JP2008168257A - Hydrogenation catalyst, its manufacturing method, and hydrogenation treatment catalyst, its production method and hydrogenation treatment method of heavy oil - Google Patents

Hydrogenation catalyst, its manufacturing method, and hydrogenation treatment catalyst, its production method and hydrogenation treatment method of heavy oil Download PDF

Info

Publication number
JP2008168257A
JP2008168257A JP2007005589A JP2007005589A JP2008168257A JP 2008168257 A JP2008168257 A JP 2008168257A JP 2007005589 A JP2007005589 A JP 2007005589A JP 2007005589 A JP2007005589 A JP 2007005589A JP 2008168257 A JP2008168257 A JP 2008168257A
Authority
JP
Japan
Prior art keywords
catalyst
mass
acid
compound
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007005589A
Other languages
Japanese (ja)
Inventor
Ryuichiro Iwamoto
隆一郎 岩本
Shigeari Kagami
成存 各務
Seiichiro Eguchi
誠一郎 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2007005589A priority Critical patent/JP2008168257A/en
Publication of JP2008168257A publication Critical patent/JP2008168257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogenation treatment catalyst which is highly active, shows little deactivation, has a high abrasion strength of a new catalyst and a regenerated catalyst and also is easily regenerated after a heavy oil is treated, to provide its production method and a hydrogenation treatment method which enables the stable use of a deactivated catalyst for a long time even after it is regenerated after the heavy oil is hydrogenation treated using the hydrogenation treatment catalyst. <P>SOLUTION: The hydrogenation treatment catalyst is obtained by supporting NiO of 1-10 mass%, MoO<SB>3</SB>of 5-20 mass%, MgO of 0.3-1.5 mass% and P<SB>2</SB>O<SB>5</SB>of 2-5 mass%, based on the whole amount of the catalyst, on a fire-resistive oxide carrier, wherein a MgO compound is dissolved in an organic acid to be supported so that the compound satisfies, as MgO, 0.2≤MgO/the organic acid(mol ratio)≤0.6. The production method of this catalyst is provided. In the hydrogenation treatment method of the heavy oil, the heavy oil is hydrogenation treated using the hydrogenation treatment catalyst and thereafter the deactivated catalyst is regenerated to be used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素化処理触媒、その製造方法及び重質油の水素化処理方法に関し、詳しくは、重質油の水素化処理によって劣化した水素化処理触媒を再生使用するに適した水素化処理触媒及びその製造方法、並びに重質油の水素化処理方法に関する。   TECHNICAL FIELD The present invention relates to a hydrotreating catalyst, a method for producing the same, and a hydrotreating method for heavy oil. The present invention relates to a catalyst, a method for producing the same, and a method for hydrotreating heavy oil.

一般に、灯軽油等の軽質な含硫黄炭化水素の水素化処理における触媒性能の低下原因は、コーク(炭素分)の触媒上への析出であると言われている。
一方、重質油の水素化処理においては、軽質油とは異なり、原料油中に存在する多量のバナジウム、ニッケル等の金属不純物が、水素化処理中に触媒上に蓄積して活性点を被毒することにより触媒性能が低下する。
また、沸点の高い重質油の水素化処理では、軽質油より高温で処理を行う必要があるため、触媒中のモリブデン等の触媒活性金属成分が凝集してしまい、更に触媒性能の低下が進行する。
更に、重質油中には難脱硫性の硫黄化合物が多く含まれていることから、軽質油の水素化処理に比べて、バナジウム等の金属の蓄積の影響をより顕著に受けやすい。
In general, it is said that the cause of the decrease in the catalyst performance in the hydrotreatment of light sulfur-containing hydrocarbons such as kerosene oil is the deposition of coke (carbon content) on the catalyst.
On the other hand, in heavy oil hydrotreating, unlike light oil, a large amount of metal impurities such as vanadium and nickel present in the feedstock accumulate on the catalyst during the hydrotreating to cover the active sites. Poisoning reduces catalyst performance.
In addition, in the hydrotreatment of heavy oil with a high boiling point, it is necessary to perform the treatment at a higher temperature than the light oil, so that catalytically active metal components such as molybdenum in the catalyst are aggregated and the catalyst performance is further deteriorated. To do.
Furthermore, since heavy oil contains a lot of hard-to-desulfurize sulfur compounds, it is more easily affected by the accumulation of vanadium and other metals compared to hydrogenation of light oil.

近年、環境問題の高まりから、触媒廃棄物を低減するため、水素化処理触媒の再生利用が望まれている。
しかし、重質油の水素化処理の場合には、焼成によりコークは除去することができるが、蓄積したバナジウムやニッケル等の金属の除去は困難であるため、再生後の触媒を長時間安定して用いることは困難であり、更に、再生時に触媒の摩耗強度が低下するため、再生後の触媒の再充填時に、触媒粒子間隙が閉塞し、再生触媒を使用する時に運転ができなくなるという問題があった。
最近、アルミナ担体に、酸化ニッケル、三酸化モリブデン、酸化マグネシウム及び五酸化リンを担持させた触媒が提案されている(例えば、特許文献1及び2参照)。
しかし、この方法においても、完全に再生時における触媒の摩耗強度の低下問題は解消せず、触媒の再生・使用は困難であった。
In recent years, due to increasing environmental problems, it is desired to recycle the hydrotreating catalyst in order to reduce catalyst waste.
However, in the case of heavy oil hydrotreating, coke can be removed by calcination, but it is difficult to remove accumulated metals such as vanadium and nickel. In addition, since the wear strength of the catalyst is reduced during regeneration, the catalyst particle gap is clogged when the catalyst is recharged after regeneration, and operation becomes impossible when using the regenerated catalyst. there were.
Recently, a catalyst in which nickel oxide, molybdenum trioxide, magnesium oxide, and phosphorus pentoxide are supported on an alumina carrier has been proposed (see, for example, Patent Documents 1 and 2).
However, even in this method, the problem of reduction in the wear strength of the catalyst during complete regeneration has not been solved, and it has been difficult to regenerate and use the catalyst.

特開平11−319567号公報JP 11-319567 A 特開2005−254083号公報JP 2005-254083 A

本発明は、上記の課題を解決するためになされたもので、高活性で劣化が少なく、かつ新触媒及び再生触媒の摩耗強度が大きく、かつ重質油処理後の再生が容易な水素化処理触媒、その製造方法、及び該水素化処理触媒を用いて、重質油を水素化処理した後に、該触媒を再生した後も長期間安定して用いることができる重質油の水素化処理方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and is a hydrotreatment that is highly active and less deteriorated, the wear strength of the new catalyst and the regenerated catalyst is large, and easy to regenerate after heavy oil treatment. Catalyst, method for producing the same, and method for hydrotreating heavy oil that can be stably used for a long period of time after regenerating the catalyst after hydrotreating the heavy oil using the hydrotreating catalyst The purpose is to provide.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、酸化マグネシウムが、マグネシウム化合物を酸化マグネシウムとして、0.2≦酸化マグネシウム/有機酸(モル比)≦0.6となるように有機酸に溶解して担持された触媒が有効であることを見出し、本発明を完成したものである。   As a result of intensive studies to achieve the above object, the present inventors have found that magnesium oxide becomes 0.2 ≦ magnesium oxide / organic acid (molar ratio) ≦ 0.6 with the magnesium compound as magnesium oxide. Thus, the present inventors have found that a catalyst dissolved and supported in an organic acid is effective and completed the present invention.

すなわち、本発明は、
1.耐火性酸化物担体に、触媒全量基準で、酸化ニッケルを1〜10質量%、三酸化モリブデンを5〜20質量%、酸化マグネシウムを0.3〜1.5質量%及び五酸化リンを2〜5質量%担持した触媒であって、該酸化マグネシウムが、マグネシウム化合物を酸化マグネシウムとして、0.2≦酸化マグネシウム/有機酸≦0.6となるように有機酸に溶解して担持されたものであることを特徴とする水素化処理触媒、
2.有機酸が、クエン酸、リンゴ酸、酒石酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、蓚酸、酒石酸、コハク酸、マロン酸、ギ酸、酢酸、プロピオン酸から選択されるいずれか一種の酸、又は二種以上の混合酸である上記1に記載の水素化処理触媒、
3.上記1又は2に記載の水素化処理触媒の製造方法であって、ニッケル化合物、モリブデン化合物、マグネシウム化合物、リン化合物及び有機酸を、分子量200以上のポリエチレングリコールの存在下、耐火性酸化物担体に担持することを特徴とする水素化処理触媒の製造方法、
4.ニッケル化合物、モリブデン化合物、マグネシウム化合物、リン化合物及び有機酸を、分子量200以上のポリエチレングリコールの存在下、耐火性酸化物担体に担持した後、400℃以上で焼成する上記3に記載の水素化処理触媒の製造方法、
5.上記1又は2に記載の水素化処理触媒、並びに上記3又は4に記載の製造方法によって得られた水素化処理触媒から選択される一種以上の触媒を用いることを特徴とする重質油の水素化処理方法、
6.上記1又は2に記載の水素化処理触媒、並びに上記3又は4に記載の製造方法によって得られた水素化処理触媒から選択される一種以上の触媒を用いて重質油の水素化処理を行った後、劣化した触媒から蓄積した炭素質を焼成により除去し、再度重質油の水素化処理に使用する重質油の水素化処理方法
を提供するものである。
That is, the present invention
1. To the refractory oxide carrier, 1 to 10% by mass of nickel oxide, 5 to 20% by mass of molybdenum trioxide, 0.3 to 1.5% by mass of magnesium oxide and 2 to 2 of phosphorus pentoxide, based on the total amount of the catalyst. A catalyst supported by 5% by mass, in which the magnesium oxide is supported by being dissolved in an organic acid such that the magnesium compound is magnesium oxide and 0.2 ≦ magnesium oxide / organic acid ≦ 0.6. A hydrotreating catalyst characterized by being,
2. Any one or two kinds of organic acids selected from citric acid, malic acid, tartaric acid, tartronic acid, glyceric acid, hydroxybutyric acid, succinic acid, tartaric acid, succinic acid, malonic acid, formic acid, acetic acid, propionic acid The hydroprocessing catalyst according to the above 1, which is a mixed acid as described above,
3. 3. The method for producing a hydrotreating catalyst according to 1 or 2 above, wherein a nickel compound, a molybdenum compound, a magnesium compound, a phosphorus compound and an organic acid are converted into a refractory oxide carrier in the presence of polyethylene glycol having a molecular weight of 200 or more. A method for producing a hydrotreating catalyst,
4). 4. The hydrogenation treatment according to 3 above, wherein a nickel compound, a molybdenum compound, a magnesium compound, a phosphorus compound, and an organic acid are supported on a refractory oxide carrier in the presence of polyethylene glycol having a molecular weight of 200 or more, and then fired at 400 ° C. or higher. Production method of catalyst,
5. Hydrogen of heavy oil, characterized by using one or more catalysts selected from the hydrotreating catalyst according to 1 or 2 and the hydrotreating catalyst obtained by the production method according to 3 or 4 above. Processing method,
6). Hydrotreating heavy oil using one or more catalysts selected from the hydrotreating catalyst according to 1 or 2 and the hydrotreating catalyst obtained by the production method according to 3 or 4 above. Then, the carbonaceous substance accumulated from the deteriorated catalyst is removed by calcination, and a heavy oil hydrotreating method used again for heavy oil hydrotreating is provided.

本発明によれば、耐火性酸化物担体に、触媒全量基準で酸化マグネシウムが0.3〜1.5質量%担持された触媒であって、該酸化マグネシウムが、マグネシウム化合物を酸化マグネシウムとして、0.2≦酸化マグネシウム/有機酸≦0.6となるように有機酸に溶解して担持された触媒が、高活性で、かつ摩耗強度が向上しているため、触媒の再生使用が従来触媒より非常に容易となる。   According to the present invention, a catalyst in which 0.3 to 1.5% by mass of magnesium oxide is supported on a refractory oxide carrier on the basis of the total amount of the catalyst, the magnesium oxide having a magnesium compound as magnesium oxide, 0 .2 ≦ Magnesium oxide / Organic acid ≦ 0.6 The catalyst supported by dissolving in organic acid is highly active and has improved wear strength. It will be very easy.

本発明の水素化処理触媒は、耐火性酸化物担体に、触媒全量基準で、酸化ニッケルを1〜10質量%、三酸化モリブデンを5〜20質量%、酸化マグネシウムを0.3〜1.5質量%及び五酸化リンを2〜5質量%担持した触媒であって、該酸化マグネシウムが、マグネシウム化合物を酸化マグネシウムとして、0.2≦酸化マグネシウム/有機酸(モル比)≦0.6となるように有機酸に溶解して担持されたものである。
本発明の水素化処理触媒は、バナジウム、ニッケル等の金属分を不純物として含む残渣油などの重質油の水素化処理用触媒であり、水素化脱硫、水素化脱窒素、水素化分解、水素化脱芳香族などの水素化処理反応に用いることができるが、特に水素化脱硫反応に有効に用いることができる。
本発明の水素化処理触媒は、ニッケル化合物、モリブデン化合物、マグネシウム化合物、リン化合物及び有機酸を、分子量200以上のポリエチレングリコールの存在下、耐火性酸化物担体に担持した後、焼成することにより製造することができる。
詳しくは、有機酸を用いて、耐火性酸化物担体に酸化マグネシウム、酸化ニッケル、三酸化モルブデン及び五酸化リンを担持するものである。
ここで、耐火性酸化物担体は、通常、アルミナが含まれるが、それ以外の成分として、例えば、シリカ、チタニア、ジルコニアなどの無機酸化物を含んでいてもよく、又はこれらの複合酸化物担体であってもよい。
特に、アルミナ担体が好ましい。
酸化ニッケル、三酸化モリブデン等の金属酸化物の分散性の観点からは、アルミナ担体が好ましい。
The hydrotreating catalyst of the present invention is a refractory oxide carrier, based on the total amount of the catalyst, 1 to 10% by mass of nickel oxide, 5 to 20% by mass of molybdenum trioxide, and 0.3 to 1.5% of magnesium oxide. A catalyst carrying 2% by mass and 2% by mass of phosphorus pentoxide, wherein the magnesium oxide is 0.2 ≦ magnesium oxide / organic acid (molar ratio) ≦ 0.6 when the magnesium compound is magnesium oxide. Thus, it is dissolved and supported in an organic acid.
The hydrotreating catalyst of the present invention is a catalyst for hydrotreating heavy oil such as residual oil containing metal components such as vanadium and nickel as impurities, hydrodesulfurization, hydrodenitrogenation, hydrocracking, hydrogen Although it can be used for hydrotreating reactions such as hydrodearomatics, it can be used particularly effectively for hydrodesulfurization reactions.
The hydrotreating catalyst of the present invention is produced by firing a nickel compound, a molybdenum compound, a magnesium compound, a phosphorus compound and an organic acid on a refractory oxide carrier in the presence of polyethylene glycol having a molecular weight of 200 or more and then firing. can do.
Specifically, an organic acid is used to carry magnesium oxide, nickel oxide, morbuden trioxide and phosphorus pentoxide on a refractory oxide carrier.
Here, the refractory oxide support usually contains alumina, but may contain inorganic oxides such as silica, titania, zirconia, etc. as other components, or a composite oxide support thereof. It may be.
In particular, an alumina support is preferable.
From the viewpoint of dispersibility of metal oxides such as nickel oxide and molybdenum trioxide, an alumina carrier is preferable.

本発明の水素化処理触媒において、酸化マグネシウムの含有量は、触媒全量基準で0.3〜1.5質量%であり、好ましく0.3〜1.0質量%、より好ましくは0.4〜0.9質量%、更に好ましくは0.5〜0.8質量%である。
酸化マグネシウムの含有量が0.3質量%以上であると、充分な摩耗強度が得られ、1.5質量%以下であると、酸化マグネシウムがモリブデン、ニッケル等の担持金属と反応して複合酸化物を形成することがなく、活性が上昇する。
酸化マグネシウムを担持する際に用いられるマグネシウム化合物としては、酸化マグネシウムをはじめとして、塩基性炭酸マグネシウム、塩化マグネシウム、硝酸マグネシウム、硫酸マグネシウム等を挙げることができる。
In the hydrotreating catalyst of the present invention, the content of magnesium oxide is 0.3 to 1.5% by mass, preferably 0.3 to 1.0% by mass, more preferably 0.4 to 4%, based on the total amount of the catalyst. It is 0.9 mass%, More preferably, it is 0.5-0.8 mass%.
When the magnesium oxide content is 0.3% by mass or more, sufficient wear strength is obtained, and when it is 1.5% by mass or less, the magnesium oxide reacts with a supported metal such as molybdenum or nickel to perform composite oxidation. No activity is formed and activity is increased.
Examples of the magnesium compound used for supporting magnesium oxide include magnesium oxide, basic magnesium carbonate, magnesium chloride, magnesium nitrate, and magnesium sulfate.

本発明の水素化処理触媒において、酸化マグネシウムは、マグネシウム化合物を酸化マグネシウムとして、0.2≦酸化マグネシウム/有機酸(モル比)≦0.6となるように有機酸に溶解して担持される。
この場合、上記有機酸を用いて、溶液のpHを1.0超え、3以下に調製して担持することが好ましく、より好ましくは、pH1.2〜2.8、更に好ましくはpH1.5〜2.5である。
上記酸化マグネシウム、塩基性炭酸マグネシウム等のマグネシウム化合物を溶解する有機酸としては、クエン酸、リンゴ酸、酒石酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、蓚酸、酒石酸、コハク酸、マロン酸、ギ酸、酢酸、プロピオン酸等が挙げられ、リンゴ酸又はクエン酸が好ましい。
マグネシウム化合物を溶解する有機酸の使用量としては、マグネシウム化合物を酸化マグネシウムとして、0.2≦酸化マグネシウム/有機酸(モル比)≦0.6である。
好ましくは、0.25≦酸化マグネシウム/有機酸(モル比)≦0.4である。
モル比が0.2未満であると、耐火性酸化物担体と酸化マグネシウムとの充分な結合が生成せず、バナジウム等の金属に対する保護効果が有効に発現することがなく、マグネシウム化合物等を担持した後の焼成において、有機酸の燃焼熱により耐火性酸化物担体の強度低下が起こってしまう。
一方、モル比が0.6を超えるとマグネシウム化合物が有機酸に十分に溶解しないため耐火性酸化物担体上に均一に担時できない。
本発明の水素化処理触媒の製造法において、特に、劣化した触媒からバナジウム等の被毒物による触媒構造の破壊を抑制しつつ蓄積した炭素質を焼成により除去し、繰り返し再生して使用する場合には、上記のように、マグネシウム化合物を酸化マグネシウムとして、酸化マグネシウム/有機酸を特定のモル比で溶解し、ニッケル化合物、モリブデン化合物、リン化合物とともに成形した耐火性酸化物担体に担持することが好ましい。
In the hydrotreating catalyst of the present invention, magnesium oxide is supported by being dissolved in an organic acid such that the magnesium compound is magnesium oxide and 0.2 ≦ magnesium oxide / organic acid (molar ratio) ≦ 0.6. .
In this case, it is preferable that the pH of the solution be adjusted to 1.0 or more and 3 or less using the organic acid, more preferably pH 1.2 to 2.8, still more preferably pH 1.5 to 2.5.
Organic acids that dissolve magnesium compounds such as magnesium oxide and basic magnesium carbonate include citric acid, malic acid, tartaric acid, tartronic acid, glyceric acid, hydroxybutyric acid, succinic acid, tartaric acid, succinic acid, malonic acid, formic acid, acetic acid. And propionic acid, and malic acid or citric acid is preferable.
The amount of the organic acid used to dissolve the magnesium compound is 0.2 ≦ magnesium oxide / organic acid (molar ratio) ≦ 0.6, where the magnesium compound is magnesium oxide.
Preferably, 0.25 ≦ magnesium oxide / organic acid (molar ratio) ≦ 0.4.
When the molar ratio is less than 0.2, a sufficient bond between the refractory oxide support and magnesium oxide is not generated, and the protective effect against metals such as vanadium is not effectively exhibited, and the magnesium compound is supported. In the subsequent firing, the strength of the refractory oxide carrier is reduced by the combustion heat of the organic acid.
On the other hand, when the molar ratio exceeds 0.6, the magnesium compound is not sufficiently dissolved in the organic acid, so that it cannot be uniformly applied on the refractory oxide carrier.
In the method for producing a hydrotreating catalyst of the present invention, in particular, when the accumulated carbonaceous matter is removed from the deteriorated catalyst by firing while suppressing destruction of the catalyst structure due to poisonous substances such as vanadium, and repeatedly regenerated and used. As described above, it is preferable that the magnesium compound is magnesium oxide, the magnesium oxide / organic acid is dissolved at a specific molar ratio, and is supported on a refractory oxide carrier molded together with a nickel compound, a molybdenum compound, and a phosphorus compound. .

本発明の水素化処理触媒において、耐火性酸化物担体の形状は特に限定されず、円柱、球状、三〜六葉、ハニカム等目的とする反応形式に好適な形状を自由に選択することができる。
特に、固定床直接水素化脱硫反応装置では、円柱、三つ葉、四つ葉の形状が好適に用いられる。
前記耐火性酸化物担体は、比表面積が通常、5〜500m2/g、好ましくは50〜300m2/gのものが用いられる。
比表面積が5m2/g以上であると、担持金属酸化物の分散性が確保され、500m2/g以下であると、反応生成物の拡散が阻害されず好適である。
耐火性酸化物担体の細孔容積は、通常、0.2〜1.5cm3/g、好ましくは0.3〜1.2cm3/gのものが用いられる。
細孔容積が0.2cm3/g以上であると、原料油中のバナジウム等の金属不純物の蓄積及びコークの析出により直ちに触媒細孔が閉塞されることがなく、1.5cm3/g以下であると、実用に耐え得る十分な触媒強度が確保され好ましい。
耐火性酸化物担体の細孔径は、通常、10〜30nmの平均細孔径を有し、好ましくは11〜20nm、より好ましくは12〜15nmである。
上記細孔径は、反応物である石油留分の分子の大きさに適した細孔径であり、反応物が十分に触媒細孔内部の反応活性点に拡散できる細孔径である。
上記物性値については、細孔容積及び細孔分布は、窒素による吸脱着法により測定し、BJH法[E.P.Barreff.L.G.Joyner and P.P.Halnda,J.Amer.Chem.Soc.,73,373(1951)]によって解析して求めることができる。
比表面積は、窒素によるB.E.T.法により求めることができる。
In the hydrotreating catalyst of the present invention, the shape of the refractory oxide support is not particularly limited, and a shape suitable for a desired reaction mode such as a columnar shape, a spherical shape, a three to six leaf shape, and a honeycomb can be freely selected. .
In particular, in the fixed bed direct hydrodesulfurization reactor, a cylindrical shape, a three-leaf shape, and a four-leaf shape are preferably used.
The refractory oxide carrier having a specific surface area of usually 5 to 500 m 2 / g, preferably 50 to 300 m 2 / g is used.
When the specific surface area is 5 m 2 / g or more, the dispersibility of the supported metal oxide is secured, and when the specific surface area is 500 m 2 / g or less, the diffusion of the reaction product is not hindered.
The pore volume of the refractory oxide carrier is usually 0.2 to 1.5 cm 3 / g, preferably 0.3 to 1.2 cm 3 / g.
When the pore volume is 0.2 cm 3 / g or more, the catalyst pores are not immediately clogged due to accumulation of metal impurities such as vanadium in the feedstock and coke deposition, and 1.5 cm 3 / g or less. It is preferable that sufficient catalyst strength that can withstand practical use is secured.
The pore diameter of the refractory oxide carrier usually has an average pore diameter of 10 to 30 nm, preferably 11 to 20 nm, more preferably 12 to 15 nm.
The pore diameter is a pore diameter suitable for the molecular size of the petroleum fraction that is a reactant, and is a pore diameter that allows the reactant to sufficiently diffuse to the reaction active point inside the catalyst pore.
With respect to the above physical property values, the pore volume and pore distribution were measured by an adsorption / desorption method using nitrogen, and the BJH method [E. P. Barref. L. G. Joyner and P.M. P. Halnda, J .; Amer. Chem. Soc., 73, 373 (1951)].
The specific surface area is B. E. T.A. It can be determined by law.

本発明の水素化処理触媒において、酸化ニッケルの含有量は、触媒全量基準で1〜10質量%、好ましくは2〜8質量%である。
また、三酸化モリブデンの含有量は、触媒全量基準で5〜20質量%、好ましくは6〜18質量%である。
更に、五酸化リンの含有量は、触媒全量基準で2〜5質量%、好ましくは2.5〜4.5質量%である。
酸化ニッケルの含有量が1質量%以上であると、十分な活性を発現し、10質量%以下であると、活性種である硫化ニッケルの凝集がなく、高活性となる。
また、三酸化モリブデンの含有量が5質量%以上である、十分な活性を発現し、20質量%以下であると、活性種である硫化モリブデンの凝集がなく、高活性となる。
更に、五酸化リンが2質量%以上であると、スピネル抑制効果が十分に発揮され、5質量%以下であると、ニッケル−モリブデン−リンの凝集物が生成することがなく、高活性となる。
ここで、スピネル抑制効果とは、耐火性酸化物担体がアルミナを含む場合、ニッケルがアルミナとスピネルを形成し、触媒が不活性化することを抑制し、触媒活性を向上させることを意味する。
In the hydrotreating catalyst of the present invention, the content of nickel oxide is 1 to 10% by mass, preferably 2 to 8% by mass, based on the total amount of the catalyst.
The content of molybdenum trioxide is 5 to 20% by mass, preferably 6 to 18% by mass, based on the total amount of the catalyst.
Furthermore, the content of phosphorus pentoxide is 2 to 5% by mass, preferably 2.5 to 4.5% by mass, based on the total amount of the catalyst.
When the content of nickel oxide is 1% by mass or more, sufficient activity is exhibited, and when it is 10% by mass or less, there is no aggregation of nickel sulfide, which is an active species, and high activity is achieved.
Further, when the content of molybdenum trioxide is 5% by mass or more, sufficient activity is exhibited, and when it is 20% by mass or less, there is no aggregation of molybdenum sulfide as an active species and high activity is obtained.
Further, when the phosphorus pentoxide is 2% by mass or more, the spinel suppressing effect is sufficiently exhibited, and when it is 5% by mass or less, the aggregate of nickel-molybdenum-phosphorus is not generated and the activity becomes high. .
Here, the spinel suppressing effect means that when the refractory oxide support contains alumina, nickel forms spinel with alumina, and the catalyst is prevented from being deactivated, thereby improving the catalytic activity.

本発明の水素化処理触媒は、耐火性酸化物担体に、上記酸化物を担持させることにより製造することができるが、担持処理の含浸液に用いられる好ましいモリブデン及びニッケル化合物としては、酸化物、硫酸塩、硝酸塩、炭酸塩、塩基性炭酸塩、蓚酸塩、酢酸塩、アンモニウム塩等が用いられる。
リン化合物としては、五酸化リン、正リン酸等が用いられる。
また、本発明の水素化処理触媒の製造においては、マグネシウム化合物をはじめとして、ニッケル化合物、モリブデン化合物及びリン化合物を耐火性酸化物担体に担持するに際しては、分子量が200以上のポリエチレングリコールの存在下で担持することが必要である。
ポリエチレングリコールの分子量は、通常、分子量が250〜10,000、好ましくは分子量300〜6,000のものが用いられる。
分子量が200以上であると、触媒活性が確保され、10,000以下であると溶解性や担持工程の時間の観点から取扱いが容易となる。
ポリエチレングリコールの使用量としては、耐火性酸化物担体100質量部に対して、通常、0.5〜20質量部、好ましくは1〜15質量部である。
ポリエチレングリコールの使用量が0.5質量部以上であると、下記するニッケル−モリブデン−リンの凝集物が生成せず、触媒活性が上昇し、30質量部以下であると担持を容易に行うことができる。
上記のように、ニッケル化合物を担持する場合、耐火性酸化物担体がアルミナを含むと、ニッケルがアルミナとスピネルを形成し、触媒が不活性化するおそれがあるが、リン化合物はこのニッケルのスピネル化を抑制する作用があり、触媒活性を向上させる。
上記ポリエチレングリコールを用いないでリン化合物を多量に用いると、ニッケル−モリブデン−リンの凝集物が生成するため、逆に触媒活性が低下する傾向にあるが、ポリエチレングリコールを用いた場合には、五酸化リンの含有量を、上記のように、2〜5質量%と増加させることができ、触媒活性を飛躍的に向上させることができる。
マグネシウム化合物、ニッケル化合物、モリブデン化合物及びリン化合物の担持方法には特に限定はないが、常圧含浸法、真空含浸法、塗布法等の公知の担持操作及びこれらを組み合わせた方法を用いて、耐火性酸化物担体に担持される。
The hydrotreating catalyst of the present invention can be produced by supporting the above oxide on a refractory oxide support. Preferred molybdenum and nickel compounds used in the impregnation liquid for supporting treatment include oxides, Sulfates, nitrates, carbonates, basic carbonates, oxalates, acetates, ammonium salts and the like are used.
As the phosphorus compound, phosphorus pentoxide, orthophosphoric acid or the like is used.
In the production of the hydrotreating catalyst of the present invention, when a nickel compound, a molybdenum compound, and a phosphorus compound are supported on a refractory oxide carrier, including a magnesium compound, in the presence of polyethylene glycol having a molecular weight of 200 or more. It is necessary to carry on.
The molecular weight of polyethylene glycol is usually 250 to 10,000, preferably 300 to 6,000.
When the molecular weight is 200 or more, catalytic activity is secured, and when it is 10,000 or less, handling is easy from the viewpoint of solubility and time of the supporting process.
The amount of polyethylene glycol used is usually 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass with respect to 100 parts by mass of the refractory oxide carrier.
When the amount of polyethylene glycol used is 0.5 parts by mass or more, the following nickel-molybdenum-phosphorus agglomerates are not formed, the catalytic activity increases, and when it is 30 parts by mass or less, loading is easy. Can do.
As described above, when the nickel compound is supported, if the refractory oxide carrier contains alumina, nickel may form a spinel with alumina, and the catalyst may be deactivated. There is an action to suppress the conversion, and the catalytic activity is improved.
If a large amount of phosphorus compound is used without using polyethylene glycol, nickel-molybdenum-phosphorus aggregates are formed, which tends to reduce the catalytic activity. However, when polyethylene glycol is used, As described above, the content of phosphorus oxide can be increased to 2 to 5% by mass, and the catalytic activity can be greatly improved.
There are no particular limitations on the method of supporting the magnesium compound, nickel compound, molybdenum compound, and phosphorus compound, but using a known supporting operation such as atmospheric pressure impregnation method, vacuum impregnation method, coating method, and a combination of these methods, Supported on a conductive oxide carrier.

マグネシウム化合物等を含浸した耐火性酸化物担体は、400℃以上の温度で焼成することが好ましい。
また、マグネシウム化合物、ニッケル化合物、モリブデン化合物及びリン化合物を逐次的に含浸する場合は、含浸の度に400℃以上の温度で焼成することも可能であるし、複数の化合物の含浸を行った後、最後に400℃以上の温度で焼成することもできる。
焼成温度は、より好ましくは400℃〜700℃で空気又は酸素雰囲気下で行う。
更に好ましくは、上記のポリエチレングリコールによる触媒中の残留炭素分が1.0質量%以下になるような条件で行う。
また、焼成時間としては1〜48時間程度、好ましくは2〜16時間である。
The refractory oxide carrier impregnated with a magnesium compound or the like is preferably fired at a temperature of 400 ° C. or higher.
In the case of sequentially impregnating a magnesium compound, nickel compound, molybdenum compound, and phosphorus compound, it is possible to sinter at a temperature of 400 ° C. or more for each impregnation, or after impregnation with a plurality of compounds. Finally, it can be fired at a temperature of 400 ° C. or higher.
The firing temperature is more preferably 400 ° C. to 700 ° C. in an air or oxygen atmosphere.
More preferably, it is carried out under such conditions that the residual carbon content in the catalyst with polyethylene glycol is 1.0 mass% or less.
The firing time is about 1 to 48 hours, preferably 2 to 16 hours.

本発明の水素化処理方法は、本発明の触媒の存在下で、重質油の水素化脱硫処理などに適用される。
水素化処理に用いられる重質油としては、常圧残油、減圧残油、減圧軽油、脱蝋減圧残油、アスファルテン油、タールサンド油及びこれらを一旦予備的に水素化処理した残油等が挙げられる。
本発明の触媒を用いて水素化処理を行うに際しては、水素化処理反応を行う前に触媒の活性化若しくは安定化処理として予備硫化処理を行うことが好ましい。
この予備硫化処理は、予備硫化剤として、硫化水素、二硫化炭素、チオフェン、ジメチルジスルフィド(DMDS)等を使用し、通常、200〜400℃の温度範囲で行われる。
The hydrotreating method of the present invention is applied to hydrodesulfurization treatment of heavy oil in the presence of the catalyst of the present invention.
Heavy oils used in hydroprocessing include atmospheric residual oil, vacuum residual oil, vacuum gas oil, dewaxed vacuum residual oil, asphaltene oil, tar sand oil, residual oil that has been pre-hydrogenated once, etc. Is mentioned.
When hydrotreating using the catalyst of the present invention, it is preferable to perform a presulfidation treatment as a catalyst activation or stabilization treatment before the hydrotreating reaction.
This preliminary sulfidation treatment uses hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide (DMDS) or the like as a preliminary sulfiding agent, and is usually performed in a temperature range of 200 to 400 ° C.

本発明の水素化処理の反応条件は、対象となる原料油の種類により異なるが、反応温度は、通常、200〜500℃の範囲に選定する。
反応圧力は、通常、1.47〜24.5MPa(15〜250kg/cm2)の範囲に選定するのが好適である。
反応形式としては、特に制限はないが、通常、固定床、移動床、沸騰床、懸濁床等の種々のプロセスが採用され、好ましくは経済性の観点から、固定床による流通方式が好適に採用される。
こうした流通方式の場合には、LHSV(液空間速度)を0.1〜45(1/hr)の範囲に選定するのがよい。
水素ガスと原料油の供給割合(水素/原料油比)は、通常、50〜2,000Nm3/klの範囲に選定するのが好適である。
以上のように、本発明の水素化処理触媒を用いて、重質油の水素化脱硫処理を効率よく行うことができる。
Although the reaction conditions for the hydrotreating of the present invention vary depending on the type of the target feedstock, the reaction temperature is usually selected in the range of 200 to 500 ° C.
The reaction pressure is usually preferably selected in the range of 1.47 to 24.5 MPa (15 to 250 kg / cm 2 ).
The reaction format is not particularly limited, but various processes such as a fixed bed, a moving bed, a boiling bed, and a suspended bed are usually employed, and from the viewpoint of economy, a distribution method using a fixed bed is preferable. Adopted.
In the case of such a distribution method, LHSV (liquid space velocity) is preferably selected in the range of 0.1 to 45 (1 / hr).
The supply ratio of hydrogen gas and feedstock (hydrogen / stock feed ratio) is usually preferably selected in the range of 50 to 2,000 Nm 3 / kl.
As described above, hydrodesulfurization treatment of heavy oil can be efficiently performed using the hydrotreating catalyst of the present invention.

以下、本発明の実施例及びその比較例によって本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
触媒A1の製造(アルミナ担体を成形後に酸化マグネシウムを担持)
(a)アルミナゲルA及びアルミナ担体Aの調製
8質量%アルミン酸ナトリウム水溶液を60℃に加温して攪拌しながら、15質量%硫酸アルミニウム水溶液を添加し、pH7.1で沈殿を得た。
この沈殿を濾過によって分離回収後、50℃に保持した0.2質量%アンモニア水中に投入し、攪拌することによって洗浄した。
この洗浄した沈殿を濾過によって分離回収し、アルミナゲル(以下、アルミナゲルAと呼ぶ。)を得た。
上記で得たアルミナゲルA833g(Al23として110g)を100℃に加熱して、成形に好ましい水分量になるまで水分を蒸発させた。
次に、得られたアルミナゲル(混練物)を押し出しによって成形し、四葉型の成形物とした。
この成形物を、120℃で3時間乾燥後、550℃で3時間、空気気流中で焼成し、アルミナ担体Aを得た。
(b)触媒A1の調製
三酸化モリブデン165.0質量部及び塩基性炭酸ニッケルを酸化ニッケル(NiO)として39.3質量部をイオン交換水500質量部に溶解させた。
溶解に際しては80〜90℃に加温し、1時間撹拌を行った。
次に、リン酸を五酸化リン相当量として50.8質量部加え、溶解を確認した後、塩基性炭酸マグネシウムを酸化マグネシウムとして14.0質量部加え、更に水溶液のpHを2に調整するためにリンゴ酸を加えた〔酸化マグネシウム(MgO)/リンゴ酸(モル比)=0.35〕。
この間、水溶液温度を約40℃に保った。
更に、ポリエチレングリコール(分子量400)を60質量部加えることにより含浸液を調製した。
上記のようにして得られた含浸液を上記アルミナ担体Aの吸収率と等量の容量に希釈した後、アルミナ担体A1,000質量部に常圧含浸法にて担持した。
この担持物を120℃で3時間乾燥して、空気中で550℃、5時間焼成して触媒A1を得た。
得られた触媒A1は、乾燥質量当たり、NiOとして2.9質量%、MoO3として13.4質量%、MgOとして1.1質量%、P25として3.6質量%を含有し、平均細孔径は0.0134μm、細孔容積は0.54ml/g、比表面積は183m2/gであった。
Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof, but the present invention is not limited to these examples.
Example 1
Production of catalyst A1 (supporting magnesium oxide after forming alumina support)
(A) Preparation of Alumina Gel A and Alumina Carrier A A 15% by mass aqueous aluminum sulfate solution was added while heating and stirring an 8% by mass aqueous sodium aluminate solution at 60 ° C. to obtain a precipitate at pH 7.1.
This precipitate was separated and recovered by filtration, and then poured into 0.2 mass% aqueous ammonia maintained at 50 ° C. and washed by stirring.
The washed precipitate was separated and collected by filtration to obtain an alumina gel (hereinafter referred to as alumina gel A).
The above-obtained alumina gel A 833 g (110 g as Al 2 O 3 ) was heated to 100 ° C. to evaporate the moisture until the moisture content suitable for molding was reached.
Next, the obtained alumina gel (kneaded product) was molded by extrusion to obtain a four-leaf molded product.
This molded product was dried at 120 ° C. for 3 hours and then calcined in an air stream at 550 ° C. for 3 hours to obtain an alumina carrier A.
(B) Preparation of Catalyst A1 165.0 parts by mass of molybdenum trioxide and 39.3 parts by mass of basic nickel carbonate as nickel oxide (NiO) were dissolved in 500 parts by mass of ion-exchanged water.
Upon dissolution, the mixture was heated to 80 to 90 ° C. and stirred for 1 hour.
Next, 50.8 parts by mass of phosphoric acid as an equivalent amount of phosphorus pentoxide was added, and after dissolution was confirmed, 14.0 parts by mass of basic magnesium carbonate as magnesium oxide was added, and the pH of the aqueous solution was adjusted to 2. Malic acid was added to [magnesium oxide (MgO) / malic acid (molar ratio) = 0.35].
During this time, the temperature of the aqueous solution was kept at about 40 ° C.
Further, an impregnation solution was prepared by adding 60 parts by mass of polyethylene glycol (molecular weight 400).
The impregnating solution obtained as described above was diluted to a volume equivalent to the absorption rate of the alumina carrier A, and then supported on 1,000 parts by mass of the alumina carrier A by the atmospheric pressure impregnation method.
This support was dried at 120 ° C. for 3 hours and calcined in air at 550 ° C. for 5 hours to obtain catalyst A1.
The obtained catalyst A1 contains 2.9% by mass as NiO, 13.4% by mass as MoO 3 , 1.1% by mass as MgO, and 3.6% by mass as P 2 O 5 per dry mass, The average pore diameter was 0.0134 μm, the pore volume was 0.54 ml / g, and the specific surface area was 183 m 2 / g.

実施例2
触媒A2の製造(アルミナ担体を成形後に酸化マグネシウムを担持)
三酸化モリブデン165.0質量部及び塩基性炭酸ニッケルを酸化ニッケル(NiO)として39.3質量部をイオン交換水500質量部に溶解させた。
溶解に際しては80〜90℃に加温し、1時間撹拌を行った。
次に、リン酸を五酸化リンとして50.8質量部加え、溶解を確認した後、塩基性炭酸マグネシウムを酸化マグネシウムとして14.0質量部加え、更に水溶液のpHを1.5に調整するためにリンゴ酸を加えた〔酸化マグネシウム(MgO)/リンゴ酸(モル比)=0.55〕。
この間、水溶液温度を約40℃に保った。
更に、ポリエチレングリコール(分子量400)を60質量部加えることにより含浸液を調製した。
上記のようにして得られた含浸液を上記アルミナ担体Aの吸収率と等量の容量に希釈した後、アルミナ担体A1,000質量部に常圧含浸法にて担持した。
この担持物を120℃で3時間乾燥して、空気中で550℃、5時間焼成して触媒A2を得た。
得られた触媒A2は、乾燥質量当たり、NiOとして2.8質量%、MoO3として13.2質量%、MgOとして1.0質量%、P25として3.4質量%を含有し、平均細孔径は0.0131μm、細孔容積は0.52ml/g、比表面積は181m2/gであった。
Example 2
Production of catalyst A2 (supporting magnesium oxide after forming alumina support)
165.0 parts by mass of molybdenum trioxide and basic nickel carbonate as nickel oxide (NiO) were dissolved in 39.3 parts by mass in 500 parts by mass of ion-exchanged water.
Upon dissolution, the mixture was heated to 80 to 90 ° C. and stirred for 1 hour.
Next, 50.8 parts by mass of phosphoric acid as phosphorus pentoxide was added, and after dissolution was confirmed, 14.0 parts by mass of basic magnesium carbonate as magnesium oxide was added, and the pH of the aqueous solution was adjusted to 1.5. Malic acid was added to [magnesium oxide (MgO) / malic acid (molar ratio) = 0.55].
During this time, the temperature of the aqueous solution was kept at about 40 ° C.
Further, an impregnation solution was prepared by adding 60 parts by mass of polyethylene glycol (molecular weight 400).
The impregnating solution obtained as described above was diluted to a volume equivalent to the absorption rate of the alumina carrier A, and then supported on 1,000 parts by mass of the alumina carrier A by the atmospheric pressure impregnation method.
This support was dried at 120 ° C. for 3 hours and calcined in air at 550 ° C. for 5 hours to obtain catalyst A2.
The obtained catalyst A2 contains 2.8% by mass as NiO, 13.2% by mass as MoO 3 , 1.0% by mass as MgO, and 3.4% by mass as P 2 O 5 per dry mass, The average pore diameter was 0.0131 μm, the pore volume was 0.52 ml / g, and the specific surface area was 181 m 2 / g.

比較例1
触媒Bの製造〔アルミナゲルに酸化マグネシウムを添加し、酸化マグネシウム(MgO)含有アルミナ担体とした〕
塩基性炭酸マグネシウムを酸化マグネシウムとして14.0質量部、リンゴ酸21.5質量部及びイオン交換水100質量部を加え、水溶液のpHを約5.0に調整して均一溶液とした〔酸化マグネシウム(MgO)/リンゴ酸(モル比)=2.2〕。
この水溶夜を上記アルミナゲルAに加えてよく混合し、成形し、120℃で乾燥後、550℃で焼成して、酸化マグネシウム(MgO)含有アルミナ担体Bを得た。
一方、三酸化モリブデン165.0質量部及び塩基性炭酸ニッケルを酸化ニッケル(NiO)として39.3質量部をイオン交換水500質量部に溶解させた。
溶解に際しては80〜90℃に加温し、1時間撹拌を行った。
次に、リン酸を五酸化リンとして50.8質量部加え、溶解を確認した。この間、水溶液温度を約40℃に保った。
更に、ポリエチレングリコール(分子量400)を60質量部加えることにより含浸液を調製した。
上記のようにして得られた含浸液を上記酸化マグネシウム(MgO)含有アルミナ担体Bの吸収率と等量の容量に希釈した後、アルミナ担体A1,000質量部に常圧含浸法にて担持した。
この担持物を120℃で3時間乾燥して、空気中で550℃、5時間焼成して触媒Bを得た。
得られた触媒Bは、乾燥質量当たり、NiOとして3.0質量%、MoO3として13.4質量%、MgOとして1.0質量%、P25として3.6質量%を含有し、平均細孔径は0.0134μm、細孔容積は0.55ml/g、比表面積は178m2/gであった。
Comparative Example 1
Production of catalyst B [magnesium oxide was added to alumina gel to obtain magnesium oxide (MgO) -containing alumina carrier]
14.0 parts by weight of basic magnesium carbonate as magnesium oxide, 21.5 parts by weight of malic acid and 100 parts by weight of ion-exchanged water were added, and the pH of the aqueous solution was adjusted to about 5.0 to obtain a homogeneous solution [magnesium oxide. (MgO) / malic acid (molar ratio) = 2.2].
This water-soluble night was added to the alumina gel A and mixed well, molded, dried at 120 ° C., and then fired at 550 ° C. to obtain an alumina support B containing magnesium oxide (MgO).
On the other hand, 165.0 parts by mass of molybdenum trioxide and basic nickel carbonate as nickel oxide (NiO) were dissolved in 39.3 parts by mass in 500 parts by mass of ion-exchanged water.
Upon dissolution, the mixture was heated to 80 to 90 ° C. and stirred for 1 hour.
Next, 50.8 parts by mass of phosphoric acid as phosphorus pentoxide was added, and dissolution was confirmed. During this time, the temperature of the aqueous solution was kept at about 40 ° C.
Further, an impregnation solution was prepared by adding 60 parts by mass of polyethylene glycol (molecular weight 400).
The impregnating solution obtained as described above was diluted to a volume equivalent to the absorption rate of the magnesium oxide (MgO) -containing alumina carrier B, and then supported on 1,000 parts by mass of the alumina carrier A by atmospheric pressure impregnation. .
This support was dried at 120 ° C. for 3 hours and calcined in air at 550 ° C. for 5 hours to obtain Catalyst B.
The obtained catalyst B contains 3.0% by mass as NiO, 13.4% by mass as MoO 3 , 1.0% by mass as MgO, and 3.6% by mass as P 2 O 5 per dry mass, The average pore diameter was 0.0134 μm, the pore volume was 0.55 ml / g, and the specific surface area was 178 m 2 / g.

比較例2
触媒Cの製造(アルミナ担体を成形後に酸化マグネシウムを担持)
三酸化モリブデン165.0質量部及び塩基性炭酸ニッケルを酸化ニッケル(NiO)として39.3質量部をイオン交換水500質量部に溶解させた。
溶解に際しては80〜90℃に加温し、1時間撹拌を行った。
次に、リン酸を五酸化リンとして50.8質量部加え、溶解を確認した後、塩基性炭酸マグネシウムを酸化マグネシウムとして14.0質量部加え、リンゴ酸440質量部を加えた〔酸化マグネシウム(MgO)/リンゴ酸(モル比)=0.1〕。
水溶液のpHは約0.8であった。
この間、水溶液温度を約40℃に保った。
更に、ポリエチレングリコール(分子量400)を60質量部加えることにより含浸液を調製した。
上記のようにして得られた含浸液を上記アルミナ担体Aの吸収率と等量の容量に希釈した後、アルミナ担体A1,000質量部に常圧含浸法にて担持した。
この担持物を120℃で3時間乾燥して、空気中で550℃、5時間焼成して触媒Cを得た。
得られた触媒Cは、乾燥質量当たり、NiOとして2.9質量%、MoO3として13.4質量%、MgOとして1.1質量%、P25として3.6質量%を含有し、平均細孔径は0.0134μm、細孔容積は0.54ml/g、比表面積は165m2/gであった。
Comparative Example 2
Production of catalyst C (supporting magnesium oxide after forming alumina support)
165.0 parts by mass of molybdenum trioxide and basic nickel carbonate as nickel oxide (NiO) were dissolved in 39.3 parts by mass in 500 parts by mass of ion-exchanged water.
Upon dissolution, the mixture was heated to 80 to 90 ° C. and stirred for 1 hour.
Next, 50.8 parts by mass of phosphoric acid as phosphorus pentoxide was added, and after dissolution was confirmed, 14.0 parts by mass of basic magnesium carbonate as magnesium oxide was added, and 440 parts by mass of malic acid was added [magnesium oxide ( MgO) / malic acid (molar ratio) = 0.1].
The pH of the aqueous solution was about 0.8.
During this time, the temperature of the aqueous solution was kept at about 40 ° C.
Further, an impregnation solution was prepared by adding 60 parts by mass of polyethylene glycol (molecular weight 400).
The impregnating solution obtained as described above was diluted to a volume equivalent to the absorption rate of the alumina carrier A, and then supported on 1,000 parts by mass of the alumina carrier A by the atmospheric pressure impregnation method.
This support was dried at 120 ° C. for 3 hours and calcined in air at 550 ° C. for 5 hours to obtain Catalyst C.
The obtained catalyst C contains 2.9% by mass as NiO, 13.4% by mass as MoO 3 , 1.1% by mass as MgO, and 3.6% by mass as P 2 O 5 per dry mass, The average pore diameter was 0.0134 μm, the pore volume was 0.54 ml / g, and the specific surface area was 165 m 2 / g.

比較例3
触媒Dの製造(アルミナ担体を成形後に酸化マグネシウムを担持)
三酸化モリブデン165.0質量部及び塩基性炭酸ニッケルを酸化ニッケル(NiO)として39.3質量部をイオン交換水500質量部に溶解させた。
溶解に際しては80〜90℃に加温し、1時間撹拌を行った。
次に、リン酸を五酸化リンとして50.8質量部加え、溶解を確認した後、塩基性炭酸マグネシウムを酸化マグネシウムとして14.0質量部加え、リンゴ酸5質量部を加えた〔酸化マグネシウム(MgO)/リンゴ酸(モル比)=9.4〕。
水溶液のpHは4.3であった。
この間、水溶液温度を約40℃に保ったが若干濁りがあった。
更に、ポリエチレングリコール(分子量400)を60質量部加えることにより含浸液を調製した。
上記のようにして得られた含浸液を上記アルミナ担体Aの吸収率と等量の容量に希釈した後、アルミナ担体A1,000質量部に常圧含浸法にて担持した。
この担持物を120℃で3時間乾燥して、空気中で550℃、5時間焼成して触媒Dを得た。
得られた触媒Dは、乾燥質量当たり、NiOとして2.9質量%、MoO3として13.1質量%、MgOとして1.0質量%、P25として3.4質量%を含有し、平均細孔径は0.0134μm、細孔容積は0.54ml/g、比表面積は183m2/gであった。
Comparative Example 3
Production of catalyst D (supporting magnesium oxide after forming alumina support)
165.0 parts by mass of molybdenum trioxide and basic nickel carbonate as nickel oxide (NiO) were dissolved in 39.3 parts by mass in 500 parts by mass of ion-exchanged water.
Upon dissolution, the mixture was heated to 80 to 90 ° C. and stirred for 1 hour.
Next, after adding 50.8 parts by mass of phosphoric acid as phosphorus pentoxide and confirming dissolution, 14.0 parts by mass of basic magnesium carbonate as magnesium oxide was added, and 5 parts by mass of malic acid was added [magnesium oxide ( MgO) / malic acid (molar ratio) = 9.4].
The pH of the aqueous solution was 4.3.
During this time, the aqueous solution temperature was kept at about 40 ° C., but there was a slight turbidity.
Further, an impregnation solution was prepared by adding 60 parts by mass of polyethylene glycol (molecular weight 400).
The impregnating solution obtained as described above was diluted to a volume equivalent to the absorption rate of the alumina carrier A, and then supported on 1,000 parts by mass of the alumina carrier A by the atmospheric pressure impregnation method.
This support was dried at 120 ° C. for 3 hours and calcined in air at 550 ° C. for 5 hours to obtain Catalyst D.
The obtained catalyst D contains 2.9% by mass as NiO, 13.1% by mass as MoO 3 , 1.0% by mass as MgO, and 3.4% by mass as P 2 O 5 per dry mass, The average pore diameter was 0.0134 μm, the pore volume was 0.54 ml / g, and the specific surface area was 183 m 2 / g.

実施例3、4及び比較例4〜6
<水素化脱硫処理性能(初期活性)の評価>
上記触媒A1,A2、B、C及びDについて、触媒充填量50mlの高圧固定床流通式反応装置を用い、表1に示す中東系の重質原油から得られた常圧残油を原料として、初期脱硫性能の評価を行い、マグネシウム添加効果と添加方法の影響を比較評価した。
なお、本発明の触媒は脱硫触媒であるため、市販されている脱メタル触媒と組み合わせることにより評価した。
Examples 3 and 4 and Comparative Examples 4 to 6
<Evaluation of hydrodesulfurization treatment performance (initial activity)>
For the above catalysts A1, A2, B, C and D, using a high pressure fixed bed flow reactor with a catalyst filling amount of 50 ml, and using atmospheric residual oil obtained from heavy crude oil of the Middle East system shown in Table 1 as a raw material, The initial desulfurization performance was evaluated, and the effect of magnesium addition and the influence of the addition method were compared and evaluated.
In addition, since the catalyst of this invention is a desulfurization catalyst, it evaluated by combining with the commercially available demetallation catalyst.

Figure 2008168257
Figure 2008168257

反応に先立って、前処理として、該触媒に軽油(LGO)に、硫化剤であるジメチルジスルフィド(DMDS)を添加し、前処理油(前処理油中の硫黄濃度は2.5質量%に調整)を、水素ガスとともに250℃で24時間流通して、予備硫化した。
その後、該触媒に表1に示す原料油を水素ガスとともに流通して、以下の条件で水素化脱硫拠理を行った。
処理条件
水素分圧:13.2MPa(135kg/cm2
液空間速度:0.2(1/hr)
水素/オイル比:700Nm3/kl
Prior to the reaction, as a pretreatment, dimethyl disulfide (DMDS) as a sulfiding agent is added to the light oil (LGO) to the catalyst, and the pretreatment oil (the sulfur concentration in the pretreatment oil is adjusted to 2.5% by mass). ) Was presulfided by flowing with hydrogen gas at 250 ° C. for 24 hours.
Thereafter, the raw material oil shown in Table 1 was passed through the catalyst together with hydrogen gas, and hydrodesulfurization was performed under the following conditions.
Treatment conditions Hydrogen partial pressure: 13.2 MPa (135 kg / cm 2 )
Liquid space velocity: 0.2 (1 / hr)
Hydrogen / oil ratio: 700 Nm 3 / kl

評価結果を表2に示す。
表2より、塩基性炭酸マグネシウムを酸化マグネシムとして、MgO/リンゴ酸(モル比)を0.35とした触媒A1(実施例1)、同じく0.55とした触媒A2(実施例2)は、初期の水素化脱硫性能が高いことが分かる。
また、アルミナゲルAに塩基性炭酸マグネシウムを酸化マグネシウムとして、MgO/リンゴ酸(モル比)を2.2とした触媒B(比較例1)、塩基性炭酸マグネシウムを酸化マグネシムとして、MgO/リンゴ酸(モル比)を0.1とした触媒C(比較例2)の初期の水素化脱硫性能は、実施例1の触媒と同程度に高いが、後述のように、比較例1及び比較例2の触媒は、再生後の水素化脱硫性能は非常に劣るものである。
更に、塩基性炭酸マグネシウムを酸化マグネシムとして、MgO/リンゴ酸(モル比)を9.4とした触媒D(比較例3)の初期の水素化脱硫性能は、実施例1及び実施例2の触媒に比べ明らかに劣ることが分かる。
The evaluation results are shown in Table 2.
From Table 2, catalyst A1 (Example 1) having basic magnesium carbonate as magnesium oxide, MgO / malic acid (molar ratio) of 0.35, and catalyst A2 (Example 2) also having 0.55, It can be seen that the initial hydrodesulfurization performance is high.
Further, catalyst B (Comparative Example 1) in which the basic magnesium carbonate is magnesium oxide and MgO / malic acid (molar ratio) is 2.2 in the alumina gel A, and the basic magnesium carbonate is magnesium oxide, and MgO / malic acid. The initial hydrodesulfurization performance of catalyst C (comparative example 2) with a (molar ratio) of 0.1 is as high as that of the catalyst of example 1, but as described later, comparative example 1 and comparative example 2 This catalyst has very poor hydrodesulfurization performance after regeneration.
Furthermore, the initial hydrodesulfurization performance of Catalyst D (Comparative Example 3) with basic magnesium carbonate as magnesium oxide and MgO / malic acid (molar ratio) of 9.4 is the same as that of Example 1 and Example 2. It is clearly inferior to.

Figure 2008168257
Figure 2008168257

実施例5〜6及び比較例7〜9
<再生触媒の摩耗強度の評価>
(1)劣化(使用済み)触媒の製造
上記触媒A1、A2、B、C及びDについて、固定床反応器を用いて表1に示す中東系の重質原油から得られた常圧残油の水素化脱硫処理を4,000時間行った。
水素化脱硫処理は、生成油の硫黄分が一定になるように反応温度を調整しながら続けた。
反応終了後、反応器中の触媒について軽油を通油することにより洗浄し、更に窒素ガスを流通させて乾燥して、触媒を抜出し、脱メタル触媒をふるいにより分離し、使用済み触媒を得た。
Examples 5-6 and Comparative Examples 7-9
<Evaluation of abrasion strength of regenerated catalyst>
(1) Manufacture of deteriorated (used) catalyst For the above catalysts A1, A2, B, C and D, the atmospheric residual oil obtained from the Middle Eastern heavy crude oil shown in Table 1 using a fixed bed reactor. Hydrodesulfurization treatment was performed for 4,000 hours.
The hydrodesulfurization treatment was continued while adjusting the reaction temperature so that the sulfur content of the product oil was constant.
After completion of the reaction, the catalyst in the reactor was washed by passing light oil, dried by circulating nitrogen gas, the catalyst was extracted, and the demetalized catalyst was separated by sieving to obtain a used catalyst. .

(2)再生触媒の製造
上記で得られた使用済みの各触媒を、回転式焼成炉(回転速度:5回転/分)を用いて、100%窒素ガスを100ml/分で供給しながら、300℃で1時間処理した。
その後、50%窒素ガスと50%空気の混合ガスを100ml/分で供給しながら、450℃で3時間焼成した。
得られた各触媒を冷却後、ふるい分けにより塊状物と粉化物を除去して、再生触媒を得た。
(3)上記で得られた再生触媒について、摩耗強度を測定した。
なお、摩耗強度は、下記に示す粉化率を測定することにより求めた。
(粉化率の測定法)
触媒100gを直径30cmの円筒形の回転体内に封入し、30分間、60rpmで回転させた。
その後、触媒を取り出し、20メッシュのふるいを用いてふるい分け、残った触媒の質量を測定した。
触媒質量の減少量を粉化率として求めた。
この値が小さい程、摩耗強度は大きいことを示している。
摩耗強度の測定結果を表3に示す。
なお、比較のために、新触媒A1、A2、B、C及びDの摩耗強度についても測定した。
(2) Production of regenerated catalyst Using each of the used catalysts obtained above, while supplying 100% nitrogen gas at a rate of 100 ml / min using a rotary calciner (rotation speed: 5 rpm), 300 Treated for 1 hour at ° C.
Then, it baked at 450 degreeC for 3 hours, supplying the mixed gas of 50% nitrogen gas and 50% air at 100 ml / min.
After cooling each obtained catalyst, the lump and powder were removed by sieving to obtain a regenerated catalyst.
(3) The abrasion strength of the regenerated catalyst obtained above was measured.
In addition, abrasion strength was calculated | required by measuring the powdering rate shown below.
(Measurement method of powdering rate)
100 g of the catalyst was enclosed in a cylindrical rotating body having a diameter of 30 cm and rotated at 60 rpm for 30 minutes.
Thereafter, the catalyst was taken out and sieved using a 20-mesh sieve, and the mass of the remaining catalyst was measured.
The reduction amount of the catalyst mass was determined as the powdering rate.
The smaller this value is, the higher the wear strength is.
Table 3 shows the measurement results of the wear strength.
For comparison, the wear strengths of the new catalysts A1, A2, B, C and D were also measured.

Figure 2008168257
Figure 2008168257

表3より、実施例5〜6において、使用済み触媒A1及びA2の再生触媒A1、A2は、比較例7〜9における、使用済み触媒B、C及びDの再生触媒B、C及びDに比べて、粉化率が小さく摩耗強度に優れていることが分かる。   From Table 3, in Examples 5 to 6, the regenerated catalysts A1 and A2 of the used catalysts A1 and A2 are compared with the regenerated catalysts B, C and D of the used catalysts B, C and D in Comparative Examples 7 to 9. It can be seen that the powdering rate is small and the wear strength is excellent.

実施例7〜8及び比較例10〜11
<再生触媒の水素化脱硫処理性能評価>
実施例5〜6及び比較例7〜8において製造した各再生触媒A1、A2、B及びCについて、小型高圧固定床反応器に、各再生触媒50mlを充填した。
新触媒と同様の反応条件(実施例3〜4及び比較例4〜6参照)で、水素化脱硫反応を行った。
用いた原料油の性状を表4に示し、水素化脱硫性能の評価結果を表5に示す。
Examples 7-8 and Comparative Examples 10-11
<Evaluation of hydrodesulfurization performance of regenerated catalyst>
For each of the regenerated catalysts A1, A2, B, and C produced in Examples 5 to 6 and Comparative Examples 7 to 8, 50 ml of each regenerated catalyst was charged into a small high-pressure fixed bed reactor.
The hydrodesulfurization reaction was performed under the same reaction conditions as in the new catalyst (see Examples 3 to 4 and Comparative Examples 4 to 6).
Table 4 shows the properties of the raw material oil used, and Table 5 shows the evaluation results of the hydrodesulfurization performance.

Figure 2008168257
Figure 2008168257

Figure 2008168257
表3及び表5より、本発明の酸化マグネシウムをアルミナ担体Aに担持した触媒は、触媒摩耗強度が高いのみならず、水素化脱硫性能も高活性であることが分かる。
これは、酸化マグネシウムが、マグネシウム化合物を酸化マグネシウムとして、0.2≦酸化マグネシウム/有機酸(モル比)≦0.6となるように有機酸に溶解して担持されたことにより、酸化マグネシウムの状態が改善され、使用済み触媒に再生時におけるバナジウムの悪影響を抑制していると考えられる。
Figure 2008168257
From Tables 3 and 5, it can be seen that the catalyst in which the magnesium oxide of the present invention is supported on the alumina support A not only has high catalyst abrasion strength but also high hydrodesulfurization performance.
This is because magnesium oxide is supported by being dissolved in an organic acid so that 0.2 ≦ magnesium oxide / organic acid (molar ratio) ≦ 0.6 with a magnesium compound as magnesium oxide. The state is improved, and it is considered that the spent catalyst is suppressed from the adverse effect of vanadium during regeneration.

本発明の水素化処理触媒は、重質油の水素化処理に用いられ、特に、再生触媒としての使用に適している。   The hydrotreating catalyst of the present invention is used for hydrotreating heavy oils, and is particularly suitable for use as a regenerated catalyst.

Claims (6)

耐火性酸化物担体に、触媒全量基準で、酸化ニッケルを1〜10質量%、三酸化モリブデンを5〜20質量%、酸化マグネシウムを0.3〜1.5質量%及び五酸化リンを2〜5質量%担持した触媒であって、該酸化マグネシウムが、マグネシウム化合物を酸化マグネシウムとして、0.2≦酸化マグネシウム/有機酸(モル比)≦0.6となるように有機酸に溶解して担持されたものであることを特徴とする水素化処理触媒。   To the refractory oxide carrier, 1 to 10% by mass of nickel oxide, 5 to 20% by mass of molybdenum trioxide, 0.3 to 1.5% by mass of magnesium oxide and 2 to 2 of phosphorus pentoxide, based on the total amount of the catalyst. A catalyst supported by 5% by mass, wherein the magnesium oxide is dissolved and supported in an organic acid so that the magnesium compound is magnesium oxide and 0.2 ≦ magnesium oxide / organic acid (molar ratio) ≦ 0.6. A hydrotreating catalyst characterized by being made. 有機酸が、クエン酸、リンゴ酸、酒石酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、蓚酸、酒石酸、コハク酸、マロン酸、ギ酸、酢酸、プロピオン酸から選択されるいずれか一種の酸、又は二種以上の混合酸である請求項1に記載の水素化処理触媒。   Any one or two kinds of organic acids selected from citric acid, malic acid, tartaric acid, tartronic acid, glyceric acid, hydroxybutyric acid, succinic acid, tartaric acid, succinic acid, malonic acid, formic acid, acetic acid, propionic acid The hydroprocessing catalyst according to claim 1, which is a mixed acid as described above. 請求項1又は2に記載の水素化処理触媒の製造方法であって、ニッケル化合物、モリブデン化合物、マグネシウム化合物、リン化合物及び有機酸を、分子量200以上のポリエチレングリコールの存在下、耐火性酸化物担体に担持することを特徴とする水素化処理触媒の製造方法。   A method for producing a hydrotreating catalyst according to claim 1 or 2, wherein a nickel compound, a molybdenum compound, a magnesium compound, a phosphorus compound and an organic acid are added in the presence of polyethylene glycol having a molecular weight of 200 or more in a refractory oxide carrier. A method for producing a hydrotreating catalyst, which is supported on a catalyst. ニッケル化合物、モリブデン化合物、マグネシウム化合物、リン化合物及び有機酸を、分子量200以上のポリエチレングリコールの存在下、耐火性酸化物担体に担持した後、400℃以上で焼成する請求項3に記載の水素化処理触媒の製造方法。   The hydrogenation according to claim 3, wherein the nickel compound, the molybdenum compound, the magnesium compound, the phosphorus compound, and the organic acid are supported on a refractory oxide carrier in the presence of polyethylene glycol having a molecular weight of 200 or more, and then fired at 400 ° C or higher. A method for producing a treated catalyst. 請求項1又は2に記載の水素化処理触媒、並びに請求項3又は4に記載の製造方法によって得られた水素化処理触媒から選択される一種以上の触媒を用いることを特徴とする重質油の水素化処理方法。   A heavy oil characterized by using one or more catalysts selected from the hydrotreating catalyst according to claim 1 or 2 and the hydrotreating catalyst obtained by the production method according to claim 3 or 4. Hydrotreating method. 請求項1又は2に記載の水素化処理触媒、並びに請求項3又は4に記載の製造方法によって得られた水素化処理触媒から選択される一種以上の触媒を用いて重質油の水素化処理を行った後、劣化した触媒から蓄積した炭素質を焼成により除去し、再度重質油の水素化処理に使用する重質油の水素化処理方法。   Hydrotreatment of heavy oil using one or more catalysts selected from the hydrotreating catalyst according to claim 1 or 2 and the hydrotreating catalyst obtained by the production method according to claim 3 or 4. After carrying out, the carbonaceous material accumulated from the deteriorated catalyst is removed by calcination, and the heavy oil hydroprocessing method is used again for heavy oil hydroprocessing.
JP2007005589A 2007-01-15 2007-01-15 Hydrogenation catalyst, its manufacturing method, and hydrogenation treatment catalyst, its production method and hydrogenation treatment method of heavy oil Pending JP2008168257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007005589A JP2008168257A (en) 2007-01-15 2007-01-15 Hydrogenation catalyst, its manufacturing method, and hydrogenation treatment catalyst, its production method and hydrogenation treatment method of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007005589A JP2008168257A (en) 2007-01-15 2007-01-15 Hydrogenation catalyst, its manufacturing method, and hydrogenation treatment catalyst, its production method and hydrogenation treatment method of heavy oil

Publications (1)

Publication Number Publication Date
JP2008168257A true JP2008168257A (en) 2008-07-24

Family

ID=39696848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007005589A Pending JP2008168257A (en) 2007-01-15 2007-01-15 Hydrogenation catalyst, its manufacturing method, and hydrogenation treatment catalyst, its production method and hydrogenation treatment method of heavy oil

Country Status (1)

Country Link
JP (1) JP2008168257A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110107332A (en) * 2008-12-30 2011-09-30 라이온델 케미칼 테크놀로지, 엘.피. Catalyst regeneration
CN102430404A (en) * 2011-11-05 2012-05-02 中国科学院山西煤炭化学研究所 Catalytic agent for synthesizing succinic acid through maleic acid hydrogenation and preparation method thereof
JP2013212448A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Hydrodenitrogenation catalyst, production method of hydrodenitrogenation catalyst and manufacturing method of light oil base material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254191A (en) * 1987-03-12 1988-10-20 フイリツプス ピトローリアム カンパニー Hydrotreatment of liquid hydrocarbon
JPH07136523A (en) * 1993-11-12 1995-05-30 Japan Energy Corp Production of hydrogenation catalyst
JPH11319567A (en) * 1998-05-11 1999-11-24 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst
JP2001239165A (en) * 2000-03-02 2001-09-04 Sumitomo Metal Mining Co Ltd Carrier for catalyst, catalyst for hydrogenating desulfurization and denitrification using the same, and their manufacturing method
JP2005254083A (en) * 2004-03-10 2005-09-22 Petroleum Energy Center Catalyst for hydrogenation of heavy oil and its manufacturing method
JP2006035051A (en) * 2004-07-23 2006-02-09 Nippon Oil Corp Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254191A (en) * 1987-03-12 1988-10-20 フイリツプス ピトローリアム カンパニー Hydrotreatment of liquid hydrocarbon
JPH07136523A (en) * 1993-11-12 1995-05-30 Japan Energy Corp Production of hydrogenation catalyst
JPH11319567A (en) * 1998-05-11 1999-11-24 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst
JP2001239165A (en) * 2000-03-02 2001-09-04 Sumitomo Metal Mining Co Ltd Carrier for catalyst, catalyst for hydrogenating desulfurization and denitrification using the same, and their manufacturing method
JP2005254083A (en) * 2004-03-10 2005-09-22 Petroleum Energy Center Catalyst for hydrogenation of heavy oil and its manufacturing method
JP2006035051A (en) * 2004-07-23 2006-02-09 Nippon Oil Corp Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110107332A (en) * 2008-12-30 2011-09-30 라이온델 케미칼 테크놀로지, 엘.피. Catalyst regeneration
KR101668504B1 (en) * 2008-12-30 2016-10-21 라이온델 케미칼 테크놀로지, 엘.피. Catalyst regeneration
CN102430404A (en) * 2011-11-05 2012-05-02 中国科学院山西煤炭化学研究所 Catalytic agent for synthesizing succinic acid through maleic acid hydrogenation and preparation method thereof
JP2013212448A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Hydrodenitrogenation catalyst, production method of hydrodenitrogenation catalyst and manufacturing method of light oil base material

Similar Documents

Publication Publication Date Title
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP3606590B2 (en) Hydrogenation catalyst, its preparation and its use
CN1177643C (en) Process for preparing additive-based mixed metal catalyst
JP2002536166A (en) Manufacture of hydrotreating catalyst
TWI617354B (en) Improved resid hydrotreating catalyst containing titania
JP2002534585A (en) Hydrogen treatment using bulk Group VIII / VIB catalysts
JP4303820B2 (en) Hydrotreating catalyst and hydrotreating method
JP2002534259A (en) New mixed metal catalyst, its preparation by coprecipitation and its use
TW201427769A (en) Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
KR20200034753A (en) Hydration catalyst using titanium-containing carrier and sulfur-containing organic additive
JP4519719B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
JP2008168257A (en) Hydrogenation catalyst, its manufacturing method, and hydrogenation treatment catalyst, its production method and hydrogenation treatment method of heavy oil
JP5825572B2 (en) Method for regenerating hydrotreating catalyst
JP4878736B2 (en) Heavy oil hydrotreating catalyst and method for producing the same
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP2006061845A (en) Hydrogenation catalyst for heavy oil and manufacturing method thereof
JP7395374B2 (en) Hydrotreating catalyst for hydrocarbon oil, its production method, and hydrotreating method
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4519379B2 (en) Heavy hydrocarbon oil hydrotreating catalyst
JP4673966B2 (en) Hydrocarbon oil hydrotreating catalyst production method and hydrocarbon oil hydrotreating method
JP2004074148A (en) Carrier containing titanium, its production method, hydrogen treating catalyst for hydrocarbon oil, and hydrogen treating method using it
CN114433186B (en) Hydrocracking catalyst containing macropores, and stepwise preparation method and application thereof
JP2013212447A (en) Method for regenerating and using heavy oil hydrotreating catalyst, and the heavy oil hydrotreating catalyst
JP2000354766A (en) Catalyst for hydrogenation treatment of hydrocarbon oil
JPH0819741A (en) Catalsyt for hydrogenation for hydrocarbon oil and producing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918