む炭化水素油は重質炭化水素油と呼ばれる。これらは、石油精製において製造される大気圧残渣(atmosphericresidue)(AR)および減圧残渣(vacuum residue)(VR)を包含する。これらの重質炭化水素油から水素化処理によって硫黄などの不純物を除去することおよび重質炭化水素油を経済的により高い価値を有する軽質油に転化することが望ましい。 A hydrocarbon oil containing 50% by weight or more of a component having a boiling point of 538 ° C. or higher is called a heavy hydrocarbon oil. These include atmospheric residues (AR) and vacuum residues (VR) produced in petroleum refining. It is desirable to remove impurities such as sulfur from these heavy hydrocarbon oils by hydrotreating and to convert the heavy hydrocarbon oils into lighter oils of higher economic value.
重質炭化水素油の水素化処理は、沸騰床操作または固定床操作で行われる。沸騰床操作に関して、種々の触媒が提案されている。一般に、これらの触媒は、硫黄、コンラドソン残留炭素(CCR)、種々の金属、窒素および/またはアスファルテンを効率的に除去することができる。しかし、アスファルテンの分解、供給原料の残りと良好にバランスしている、縮合芳香族化合物の凝集体、は一般に、沈降物およびスラッジの形成を伴うことが分かった。 The hydrotreatment of heavy hydrocarbon oil is performed in an ebullated bed operation or a fixed bed operation. Various catalysts have been proposed for boiling bed operation. In general, these catalysts can efficiently remove sulfur, Conradson residual carbon (CCR), various metals, nitrogen and / or asphaltenes. However, it has been found that the decomposition of asphaltenes, aggregates of condensed aromatic compounds, which are well balanced with the rest of the feedstock, are generally accompanied by the formation of sediment and sludge.
沈降物は、シェル熱ろ過固体試験(Shell hot filtration solid test)(SHFST)によって決定され得る(VanKerkvoortら、J. Inst. Pet., 37, pp.596-604 (1951)を参照)。その通常の含量は、フラッシュドラムの底部から集められる340℃以上の沸点を有する生成物中の約0.19〜1重量%であると言われている。水素化処理中に形成される沈降物は、熱交換器および反応器などの装置中に沈降および沈着し得、そして通路の流れを止める恐れがあるので、これらの装置の操作の重大な妨げとなり得る。特に、多量の減圧残渣を含む重質炭化水素供給物の水素化処理では、沈降物の形成は重要な因子であり、したがって、効率的な汚染物除去を低い沈降物形成および高い転化と組み合わせて行うための方法が望まれる。 Sediment can be determined by the Shell hot filtration solid test (SHFST) (see VanKerkvoort et al., J. Inst. Pet., 37, pp. 596-604 (1951)). Its normal content is said to be about 0.19 to 1% by weight in the product having a boiling point of 340 ° C. or higher collected from the bottom of the flash drum. Sediment that forms during hydroprocessing can settle and deposit in equipment such as heat exchangers and reactors, and can hinder the flow of the passages, thus seriously hindering the operation of these equipment. obtain. In particular, in the hydroprocessing of heavy hydrocarbon feeds containing a large amount of vacuum residue, sediment formation is an important factor, thus combining efficient contaminant removal with low sediment formation and high conversion. A method to do is desired.
米国特許第5,100,855号は、水素化脱金属、水素化脱硫、水素化脱窒素およびアスファルテン含有供給原料の水素化転化を行うための触媒混合物を記載しており、ここでは、1方の触媒が、比較的小さい孔の触媒であり、他方が、大きい孔の体積を比較的多量に有する。上記触媒混合物は、好ましくは沸騰床において適用される。第一の触媒は、0.10ml/g未満の孔体積を200Åより上の直径を有する孔中に有し、0.02ml/g未満を800Åより上の直径を有する孔中に有し、かつ最大平均中間孔直径が130Åである。第二の触媒は、0.07ml/gより多い孔体積を800Åより上の直径を有する孔中に有する。 U.S. Pat. No. 5,100,855 describes a catalyst mixture for hydrodemetallation, hydrodesulfurization, hydrodenitrogenation and hydroconversion of asphaltene-containing feedstock, wherein one way The catalyst is a relatively small pore catalyst and the other has a relatively large volume of large pores. The catalyst mixture is preferably applied in an ebullating bed. The first catalyst has a pore volume of less than 0.10 ml / g in pores having a diameter above 200 Å, less than 0.02 ml / g in pores having a diameter above 800 、, and The maximum average middle hole diameter is 130 mm. The second catalyst has a pore volume greater than 0.07 ml / g in the pores having a diameter above 800 mm.
米国特許第6,086,749号は、移動床での使用のための方法および触媒系を記載しており、ここでは、2種類の触媒の混合物が使用され、各々が、それぞれ水素化脱金属および水素化脱窒素などの異なる機能のために設計されている。触媒の少なくとも1は、その孔体積の少なくとも75%を100〜300Åの直径を有する孔中に有し、その孔体積の20%未満を100Åより下の直径を有する孔中に有する。 US Pat. No. 6,086,749 describes a process and catalyst system for use in a moving bed, where a mixture of two catalysts is used, each of which is a hydrodemetallation, respectively. And designed for different functions such as hydrodenitrogenation. At least one of the catalysts has at least 75% of its pore volume in pores having a diameter of 100-300 mm and less than 20% of its pore volume in pores having a diameter of less than 100 mm.
本発明の目的は、硫黄、コンラドソン残留炭素、金属、窒素およびアスファルテンなどの不純物を多量に含む重質炭化水素油、特に、80%以上の減圧残渣画分を含む重質油、の水素化処理のための、不純物を十分除去するための有効な方法を提供することである。効率的な汚染物除去に加えて、上記方法は、低い沈降物形成、高いアスファルテン除去、および高い転化を示すであろう。さらに、上記方法は、高い柔軟性を有するであろう。 The object of the present invention is to hydrotreat heavy hydrocarbon oils containing a large amount of impurities such as sulfur, Conradson residual carbon, metals, nitrogen and asphaltenes, in particular, heavy oil containing 80% or more of the vacuum residue fraction. It is to provide an effective method for sufficiently removing impurities. In addition to efficient contaminant removal, the above method will show low sediment formation, high asphaltene removal, and high conversion. Furthermore, the method will have a high flexibility.
鋭意研究に基づいて、重質油を、表面積、孔体積、および孔サイズ分布に関して特定の要件を満たす2つの異なる水素化処理触媒の混合物と接触させるところの、重質炭化水素油を水素化処理するための方法が発明された。第一の触媒は、重質炭化水素油中の不純物を減少させるように特に設計されている。特に、それは、脱金属および効率的なアスファルテン除去を達成し、アスファルテン沈殿の防止に有効である。第二の触媒は、安定な操作を可能にするために、アスファルテンの沈殿故の沈降物形成を阻害しながら、進歩した脱硫および水素化反応を行うように適合されている。2つの異なる触媒の混合物の使用は相乗効果をもたらし、その結果、安定した操作、高い汚染物除去および転化活性、ならびに低い沈降物形成を、操作における大きい柔軟性とともに示す方法が得られる。 Based on intensive studies, heavy hydrocarbon oils are hydrotreated where a heavy oil is contacted with a mixture of two different hydrotreating catalysts that meet specific requirements for surface area, pore volume, and pore size distribution. A method has been invented. The first catalyst is specifically designed to reduce impurities in heavy hydrocarbon oils. In particular, it achieves demetalization and efficient asphaltene removal and is effective in preventing asphaltene precipitation. The second catalyst is adapted to perform advanced desulfurization and hydrogenation reactions while inhibiting sediment formation due to asphaltene precipitation to allow stable operation. The use of a mixture of two different catalysts provides a synergistic result, resulting in a method that exhibits stable operation, high contaminant removal and conversion activity, and low sediment formation, with great flexibility in operation.
本発明の方法は、重質炭化水素油を水素の存在下で、互いに異なる水素化処理触媒Iおよび水素化処理触媒IIの混合物と接触させることを含む、重質炭化水素油を水素化処理するための方法であり、ここで、触媒Iは多孔性無機担体上にVIB族金属成分および所望によりVIII族金属成分を含み、該触媒は少なくとも100m2/gの比表面積および少なくとも0.55ml/gの総孔体積を有し、該総孔体積の少なくとも50%を少なくとも20nm(200Å)の直径を有する孔中に有し、該総孔体積の10〜30%を少なくとも200nm(2000Å)の直径を有する孔中に有し、触媒IIは多孔性無機担体上にVIB族金属成分および所望によりVIII族金属成分を含み、該触媒は少なくとも100m2/gの比表面積および少なくとも0.55ml/gの総孔体積を有し、該総孔体積の少なくとも75%を10〜120nm(100〜1200Å)の直径を有する孔中に有し、該総孔体積の0〜2%を少なくとも400nm(4000Å)の直径を有する孔中に有し、該総孔体積の0〜1%を少なくとも1000nm(10000Å)の直径を有する孔中に有し、該混合物は2〜98重量%の触媒Iおよび2〜98重量%の触媒IIを含 む。The process of the present invention hydrotreats a heavy hydrocarbon oil comprising contacting the heavy hydrocarbon oil with a mixture of different hydrotreating catalysts I and II in the presence of hydrogen. Wherein catalyst I comprises a Group VIB metal component and optionally a Group VIII metal component on a porous inorganic support, the catalyst having a specific surface area of at least 100 m 2 / g and at least 0.55 ml / g. Having a total pore volume of at least 50% of the total pore volume in a pore having a diameter of at least 20 nm (200 mm), and 10-30% of the total pore volume having a diameter of at least 200 nm (2000 mm). Catalyst II comprises a Group VIB metal component and optionally a Group VIII metal component on a porous inorganic support, the catalyst having a specific surface area of at least 100 m 2 / g and a low Having a total pore volume of at least 0.55 ml / g, having at least 75% of the total pore volume in pores having a diameter of 10-120 nm (100-1200 mm), and having a total pore volume of 0-2 % of a in pores with a diameter of at least 400 nm (4000 Å), possess the pores having a diameter of at least 1000 nm (10000 Å) 0-1% of said total pore volume, the mixture 2 to 98 wt% including the catalyst I and 2-98 wt% of the catalyst II.
本発明はまた、そのような方法での使用に適する触媒混合物にも関し、ここで、該触媒混合物は、上記で定義された触媒IおよびIIを上記で定義された量で含む。The invention also relates to a catalyst mixture suitable for use in such a process, wherein the catalyst mixture comprises the catalysts I and II defined above in the amounts defined above .
本発明に従う方法で使用される触媒は、多孔性担体上に触媒物質を含む。本発明に従う方法において使用される触媒上に存在する触媒物質は、ChemicalAbstract Services (CASシステム)によって適用される元素周期律表のVIB族金属および所望によりVIII族金属を含む。VIII族金属が、本発明に従う方法において使用される触媒上に存在するのが好ましい。本発明において使用されるVIII族金属は、ニッケル、コバルトおよび鉄から選択される少なくとも1である。性能および経済上の点から、コバルトおよびニッケルが好ましい。ニッケルが特に好ましい。使用され得るVIB族金属としては、モリブデン、タングステンおよびクロムが挙げられ得るが、性能および経済上の点から、モリブデンが好ましい。モリブデンとニッケルの組み合わせが、本発明に従う触媒の触媒物質のために特に好ましい。 The catalyst used in the process according to the invention comprises a catalytic material on a porous support. The catalytic material present on the catalyst used in the process according to the invention comprises a Group VIB metal and optionally a Group VIII metal of the Periodic Table of Elements applied by Chemical Abstract Services (CAS system). It is preferred that the Group VIII metal is present on the catalyst used in the process according to the invention. The Group VIII metal used in the present invention is at least one selected from nickel, cobalt and iron. In view of performance and economy, cobalt and nickel are preferred. Nickel is particularly preferred. Group VIB metals that can be used include molybdenum, tungsten and chromium, but molybdenum is preferred from a performance and economic point of view. A combination of molybdenum and nickel is particularly preferred for the catalytic material of the catalyst according to the invention.
最終触媒の重量(100重量%)に基づいて、本発明に従う方法で使用される触媒において使用されるそれぞれの触媒物質の量は以下の通りである。 Based on the weight of the final catalyst (100% by weight), the amount of each catalytic material used in the catalyst used in the process according to the invention is as follows:
上記触媒は一般に、VIB族金属を、三酸化物として計算して、4〜30重量%、好ましくは7〜20重量%、より好ましくは8〜16重量%含む。4重量%未満が使用されると、触媒の活性が一般に最適未満である。他方、16重量%より多く、特に20重量%より多く使用されると、触媒性能が一般にさらなる改善をされない。最適の結果は、上記VI族金属含量が上記の好ましい範囲内であるように選択されるときに得られる。 The catalyst generally contains 4 to 30 wt%, preferably 7 to 20 wt%, more preferably 8 to 16 wt% of the Group VIB metal calculated as a trioxide. When less than 4% by weight is used, the activity of the catalyst is generally less than optimal. On the other hand, if more than 16% by weight, in particular more than 20% by weight, the catalyst performance is generally not further improved. Optimal results are obtained when the Group VI metal content is selected to be within the preferred range described above.
上記したように、触媒がVIII族金属成分を含むのが好ましい。適用される場合、この成分は好ましくは、酸化物として計算して、0.5〜6重量%、より好ましくは1〜5重量%のVIII族金属の量で存在する。上記量が0.5重量%未満の場合には、触媒の活性が最適未満である。6重量%より多く存在するならば、触媒性能が更なる改善をされないであろう。 As noted above, it is preferred that the catalyst includes a Group VIII metal component. When applied, this component is preferably present in an amount of 0.5 to 6% by weight, more preferably 1 to 5% by weight of Group VIII metal, calculated as oxide. When the amount is less than 0.5% by weight, the activity of the catalyst is less than optimal. If present above 6% by weight, the catalyst performance will not be improved further.
触媒Iおよび触媒IIの総孔体積は、少なくとも0.55ml/g、好ましくは少なくとも0.6ml/gである。好ましくは、高々1.0ml/gであり、より好ましくは高々0.9ml/gである。総孔体積および孔サイズ分布の決定は、例えば水銀ポロシメーターAutoporeII(商標)(Micrometrics製)を使用し、480ダイン/cmの表面張力を用いて140°の接触角での水銀の浸透によって行われる。 The total pore volume of catalyst I and catalyst II is at least 0.55 ml / g, preferably at least 0.6 ml / g. Preferably, it is at most 1.0 ml / g, more preferably at most 0.9 ml / g. The determination of total pore volume and pore size distribution is performed by mercury penetration at a contact angle of 140 ° using a mercury porosimeter Autopore II ™ (from Micrometrics) with a surface tension of 480 dynes / cm.
触媒Iは、少なくとも100m2/gの比表面積を有する。上記触媒は、必要な孔サイズ分布範囲を満たすために、100〜180m2/g、好ましくは150〜170m2/gの表面積を有することが好ましい。上記表面積が100m2/g未満であると、触媒活性が低くなりすぎる。本明細書では、上記表面積は、N2吸着に基づくBET法にしたがって決定される。 Catalyst I has a specific surface area of at least 100 m 2 / g. In order to satisfy the necessary pore size distribution range, the catalyst preferably has a surface area of 100 to 180 m 2 / g, preferably 150 to 170 m 2 / g. When the surface area is less than 100 m 2 / g, the catalytic activity becomes too low. In the present specification, the surface area is determined according to the BET method based on N 2 adsorption.
触媒Iは、総孔体積の少なくとも50%、好ましくは少なくとも60%を少なくとも20nm(200Å)の直径を有する孔中に有する。この範囲における孔体積の割合は、好ましくは高々80%である。この範囲における孔体積の割合が50%より下の場合には、触媒性能、特にアスファルテン分解活性が低下する。その結果、沈降物形成が増加する。触媒Iの担体は好ましくは、孔体積の少なくとも43%、より好ましくは少なくとも47%をこの範囲に示す。担体のためのこの範囲における孔体積の割合は高々75%、より好ましくは高々70%である。 Catalyst I has at least 50%, preferably at least 60% of the total pore volume in pores having a diameter of at least 20 nm (200 mm). The proportion of pore volume in this range is preferably at most 80%. When the ratio of the pore volume in this range is lower than 50%, the catalyst performance, particularly the asphaltene decomposition activity is lowered. As a result, sediment formation is increased. The catalyst I support preferably exhibits at least 43%, more preferably at least 47% of the pore volume in this range. The proportion of pore volume in this range for the support is at most 75%, more preferably at most 70%.
触媒Iは、総孔体積の10〜30%、好ましくは15〜25%を少なくとも200nm(2000Å)の直径を有する孔中に有する。この範囲における孔の割合が低過ぎると、反応器の底部でのアスファルテン除去活性が低下し、それとともに沈降物形成が増加する。この範囲における孔の割合が高過ぎると、触媒の機械的強度が、恐らく商業的操作のために許容され得ない値にまで低下する。 Catalyst I has 10-30%, preferably 15-25%, of the total pore volume in pores having a diameter of at least 200 nm (2000 mm). If the percentage of pores in this range is too low, the asphaltene removal activity at the bottom of the reactor will be reduced, along with increased sediment formation. If the percentage of pores in this range is too high, the mechanical strength of the catalyst will drop to a value that is probably unacceptable for commercial operation.
触媒強度および活性を改善するために、触媒Iは好ましくは、総孔体積の0〜5%、より好ましくは0〜1%を1000nm(10000Å)より上の直径を有する孔中に有する。 In order to improve catalyst strength and activity, Catalyst I preferably has 0-5%, more preferably 0-1% of the total pore volume in pores having a diameter above 1000 nm (10000 Å).
特に供給原料が多量の減圧残渣を含むとき、すなわち、538℃より上で沸騰する供給物の割合が少なくとも70%、より好ましくは少なくとも80%のときには、 触媒Iが85%未満、好ましくは82%未満、さらにより好ましくは80%未満の%PV(10〜120nm)(%PV(100〜1200Å))を有することが好ましい。この範囲に存在する孔体積の割合が高過ぎると、200nm(2000Å)より上の直径を有する孔中における孔体積の割合が低下し、残渣分解速度が不充分であり得る。 Especially when the feed contains a large amount of vacuum residue, i.e. when the proportion of feed boiling above 538 ° C is at least 70%, more preferably at least 80%, catalyst I is less than 85%, preferably 82% It is preferred to have less than, even more preferably less than 80%% PV (10-120 nm) (% PV (100-1200 Å)). If the proportion of the pore volume present in this range is too high, the proportion of the pore volume in pores having a diameter above 200 nm (2000 mm) may be reduced, and the residue decomposition rate may be insufficient.
触媒Iは好ましくは、孔体積の0.2ml/g未満を50〜150nm(500〜1500Å)の直径を有する孔中に有する。孔体積の0.2ml/gより多くがこの範囲に存在するならば、30nm(300Å)より下の直径を有する孔中に存在する孔体積の相対割合が低下し、触媒性能が低下し得る。さらに、30nm(300Å)より下の直径を有する孔は、非常に重質の供給原料成分によってふさがりやすいので、この範囲に存在する孔体積の量が比較的に少なすぎると触媒の寿命が短くなる恐れがあり得る。 Catalyst I preferably has less than 0.2 ml / g of pore volume in the pores having a diameter of 50 to 150 nm (500 to 1500 mm). If more than 0.2 ml / g of the pore volume is present in this range, the relative proportion of pore volume present in pores having a diameter below 30 nm (300 Å) may be reduced and catalyst performance may be reduced. Furthermore, pores with a diameter below 30 nm (300 mm) are likely to be plugged by very heavy feedstock components, so if the amount of pore volume present in this range is too small, the life of the catalyst is shortened. There can be fear.
さらに、触媒Iは好ましくは、その孔体積の25%未満、より好ましくは17%未満、さらにより好ましくは10%未満を10nm(100Å)以下の直径を有する孔中に有する。この範囲に存在する孔体積の割合がこの値より上であると、非アスファルテン供給物構成要素の増加された水素化故に沈降物形成が増加し得る。 Further, Catalyst I preferably has less than 25% of its pore volume in pores having a diameter of 10 nm (100 Å) or less, more preferably less than 17%, even more preferably less than 10%. If the percentage of pore volume present in this range is above this value, sediment formation may increase due to increased hydrogenation of non-asphaltenic feed components.
触媒Iは、慣用の酸化物、例えばアルミナ、シリカ、シリカ−アルミナ、シリカ−アルミナがその中に分散したアルミナ、シリカコーティングされたアルミナ、マグネシア、ジルコニア、ボリア、およびチタニア、ならびにこれらの酸化物の混合物、を一般に含むところの多孔性無機酸化物担体に基づく。担体は、少なくとも80%、より好ましくは少なくとも90%、さらにより好ましくは少なくとも95%がアルミナで構成されることが好ましい。本質的にアルミナで構成される担体が好ましい。用語「本質的に構成される」は、触媒の触媒活性に悪影響を及ぼさない限り、少量の他の成分が存在し得ることを意味することが意図される。適する触媒Iの例は、国際特許出願公開WO01/100541に記載された触媒である。 Catalyst I is a conventional oxide such as alumina, silica, silica-alumina, alumina with silica-alumina dispersed therein, silica-coated alumina, magnesia, zirconia, boria, and titania, and the oxides of these oxides. Based on porous inorganic oxide supports, which generally contain mixtures. It is preferred that the support is composed of at least 80%, more preferably at least 90%, and even more preferably at least 95% alumina. A support consisting essentially of alumina is preferred. The term “essentially composed” is intended to mean that small amounts of other components may be present as long as they do not adversely affect the catalytic activity of the catalyst. Examples of suitable catalysts I are those described in International Patent Application Publication WO 01/100541.
触媒IIは、少なくとも100m2/g、 好ましくは少なくとも130m2/gの比表面積を有する。上記表面積が100m2/gより下であると、触媒活性が不充分である。 Catalyst II has a specific surface area of at least 100 m 2 / g, preferably at least 130 m 2 / g. When the surface area is lower than 100 m 2 / g, the catalytic activity is insufficient.
触媒IIは、総孔体積の少なくとも75%、好ましくは少なくとも78%を10〜120nm(100〜1200Å)の直径を有する孔中に有する。この範囲における孔体積の割合が不充分であると、触媒の水素化分解および水素化脱硫活性が不充分である。触媒IIは、総孔体積の0〜2%を少なくとも400nm(4000Å)の直径を有する孔中に有し、総孔体積の0〜1%を少なくとも1000nm(10000Å)の直径を有する孔中に有する。これらの要件が満たされないと、触媒IIの水素化脱硫および水素化分解活性が保証され得ない。 Catalyst II has at least 75%, preferably at least 78% of the total pore volume in the pores having a diameter of 10 to 120 nm (100 to 1200 mm). When the ratio of the pore volume in this range is insufficient, the hydrocracking and hydrodesulfurization activity of the catalyst is insufficient. Catalyst II has 0-2% of the total pore volume in pores having a diameter of at least 400 nm (4000 Å) and 0-1% of the total pore volume in pores having a diameter of at least 1000 nm (10000 Å). . If these requirements are not met, the hydrodesulfurization and hydrocracking activity of catalyst II cannot be guaranteed.
触媒IIは、触媒Iのそれよりも少ない%PV(>2000Å)を有する。好ましくは、それが10%未満、より好ましくは5%未満、さらにより好ましくは3%未満である。 Catalyst II has less% PV (> 2000 kg) than that of Catalyst I. Preferably it is less than 10%, more preferably less than 5%, even more preferably less than 3%.
さらに、触媒IIは、その孔体積の25%未満、より好ましくは17%未満、さらにより好ましくは10%未満を10nm(100Å)以下の直径を有する孔中に有するのが好ましい。この範囲に存在する孔体積の割合がこの値より上であると、非アスファルテン供給物構成要素の増加された水素化故に沈降物形成が増加し得る。 Furthermore, catalyst II preferably has less than 25%, more preferably less than 17%, even more preferably less than 10% of its pore volume in pores having a diameter of 10 nm (100 Å) or less. If the percentage of pore volume present in this range is above this value, sediment formation may increase due to increased hydrogenation of non-asphaltenic feed components.
触媒IIもまた、慣用の酸化物、例えばアルミナ、シリカ、シリカ−アルミナ、シリカ−アルミナがその中に分散したアルミナ、シリカコーティングされたアルミナ、マグネシア、ジルコニア、ボリア、およびチタニア、ならびにこれらの酸化物の混合物、を一般に含むところの多孔性無機酸化物担体に基づく。上記担体は、少なくとも70重量%、より好ましくは少なくとも88重量%がアルミナで構成され、残りがシリカで構成されるのが好ましい。 Catalyst II is also conventional oxides such as alumina, silica, silica-alumina, alumina with silica-alumina dispersed therein, silica-coated alumina, magnesia, zirconia, boria and titania, and oxides thereof. Based on porous inorganic oxide supports, which generally contain a mixture of The carrier is preferably composed of at least 70% by weight, more preferably at least 88% by weight of alumina and the remainder of silica.
本発明者らは、本発明に従う方法での使用に特に適することが見出された触媒IIの2つの特定の実施態様を開発した。第1の特定の実施態様(以降、触媒IIaとして示す)は、少なくとも100m2/g、 好ましくは100〜180m2/g、より好ましくは150〜170m2/gの比表面積を有する。それは、総孔体積の少なくとも75%、好ましくは少なくとも85%、より好ましくは少なくとも87%を10〜120nm(100〜1200Å)の直径を有する孔中に有する。触媒IIaは好ましくは、少なくとも50%、好ましくは60〜80%の%PV(>200Å)、少なくとも5%、好ましくは5〜30%、より好ましくは8〜25%の%PV(>1000Å)を有する。 The inventors have developed two specific embodiments of Catalyst II that have been found to be particularly suitable for use in the process according to the invention. The first particular embodiment (hereinafter referred to as catalyst IIa) has a specific surface area of at least 100 m 2 / g, preferably 100 to 180 m 2 / g, more preferably 150 to 170 m 2 / g. It has at least 75%, preferably at least 85%, more preferably at least 87% of the total pore volume in pores having a diameter of 10-120 nm (100-1200 mm). Catalyst IIa preferably has at least 50%, preferably 60-80%% PV (> 200%), at least 5%, preferably 5-30%, more preferably 8-25%% PV (> 1000%). Have.
触媒IIaは好ましくは、アルミナ担体に基づく。この実施態様におけるアルミナ担体として、本質的にアルミナから成る担体が好ましく、ここで用語「本質的に構成される」は、触媒の触媒活性に悪影響を及ぼさない限り、少量の他の成分が存在し得ることを意味することが意図される。 Catalyst IIa is preferably based on an alumina support. As the alumina support in this embodiment, a support consisting essentially of alumina is preferred, where the term “essentially composed” means that small amounts of other components are present as long as they do not adversely affect the catalytic activity of the catalyst. It is intended to mean getting.
しかし、触媒強度および/または担体活性を改善することが必要であるならば、担体が、例えばケイ素、チタン、ジルコニウム、ホウ素、亜鉛、リン、アルカリ金属およびアルカリ土類金属の酸化物、ゼオライトおよび粘土鉱物から選択される少なくとも1の物質を含み得る。これらの物質は好ましくは、完成した触媒の重量に基づいて、5重量%未満、好ましくは2.5重量%未満、より好ましくは1.5重量%未満、さらにより好ましくは0.5重量%未満の量で存在する。触媒IIaの要件を満たす適する触媒は、国際特許出願公開WO02/053286に記載されている。 However, if it is necessary to improve catalyst strength and / or support activity, the support can be, for example, silicon, titanium, zirconium, boron, zinc, phosphorus, alkali metal and alkaline earth metal oxides, zeolites and clays. It may contain at least one substance selected from minerals. These materials are preferably less than 5 wt%, preferably less than 2.5 wt%, more preferably less than 1.5 wt%, even more preferably less than 0.5 wt%, based on the weight of the finished catalyst. Present in the amount of. Suitable catalysts that meet the requirements of catalyst IIa are described in International Patent Application Publication WO 02/053286.
第2の特定の実施態様(以降、触媒IIbとして示す)は、少なくとも150m2/g、 好ましくは185〜250m2/gの表面積を有する。それは、総孔体積の少なくとも75%、好ましくは少なくとも78%を10〜120nm(100〜1200Å)の直径を有する孔中に有する。触媒IIbは好ましくは、その孔体積の50%未満、より好ましくは40%未満が、200Åより上の直径を有する孔中に存在する。 The second specific embodiment (hereinafter, indicated as a catalyst IIb) has a surface area of at least 150 meters 2 / g, preferably 185~250m 2 / g. It has at least 75%, preferably at least 78% of the total pore volume in the pores having a diameter of 10-120 nm (100-1200 mm). Catalyst IIb is preferably present in less than 50%, more preferably less than 40% of its pore volume in pores having a diameter greater than 200 mm.
触媒IIbは好ましくは、最終触媒の重量に基づいて計算して、少なくとも3.5重量%、より好ましくは3.5〜30重量%、さらにより好ましくは4〜12重量%、さらにより好ましくは4.5〜10重量%のシリカを含む担体に基づく。少なくとも3.5重量%のシリカの存在は、触媒IIbの性能を増加させることが分かった。触媒IIbの担体の残りは一般に、アルミナから成り、所望により、他の耐熱性酸化物、例えばチタニア、ジルコニアなどを含む。触媒IIbの担体の残りは少なくとも90%、より好ましくは少なくとも95%がアルミナで構成されるのが好ましい。本発明の触媒の担体は本質的にシリカおよびアルミナで構成されることが好ましい。用語「本質的に構成される」は、触媒の触媒活性に悪影響を及ぼさない限り、少量の他の成分が存在し得ることを意味することが意図される。 Catalyst IIb is preferably at least 3.5%, more preferably 3.5-30%, even more preferably 4-12%, even more preferably 4%, calculated on the weight of the final catalyst. Based on a support containing 5-10% silica by weight. The presence of at least 3.5 wt% silica has been found to increase the performance of catalyst IIb. The remainder of the catalyst IIb support is generally composed of alumina, optionally containing other refractory oxides such as titania, zirconia and the like. It is preferred that at least 90%, more preferably at least 95% of the remainder of the support of catalyst IIb is composed of alumina. The catalyst support of the present invention is preferably composed essentially of silica and alumina. The term “essentially composed” is intended to mean that small amounts of other components may be present as long as they do not adversely affect the catalytic activity of the catalyst.
また、触媒IIbがIA族金属成分を含むことが好ましくあり得る。適する物質として、ナトリウムおよびカリウムが挙げられ得る。性能および経済上の理由でナトリウムが好ましい。IA族金属の量は、酸化物として計算して、0.1〜2重量%、好ましくは0.2〜1重量%、より好ましくは0.1〜0.5重量%である。0.1重量%未満が存在すると、望ましい効果が得られないであろう。2重量%より多く、または場合によっては1重量%より多く存在すると、触媒の活性が悪影響を受けるであろう。 It may also be preferred that catalyst IIb contains a Group IA metal component. Suitable materials may include sodium and potassium. Sodium is preferred for performance and economic reasons. The amount of Group IA metal, calculated as an oxide, is 0.1 to 2% by weight, preferably 0.2 to 1% by weight, more preferably 0.1 to 0.5% by weight. If less than 0.1% by weight is present, the desired effect will not be obtained. If present above 2% by weight, or in some cases more than 1% by weight, the activity of the catalyst will be adversely affected.
さらに、触媒IIbがVA族の化合物、特にリン、ヒ素、アンチモンおよびビスマスから選択される1以上の化合物、を含むのが好ましくあり得る。リンが好ましい。この場合の上記化合物は、好ましくは、P2O5として計算して、0.05〜3重量%、より好ましくは0.1〜2重量%、さらにより好ましくは0.1〜1重量%の量で存在する。 Furthermore, it may be preferred that the catalyst IIb comprises a group VA compound, in particular one or more compounds selected from phosphorus, arsenic, antimony and bismuth. Phosphorus is preferred. The compound in this case is preferably 0.05 to 3% by weight, more preferably 0.1 to 2% by weight, even more preferably 0.1 to 1% by weight, calculated as P 2 O 5 . Present in quantity.
触媒IIbの特に好ましい実施態様は、シリカおよび上記したIA族金属成分、特にナトリウム、の組み合わせを含む。 A particularly preferred embodiment of catalyst IIb comprises a combination of silica and a Group IA metal component as described above, especially sodium.
触媒IIbの別の特に好ましい実施態様は、シリカおよび上記したリンの組み合わせを含む。 Another particularly preferred embodiment of catalyst IIb comprises a combination of silica and phosphorus as described above.
触媒IIbのさらに別の特に好ましい実施態様は、シリカ、IA族金属成分、特にナトリウム、および上記したリンの組み合わせを含む。 Yet another particularly preferred embodiment of catalyst IIb comprises a combination of silica, a Group IA metal component, particularly sodium, and phosphorus as described above.
所望により、本発明の触媒IIは、触媒IIaおよび触媒IIbの混合物を含む。触媒IIaおよび触媒IIbの混合物が使用されるならば、触媒IIaがその孔体積の少なくとも50%、より好ましくは60〜80%を200Åより上の直径を有する孔中に有するのが好ましく、一方、触媒IIbに関しては、その孔体積の50%未満、より好ましくは4%未満が、200Åより上の直径を有する孔中に存在するのが好ましい。 Optionally, catalyst II of the present invention comprises a mixture of catalyst IIa and catalyst IIb. If a mixture of catalyst IIa and catalyst IIb is used, it is preferred that catalyst IIa has at least 50%, more preferably 60-80% of its pore volume, in pores having a diameter above 200 mm, while With respect to catalyst IIb, it is preferred that less than 50%, more preferably less than 4% of its pore volume is present in pores having a diameter above 200 mm.
この要件が満たされるならば、触媒IIaは良好なアスファルテン分解特性および低い沈降物形成を示し、触媒IIbは良好な水素化脱硫活性および良好な水素化活性を示し、その結合は非常に良好な結果をもたらすであろう。 If this requirement is met, catalyst IIa will exhibit good asphaltene decomposition properties and low sediment formation, catalyst IIb will exhibit good hydrodesulfurization activity and good hydrogenation activity, and the bond will have very good results. Will bring.
触媒IIaおよびIIbの混合物が適用されるならば、混合物は、触媒IIaおよびIIbの総量に基づいて計算して、少なくとも1重量%、好ましくは少なくとも10重量%の触媒IIbを含まなければならない。上記混合物は好ましくは、50重量%までの、好ましくは30重量%までの触媒IIbを含む。 If a mixture of catalysts IIa and IIb is applied, the mixture should contain at least 1% by weight, preferably at least 10% by weight of catalyst IIb, calculated on the total amount of catalysts IIa and IIb. The mixture preferably comprises up to 50% by weight of catalyst IIb, preferably up to 30% by weight.
この要件が満たされるならば、触媒IIの総量の水素化活性はバランスが良く、そして低い沈降物形成が容易に得られ得る。 If this requirement is met, the total hydrogenation activity of catalyst II is well balanced and low sediment formation can easily be obtained.
触媒IIが触媒IIaおよびIIbの混合物を含む場合、上記したように、触媒IIbがVA族の化合物、特に、リン、ヒ素、アンチモンおよびビスマスから選択される1以上の化合物、特にリン、を含むことが特に好ましい。 When catalyst II comprises a mixture of catalysts IIa and IIb, as mentioned above, catalyst IIb comprises one or more compounds selected from group VA, in particular phosphorus, arsenic, antimony and bismuth, in particular phosphorus. Is particularly preferred.
上記したように、本発明は、触媒Iおよび触媒IIの混合物および重質炭化水素供給物の水素化処理におけるその使用に関する。本発明の文脈において、用語「混合物」は、触媒が装置にもたらされたとき、触媒体積の上部半分および触媒体積の下部半分が共に、少なくとも1%の両方の型の触媒を含むところの触媒系を意味することが意図される。用語「混合物」は、供給物が最初に触媒の一方の型と接触され、次いで他方の型の触媒と接触されるところの触媒系を意味することは意図されない。用語「触媒体積」は、触媒Iおよび触媒IIの両方を含む触媒の体積を意味することが意図される。他の型の触媒を含む任意的な続く層または装置はそには含まれない。 As indicated above, the present invention relates to a mixture of Catalyst I and Catalyst II and their use in the hydroprocessing of heavy hydrocarbon feeds. In the context of the present invention, the term “mixture” refers to a catalyst in which the upper half of the catalyst volume and the lower half of the catalyst volume both contain at least 1% of both types of catalyst when the catalyst is brought into the apparatus. It is intended to mean a system. The term “mixture” is not intended to mean a catalyst system in which the feed is first contacted with one type of catalyst and then with the other type of catalyst. The term “catalyst volume” is intended to mean the volume of catalyst comprising both catalyst I and catalyst II. It does not include any subsequent layers or devices that contain other types of catalysts.
本発明の文脈における混合物は、触媒体積が、等しい体積の4つの部分に水平に分割されるならば、各部分が、少なくとも1%の両方の型の触媒を含むような混合物であるのが好ましい。さらにより好ましくは、本発明の文脈における混合物は、触媒体積が、等しい体積の10の部分に水平に分割されるならば、各部分が、少なくとも1%の両方の型の触媒を含むような混合物である。上記定義において、少なくとも1%、好ましくは少なくとも5%、より好ましくは少なくとも10%の両方の型の触媒が、示された部分に存在すべきである。 The mixture in the context of the present invention is preferably such that if the catalyst volume is divided horizontally into four equal parts, each part contains at least 1% of both types of catalyst. . Even more preferably, the mixture in the context of the present invention is such that if the catalyst volume is divided horizontally into 10 parts of equal volume, each part contains at least 1% of both types of catalyst. It is. In the above definition, at least 1%, preferably at least 5%, more preferably at least 10% of both types of catalyst should be present in the indicated part.
明らかであるように、例えば装置の右半分が1つの型の触媒で満たされ、装置の左半分がもう1つの型の触媒で満たされることは意図されない。したがって、本発明で適用される混合物は、触媒体積の右側および左側の両方が、少なくとも1%の両方の型の触媒を含むことをも必要とする。好ましくは、触媒体積が、等しい体積の4つの部分に垂直に分割されるならば、各部分が、少なくとも1%の両方の型の触媒を含む。より好ましくは、触媒体積が、等しい体積の10の部分に垂直に分割されるならば、各部分が、少なくとも1%の両方の型の触媒を含む。この段落における定義において、少なくとも1%、好ましくは少なくとも5%、より好ましくは少なくとも10%の両方の型の触媒が、示された部分に存在すべきである。 As is apparent, it is not intended that, for example, the right half of the device is filled with one type of catalyst and the left half of the device is filled with another type of catalyst. Thus, the mixture applied in the present invention also requires that both the right and left sides of the catalyst volume contain at least 1% of both types of catalyst. Preferably, if the catalyst volume is divided vertically into four parts of equal volume, each part contains at least 1% of both types of catalyst. More preferably, if the catalyst volume is vertically divided into 10 parts of equal volume, each part contains at least 1% of both types of catalyst. In the definition in this paragraph, at least 1%, preferably at least 5%, more preferably at least 10% of both types of catalyst should be present in the indicated part.
触媒混合物が得られ得る種々の方法がある。沸騰床操作に固有であり、固定床操作のためには好ましいところの第一の方法は、2つの型の触媒粒子のランダム混合物である。沸騰床操作に関して、用語「ランダム」は、触媒粒子間の密度の相違故に装置中に生じる自然の分離を包含する。 There are various ways in which the catalyst mixture can be obtained. The first method that is inherent to ebullated bed operation and preferred for fixed bed operation is a random mixture of two types of catalyst particles. With regard to ebullated bed operation, the term “random” encompasses the natural separation that occurs in the apparatus due to density differences between the catalyst particles.
固定床装置に適用可能な更なる方法は、2つの型の触媒を(薄い)交互層において適用することである。 A further method applicable to fixed bed equipment is to apply two types of catalysts in (thin) alternating layers.
更なる方法は、2つの型の触媒のソック(sock)により装置にソックス充填することであろう。ここで各ソックは1つの型の触媒を含むが、ソックの組み合わせの結果、上記した触媒の混合物を生じる。 A further method would be to sock the apparatus with two types of catalyst socks. Here, each sock contains one type of catalyst, but the combination of socks results in a mixture of the above mentioned catalysts.
全体的に、触媒IおよびIIの混合物は一般に、2〜98重量%の触媒Iおよび2〜98重量%の触媒IIを含む。好ましくは、上記混合物が10〜90重量%の触媒I、より好ましくは20〜80重量%の触媒I、さらにより好ましくは30〜70重量%の触媒Iを含む。上記混合物は好ましくは、10〜90重量%の触媒II、より好ましくは20〜80重量%の触媒II、さらにより好ましくは30〜70重量%の触媒IIを含む。 Overall, the mixture of catalysts I and II generally comprises 2 to 98% by weight of catalyst I and 2 to 98% by weight of catalyst II. Preferably, the mixture comprises 10 to 90% by weight of catalyst I, more preferably 20 to 80% by weight of catalyst I, and even more preferably 30 to 70% by weight of catalyst I. The mixture preferably comprises 10 to 90% by weight of catalyst II, more preferably 20 to 80% by weight of catalyst II, even more preferably 30 to 70% by weight of catalyst II.
触媒粒子は、従来の一般的な形および寸法を有し得る。すなわち、粒子は、球状、円柱状、または多ローブ形状(polylobal)であり得、その直径は0.5〜10mmの範囲であり得る。0.5〜3mm、好ましくは0.7〜1.2mm、例えば0.9〜1mmの直径および2〜10mm、例えば2.5〜4.5mmの長さを有する粒子が好ましい。固定床操作での使用のためには多ローブ形状の粒子が好ましい。なぜならば、それらは、水素化脱金属操作において低められた圧力低下をもたらすからである。円柱状粒子は沸騰床操作での使用に好ましい。 The catalyst particles can have conventional general shapes and dimensions. That is, the particles can be spherical, cylindrical, or polylobal, and their diameter can range from 0.5 to 10 mm. Particles having a diameter of 0.5 to 3 mm, preferably 0.7 to 1.2 mm, for example 0.9 to 1 mm and a length of 2 to 10 mm, for example 2.5 to 4.5 mm, are preferred. Multilobe shaped particles are preferred for use in fixed bed operations. Because they cause a reduced pressure drop in the hydrodemetallation operation. Cylindrical particles are preferred for use in ebullating bed operations.
本発明に従う方法において使用される触媒において使用されるべき担体は、従来公知の方法によって製造され得る。アルミナを含む担体の典型的な製造法は、アルミン酸ナトリウムおよび硫酸アルミニウムの共沈殿である。得られるゲルは乾燥され、押出され、焼成されて、アルミナ含有担体を与える。所望により、沈殿の前、中または後に他の成分、例えばシリカ、が添加され得る。例えば、アルミナゲルを製造する方法を下記に記載する。最初に、生水または温水を含むタンクがアルミン酸ナトリウム、水酸化アルミニウムまたは水酸化ナトリウムなどのアルカリ溶液で充填され、そして硫酸アルミニウムまたは硝酸アルミニウムなどの酸性アルミニウム溶液が添加されて混合される。 The support to be used in the catalyst used in the process according to the invention can be produced by conventionally known processes. A typical method for producing a support comprising alumina is the coprecipitation of sodium aluminate and aluminum sulfate. The resulting gel is dried, extruded and calcined to give an alumina-containing support. If desired, other components such as silica can be added before, during or after precipitation. For example, a method for producing an alumina gel is described below. First, a tank containing raw water or warm water is filled with an alkaline solution such as sodium aluminate, aluminum hydroxide or sodium hydroxide, and an acidic aluminum solution such as aluminum sulfate or aluminum nitrate is added and mixed.
混合溶液の水素イオン濃度(pH)は反応の進行と共に変わる。酸性アルミニウム溶液の添加が完了するとき、pHが7〜9であること、および混合の間、温度が60〜75℃であることが好ましい。混合物は次いで、その温度で一般的には0.5〜1.5時間、好ましくは40〜80分間保持される。 The hydrogen ion concentration (pH) of the mixed solution changes with the progress of the reaction. When the addition of the acidic aluminum solution is complete, it is preferred that the pH is 7-9 and the temperature is 60-75 ° C. during mixing. The mixture is then held at that temperature for generally 0.5 to 1.5 hours, preferably 40 to 80 minutes.
更なる例として、シリカ含有アルミナゲルの製造法を下記に記載する。最初に、アルミン酸ナトリウム、水酸化アンモニウムまたは水酸化ナトリウムなどのアルカリ溶液が、生水または熱水を含むタンクに供給され、アルミニウム源の酸溶液、例えば硫酸アルミニウムまたは硝酸アルミニウムが添加され、そして得られた混合物が混合される。 As a further example, a method for producing a silica-containing alumina gel is described below. First, an alkaline solution such as sodium aluminate, ammonium hydroxide or sodium hydroxide is fed into a tank containing raw or hot water, an acid solution of an aluminum source, such as aluminum sulfate or aluminum nitrate is added and obtained. The resulting mixture is mixed.
混合物のpHは反応の進行につれて変化する。好ましくは、酸アルミニウム化合物溶液の全てが添加された後、pHが7〜9である。混合の完了後、アルミナヒドロゲルが得られ得る。次いで、アルカリ金属シリケート、例えば水ガラスまたは有機シリカ溶液がシリカ源として添加される。シリカ源を混合するために、それが酸アルミニウム化合物溶液と共にタンクに供給され得、あるいはアルミニウムヒドロゲルが製造された後に供給され得る。シリカ含有アルミナ担体は、他に例えば、シリカ源、例えば珪酸ナトリウム、をアルミナ源、例えばアルミン酸ナトリウムまたは硫酸アルミニウムと一緒にすることによって、またはアルミナゲルをシリカゲルと混合し、次いで成形、乾燥および焼成することによって、製造され得る。担体は、シリカおよびアルミナの凝集混合物を形成するためにシリカの存在下でアルミナを沈殿させることによっても製造され得る。そのような方法の例は、アルミン酸ナトリウム溶液をシリカヒドロゲルに添加し、例えば水酸化ナトリウムを添加することによってpHを上げてアルミナを析出させ、そしてナトリウムシリケートを硫酸アルミニウムとともに共沈殿させることである。更なる可能性は、焼成の前または後にアルミナ担体を、珪素源がその中に溶解された含浸溶液に浸すことである。 The pH of the mixture changes as the reaction proceeds. Preferably, the pH is 7-9 after all of the aluminum acid compound solution has been added. After mixing is complete, an alumina hydrogel can be obtained. An alkali metal silicate such as water glass or an organic silica solution is then added as a silica source. To mix the silica source, it can be fed into the tank with the aluminum acid compound solution, or it can be fed after the aluminum hydrogel has been made. Silica-containing alumina supports can also be obtained, for example, by combining a silica source, such as sodium silicate, with an alumina source, such as sodium aluminate or aluminum sulfate, or by mixing an alumina gel with silica gel, then shaped, dried and calcined. Can be manufactured. The support can also be produced by precipitating alumina in the presence of silica to form an agglomerated mixture of silica and alumina. An example of such a method is to add a sodium aluminate solution to a silica hydrogel, raise the pH, for example by adding sodium hydroxide, to precipitate alumina, and to co-precipitate sodium silicate with aluminum sulfate. . A further possibility is to immerse the alumina support before or after calcination in an impregnation solution in which a silicon source is dissolved.
続く工程において、ゲルを溶液から分離し、そして商業的に使用される洗浄処理、例えば生水または熱水を使用する洗浄処理を行って不純物、主に塩、をゲルから除去する。次いで、ゲルを、従来公知の方法、例えば押出、ビーズ化またはペレット化、によって粒子に成形する。 In a subsequent step, the gel is separated from the solution and subjected to a commercially used washing process, such as a washing process using fresh water or hot water, to remove impurities, mainly salts, from the gel. The gel is then formed into particles by methods known in the art, such as extrusion, beading or pelletizing.
最後に、成形された粒子を乾燥し、焼成する。乾燥は一般に、室温〜200℃までの温度で、一般には空気の存在下で行われる。焼成は一般に、300〜950℃、好ましくは600〜900℃の温度で、一般には空気の存在下で、30分〜6時間の間、行われる。所望するならば、焼成を水蒸気の存在下で行って酸化物中の結晶成長に影響を及ぼすことができる。 Finally, the shaped particles are dried and fired. Drying is generally performed at a temperature from room temperature to 200 ° C., generally in the presence of air. Calcination is generally carried out at a temperature of 300 to 950 ° C., preferably 600 to 900 ° C., generally in the presence of air for 30 minutes to 6 hours. If desired, calcination can be performed in the presence of water vapor to affect crystal growth in the oxide.
上記製造法によって、上記で特定した表面積、孔体積および孔サイズ分布特性を有する触媒を与えるであろう特性を有する担体を得ることができる。表面積、孔体積、および孔サイズ分布特性は、当業者に公知のやり方、例えば、混合または成形工程中に、酸、例えば硝酸、酢酸もしくはギ酸、または成形補助剤などの他の化合物を添加することによって、あるいは水を添加したり除去したりしてゲルの水分量を調節することによって、調整され得る。 The above manufacturing method can provide a support having properties that will give a catalyst having the surface area, pore volume and pore size distribution characteristics specified above. Surface area, pore volume, and pore size distribution characteristics can be determined in a manner known to those skilled in the art, for example by adding acids, such as nitric acid, acetic acid or formic acid, or other compounds such as molding aids during the mixing or molding process. Or by adjusting the moisture content of the gel by adding or removing water.
本発明に従う方法で使用される触媒の担体は、触媒自体のそれと同じオーダーの比表面積、孔体積および孔サイズ分布を有する。触媒Iの担体は、好ましくは、100〜200m2/g、より好ましくは130〜170m2/gの表面積を有する。総孔体積は好ましくは、0.5〜1.2ml/g、より好ましくは0.7〜1.1ml/gである。触媒IIの担体は好ましくは、180〜300m2/g、より好ましくは185〜250m2/gの表面積および0.5〜1.0ml/g、より好ましくは0.6〜0.9ml/gの孔体積を有する。 The catalyst support used in the process according to the invention has a specific surface area, pore volume and pore size distribution in the same order as that of the catalyst itself. The catalyst support I is preferably, 100 to 200 m 2 / g, more preferably has a surface area of 130~170m 2 / g. The total pore volume is preferably 0.5 to 1.2 ml / g, more preferably 0.7 to 1.1 ml / g. The support of catalyst II is preferably 180-300 m 2 / g, more preferably 185-250 m 2 / g surface area and 0.5-1.0 ml / g, more preferably 0.6-0.9 ml / g. Has a pore volume.
VIB族金属成分、VIII族金属成分および、適切である場合には、IA族金属成分およびV族の化合物、例えばリン、は、慣用のやり方で、例えば含浸によっておよび/または粒子に成形される前に支持物質に組み入れることによって、触媒担体中に組み入れられ得る。このとき、最初に担体を製造しそして、担体が乾燥および焼成された後に触媒物質を担体に組み入れることが好ましいと考えられる。金属成分は、適する前駆体の形態で触媒組成物に組み入れられ得、好ましくは、適する金属前駆体を含む酸性または塩基性の含浸溶液を触媒に含浸させることによって組み入れられ得る。VIB族金属に関しては、適する前駆体として、ヘプタモリブデン酸アンモニウム、ジモリブデン酸アンモニウムおよびタングステン酸アンモニウムが挙げられ得る。他の化合物、例えば酸化物、水酸化物、炭酸塩、硝酸塩、塩化物、および有機酸塩、も使用され得る。VIII族金属に関しては、適する前駆体が、酸化物、水酸化物、炭酸塩、硝酸塩、塩化物および有機酸塩を包含する。炭酸塩および硝酸塩が特に適する。適するIA族金属前駆体は、硝酸塩および炭酸塩を包含する。リンに関しては、リン酸が使用され得る。含浸溶液は、適用される場合、その使用が従来公知であるところの他の化合物、例えば有機酸、例えばクエン酸、アンモニア水、過酸化水素水、グルコン酸、酒石酸、マレイン酸またはEDTA(エチレンジアミン四酢酸)、を含み得る。この方法に関して広範囲の変形があることは当業者に明らかであろう。すなわち、多数の含浸工程を適用することができ、使用されるべき含浸溶液は、沈着されるべき1以上の成分前駆体またはその一部を含む。含浸法の変わりに、浸漬法、噴霧法などが使用され得る。多段含浸、浸漬などの場合には、乾燥および/または焼成が間で行われ得る。 The Group VIB metal component, the Group VIII metal component and, where appropriate, the Group IA metal component and the Group V compound, such as phosphorus, are used in a conventional manner, such as by impregnation and / or before being formed into particles. Can be incorporated into the catalyst support by incorporation into a support material. At this time, it may be preferable to first produce the support and incorporate the catalytic material into the support after the support has been dried and calcined. The metal component can be incorporated into the catalyst composition in the form of a suitable precursor, and can preferably be incorporated by impregnating the catalyst with an acidic or basic impregnation solution containing a suitable metal precursor. For Group VIB metals, suitable precursors may include ammonium heptamolybdate, ammonium dimolybdate and ammonium tungstate. Other compounds such as oxides, hydroxides, carbonates, nitrates, chlorides, and organic acid salts can also be used. For Group VIII metals, suitable precursors include oxides, hydroxides, carbonates, nitrates, chlorides and organic acid salts. Carbonates and nitrates are particularly suitable. Suitable group IA metal precursors include nitrates and carbonates. For phosphorus, phosphoric acid can be used. The impregnation solution, when applied, is applied to other compounds whose use is conventionally known, such as organic acids such as citric acid, aqueous ammonia, aqueous hydrogen peroxide, gluconic acid, tartaric acid, maleic acid or EDTA (ethylenediamine tetrachloride). Acetic acid). It will be apparent to those skilled in the art that there are a wide variety of variations on this method. That is, a number of impregnation steps can be applied and the impregnation solution to be used comprises one or more component precursors or parts thereof to be deposited. Instead of the impregnation method, an immersion method, a spray method or the like can be used. In the case of multi-stage impregnation, immersion, etc., drying and / or calcination can be performed in between.
金属が触媒組成物に組み入れられた後、所望により、例えば空気流中で約0.5〜16時間、室温〜200℃の温度で乾燥され、次いで、一般には空気中で、約1〜6時間、好ましくは1〜3時間、200〜800℃で、好ましくは450〜600℃で焼成される。乾燥は、沈着された水を物理的に除去するために行われる。焼成は、金属成分前駆体の少なくとも一部、好ましくは全部を酸化物の形態にするために行われる。 After the metal is incorporated into the catalyst composition, it is optionally dried, for example, in a stream of air for about 0.5-16 hours at a temperature between room temperature and 200 ° C., and then generally in air for about 1-6 hours. , Preferably for 1 to 3 hours at 200 to 800 ° C., preferably 450 to 600 ° C. Drying is performed to physically remove the deposited water. Firing is performed in order to make at least a part, preferably all, of the metal component precursor into an oxide form.
触媒、すなわちその中に存在するVIB族およびVIII族金属成分、を、炭化水素供給原料の水素化処理での使用に先立って、硫化物の形態に転化することが望ましくあり得る。これは、別の慣用のやり方、例えば触媒を反応器中で高まる温度で水素および硫黄含有供給原料と接触させることにより、または水素と硫化水素との混合物と接触させることにより、行われ得る。イクスシチュー(exsitu)でのプレ硫化も可能である。 It may be desirable to convert the catalyst, ie the Group VIB and Group VIII metal components present therein, to a sulfide form prior to use in the hydroprocessing of the hydrocarbon feed. This can be done in another conventional manner, for example by contacting the catalyst with hydrogen and a sulfur-containing feed at elevated temperatures in the reactor, or by contacting with a mixture of hydrogen and hydrogen sulfide. Pre-sulfurization in exsitu is also possible.
本発明の方法は、重質炭化水素供給物の水素化処理に特に適する。それは、その少なくとも50重量%、好ましくは少なくとも80重量%が538℃(1000°F)より上で沸騰し、かつ少なくとも2重量%の硫黄および少なくとも5重量%のコンラドソン炭素を含むところの重質供給原料の水素化処理に特に適する。供給原料の硫黄含量は3重量%より上であり得る。そのコンラドソン炭素含量は、8重量%より上、好ましくは10重量%より上であり得る。供給原料は、汚染金属、例えばニッケルおよびバナジウム、を含み得る。典型的には、これらの金属がNiおよびVの合計に基づいて計算して、少なくとも20重量ppmの量、特に少なくとも30重量ppmの量で存在する。供給原料のアスファルテン含量は好ましくは、3〜15重量%、より好ましくは5〜10重量%である。 The process according to the invention is particularly suitable for the hydrotreatment of heavy hydrocarbon feeds. It is a heavy feed in which at least 50% by weight, preferably at least 80% by weight, boils above 538 ° C. (1000 ° F.) and contains at least 2% by weight sulfur and at least 5% by weight Conradson carbon. Particularly suitable for hydrotreating raw materials. The sulfur content of the feedstock can be above 3% by weight. Its Conradson carbon content can be above 8% by weight, preferably above 10% by weight. The feedstock can include contaminating metals such as nickel and vanadium. Typically, these metals are present in an amount of at least 20 ppm by weight, especially at least 30 ppm by weight, calculated on the sum of Ni and V. The asphaltene content of the feedstock is preferably 3-15% by weight, more preferably 5-10% by weight.
適する供給原料は、大気圧残渣、減圧残渣、ガス油とブレンドされた残渣、特に減圧ガス油、原油、シェール油、タールサンド油、溶媒脱アスファルト化油、石炭液化油などを包含する。典型的には、それらは、大気圧残渣(AR)、減圧残渣(VR)およびそれらの混合物である。 Suitable feedstocks include atmospheric residue, reduced pressure residue, residue blended with gas oil, particularly reduced pressure gas oil, crude oil, shale oil, tar sand oil, solvent deasphalted oil, coal liquefied oil and the like. Typically they are atmospheric residue (AR), vacuum residue (VR) and mixtures thereof.
本発明に従う方法は、固定床で、移動床で、または沸騰床で行われ得る。上記方法を沸騰床で行うことが特に好ましい。 The process according to the invention can be carried out in a fixed bed, in a moving bed or in a boiling bed. It is particularly preferred to carry out the above process in a boiling bed.
本発明に従う方法は、単一の反応器中でまたは多数の反応器中で行われ得る。多数の反応器が使用されるならば、2つの反応器において使用される触媒混合物は同じでも異なっていてもよい。2つの反応器が使用されるならば、2つの工程の間に、中間の層分離、ストリッピング、H2クエンチング(quenching)などの1以上を行っても行わなくてもよい。 The process according to the invention can be carried out in a single reactor or in multiple reactors. If multiple reactors are used, the catalyst mixture used in the two reactors may be the same or different. If two reactors are used, one or more of intermediate layer separation, stripping, H 2 quenching, etc. may or may not be performed between the two steps.
本発明に従う方法のためのプロセス条件は以下の通りであり得る。温度は一般に、350〜450℃、好ましくは400〜440℃である。圧力は一般に、5〜25MPa、好ましくは14〜19MPaである。液時空速度は一般に、0.1〜3h−1、好ましくは0.3〜2h−1である。水素と供給物との比は一般に、300〜1,500Nl/l、好ましくは600〜1000Nl/lである。上記方法は、液相中で行われる。 The process conditions for the method according to the invention can be as follows. The temperature is generally 350 to 450 ° C, preferably 400 to 440 ° C. The pressure is generally from 5 to 25 MPa, preferably from 14 to 19 MPa. Liquid hourly space velocity generally, 0.1~3h -1, preferably 0.3~2h -1. The ratio of hydrogen to feed is generally between 300 and 1,500 Nl / l, preferably between 600 and 1000 Nl / l. The above method is carried out in the liquid phase.
本発明は、以下の実施例によって以下に説明するが、それにまたはそれによって限定されるものではない。 The present invention is illustrated below by the following examples, but is not limited thereto or thereby.
触媒Aの製造
アルミン酸ナトリウム溶液および硫酸アルミニウム溶液を、生水を含むタンクに同時に滴下し、pH8.5で77℃で混合し、70分間保持した。こうして製造されたアルミナ水和物ゲルを溶液から分離し、温水で洗浄して、ゲル中の不純物を除去した。次いで、ゲルを約20分間混練し、0.9〜1mmの直径および3.5mmの長さを有する円柱状の粒子として押出した。押出されたアルミナ粒子を800℃で2時間焼成して、アルミナ担体を得た。
Preparation of catalyst A A sodium aluminate solution and an aluminum sulfate solution were simultaneously added dropwise to a tank containing raw water, mixed at 77 ° C at pH 8.5 and held for 70 minutes. The alumina hydrate gel thus produced was separated from the solution and washed with warm water to remove impurities in the gel. The gel was then kneaded for about 20 minutes and extruded as cylindrical particles having a diameter of 0.9-1 mm and a length of 3.5 mm. The extruded alumina particles were calcined at 800 ° C. for 2 hours to obtain an alumina carrier.
上記のようにして得られたアルミナ担体100gを、17.5gのモリブデン酸アンモニウム4水和物および9.8gの硝酸ニッケル6水和物を含む100mlのクエン酸溶液に25℃で45分間浸漬して、金属成分が装填された担体を得た。 100 g of the alumina support obtained as described above was immersed in 100 ml of citric acid solution containing 17.5 g of ammonium molybdate tetrahydrate and 9.8 g of nickel nitrate hexahydrate at 25 ° C. for 45 minutes. Thus, a carrier loaded with a metal component was obtained.
次いで、装填された担体を120℃で30分間乾燥し、620℃で1.5時間焼成して、触媒を完成した。製造された触媒中の各成分の量および触媒の特性を表1に示す。触媒Aは本発明の触媒Iの要件を満たす。 The loaded support was then dried at 120 ° C. for 30 minutes and calcined at 620 ° C. for 1.5 hours to complete the catalyst. The amount of each component in the produced catalyst and the characteristics of the catalyst are shown in Table 1. Catalyst A meets the requirements of Catalyst I of the present invention.
触媒Bの製造
下記の変更を除いて、触媒Aの製造を繰返した。すなわち、担体製造において、アルミナゲル形成中の温度は65℃であった。担体焼成温度は900℃であった。触媒製造において、含浸溶液は16.4gのモリブデン酸アンモニウム4水和物を含み、触媒焼成温度は600℃であった。触媒Bの組成および特性を表1に示す。触媒Bは本発明の触媒IIの要件を満たす。
Production of catalyst B Production of catalyst A was repeated with the following changes. That is, in the carrier production, the temperature during alumina gel formation was 65 ° C. The carrier firing temperature was 900 ° C. In the catalyst production, the impregnation solution contained 16.4 g ammonium molybdate tetrahydrate and the catalyst calcination temperature was 600 ° C. The composition and properties of catalyst B are shown in Table 1. Catalyst B meets the requirements of Catalyst II of the present invention.
触媒Cの製造
シリカ−アルミナ担体を製造するために、アルミン酸ナトリウム溶液を、生水を含むタンクへ供給し、硫酸アルミニウム溶液およびケイ酸ナトリウム溶液を添加し、混合した。硫酸アルミニウム溶液の添加が完了したとき、混合物のpHは8.5であった。混合物を64℃で1.5時間保持した。そのような混合によって、シリカ−アルミナゲルが製造された。ケイ酸ナトリウム濃度はアルミナゲル溶液の1.6重量%で設定された。
Production of catalyst C To produce a silica-alumina support, a sodium aluminate solution was fed into a tank containing fresh water, and an aluminum sulfate solution and a sodium silicate solution were added and mixed. When the addition of the aluminum sulfate solution was complete, the pH of the mixture was 8.5. The mixture was held at 64 ° C. for 1.5 hours. Such mixing produced a silica-alumina gel. The sodium silicate concentration was set at 1.6% by weight of the alumina gel solution.
シリカ−アルミナゲルを濾過によって単離し、熱水で洗浄してゲルから不純物を除去した。次いで、0.9〜1mmの直径および3.5mmの長さを有する円柱状の粒子に押出した。得られた粒子を空気中、120℃の温度で16時間乾燥し、次いで、空気の存在下で800℃で2時間焼成して、シリカ−アルミナ担体を得た。得られた担体のシリカ含量は7重量%であった。 The silica-alumina gel was isolated by filtration and washed with hot water to remove impurities from the gel. It was then extruded into cylindrical particles having a diameter of 0.9-1 mm and a length of 3.5 mm. The obtained particles were dried in air at a temperature of 120 ° C. for 16 hours, and then calcined in the presence of air at 800 ° C. for 2 hours to obtain a silica-alumina support. The resulting carrier had a silica content of 7% by weight.
こうして得られたシリカ−アルミナ担体の100gが、16.4gのモリブデン酸アンモニウム4水和物、9.8gの硝酸ニッケル6水和物、0.66gの硝酸ナトリウムおよび50mlの25%アンモニア水を含む含浸溶液100mlで含浸された。含浸された担体を次いで、120℃の温度で30分間乾燥し、540℃で1.5時間、炉中で焼成して、最終の触媒を製造した。この触媒の組成および特性を表1に示す。触媒Cは、本発明の触媒IIの要件を満たす。 100 g of the silica-alumina support thus obtained contains 16.4 g of ammonium molybdate tetrahydrate, 9.8 g of nickel nitrate hexahydrate, 0.66 g of sodium nitrate and 50 ml of 25% aqueous ammonia. It was impregnated with 100 ml of impregnation solution. The impregnated support was then dried at a temperature of 120 ° C. for 30 minutes and calcined in a furnace at 540 ° C. for 1.5 hours to produce the final catalyst. The composition and properties of this catalyst are shown in Table 1. Catalyst C meets the requirements of catalyst II of the present invention.
触媒A〜Cを、重質炭化水素供給原料の水素化処理において種々の組み合わせで試験した。これらの実施例で使用された供給原料は、90重量%の減圧残渣(VR)および10重量%の大気圧残渣(AR)から成る中東石油であった。供給物の組成および特性を表2に示す。 Catalysts A-C were tested in various combinations in the hydroprocessing of heavy hydrocarbon feedstocks. The feedstock used in these examples was Middle East Petroleum consisting of 90 wt% vacuum residue (VR) and 10 wt% atmospheric residue (AR). The composition and properties of the feed are shown in Table 2.
触媒A〜Cの少なくとも2種の混合物を、下記表3に示す組み合わせで固定床反応器に充填した。触媒床は等体積量の触媒を含んでいた。供給原料を、装置の中へ、1.5h−1の液時空速度、16.0MPaの圧力、427℃の平均温度で液層で導入し、供給された水素と供給原料との比(H2/油)を800Nl/lで保持した。 At least two mixtures of catalysts A to C were charged into a fixed bed reactor in the combinations shown in Table 3 below. The catalyst bed contained an equal volume of catalyst. The feedstock was introduced into the apparatus in a liquid phase at a liquid hourly space velocity of 1.5 h −1 , a pressure of 16.0 MPa, an average temperature of 427 ° C., and the ratio of hydrogen supplied to the feedstock (H 2 / Oil) was held at 800 Nl / l.
この方法によって製造された油生成物を集め、分析して、上記方法によって除去された硫黄(S)、金属(バナジウム+ニッケル)(M)およびアスファルテン(Asp)の量、ならびに538℃+画分を計算した。相対的体積活性値は下記式から得られた。 The oil product produced by this method was collected and analyzed to determine the amount of sulfur (S), metal (vanadium + nickel) (M) and asphaltenes (Asp) removed by the above method, and 538 ° C. + fraction. Was calculated. The relative volume activity value was obtained from the following formula.
下記表3は、試験された触媒の組み合わせおよび得られた結果を示す。 Table 3 below shows the combinations of catalysts tested and the results obtained.
表3からわかるように、本発明に従う触媒組成物は、HDS、HDMおよびアスファルテン除去において高い活性を示すと共に、高い残渣分解速度および低い沈降物形成を示す。 As can be seen from Table 3, the catalyst composition according to the present invention exhibits high activity in HDS, HDM and asphaltenes removal, as well as high residue decomposition rate and low sediment formation.
Claims (12)
触媒Iは多孔性無機担体上にVIB族金属成分を含み、該触媒は少なくとも100m2/gの比表面積および少なくとも0.55ml/gの総孔体積を有し、該総孔体積の少なくとも50%を少なくとも20nm(200Å)の直径を有する孔中に有し、該総孔体積の10〜30%を少なくとも200nm(2000Å)の直径を有する孔中に有し、
触媒IIは多孔性無機担体上にVIB族金属成分を含み、該触媒は少なくとも100m2/gの比表面積および少なくとも0.55ml/gの総孔体積を有し、該総孔体積の少なくとも75%を10〜120nm(100〜1200Å)の直径を有する孔中に有し、該総孔体積の0〜2%を少なくとも400nm(4000Å)の直径を有する孔中に有し、該総孔体積の0〜1%を少なくとも1000nm(10000Å)の直径を有する孔中に有し、および
該混合物は2〜98重量%の触媒Iおよび2〜98重量%の触媒IIを含む、
ところの方法。In a process for hydrotreating a heavy hydrocarbon oil comprising contacting the heavy hydrocarbon oil with a mixture of different hydrotreating catalysts I and II in the presence of hydrogen,
Catalyst I contains Group VIB metal Ingredients on a porous inorganic carrier, said catalyst having a total pore volume of the specific surface area and at least 0.55 ml / g of at least 100 m 2 / g, said total pore volume of at least 50 % In pores having a diameter of at least 20 nm (200 Å), 10-30% of the total pore volume in pores having a diameter of at least 200 nm (2000 Å) ,
The catalyst II comprises a Group VIB metal Ingredients on a porous inorganic carrier, said catalyst having a total pore volume of the specific surface area and at least 0.55 ml / g of at least 100 m 2 / g, of said total pore volume of at least 75 % In pores having a diameter of 10 to 120 nm (100 to 1200 mm), and 0 to 2% of the total pore volume in holes having a diameter of at least 400 nm (4000 mm), the 0 to 1% possess in pores with a diameter of at least 1000 nm (10000 Å), and
The mixture comprises 2 to 98% by weight of catalyst I and 2 to 98% by weight of catalyst II.
The way.
触媒IIaが、多孔性無機担体上に、VIB族金属成分を、三酸化物として計算して、触媒の重量に基づいて7〜20重量%含み、VIII族金属成分を、酸化物として計算して、触媒の重量に基づいて0.5〜6重量%含み、該触媒は100〜180m2/gの比表面積を有しかつ総孔体積の少なくとも85%を10〜120nm(100〜1200Å)の直径を有する孔中に有し、および
触媒IIbが、多孔性無機担体上に、VIB族金属成分を、三酸化物として計算して、触媒の重量に基づいて7〜20重量%含み、VIII族金属成分を、酸化物として計算して、触媒の重量に基づいて0.5〜6重量%含み、該触媒は少なくとも150m2/gの比表面積を有する、
請求項1または2記載の方法。Catalyst II comprises catalyst IIa, catalyst IIb or mixtures thereof;
Catalyst IIa contains, on a porous inorganic support, a Group VIB metal component calculated as a trioxide, based on the weight of the catalyst, 7 to 20% by weight, and a Group VIII metal component calculated as an oxide. 0.5 to 6% by weight based on the weight of the catalyst, the catalyst having a specific surface area of 100 to 180 m 2 / g and a diameter of 10 to 120 nm (100 to 1200 mm) at least 85% of the total pore volume And the catalyst IIb comprises, on the porous inorganic support, a Group VIB metal component, calculated as a trioxide, 7 to 20% by weight, based on the weight of the catalyst, and a Group VIII metal The component, calculated as oxide, comprises 0.5 to 6% by weight, based on the weight of the catalyst, the catalyst having a specific surface area of at least 150 m 2 / g;
The method according to claim 1 or 2 .
触媒Iが多孔性無機担体上にVIB族金属成分を含み、該触媒は少なくとも100m2/gの比表面積および少なくとも0.55ml/gの総孔体積を有し、該総孔体積の少なくとも50%を少なくとも20nm(200Å)の直径を有する孔中に有し、該総孔体積の10〜30%を少なくとも200nm(2000Å)の直径を有する孔中に有し、および
触媒IIは多孔性無機担体上にVIB族金属成分を含み、該触媒は少なくとも100m2/gの比表面積および少なくとも0.55ml/gの総孔体積を有し、該総孔体積の少なくとも75%を10〜120nm(100〜1200Å)の直径を有する孔中に有し、該総孔体積の0〜2%を少なくとも400nm(4000Å)の直径を有する孔中に有し、該総孔体積の0〜1%を少なくとも1000nm(10000Å)の直径を有する孔中に有する、
ところの混合物。A mixture of different catalysts comprising 2 to 98 % by weight of catalyst I and 2 to 98% by weight of catalyst II,
Catalyst I comprises a Group VIB metal Ingredients on a porous inorganic carrier, said catalyst having a total pore volume of the specific surface area and at least 0.55 ml / g of at least 100 m 2 / g, said total pore volume of at least 50 % In pores having a diameter of at least 20 nm (200 Å), 10-30% of the total pore volume in pores having a diameter of at least 200 nm (2000 Å), and Catalyst II is a porous inorganic support includes a group VIB metal Ingredient above, the catalyst has a total pore volume of the specific surface area and at least 0.55 ml / g of at least 100 m 2 / g, said total pore volume of at least 75% 10 to 120 nm (100 In a hole having a diameter of ~ 1200 mm), having 0-2% of the total pore volume in a hole having a diameter of at least 400 nm (4000 mm), and having 0-1% of the total pore volume less Both have the pores with a diameter of 1000 nm (10000 Å),
Where the mixture.
触媒IIaが、多孔性無機担体上に、VIB族金属成分を、三酸化物として計算して、触媒の重量に基づいて7〜20重量%含み、VIII族金属成分を、酸化物として計算して、触媒の重量に基づいて0.5〜6重量%含み、該触媒は100〜180m2/gの比表面積を有しかつ総孔体積の少なくとも85%を10〜120nm(100〜1200Å)の直径を有する孔中に有し、および
触媒IIbが、多孔性無機担体上に、VIB族金属成分を、三酸化物として計算して、触媒の重量に基づいて7〜20重量%含み、VIII族金属成分を、酸化物として計算して、触媒の重量に基づいて0.5〜6重量%含み、該触媒は少なくとも150m2/gの比表面積を有する、
請求項8または9記載の触媒混合物。Catalyst II comprises catalyst IIa, catalyst IIb or mixtures thereof;
Catalyst IIa contains, on a porous inorganic support, a Group VIB metal component calculated as a trioxide, based on the weight of the catalyst, 7 to 20% by weight, and a Group VIII metal component calculated as an oxide. 0.5 to 6% by weight based on the weight of the catalyst, the catalyst having a specific surface area of 100 to 180 m 2 / g and a diameter of 10 to 120 nm (100 to 1200 mm) at least 85% of the total pore volume And the catalyst IIb comprises, on the porous inorganic support, a Group VIB metal component, calculated as a trioxide, 7 to 20% by weight, based on the weight of the catalyst, and a Group VIII metal The component, calculated as oxide, comprises 0.5 to 6% by weight, based on the weight of the catalyst, the catalyst having a specific surface area of at least 150 m 2 / g;
The catalyst mixture according to claim 8 or 9 .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02080141 | 2002-12-06 | ||
PCT/EP2003/013791 WO2004052534A1 (en) | 2002-12-06 | 2003-12-04 | Heavy feed hpc process using a mixture of catalysts |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006509084A JP2006509084A (en) | 2006-03-16 |
JP2006509084A5 JP2006509084A5 (en) | 2006-05-11 |
JP4369871B2 true JP4369871B2 (en) | 2009-11-25 |
Family
ID=32479753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004558008A Expired - Fee Related JP4369871B2 (en) | 2002-12-06 | 2003-12-04 | Heavy material HPC process using a mixture of catalysts |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1567262B1 (en) |
JP (1) | JP4369871B2 (en) |
CN (1) | CN100444956C (en) |
AU (1) | AU2003289969A1 (en) |
CA (1) | CA2508605C (en) |
ES (1) | ES2859557T3 (en) |
PL (1) | PL213492B1 (en) |
WO (1) | WO2004052534A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4822705B2 (en) * | 2004-12-24 | 2011-11-24 | 日揮触媒化成株式会社 | Heavy hydrocarbon oil hydrotreating catalyst composition and method for producing the same |
CN101942317B (en) * | 2009-07-09 | 2013-08-28 | 中国石油化工股份有限公司 | Method for grading fluidized bed catalysts |
CN102443414B (en) * | 2010-10-13 | 2014-05-21 | 中国石油化工股份有限公司 | Heavy raw material boiling bed hydrogenation treatment method |
CN102465010B (en) * | 2010-11-04 | 2014-05-21 | 中国石油化工股份有限公司 | Heavy and inferior raw material hydrotreatment method |
WO2013095856A1 (en) | 2011-12-22 | 2013-06-27 | Advanced Refining Technologies Llc | Silica containing alumina supports, catalysts made therefrom and processes using the same |
CN104560138B (en) * | 2013-10-22 | 2016-10-26 | 中国石油化工股份有限公司 | A kind of boiling bed heavy oil hydrogenation treatment method |
EP3074486B1 (en) * | 2013-11-25 | 2018-06-27 | Shell International Research Maatschappij B.V. | A process for the catalytic conversion of micro carbon residue content of heavy hydrocarbon feedstocks and a low surface area catalyst composition for use therein |
FR3022236B1 (en) | 2014-06-13 | 2016-07-08 | Ifp Energies Now | AMORPHOUS AMORPHOUS AMORPHOUS ALUMINA WITH OPTIMIZED POROUS DISTRIBUTION AND PROCESS FOR PREPARING THE SAME |
FR3022157B1 (en) | 2014-06-13 | 2017-09-01 | Ifp Energies Now | BIMODAL CATALYST WITH COMALATED ACTIVE PHASE, PROCESS FOR PREPARING THE SAME, AND USE THEREOF IN HYDROTREATMENT OF RESIDUES |
FR3022159B1 (en) | 2014-06-13 | 2018-04-27 | IFP Energies Nouvelles | MESOPOROUS AND MACROPOROUS CATALYST OF RESIDUAL HYDROCONVERSION AND METHOD OF PREPARATION |
FR3037054B1 (en) | 2015-06-05 | 2021-08-27 | Ifp Energies Now | PROCESS FOR PREPARING A BOEHMITE PRESENTING SPECIAL CRYSTALLITES |
US20180230389A1 (en) | 2017-02-12 | 2018-08-16 | Magēmā Technology, LLC | Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil |
US12025435B2 (en) | 2017-02-12 | 2024-07-02 | Magēmã Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil |
US10604709B2 (en) | 2017-02-12 | 2020-03-31 | Magēmā Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials |
US11788017B2 (en) | 2017-02-12 | 2023-10-17 | Magëmã Technology LLC | Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil |
US12071592B2 (en) | 2017-02-12 | 2024-08-27 | Magēmā Technology LLC | Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil |
EP4065269A1 (en) * | 2019-11-29 | 2022-10-05 | Rhodia Operations | Alumina having a particular pore profile |
CA3158808A1 (en) * | 2019-11-29 | 2021-06-03 | Rhodia Operations | Alumina having a specific pore profile |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2528721B1 (en) * | 1982-06-17 | 1986-02-28 | Pro Catalyse Ste Fse Prod Cata | SUPPORTED CATALYST HAVING INCREASED RESISTANCE TO POISONS AND ITS USE IN PARTICULAR FOR THE HYDROTREATMENT OF OIL FRACTIONS CONTAINING METALS |
US4534852A (en) * | 1984-11-30 | 1985-08-13 | Shell Oil Company | Single-stage hydrotreating process for converting pitch to conversion process feedstock |
US5100855A (en) * | 1990-03-30 | 1992-03-31 | Amoco Corporation | Mixed catalyst system for hyproconversion system |
CN1030328C (en) * | 1991-09-05 | 1995-11-22 | 中国石油化工总公司石油化工科学研究院 | Method for preparing hydrogenation catalyst |
US6086749A (en) * | 1996-12-23 | 2000-07-11 | Chevron U.S.A. Inc. | Catalyst and method for hydroprocessing a hydrocarbon feed stream in a reactor containing two or more catalysts |
JP4612229B2 (en) * | 2001-06-08 | 2011-01-12 | 日本ケッチェン株式会社 | Catalyst for hydrotreating heavy hydrocarbon oil and hydrotreating method |
-
2003
- 2003-12-04 EP EP03782317.6A patent/EP1567262B1/en not_active Expired - Lifetime
- 2003-12-04 WO PCT/EP2003/013791 patent/WO2004052534A1/en active Application Filing
- 2003-12-04 AU AU2003289969A patent/AU2003289969A1/en not_active Abandoned
- 2003-12-04 ES ES03782317T patent/ES2859557T3/en not_active Expired - Lifetime
- 2003-12-04 JP JP2004558008A patent/JP4369871B2/en not_active Expired - Fee Related
- 2003-12-04 CA CA2508605A patent/CA2508605C/en not_active Expired - Lifetime
- 2003-12-04 PL PL377092A patent/PL213492B1/en unknown
- 2003-12-04 CN CNB2003801083088A patent/CN100444956C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CA2508605A1 (en) | 2004-06-24 |
CA2508605C (en) | 2011-11-29 |
JP2006509084A (en) | 2006-03-16 |
PL213492B1 (en) | 2013-03-29 |
EP1567262B1 (en) | 2021-02-03 |
PL377092A1 (en) | 2006-01-23 |
CN1735456A (en) | 2006-02-15 |
AU2003289969A8 (en) | 2004-06-30 |
EP1567262A1 (en) | 2005-08-31 |
AU2003289969A1 (en) | 2004-06-30 |
WO2004052534A1 (en) | 2004-06-24 |
CN100444956C (en) | 2008-12-24 |
ES2859557T3 (en) | 2021-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7922894B2 (en) | HPC process using a mixture of catalysts | |
EP1347832B1 (en) | Hydroprocessing catalyst and use thereof | |
CA2508630C (en) | Hydro processing of hydrocarbon using a mixture of catalysts | |
JP4369871B2 (en) | Heavy material HPC process using a mixture of catalysts | |
JP2000210565A (en) | Catalyst for hydrogenation and hydrogenation method | |
US7476309B2 (en) | Two-stage heavy feed hpc process | |
EP1392798B1 (en) | Two-stage hydroprocessing process | |
US7186329B2 (en) | High-macropore hydroprocessing catalyst and its use | |
US8012343B2 (en) | Heavy feed HPC process using a mixture of catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060314 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080502 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090805 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090828 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4369871 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130904 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |