JP2005015766A - Production method for low-sulfur catalytically cracked gasoline - Google Patents

Production method for low-sulfur catalytically cracked gasoline Download PDF

Info

Publication number
JP2005015766A
JP2005015766A JP2004070812A JP2004070812A JP2005015766A JP 2005015766 A JP2005015766 A JP 2005015766A JP 2004070812 A JP2004070812 A JP 2004070812A JP 2004070812 A JP2004070812 A JP 2004070812A JP 2005015766 A JP2005015766 A JP 2005015766A
Authority
JP
Japan
Prior art keywords
mass
catalyst
sulfur content
fcc
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004070812A
Other languages
Japanese (ja)
Other versions
JP4409996B2 (en
Inventor
Toshio Ito
俊夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2004070812A priority Critical patent/JP4409996B2/en
Publication of JP2005015766A publication Critical patent/JP2005015766A/en
Application granted granted Critical
Publication of JP4409996B2 publication Critical patent/JP4409996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an industrially advantageous method whereby the sulfur content in gasoline is efficiently decreased to 50 mass ppm or lower in producing gasoline by catalytic cracking of a heavy oil using a FCC apparatus. <P>SOLUTION: In decomposing a heavy oil with a FCC apparatus, desulfurization and decomposition reaction are simultaneously conducted by using a mixed catalyst which comprises (A) 2-30 mass% FCC catalyst (containing no zinc oxide) having an acid amount of 20-400 μmol/g, a macropore surface area of 50-150 m<SP>2</SP>/g, and an amount of carried vanadium and/or nickel of 0.3-1.5 mass% and having a desulfurization function and (B) 98-70 mass% FCC equilibrium catalyst having an amount of accumulated vanadium and/or nickel of 500-15,000 ppm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、低硫黄分流動接触分解(以下、流動接触分解をFCCと略記する。)ガソリンの製造方法の改良に関し、さらに詳しくは、重質油を、FCC装置により分解処理するに際し、特定の触媒を用いて、分解反応と脱硫反応を同時に行い、50質量ppm以下の低硫黄分接触分解ガソリンを効率よく製造する工業的に有利な方法に関する。   The present invention relates to an improvement in a method for producing low sulfur content fluid catalytic cracking (hereinafter, fluid catalytic cracking is abbreviated as FCC) gasoline, and more specifically, when heavy oil is cracked by an FCC apparatus, The present invention relates to an industrially advantageous method for efficiently producing a low sulfur content catalytic cracked gasoline of 50 ppm by mass or less by simultaneously performing a cracking reaction and a desulfurization reaction using a catalyst.

最近の環境問題の高まりに伴い、全世界的にガソリン中の硫黄分が規制されるようになってきた。日本においても、2005年にはガソリン中の硫黄分量が50質量ppm以下に規制され、その後、硫黄分規制が10質量ppm以下になることが予想されている。   With the recent increase in environmental problems, the sulfur content in gasoline has been regulated worldwide. Also in Japan, in 2005, the sulfur content in gasoline is regulated to 50 mass ppm or less, and thereafter, the sulfur content regulation is expected to be 10 mass ppm or less.

一般にFCC装置で製造される接触分解ガソリンには、大気汚染物質である硫黄化合物が含まれており、したがって、この接触分解ガソリンから硫黄分を除去して環境に優しいガソリンを製造することは、石油精製会社にとって急務である。
ところで、減圧軽油を、ダビソン社製の脱硫機能を有するFCC触媒で処理している例が報告されている(例えば非特許文献1参照)。しかしながら、この場合、触媒の脱硫機能が十分でないため、得られる接触分解ガソリンの硫黄分が200〜400質量ppmと高い。重油や重質軽油においては、含まれている硫黄分が接触分解では除去されにくい構造を有しているために、それらを用いて硫黄分200質量ppm未満のFCCガソリンを製造することは困難である。さらに、原料油として水素化処理脱硫重油や水素化処理脱硫重質軽油を用いても、既存の脱硫機能を有するFCC触媒では、脱硫活性が十分でないため、硫黄分50質量ppm以下の接触分解ガソリンを製造することは難しい。
In general, catalytic cracking gasoline produced by an FCC unit contains sulfur compounds that are air pollutants. Therefore, it is not possible to produce environmentally friendly gasoline by removing sulfur from the catalytic cracking gasoline. There is an urgent need for a refining company.
By the way, an example in which a vacuum gas oil is treated with an FCC catalyst having a desulfurization function manufactured by Davison has been reported (for example, see Non-Patent Document 1). However, in this case, since the desulfurization function of the catalyst is not sufficient, the sulfur content of the obtained catalytic cracked gasoline is as high as 200 to 400 ppm by mass. In heavy oil and heavy light oil, it is difficult to produce FCC gasoline having a sulfur content of less than 200 ppm by mass because the contained sulfur content is difficult to remove by catalytic cracking. is there. Furthermore, even if hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil is used as the raw material oil, the existing FCC catalyst having a desulfurization function does not have sufficient desulfurization activity, so catalytic cracking gasoline having a sulfur content of 50 mass ppm or less. It is difficult to manufacture.

脱硫機能を有するFCC触媒を用いて低硫黄分の接触分解ガソリンを製造する技術について、これまでいくつかの提案がなされている。例えば酸化物マトリックス中に分散したゼオライト及びアルミナに、Ni、Cu、Zn、Al、Snなどの化合物から選ばれるルイス酸を1〜50質量%担持してなる触媒を用い、硫黄含有炭化水素を接触分解して、硫黄分を減少させた接触分解ガソリンを製造する方法が開示されている(例えば特許文献1参照)。しかしながら、この方法においては、得られる接触分解ガソリン中の硫黄分量は200〜300質量ppm以上と高く、該触媒の脱硫性能が十分ではない。
また、0よりも大きい酸化状態の(a)V、Zn及び(b)希土類元素をゼオライト内部の細孔構造の中に含む脱硫機能を有する触媒と、通常のFCC平衡触媒との混合触媒を用い、硫黄分を低減させた接触分解ガソリンを製造する方法が開示されている(例えば特許文献2参照)。しかしながら、この方法おいても得られた接触分解ガソリン中の硫黄分は600質量ppm程度と高い値である。さらに、硫黄分が0.071質量%と非常に低い原料油を用いた場合でも接触分解ガソリン中の硫黄分は79質量ppmと高く、該混合触媒の脱硫機能は十分ではない。
Several proposals have been made so far for techniques for producing catalytically cracked gasoline having a low sulfur content using an FCC catalyst having a desulfurization function. For example, a catalyst comprising 1 to 50% by weight of a Lewis acid selected from compounds such as Ni, Cu, Zn, Al, and Sn supported on zeolite and alumina dispersed in an oxide matrix is contacted with a sulfur-containing hydrocarbon. A method for producing catalytically cracked gasoline with reduced sulfur content by decomposition is disclosed (see, for example, Patent Document 1). However, in this method, the sulfur content in the obtained catalytic cracking gasoline is as high as 200 to 300 ppm by mass or more, and the desulfurization performance of the catalyst is not sufficient.
Further, a mixed catalyst of a catalyst having a desulfurization function containing (a) V, Zn and (b) rare earth elements in an oxidation state larger than 0 in the pore structure inside the zeolite and a normal FCC equilibrium catalyst is used. A method for producing catalytic cracked gasoline with a reduced sulfur content is disclosed (for example, see Patent Document 2). However, the sulfur content in the catalytically cracked gasoline obtained by this method is as high as about 600 ppm by mass. Furthermore, even when a feedstock having a very low sulfur content of 0.071% by mass is used, the sulfur content in catalytic cracked gasoline is as high as 79 ppm by mass, and the desulfurization function of the mixed catalyst is not sufficient.

「Oil&Gas Journal」、Feb.12(2001年)“Oil & Gas Journal”, Feb. 12 (2001) 特開平6−277519号公報JP-A-6-277519 特開2000−198989号公報JP 2000-198989 A

本発明は、このような状況下でなされたもので、重質油をFCC装置により接触分解させてガソリンを製造するに際し、該ガソリン中の硫黄分を、効率よく50質量ppm以下に低減させ得る工業的に有利な方法を提供することを目的とするものである。   The present invention has been made under such circumstances. When producing gasoline by catalytically cracking heavy oil with an FCC unit, the sulfur content in the gasoline can be efficiently reduced to 50 ppm by mass or less. The object is to provide an industrially advantageous method.

本発明者は、前記目的を達成するために鋭意研究を重ねた結果、重質油をFCC装置により接触分解させてガソリンを製造するに際し、触媒として、特定の性状を有し、かつ脱硫機能を有するFCC触媒と、バナジウム及び/又はニッケルの蓄積量が特定の範囲にあるFCC平衡触媒とを、所定の割合で混合したものを使用し、分解反応と脱硫反応を同時に行うことにより、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)重質油をFCC装置で分解処理して接触分解ガソリンを製造するにあたり、(A)酸量20〜400マイクロモル/g、マクロ細孔表面積50〜150m2/g、バナジウム及び/又はニッケル担持量0.3〜1.5質量%の脱硫機能を有するFCC触媒(酸化亜鉛を含有しない)2〜30質量%と、(B)バナジウム及び/又はニッケル蓄積量500〜15,000質量ppmのFCC平衡触媒98〜70質量%とからなる混合触媒を用いることを特徴とする低硫黄分接触分解ガソリンの製造方法、
(2)バナジウム及び/又はニッケル蓄積量3,000〜15,000質量ppmの流動接触分解平衡触媒である上記(1)の低硫黄分接触分解ガソリンの製造方法、
(3)重質油が、水素化処理脱硫重油又は水素化処理脱硫重質軽油であって、硫黄分0.05〜0.7質量%を含むものである上記(1)又は(2)の低硫黄分接触分解ガソリンの製造方法、及び
(4)得られる低硫黄分接触分解ガソリンが沸点範囲C5〜210℃において硫黄分含有量50質量ppm以下のものである上記(1)〜(3)の低硫黄分接触分解ガソリンの製造方法、
を提供するものである。
As a result of intensive research to achieve the above object, the present inventor has a specific property as a catalyst and has a desulfurization function when gasoline is produced by catalytic cracking of heavy oil using an FCC unit. The purpose is to perform the decomposition reaction and the desulfurization reaction at the same time by using a mixture of the FCC catalyst and the FCC equilibrium catalyst in which the accumulated amount of vanadium and / or nickel is in a specific range at a predetermined ratio. I found that it can be achieved. The present invention has been completed based on such findings.
That is, the present invention
(1) In producing catalytic cracked gasoline by cracking heavy oil with FCC equipment, (A) acid amount 20-400 micromol / g, macropore surface area 50-150 m 2 / g, vanadium and / or 2-30 mass% of FCC catalyst (not containing zinc oxide) having a desulfurization function with a nickel loading of 0.3-1.5 mass%, and (B) vanadium and / or nickel accumulation amount of 500-15,000 mass ppm A method for producing low sulfur catalytic cracking gasoline, comprising using a mixed catalyst comprising 98 to 70% by mass of an FCC equilibrium catalyst of
(2) The method for producing a low sulfur catalytic cracking gasoline according to (1), which is a fluid catalytic cracking equilibrium catalyst having a vanadium and / or nickel accumulation amount of 3,000 to 15,000 mass ppm,
(3) The low sulfur of (1) or (2) above, wherein the heavy oil is hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil, and contains 0.05 to 0.7% by mass of sulfur. minute contact method for producing cracked gasoline, and (4) low-sulfur catalytically cracked gasoline obtained is of the following sulfur content of 50 ppm by weight in the boiling range C 5 to 210 ° C. (1) to (3) Production method of low sulfur catalytic cracking gasoline,
Is to provide.

本発明によれば、重質油を、FCC装置により分解処理するに際し、特定の触媒を用いて、分解反応と脱硫反応を同時に行わせることにより、50質量ppm以下の低硫黄分接触分解ガソリンを、効率よく、工業的に有利に製造することができる。   According to the present invention, when a heavy oil is decomposed by an FCC apparatus, a specific catalyst is used to simultaneously perform a decomposition reaction and a desulfurization reaction, whereby a low sulfur content catalytic cracked gasoline having a mass of 50 mass ppm or less is obtained. It can be produced efficiently and industrially advantageously.

本発明の低硫黄分接触分解ガソリンの製造方法においては、FCC装置内で、原料油の分解反応と脱硫反応を同時に行わせる。原料油である重質油としては制限はなく、重質軽油、常圧残渣油、減圧軽油、減圧残渣油、脱れき油、熱分解油等の重質油が用いられるが、該FCC装置内で脱硫反応を容易に起こさせ、低硫黄分解接触分解ガソリンを得るためには、硫黄化合物が脱硫されやすい構造になっている水素化処理脱硫重油又は水素化処理脱硫重質軽油が好適に用いられる。
重油又は重質軽油の水素化脱硫方法としては特に制限はなく、従来重油や重質軽油の水素化脱硫処理に慣用されている方法を用いることができる。例えばMo、Wなどの周期律表第6族金属、Coなどの周期律表第9族金属及びNiなどの周期律表第10族金属の一種又は二種以上、具体的にはCo−Mo又はNi−Moをアルミナ、シリカ、ゼオライトあるいはこれらの混合物などの担体に担持させた触媒を用い、反応温度300〜450℃程度、水素分圧3〜20MPa・G程度、LHSV(液時空間速度)0.1〜2.0hr-1程度の条件で水素化脱硫処理する方法などが用いられる。
本発明においては、原料油である水素化処理脱硫重油又は水素化処理脱硫重質軽油として、硫黄分含有量が、通常0.05〜0.7質量%、好ましくは0.05〜0.5質量%の範囲にあるものが用いられる。
In the method for producing a low sulfur catalytic cracking gasoline of the present invention, the cracking reaction and desulfurization reaction of the feedstock are performed simultaneously in the FCC unit. There are no limitations on the heavy oil that is the raw material oil, and heavy oils such as heavy light oil, atmospheric pressure residue oil, vacuum gas oil, vacuum residue oil, debris oil, and pyrolysis oil are used. In order to easily cause a desulfurization reaction and obtain low sulfur cracking catalytic cracking gasoline, hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil having a structure in which sulfur compounds are easily desulfurized is preferably used. .
There is no restriction | limiting in particular as a hydrodesulfurization method of heavy oil or heavy light oil, The method conventionally used for the hydrodesulfurization process of heavy oil or heavy light oil can be used. For example, periodic table group 6 metals such as Mo and W, periodic table group 9 metals such as Co, and periodic table group 10 metals such as Ni, specifically Co-Mo or Using a catalyst in which Ni—Mo is supported on a support such as alumina, silica, zeolite or a mixture thereof, the reaction temperature is about 300 to 450 ° C., the hydrogen partial pressure is about 3 to 20 MPa · G, and the LHSV (liquid hourly space velocity) is 0. A method of hydrodesulfurization treatment under conditions of about 1 to 2.0 hr −1 is used.
In the present invention, as the hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil as the raw material oil, the sulfur content is usually 0.05 to 0.7% by mass, preferably 0.05 to 0.5%. Those in the mass% range are used.

本発明の方法においては、FCC装置に用いる触媒として、(A)脱硫機能を有するFCC触媒と、(B)FCC平衡触媒とからなる混合触媒が使用される。
当該混合触媒における(A)成分の脱硫機能を有するFCC触媒としては、無機多孔質担体にバナジウム及び/又はニッケルを少なくとも担持させてなる触媒(酸化亜鉛を含有しない)が用いられる。該無機多孔質担体としては、例えばアルミナ、シリカ、シリカ・アルミナ、チタニア、アルミナ・チタニアなどの金属酸化物、カオリン、ベントナイトなどの粘土鉱物、各種ゼオライト、さらにはこれらから常法、例えばアルミナ、シリカ・アルミナ、希土類置換Y型ゼオライト、カオリンなどを用いてスプレードライなどの方法により調製されたFCC触媒などを挙げることができる。
本発明においては、担体として前記無機多孔質担体の中から、得られる脱硫機能を有するFCC触媒の酸量及びマクロ細孔表面積が以下に示す範囲になるように、一種又は二種以上適宣選択して用いる。
本発明においては、該(A)成分の脱硫機能を有するFCC触媒は、酸量が20〜400マイクロモル/gの範囲にあり、かつ、マクロ細孔表面積が50〜150m2/gの範囲にあることが必要である。上記酸量が20マイクロモル/g未満では硫黄化合物の分解、脱硫が不十分となり、一方400マイクロモル/gを超えると分解反応が進みすぎ、ガスやコークなどの目的外生成物の収率が高くなり、経済性が低下する。好ましい酸量は100〜350マイクロモル/gの範囲、さらには200〜300マイクロモル/gの範囲である。
In the method of the present invention, a mixed catalyst comprising (A) an FCC catalyst having a desulfurization function and (B) an FCC equilibrium catalyst is used as a catalyst used in the FCC apparatus.
As the FCC catalyst having the function of desulfurizing the component (A) in the mixed catalyst, a catalyst (containing no zinc oxide) in which at least vanadium and / or nickel is supported on an inorganic porous carrier is used. Examples of the inorganic porous carrier include alumina, silica, silica / alumina, titania, alumina / titania and other metal oxides, clay minerals such as kaolin and bentonite, various zeolites, and further conventional methods such as alumina and silica. An FCC catalyst prepared by a method such as spray drying using alumina, rare earth-substituted Y-type zeolite, kaolin, or the like can be mentioned.
In the present invention, one or two or more kinds of inorganic porous carriers are appropriately selected so that the acid amount and macropore surface area of the obtained FCC catalyst having a desulfurization function are within the ranges shown below. And use.
In the present invention, the FCC catalyst having the desulfurization function of the component (A) has an acid amount in the range of 20 to 400 micromol / g and a macropore surface area in the range of 50 to 150 m 2 / g. It is necessary to be. If the acid amount is less than 20 micromol / g, the decomposition and desulfurization of the sulfur compound is insufficient. On the other hand, if it exceeds 400 micromol / g, the decomposition reaction proceeds too much, and the yield of unintended products such as gas and coke is increased. It becomes high and economic efficiency decreases. A preferable acid amount is in the range of 100 to 350 micromol / g, and further in the range of 200 to 300 micromol / g.

また、上記マクロ細孔表面積が50m2/g未満では原料油の分解が十分ではないため、接触分解ガソリンの収率が低く、かつ脱硫も不十分となり、一方150m2/gを超えると大きな細孔が多くなりすぎ、分解活性が低下すると共に、脱硫も不十分となる。好ましいマクロ細孔表面積は、60〜120m2/gの範囲である。
なお、前記の酸量及びマクロ細孔表面積は、下記の方法で測定した値である。
<酸量>
触媒上の酸点に塩基性ガス(アンモニア、ピリジン)が強く吸着することを利用して、触媒の酸性質をアンモニア微分吸着熱測定法により測定する。吸着熱の大小で酸点の強度が評価でき、同時に吸着量から、酸量を求めることができる。吸着熱量は熱量計で直接測定し、吸着量は圧力変化から測定する。
<マクロ細孔表面積>
BET多点法において窒素の相対圧力(P/P0)=0.3で測定した表面積からt−プロットマイクロ表面積を差し引いた値である。
さらに、該脱硫機能を有するFCC触媒はバナジウム及び/又はニッケル担持量が、該触媒全量に対して0.3〜1.5質量%の範囲にあることが必要である。上記バナジウム及び/又はニッケル担持量が0.3質量%未満ではそれらを担持した効果が発揮されず、所望の脱硫性能が得られないし、1.5質量%を超えるとコークやガスなどの目的外生成物の収率が高くなり、経済性が低下する。
また、この脱硫機能を有するFCC触媒においては、触媒の安定性、特に水熱安定性を付与するためと分解活性を向上させるために、所望によりランタン、セリウムなどの希土類元素を0.5〜2.5質量%程度の割合で担持することができる。
Further, since the macropore surface area 50 m 2 / is less than g decomposition of the raw material oil is not sufficient, low yields of catalytically cracked gasoline, and the desulfurization is also insufficient, whereas large pore exceeds 150 meters 2 / g There are too many pores, the decomposition activity is lowered, and desulfurization is also insufficient. A preferred macropore surface area is in the range of 60 to 120 m 2 / g.
In addition, the said acid amount and macropore surface area are the values measured by the following method.
<Acid amount>
Utilizing the fact that basic gas (ammonia, pyridine) is strongly adsorbed on the acid sites on the catalyst, the acid properties of the catalyst are measured by the ammonia differential adsorption heat measurement method. The strength of the acid point can be evaluated by the magnitude of the heat of adsorption, and at the same time, the acid amount can be determined from the amount of adsorption. The heat of adsorption is measured directly with a calorimeter, and the amount of adsorption is measured from the pressure change.
<Macropore surface area>
This is a value obtained by subtracting the t-plot micro surface area from the surface area measured at a relative pressure of nitrogen (P / P 0 ) = 0.3 in the BET multipoint method.
Further, the FCC catalyst having the desulfurization function needs to have a vanadium and / or nickel loading amount in the range of 0.3 to 1.5 mass% with respect to the total amount of the catalyst. If the amount of vanadium and / or nickel supported is less than 0.3% by mass, the effect of supporting them will not be exhibited, and the desired desulfurization performance will not be obtained. The product yield is increased and the economic efficiency is reduced.
In addition, in the FCC catalyst having this desulfurization function, in order to impart stability of the catalyst, particularly hydrothermal stability and to improve decomposition activity, a rare earth element such as lanthanum or cerium is optionally added in an amount of 0.5 to 2. It can be supported at a ratio of about 5% by mass.

無機多孔質担体に、前記の各金属を担持させる方法については特に制限はなく、従来公知の方法、例えば含浸法や共沈法などを採用することができる。担持方法の具体例としては、金属源としてナフテン酸バナジウム、ナフテン酸ニッケルなどの有機溶剤溶液を用いて、含浸法により担持させる方法、あるいはシュウ酸バナジルなどの水溶液を用い、さらにこれにポリエチレングリコール、水溶性セルロース、アラビアゴムなどの増粘剤を組み合わせて、含浸法により担持させる方法などが挙げられる。
このようにして、各金属化合物が担持された無機多孔質担体を、乾燥後、500〜900℃程度の温度で、酸素及び水蒸気の存在下にスチーミング処理及び焼成処理することにより、目的の脱硫機能を有するFCC触媒が得られる。
There is no particular limitation on the method for supporting each of the above metals on the inorganic porous carrier, and a conventionally known method such as an impregnation method or a coprecipitation method can be employed. Specific examples of the supporting method include a method of supporting by an impregnation method using an organic solvent solution such as vanadium naphthenate and nickel naphthenate as a metal source, or an aqueous solution such as vanadyl oxalate. Examples include a method in which a thickener such as water-soluble cellulose and gum arabic is combined and supported by an impregnation method.
In this manner, the inorganic porous carrier carrying each metal compound is dried and then subjected to a steaming treatment and a firing treatment in the presence of oxygen and water vapor at a temperature of about 500 to 900 ° C. An FCC catalyst having a function is obtained.

一方、当該混合触媒においては、(B)成分としてFCC平衡触媒が用いられる。一般にFCC装置においては、触媒の活性を一定に保つために適時新触媒を添加しており、この新触媒は装置内にある触媒と完全混合され、触媒の活性は平均化されることになる。しかしながら、このままでは装置内の触媒量が過剰になるので、一定量を常に抜き出している。FCC平衡触媒とは、このFCC装置の触媒活性が一定になった際に定期的に抜き出される触媒のことである。本発明においては、バナジウム及び/又はニッケル蓄積量が、該触媒全量に対して500〜15,000質量ppmの範囲にあるFCC平衡触媒が用いられる。上記バナジウム及び/又はニッケル蓄積量が500質量ppm未満では水素化能が低く、所望の低硫黄分接触分解ガソリンが得られにくく、また15,000質量ppmを超えるとバナジウムやニッケルにより触媒が被毒され、分解活性が不十分となる。好ましいバナジウム及び/又はニッケル蓄積量は3,000〜15,000質量ppmの範囲であり、より好ましくは3,000〜10,000質量ppmの範囲である。
本発明において使用されるFCC平衡触媒としては、例えばバナジウム及び/又はニッケル蓄積量が500〜15,000質量ppmの範囲にあるREUSY、USY、REYなどのゼオライト、アルミナ、シリカ・アルミナ、チタニア、アルミナ・チタニア及び粘土鉱物(カオリン、ハロイサイトなど)などからなるFCC平衡触媒を挙げることができる。
On the other hand, in the mixed catalyst, an FCC equilibrium catalyst is used as the component (B). In general, in the FCC apparatus, a new catalyst is added in a timely manner in order to keep the activity of the catalyst constant. This new catalyst is completely mixed with the catalyst in the apparatus, and the activity of the catalyst is averaged. However, since the amount of catalyst in the apparatus becomes excessive as it is, a constant amount is always extracted. The FCC equilibrium catalyst is a catalyst that is periodically extracted when the catalytic activity of the FCC apparatus becomes constant. In the present invention, an FCC equilibrium catalyst having a vanadium and / or nickel accumulation amount in the range of 500 to 15,000 mass ppm with respect to the total amount of the catalyst is used. If the amount of accumulated vanadium and / or nickel is less than 500 ppm by mass, the hydrogenation ability is low, and it is difficult to obtain a desired low sulfur content catalytic cracked gasoline, and if it exceeds 15,000 ppm by mass, the catalyst is poisoned by vanadium or nickel. And the degradation activity becomes insufficient. A preferable vanadium and / or nickel accumulation amount is in the range of 3,000 to 15,000 ppm by mass, and more preferably in the range of 3,000 to 10,000 ppm by mass.
Examples of the FCC equilibrium catalyst used in the present invention include zeolites such as REUSY, USY, and REY whose vanadium and / or nickel accumulation amount is in the range of 500 to 15,000 mass ppm, alumina, silica / alumina, titania, and alumina. -FCC equilibrium catalysts composed of titania and clay minerals (kaolin, halloysite, etc.) can be mentioned.

当該混合触媒においては、前記(A)成分の脱硫機能を有するFCC触媒と(B)成分のFCC平衡触媒の混合割合は、(A)成分が2〜30質量%で、(B)成分が98〜70質量%である。上記(A)成分の混合量が2質量%未満では脱硫性能が十分に発揮されず、本発明の目的が達せられないし、30質量%を超えると分解活性が高くなり、ガスやコーク収率が増加し、経済性が低下する。該(A)成分と(B)成分のより好ましい混合割合は、(A)成分が5〜20質量%で、(B)成分が95〜80質量%である。
本発明においては、このようにして調製された混合触媒を用い、水素化処理脱硫重油又は水素化処理脱硫重質軽油を、FCC装置により分解処理し、分解反応と共に脱硫反応を行い、低硫黄分接触分解ガソリンを製造する。
この際の処理条件としては、例えば、温度480〜650℃、好ましくは480〜550℃、反応圧力0.02〜5MPa・G、好ましくは0.02〜0.5MPa・Gである。処理温度が上記範囲内である場合は、触媒の分解活性及び生成ガソリン留分の脱硫率が高く、また、反応圧力が上記範囲内であれば、同様に、触媒の分解活性及び生成ガソリン留分の脱硫率が高く好ましい。なお、触媒再生温度は、通常600〜800℃程度である。
本発明においては、このようにして得られた分解処理油から、蒸留により沸点範囲がC5〜210℃程度の留分を分取することにより、目的の低硫黄分接触分解ガソリンを製造することができる。そして、該接触分解ガソリン中の硫黄分量を50質量ppm以下に低減させることができる。なお、接触分解ガソリン中の硫黄分は、下記の方法により測定した値であり、またここで沸点範囲がC5〜210℃程度の留分とは炭素数5の炭化水素留分から210℃程度の沸点を持つ炭化水素留分までの範囲をいう。
In the mixed catalyst, the mixing ratio of the FCC catalyst having the desulfurization function of the component (A) and the FCC equilibrium catalyst of the component (B) is 2 to 30% by mass for the component (A) and 98 for the component (B). -70 mass%. When the mixing amount of the component (A) is less than 2% by mass, the desulfurization performance is not sufficiently exhibited, the object of the present invention cannot be achieved, and when it exceeds 30% by mass, the decomposition activity is increased, and the yield of gas and coke is reduced. Increases and economic efficiency decreases. The more preferable mixing ratio of the component (A) and the component (B) is 5 to 20% by mass for the component (A) and 95 to 80% by mass for the component (B).
In the present invention, the hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil is decomposed by the FCC unit using the mixed catalyst thus prepared, and the desulfurization reaction is carried out together with the decomposition reaction. Manufactures catalytic cracking gasoline.
The treatment conditions at this time are, for example, a temperature of 480 to 650 ° C., preferably 480 to 550 ° C., a reaction pressure of 0.02 to 5 MPa · G, preferably 0.02 to 0.5 MPa · G. When the treatment temperature is within the above range, the cracking activity of the catalyst and the desulfurization rate of the produced gasoline fraction are high, and when the reaction pressure is within the above range, similarly, the cracking activity of the catalyst and the produced gasoline fraction are the same. High desulfurization rate is preferable. The catalyst regeneration temperature is usually about 600 to 800 ° C.
In the present invention, the target low sulfur content catalytically cracked gasoline is produced by fractionating a fraction having a boiling range of about C 5 to 210 ° C. by distillation from the cracked oil thus obtained. Can do. And the sulfur content in this catalytic cracking gasoline can be reduced to 50 mass ppm or less. The sulfur content in the catalytic cracked gasoline is a value measured by the following method. Here, the fraction having a boiling range of about C 5 to 210 ° C. is from a hydrocarbon fraction having 5 carbon atoms to about 210 ° C. The range up to the hydrocarbon fraction having a boiling point.

<接触分解ガソリン中の硫黄分>
試料の接触分解ガソリンを加熱した燃焼管に導入し、酸素と不活性ガス気流中で燃焼させる。燃焼生成した二酸化硫黄を電解液に吸収させて電量滴定し、この際消費された電気量から、硫黄分を求める。なお、試料中の硫黄分は、予め硫黄標準液を用いて求めておいた回収係数によって補正する。
本発明の方法によれば、接触分解ガソリン中の硫黄分量を50質量ppm以下に低減できるため、硫黄分規制値が50質量ppm以下の場合、直脱装置あるいは間脱装置での過酷な前処理及び接触分解ガソリンの水素化脱硫などの後処理が不要になり、経済性が向上する。また、硫黄分規制値が10質量ppm以下の場合、後処理装置の規模が小さくなり、水素消費量が減少すると共に、オクタン価の低下が少なくなるため、低硫黄分接触分解ガソリンを経済的に有利に製造することができる。
<Sulfur content in catalytic cracking gasoline>
Sample catalytically cracked gasoline is introduced into a heated combustion tube and burned in an oxygen and inert gas stream. The sulfur dioxide produced by combustion is absorbed in the electrolyte and titrated, and the sulfur content is determined from the amount of electricity consumed. In addition, the sulfur content in the sample is corrected by a recovery coefficient obtained in advance using a sulfur standard solution.
According to the method of the present invention, the sulfur content in the catalytic cracking gasoline can be reduced to 50 mass ppm or less. Therefore, when the sulfur content regulation value is 50 mass ppm or less, severe pretreatment in a direct desorption device or a degassing device is performed. In addition, post-treatment such as hydrodesulfurization of catalytic cracked gasoline becomes unnecessary, and the economy is improved. In addition, when the sulfur content regulation value is 10 mass ppm or less, the scale of the aftertreatment device is reduced, the hydrogen consumption is reduced, and the decrease in the octane number is reduced. Therefore, the low sulfur content catalytic cracking gasoline is economically advantageous. Can be manufactured.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各例における諸特性は、以下に示す方法に従って測定した。
(1)原料油中の硫黄分量
JIS K 2541に準拠して測定した。
(2)接触分解ガソリン中の硫黄分量
明細書本文記載の方法に従って測定した。
(3)脱硫機能を有するFCC触媒の酸量及びマクロ細孔表面積
酸量及びマクロ細孔表面積は、明細書本文記載の方法に従って測定した。
(4)FCCガソリンの収率(質量%)
得られたC5+〜210℃留分の重量を原料油重量で除し、100を掛けた値である。
(5)コーク収率(質量%)
再生塔で得られたCO及びCO2量よりカーボン重量を求め、これを原料油重量で除し、100を掛けた値である。
(6)原料油転化率(質量%)
ガス収率、C3,C4留分収率、FCCガソリン収率及びコーク収率を加えた値である。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Various characteristics in each example were measured according to the following methods.
(1) Sulfur content in raw material oil Measured according to JIS K2541.
(2) Sulfur content in catalytic cracked gasoline Measured according to the method described in the specification.
(3) Acid amount and macropore surface area of FCC catalyst having desulfurization function The acid amount and macropore surface area were measured according to the method described in the specification.
(4) FCC gasoline yield (% by mass)
It is a value obtained by dividing the weight of the obtained C5 + to 210 ° C. fraction by the weight of the raw material oil and multiplying by 100.
(5) Coke yield (% by mass)
The carbon weight is obtained from the amount of CO and CO 2 obtained in the regeneration tower, is divided by the weight of the raw material oil, and multiplied by 100.
(6) Feedstock oil conversion rate (% by mass)
It is a value obtained by adding gas yield, C 3 , C 4 fraction yield, FCC gasoline yield and coke yield.

実施例1
(1)脱硫機能を有するFCC触媒の調製
最終触媒の質量基準で、径10nmの細孔を多く有する噴霧乾燥ベーマイトゲルアルミナ[ラロッシュ・ケミカルズ社製「VERSAL250」]が30質量%、USYゼオライト[東ソー(株)製「FSZ−330HUA」]が20質量%、粘土鉱物カオリン[土屋カオリン工業(株)製「ASP−170」]が15質量%及びシリカゾルが20質量%になるように、それぞれの成分をイオン交換水に加え、固形分15質量%のスラリーとした。
次いで、上記スラリーを、スプレードライヤーを用い温度250℃、ディスク回転速度9,000rpm、スラリー供給速度10cm3/minの条件で噴霧乾燥処理して、直径20〜120μmの球状接触分解触媒を得た。その後、この球状接触分解触媒を、硝酸ランタン5質量%イオン交換水溶液に浸漬させたのち、100℃で1時間乾燥処理後、電気焼成炉において、200℃で3時間焼成することにより、該触媒に最終触媒の質量基準で、ランタン2質量%を担持させた。
Example 1
(1) Preparation of FCC catalyst having desulfurization function 30% by mass of spray-dried boehmite gel alumina [“VERSAL 250” manufactured by Laroche Chemicals, Inc.] having many pores having a diameter of 10 nm, USY zeolite [Tosoh] “FSZ-330HUA” manufactured by Co., Ltd.] is 20% by mass, kaolin clay mineral [ASP-170 manufactured by Tsuchiya Kaolin Industry Co., Ltd.] is 15% by mass, and silica sol is 20% by mass. Was added to ion-exchanged water to obtain a slurry having a solid content of 15% by mass.
Next, the slurry was spray-dried using a spray dryer under the conditions of a temperature of 250 ° C., a disk rotation speed of 9,000 rpm, and a slurry supply speed of 10 cm 3 / min to obtain a spherical catalytic cracking catalyst having a diameter of 20 to 120 μm. Thereafter, the spherical catalytic cracking catalyst was immersed in an ion exchange aqueous solution of 5% by mass of lanthanum nitrate, dried at 100 ° C. for 1 hour, and then calcined at 200 ° C. for 3 hours in an electric firing furnace. Based on the mass of the final catalyst, 2% by mass of lanthanum was supported.

続いて、上記触媒320gを、温度770℃、スチーム濃度98体積%、空気濃度2体積%、イオン交換水供給量1.66g/minの条件にて、15時間スチーミング処理を行った。その後、この触媒250gにナフテン酸バナジウム及びナフテン酸ニッケルを、最終触媒の質量基準でVが2,800質量ppm、Niが1,400質量ppmになるように担持させたのち、温度720℃、スチーム濃度20体積%、空気濃度80体積%の条件で4時間、さらに温度850℃、スチーム濃度5体積%、空気濃度95体積%の条件で4時間処理を行い、脱硫機能を有するFCC触媒(最終触媒)を調製した。該触媒の性状を第1表に示す。   Subsequently, the catalyst 320 g was steamed for 15 hours under the conditions of a temperature of 770 ° C., a steam concentration of 98 vol%, an air concentration of 2 vol%, and an ion exchange water supply rate of 1.66 g / min. Thereafter, vanadium naphthenate and nickel naphthenate were supported on 250 g of this catalyst so that V was 2,800 mass ppm and Ni was 1,400 mass ppm based on the mass of the final catalyst. An FCC catalyst having a desulfurization function (final catalyst) is treated for 4 hours under the conditions of a concentration of 20% by volume and an air concentration of 80% by volume, and further at a temperature of 850 ° C., a steam concentration of 5% by volume and an air concentration of 95% by volume. ) Was prepared. The properties of the catalyst are shown in Table 1.

(2)分解、脱硫反応
上記(1)で調製した脱硫機能を有するFCC触媒200gと、V4,400質量ppm及びNi2,000質量ppmが蓄積されたFCC平衡触媒1,800gとを均一に混合した。この混合触媒を連続式流動床ベンチプラントに充填し、硫黄分含有量0.5質量%の水素化処理脱硫重油を、反応温度515℃、反応圧力0.18MPa・G、触媒再生温度730℃、触媒/原料油質量比6.5、原料油供給量550g/hの条件で、分解、脱硫反応させた。
生成油を15段蒸留装置にて、沸点C5〜210℃の留分を接触分解ガソリンとして分取し、その硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
(2) Decomposition and desulfurization reaction 200 g of FCC catalyst having the desulfurization function prepared in (1) above and 1,800 g of FCC equilibrium catalyst in which V4, 400 mass ppm and Ni 2,000 mass ppm were accumulated were mixed uniformly. . This mixed catalyst is charged into a continuous fluidized bed bench plant, and hydrotreated desulfurized heavy oil having a sulfur content of 0.5% by mass is reacted at a reaction temperature of 515 ° C., a reaction pressure of 0.18 MPa · G, a catalyst regeneration temperature of 730 ° C. Decomposition and desulfurization reaction were performed under the conditions of a catalyst / raw material oil mass ratio of 6.5 and a raw material oil supply amount of 550 g / h.
The product oil at 15-stage distillation apparatus, aliquoted of a fraction having a boiling point of C 5 to 210 ° C. as catalytically cracked gasoline, and measured the sulfur content.
The evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline are shown in Table 1.

実施例2
(1)脱硫機能を有するFCC触媒の調製
実施例1において、ナフテン酸バナジウム及びナフテン酸ニッケルを、最終触媒の質量基準でVが5,000質量ppm、Niが2,000質量ppmになるように担持させたこと以外は実施例1と同様に脱硫機能を有するFCC触媒(最終触媒)を調製した。該触媒の性状を第1表に示す。
Example 2
(1) Preparation of FCC catalyst having desulfurization function In Example 1, vanadium naphthenate and nickel naphthenate were mixed so that V was 5,000 mass ppm and Ni was 2,000 mass ppm based on the mass of the final catalyst. An FCC catalyst (final catalyst) having a desulfurization function was prepared in the same manner as in Example 1 except that it was supported. The properties of the catalyst are shown in Table 1.

(2)分解、脱硫反応
上記(1)で調製した脱硫機能を有するFCC触媒400gと、V500質量ppm及びNi300質量ppmが蓄積されたFCC平衡触媒1,600gとを均一に混合した。この混合触媒を連続式流動床ベンチプラントに充填し、硫黄含有量0.15質量%の水素化処理重質軽油を、反応温度535℃、反応圧力0.15MPa・G、触媒再生温度680℃、触媒/原料油質量比6.5、原料油供給量1,000g/hの条件で、分解、脱硫反応させた。
生成油を15段蒸留装置にて、沸点C5〜210℃の留分を接触分解ガソリンとして分取し、その硫黄分を測定した。反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
(2) Decomposition and desulfurization reaction 400 g of the FCC catalyst having the desulfurization function prepared in the above (1) and 1,600 g of FCC equilibrium catalyst in which V500 mass ppm and Ni300 massppm were accumulated were mixed uniformly. This mixed catalyst is charged into a continuous fluidized bed bench plant, and a hydrotreated heavy gas oil having a sulfur content of 0.15% by mass is reacted at a reaction temperature of 535 ° C., a reaction pressure of 0.15 MPa · G, a catalyst regeneration temperature of 680 ° C., Decomposition and desulfurization reaction were carried out under the conditions of a catalyst / feed oil mass ratio of 6.5 and a feed oil supply amount of 1,000 g / h.
The product oil was fractionated in a 15-stage distillation apparatus as a catalytically cracked gasoline having a boiling point of C 5 to 210 ° C., and the sulfur content was measured. The evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline are shown in Table 1.

比較例1
(1)触媒の調製
実施例1(1)において、V及びNiを担持しなかったこと以外は、実施例1(1)と同様にして触媒を調製した。この触媒の性状を第1表に示す。
(2)分解、脱硫反応
上記(1)で調製した触媒とV4400質量ppm及びNi2000質量ppmが蓄積されたFCC平衡触媒を用い、実施例1(2)と同様にして、水素化処理脱硫重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
Comparative Example 1
(1) Preparation of catalyst A catalyst was prepared in the same manner as in Example 1 (1) except that V and Ni were not supported in Example 1 (1). The properties of this catalyst are shown in Table 1.
(2) Cracking, desulfurization reaction Using the catalyst prepared in (1) above and an FCC equilibrium catalyst in which V4400 ppm by mass and 2000 ppm by mass of Ni were accumulated, in the same manner as in Example 1 (2), Cracking and desulfurization reactions were carried out, and catalytic cracked gasoline was further fractionated by distillation, and the amount of sulfur contained therein was measured.
The evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline are shown in Table 1.

比較例2
実施例1(2)において、脱硫機能を有するFCC触媒とFCC平衡触媒との混合触媒を用いる代わりに、FCC平衡触媒のみを用いた以外は、実施例1(2)と同様にして、水素化処理脱硫重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
Comparative Example 2
In Example 1 (2), hydrogenation was conducted in the same manner as in Example 1 (2) except that only a FCC equilibrium catalyst was used instead of using a mixed catalyst of an FCC catalyst having a desulfurization function and an FCC equilibrium catalyst. The treated desulfurized heavy oil was decomposed and desulfurized, and catalytically cracked gasoline was fractionated by distillation, and the amount of sulfur in it was measured.
The evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline are shown in Table 1.

Figure 2005015766
Figure 2005015766


Claims (4)

重質油を、流動接触分解装置で分解処理して接触分解ガソリンを製造するにあたり、(A)酸量20〜400マイクロモル/g、マクロ細孔表面積50〜150m2/g、バナジウム及び/又はニッケル担持量0.3〜1.5質量%の流動接触分解触媒(酸化亜鉛を含有しない)2〜30質量%と、(B)バナジウム及び/又はニッケル蓄積量500〜15,000質量ppmの流動接触分解平衡触媒98〜70質量%とからなる混合触媒を用いることを特徴とする低硫黄分接触分解ガソリンの製造方法。 In producing a catalytically cracked gasoline by cracking heavy oil with a fluid catalytic cracker, (A) acid amount 20-400 micromol / g, macropore surface area 50-150 m 2 / g, vanadium and / or Fluidized catalytic cracking catalyst (not containing zinc oxide) of 2 to 30% by mass of nickel supported amount of 0.3 to 1.5% by mass, and flow of (B) vanadium and / or nickel accumulation amount of 500 to 15,000 ppm by mass A method for producing a low sulfur content catalytic cracking gasoline, comprising using a mixed catalyst comprising 98 to 70% by mass of a catalytic cracking equilibrium catalyst. バナジウム及び/又はニッケル蓄積量3,000〜15,000質量ppmの流動接触分解平衡触媒である請求項1記載の低硫黄分接触分解ガソリンの製造方法。 The method for producing a low sulfur content catalytic cracking gasoline according to claim 1, which is a fluid catalytic cracking equilibrium catalyst having a vanadium and / or nickel accumulation amount of 3,000 to 15,000 mass ppm. 重質油が、水素化処理脱硫重油又は水素化処理脱硫重質軽油であって、硫黄分0.05〜0.7質量%を含むものである請求項1又は2に記載の低硫黄分接触分解ガソリンの製造方法。 The low sulfur content catalytic cracking gasoline according to claim 1 or 2, wherein the heavy oil is hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil and contains 0.05 to 0.7% by mass of a sulfur content. Manufacturing method. 得られる低硫黄分接触分解ガソリンが、沸点範囲C5〜210℃において硫黄分含有量50質量ppm以下のものである請求項1〜3のいずれかに記載の低硫黄分接触分解ガソリンの製造方法。

Low-sulfur catalytically cracked gasoline obtained has a boiling range C 5 to 210 The method of manufacturing low sulfur catalytically cracked gasoline according to claim 1 are: sulfur content of 50 ppm by mass in ℃ .

JP2004070812A 2003-06-02 2004-03-12 Process for producing low sulfur catalytic cracking gasoline Expired - Fee Related JP4409996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070812A JP4409996B2 (en) 2003-06-02 2004-03-12 Process for producing low sulfur catalytic cracking gasoline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003157132 2003-06-02
JP2004070812A JP4409996B2 (en) 2003-06-02 2004-03-12 Process for producing low sulfur catalytic cracking gasoline

Publications (2)

Publication Number Publication Date
JP2005015766A true JP2005015766A (en) 2005-01-20
JP4409996B2 JP4409996B2 (en) 2010-02-03

Family

ID=34196662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070812A Expired - Fee Related JP4409996B2 (en) 2003-06-02 2004-03-12 Process for producing low sulfur catalytic cracking gasoline

Country Status (1)

Country Link
JP (1) JP4409996B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054753A (en) * 2005-08-25 2007-03-08 Petroleum Energy Center Fluid catalytic cracking catalyst, its production method and production method of low-sulfur catalytic cracked gasoline
JP2007160250A (en) * 2005-12-15 2007-06-28 Petroleum Energy Center Method of manufacturing catalyst, catalytic cracking catalyst and method of producing low-sulfur catalytically-cracked gasoline
WO2008001709A1 (en) * 2006-06-28 2008-01-03 Idemitsu Kosan Co., Ltd. Fluid catalytic cracking catalyst having desulfurizing functions, process for production of the same, and process for production of low-sulfur catalytically cracked gasoline with the catalyst
JP2008055416A (en) * 2006-08-30 2008-03-13 Petrochina Co Ltd Method for increasing solid content of catalytic cracking catalyst slurry
JP2008531263A (en) * 2005-02-25 2008-08-14 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Gasoline sulfur reduction catalyst for fluid catalytic cracking process.
JP2008207076A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Fluid catalytic cracking catalyst, its producing method and method for producing low-sulfur catalytically cracked gasoline
JP2011088137A (en) * 2009-09-24 2011-05-06 Petroleum Energy Center Catalytic cracking catalyst for hydrocarbon oil, manufacturing method therefor, and method for catalytically cracking hydrocarbon oil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531263A (en) * 2005-02-25 2008-08-14 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Gasoline sulfur reduction catalyst for fluid catalytic cracking process.
JP2007054753A (en) * 2005-08-25 2007-03-08 Petroleum Energy Center Fluid catalytic cracking catalyst, its production method and production method of low-sulfur catalytic cracked gasoline
JP2007160250A (en) * 2005-12-15 2007-06-28 Petroleum Energy Center Method of manufacturing catalyst, catalytic cracking catalyst and method of producing low-sulfur catalytically-cracked gasoline
WO2008001709A1 (en) * 2006-06-28 2008-01-03 Idemitsu Kosan Co., Ltd. Fluid catalytic cracking catalyst having desulfurizing functions, process for production of the same, and process for production of low-sulfur catalytically cracked gasoline with the catalyst
JP5008666B2 (en) * 2006-06-28 2012-08-22 出光興産株式会社 Desulfurization function-added fluid catalytic cracking catalyst, production method thereof, and method for producing low sulfur catalytic cracking gasoline using the desulfurization function-added fluid catalytic cracking catalyst
JP2008055416A (en) * 2006-08-30 2008-03-13 Petrochina Co Ltd Method for increasing solid content of catalytic cracking catalyst slurry
JP4704400B2 (en) * 2006-08-30 2011-06-15 ペトロチャイナ カンパニーリミテッド Method for increasing solid component content of catalytic cracking catalyst slurry
JP2008207076A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Fluid catalytic cracking catalyst, its producing method and method for producing low-sulfur catalytically cracked gasoline
JP2011088137A (en) * 2009-09-24 2011-05-06 Petroleum Energy Center Catalytic cracking catalyst for hydrocarbon oil, manufacturing method therefor, and method for catalytically cracking hydrocarbon oil

Also Published As

Publication number Publication date
JP4409996B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4832871B2 (en) Hydrorefining method
MXPA05012893A (en) Catalyst for the hydrodesulfurization of residues and heavy crudes.
JP2010121072A (en) Method for producing aviation fuel oil base
JP4643966B2 (en) Process for producing hydrorefined gas oil, hydrorefined gas oil and gas oil composition
JP5060045B2 (en) Method for producing catalyst, catalytic cracking catalyst, and method for producing low sulfur catalytic cracking gasoline
JP4409996B2 (en) Process for producing low sulfur catalytic cracking gasoline
JP5584252B2 (en) Multifunctional catalyst additive composition and preparation method thereof
WO2017208497A1 (en) Method for producing hydrocarbon liquid fuel
JP4914643B2 (en) Hydrorefining method and environment-friendly gasoline base material
JP5091401B2 (en) Method for producing hydrogen, method for producing reformed gasoline, and method for producing aromatic hydrocarbon
JP2004083615A (en) Method for producing low-sulfur catalytically cracked gasoline
CN107970994B (en) Hydrocarbon oil desulfurization catalyst, preparation method thereof and hydrocarbon oil desulfurization method
JP2007308567A (en) Hydrogenation purification method and environmental low load type gasoline base material
JP5498720B2 (en) Method for producing monocyclic aromatic hydrocarbons
JP5537780B2 (en) Light oil composition
JP4969754B2 (en) Hydrodesulfurization method for gas oil fraction and reactor for hydrodesulfurization
JP5457808B2 (en) Method for producing monocyclic aromatic hydrocarbons
JP5220456B2 (en) Decomposition method of atmospheric distillation residue oil
JP2014173025A (en) Hydrogenation purification method for vacuum gas oil
JP4410034B2 (en) Process for producing low sulfur catalytic cracking gasoline
CN113731427A (en) Bifunctional desulfurization catalyst, preparation method thereof and hydrocarbon oil desulfurization method
JP3990675B2 (en) Hydrodesulfurization method of light oil
JP2005270855A (en) Adsorbent of sulfur compound in hydrocarbon oil and method for removing sulfur compound in hydrocarbon oil
JP2019171337A (en) Hydrogenation catalyst and method for producing low aromatic solvent
JP6009196B2 (en) Manufacturing method of base oil for lubricating oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees