【0001】
【発明の属する技術分野】
本発明は、低硫黄分流動接触分解(以下、流動接触分解をFCCと略記する。)ガソリンの製造方法の改良に関する。さらに詳しくは、本発明は、水素化処理脱硫重油又は水素化処理脱硫重質軽油を、FCC装置により分解処理するに際し、特定の触媒を用いて、分解反応と脱硫反応を同時に行い、50ppm以下の低硫黄分接触分解ガソリンを効率よく製造する工業的に有利な方法に関するものである。
【従来の技術】
最近の環境問題に対する高まりに伴い、全世界的にガソリン中の硫黄分が規制されるようになってきた。日本においても、2005年にはガソリン中の硫黄分量が50ppm以下に規制され、その後、硫黄分規制が10ppm以下になることが予想されている。
【0002】
一般にFCC装置で製造される接触分解ガソリンには、大気汚染物質である硫黄化合物が含まれており、したがって、この接触分解ガソリンから硫黄分を除去して環境に優しいガソリンを製造することは、石油精製会社にとって急務である。
ところで、未脱硫減圧軽油を、ダビソン社製の脱硫機能付加触媒で処理している例が報告されている[「Oil&Gas Journal」、Feb.12(2001年)]。しかしながら、この場合、用いている原料油が未脱硫処理油であると共に、触媒の脱硫機能が十分でないため、得られる接触分解ガソリンの硫黄分が200〜400ppmと高い。水素化脱硫処理が施されていない重油や重質軽油においては、含まれている硫黄分が接触分解で除去されにくい構造を有しているために、それらを用いて硫黄分200ppm未満のFCCガソリンを製造することは困難である。さらに、原料油として水素化処理脱硫重油や水素化処理重質軽油を用いても、既存の脱硫機能付加FCC触媒では、脱硫活性が十分でないため、硫黄分50ppm以下の接触分解ガソリンを製造することは難しい。
【0003】
脱硫機能付加FCC触媒を用いて接触分解ガソリンを脱硫する技術について、これまでいくつかの提案がなされている。例えば酸化物マトリックス中に分散したゼオライト及びアルミナに、Ni、Cu、Zn、Al、Snなどの化合物から選ばれるルイス酸を1〜50質量%担持してなる触媒を用い、硫黄含有炭化水素を接触分解して、硫黄分を減少させた接触分解ガソリンを製造する方法が開示されている(特開平6−277519号公報)。しかしながら、この方法においては、得られる接触分解ガソリン中の硫黄分量は200〜300ppm以上と高く、該触媒の脱硫性能が十分ではない。
また、0よりも大きい酸化状態の▲1▼V、Zn及び▲2▼希土類元素をゼオライト内部の細孔構造の中に含む脱硫機能付加触媒と、通常のFCC平衡触媒との混合触媒を用い、硫黄分を低減させた接触分解ガソリンを製造する方法が開示されている(特開2000−198989号公報)。しかしながら、この方法おいては、混合触媒中の平衡触媒における蓄積V、Ni量が少なく、1例を挙げると合計860ppmである。また、得られた接触分解ガソリン中の硫黄分は600ppm程度と高い値である。さらに、硫黄分が0.071質量%と非常に低い原料油を用いた場合でも接触分解ガソリン中の硫黄分は79ppmと高く、該混合触媒の脱硫機能が十分ではない。
【0004】
【発明が解決しようとする課題】
本発明は、このような状況下で、重油や重質軽油をFCC装置により接触分解させてガソリンを製造するに際し、該ガソリン中の硫黄分を、効率よく50ppm以下に低減させ得る工業的に有利な方法を提供することを目的とするものである。
【課題を解決するための手段】
本発明者は、前記目的を達成するために鋭意研究を重ねた結果、原料油として、水素化処理脱硫重油又は水素化処理脱硫重質軽油を用い、かつ触媒として、特定の性状を有する脱硫機能付加FCC触媒と、バナジウム及び/又はニッケルの蓄積量が特定の範囲にあるFCC平衡触媒とを、所定の割合で混合したものを使用し、分解反応と脱硫反応を同時に行うことにより、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
・ 水素化処理脱硫重油又は水素化処理脱硫重質軽油をFCC装置で分解処理して接触分解ガソリンを製造するに当たり、(A)酸量200〜400マイクロモル/g、マクロ細孔表面積50〜150m2/g、酸化亜鉛担持量0.4〜10質量%、バナジウム及び/又はニッケル担持量0.3〜1.5質量%の脱硫機能付加FCC触媒2〜30質量%と、(B)バナジウム及び/又はニッケル蓄積量3000〜15000ppmのFCC平衡触媒98〜70質量%とからなる混合触媒を用い、分解反応と共に脱硫反応を行うことを特徴とする低硫黄分接触分解ガソリンの製造方法、
・ 水素化処理脱硫重油又は水素化処理脱硫重質軽油が、硫黄分0.05〜 0.7質量%を含むものである上記(1)の低硫黄分接触分解ガソリンの製造方法、及び
・ 得られる低硫黄分接触分解ガソリンが沸点範囲C5〜210℃において硫黄分含有量50ppm以下のものである上記(1)、(2)の低硫黄分接触分解ガソリンの製造方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明の低硫黄分接触分解ガソリンの製造方法においては、FCC装置内で、原料油の分解反応と脱硫反応を同時に行わせる。したがって、該FCC装置内で脱硫反応を容易に起こさせ低硫黄分接触分解ガソリンを得るために、原料油として、硫黄化合物が脱硫されやすい構造になっている水素化処理脱硫重油又は水素化処理脱硫重質軽油が用いられる。
重油又は重質軽油の水素化脱硫方法としては特に制限はなく、従来重油や重質軽油の水素化脱硫処理に慣用されている方法を用いることができる。例えばMo、Wなどの周期律表第6族金属及びCo、Niなどの周期律表第8族金属の一種又は二種以上、具体的にはCo−Mo又はNi−Moをアルミナ、シリカ、ゼオライトあるいはこれらの混合物などの担体に担持させた触媒を用い、反応温度300〜450℃程度、水素分圧3〜20MPa・G程度、LHSV(液時空間速度)0.1〜2.0hr−1程度の条件で水素化脱硫処理する方法などが用いられる。
本発明においては、原料油である水素化処理脱硫重油又は水素化処理脱硫重質軽油として、硫黄分含有量が、通常0.05〜0.7質量%、好ましくは0.05〜0.5質量%の範囲にあるものが用いられる。
【0006】
本発明の方法においては、FCC装置に用いる触媒として、(A)脱硫機能付加FCC触媒と、(B)FCC平衡触媒とからなる混合触媒が使用される。
当該混合触媒における(A)成分の脱硫機能付加FCC触媒としては、無機多孔質担体に酸化亜鉛と、バナジウム及び/又はニッケルを少なくとも担持させてなる触媒が用いられる。該無機多孔質担体としては、例えばアルミナ、シリカ、シリカ・アルミナ、チタニア、アルミナ・チタニアなどの金属酸化物、カオリン、ベントナイトなどの粘土鉱物、各種ゼオライト、さらにはこれらから常法、例えばアルミナ、シリカ・アルミナ、希土類置換Y型ゼオライト、粘土鉱物カオリンなどを用いてスプレードライなどの方法により調製されたFCC触媒などを挙げることができる。
本発明においては、担体として前記無機多孔質担体の中から、得られる脱硫機能付加FCC触媒の酸量及びマクロ細孔表面積が以下に示す範囲になるように、一種又は二種以上適宣選択して用いる。
本発明においては、該(A)成分の脱硫機能付加FCC触媒は、酸量が200〜400マイクロモル/gの範囲にあり、かつ、マクロ細孔表面積が50〜150m2/gの範囲にあることが必要である。上記酸量が200マイクロモル/g未満では硫黄化合物の分解、脱硫が不十分となり、一方400マイクロモル/gを超えると分解反応が進みすぎ、ガスやコークなどの目的外生成物の収率が高くなり、経済性が低下する。好ましい酸量は250〜300マイクロモル/gの範囲である。
【0007】
また、上記マクロ細孔表面積が50m2/g未満では原料油の分解が十分ではないため、接触分解ガソリンの収率が低く、かつ脱硫も不十分となり、一方150m2/gを超えると大きな細孔が多くなりすぎ、分解活性が低下すると共に、脱硫も不十分となる。好ましいマクロ細孔表面積は、60〜120m2/gの範囲である。
なお、前記の酸量及びマクロ細孔表面積は、下記の方法で測定した値である。
<酸量>
触媒上の酸点に塩基性ガス(アンモニア、ピリジン)が強く吸着することを利用して、触媒の酸性質をアンモニア微分吸着熱測定法により測定する。吸着熱の大小で酸点の強度が評価でき、同時に吸着量から、酸量を求めることができる。吸着熱量は熱量計で直接測定し、吸着量は圧力変化から測定する。
<マクロ細孔表面積>
BET多点法において窒素の相対圧力(P/P0)=0.3で測定した表面積からt−プロットマイクロ表面積を差し引いた値である。
さらに、該脱硫機能付加FCC触媒は、酸化亜鉛担持量が、該触媒全量に対して0.4〜10質量%の範囲にあり、かつバナジウム及び/又はニッケル担持量が、該触媒全量に対して0.3〜1.5質量%の範囲にあることが必要である。上記酸化亜鉛担持量が0.4質量%未満では硫黄化合物の反応吸着点が十分でなく、脱硫性能が十分に発揮されないし、10質量%を超えると酸化亜鉛が触媒表面上を覆ってしまい、脱硫性能及び分解性能が共に、十分に発揮されない。好ましい酸化亜鉛担持量は0.4〜5質量%の範囲である。
【0008】
一方、上記バナジウム及び/又はニッケル担持量が0.3質量%未満ではそれらを担持した効果が発揮されず、所望の脱硫性能が得られないし、1.5質量%を超えるとコークやガスなどの目的外生成物の収率が高くなり、経済性が低下する。
また、この脱硫機能付加FCC触媒においては、触媒の安定性、特に水熱安定性を付与するためと分解活性を向上させるために、所望によりランタン、セリウムなどの希土類元素を0.5〜2.5質量%程度の割合で担持することができる。
無機多孔質担体に、前記の各金属を担持させる方法については特に制限はなく、従来公知の方法、例えば含浸法や共沈法などを採用することができる。担持方法の具体例としては、金属源としてナフテン酸亜鉛、ナフテン酸バナジウム、ナフテン酸ニッケルなどの有機溶剤溶液を用いて、含浸法により担持させる方法、あるいはサリチル酸亜鉛、シュウ酸バナジルなどの水溶液を用い、さらにこれにポリエチレングリコール、水溶性セルロース、アラビアゴムなどの増粘剤を組み合わせて、含浸法により担持させる方法などが挙げられる。
このようにして、各金属化合物が担持された無機多孔質担体を、乾燥後、500〜900℃程度の温度で、酸素及び水蒸気の存在下にスチーミング処理及び焼成処理することにより、目的の脱硫機能付加FCC触媒が得られる。
【0009】
一方、当該混合触媒においては、(B)成分としてFCC平衡触媒が用いられる。該FCC平衡触媒とは、一般にFCC装置において使用される接触分解触媒であって、FCC装置内で新触媒から寿命に達した触媒まで完全に混合され平均化された触媒のことである。本発明においては、バナジウム及び/又はニッケル蓄積量が、該触媒全量に対して3000〜15000ppmの範囲にあるFCC平衡触媒が用いられる。上記バナジウム及び/又はニッケル蓄積量が3000ppm未満では水素化能が低く、所望の低硫黄分接触分解ガソリンが得られにくく、また15000ppmを超えるとバナジウムやニッケルにより触媒が被毒され、分解活性が不十分となる。好ましいバナジウム及び/又はニッケル蓄積量は3000〜10000ppmの範囲である。
本発明において使用されるFCC平衡触媒としては、例えばバナジウム及び/又はニッケル蓄積量が3000〜15000ppmの範囲にあるREUSY、USY、REYなどのゼオライト、アルミナ、シリカ・アルミナ、チタニア、アルミナ・チタニア及び粘土鉱物(カオリン、ハロイサイトなど)などからなる触媒を挙げることができる。
【0010】
当該混合触媒においては、前記(A)成分の脱硫機能付加FCC触媒と(B)成分のFCC平衡触媒の含有割合は、(A)成分が2〜30質量%で、(B)成分が98〜70質量%である。上記(A)成分の含有量が2質量%未満では脱硫性能が十分に発揮されず、本発明の目的が達せられないし、30質量%を超えると分解活性が高くなり、ガスやコーク収率が増加し、経済性が低下する。該(A)成分と(B)成分のより好ましい含有割合は、(A)成分が5〜20質量%で、(B)成分が95〜80質量%である。
本発明においては、このようにして調製された混合触媒を用い、水素化処理脱硫重油又は水素化処理脱硫重質軽油を、FCC装置により分解処理し、分解反応と共に脱硫反応を行い、低硫黄分接触分解ガソリンを製造する。
この際の処理条件としては、例えば、温度480〜650℃、好ましくは480〜550℃、反応圧力0.02〜5MPa・G、好ましくは0.02〜0.5MPa・Gである。処理温度が上記範囲内である場合は、触媒の分解活性及び生成ガソリン留分の脱硫率が高く、また、反応圧力が上記範囲内であれば、同様に、触媒の分解活性及び生成ガソリン留分の脱硫率が高く好ましい。なお、触媒再生温度は、通常600〜800℃程度である。
本発明においては、このようにして得られた分解処理油から、蒸留により沸点範囲がC5〜210℃程度の留分を分取することにより、目的の低硫黄分接触分解ガソリンを製造することができる。そして、該接触分解ガソリン中の硫黄分量を50ppm以下に低減させることができる。なお、接触分解ガソリン中の硫黄分は、下記の方法により測定した値である。
【0011】
<接触分解ガソリン中の硫黄分>
試料の接触分解ガソリンを加熱した燃焼管に導入し、酸素と不活性ガス気流中で燃焼させる。燃焼生成した二酸化硫黄を電解液に吸収させて電量滴定し、この際消費された電気量から、硫黄分を求める。なお、試料中の硫黄分は、予め硫黄標準液を用いて求めておいた回収係数によって補正する。
本発明の方法によれば、接触分解ガソリン中の硫黄分量を50ppm以下に低減できるため、硫黄分規制値が50ppm以下の場合、直脱装置での過酷な前処理及び接触分解ガソリンの水素化脱硫などの後処理が不要になり、経済性が向上する。また、硫黄分規制値が10ppm以下の場合、後処理装置の規模が小さくなり、水素消費量が減少すると共に、オクタン価の低下が少なくなるため、低硫黄分接触分解ガソリンを経済的に有利に製造することができる。
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各例における諸特性は、以下に示す方法に従って測定した。
(1)原料油中の硫黄分量
JIS K2541に準拠して測定した。
(2)接触分解ガソリン中の硫黄分量
明細書本文記載の方法に従って測定した。
(3)脱硫機能付加FCC触媒
酸量及びマクロ細孔表面積は、明細書本文記載の方法に従って測定した。
(4)FCCガソリンの収率(質量%)
得られたC5+〜210℃留分の重量を原料油重量で除し、100を掛けた値。
(5)コーク収率(質量%)
再生塔で得られたCO及びCO2量よりカーボン重量を求め、これを原料油重量で除し、100を掛けた値。
(6)原料油転化率(質量%)
ガス収率、C3,C4留分収率、FCCガソリン収率及びコーク収率を加えた値。
【0012】
実施例1
(1)触媒の調製
最終触媒の質量基準で、径10nmの細孔を多く有する噴霧乾燥ベーマイトゲルアルミナ[ラロッシュ・ケミカルズ社製「VERSAL250」]が20質量%、USYゼオライト[東ソー(株)製「FSZ−330HUA」]が30質量%、粘土鉱物カオリン[土屋カオリン工業(株)製「ASP−170」]が15質量%及びシリカゾルが20質量%になるように、それぞれの成分をイオン交換水に加え、固形分15質量%のスラリーとした。
次いで、上記スラリーを、スプレードライヤーを用い温度250℃、ディスク回転速度9000rpm、スラリー供給速度10cm3/minの条件で噴霧乾燥処理して、直径20〜120μmの球状接触分解触媒を得た。その後、この球状接触分解触媒を、硝酸ランタン5質量%イオン交換水溶液に浸漬させたのち、100℃で1時間乾燥処理後、電気焼成炉において、200℃で3時間焼成することにより、該触媒に最終触媒の質量基準で、ランタン2質量%を担持させた。次に、亜鉛濃度8質量%のナフテン酸亜鉛ミネラルスピリット溶液をシクロヘキサンで希釈し、これを攪拌しながら、前記ランタン担持触媒に、最終触媒の質量基準で、酸化亜鉛の担持量が2質量%になるように有機溶剤溶液含浸法により担持させた。
【0013】
続いて、上記触媒320gを、温度770℃、スチーム濃度98体積%、空気濃度2体積%、イオン交換水供給量1.66g/minの条件にて、15時間スチーミング処理を行った。その後、この触媒250gにナフテン酸バナジウム及びナフテン酸ニッケルを、最終触媒の質量基準でVが2800ppm、Niが1400ppmになるように担持させたのち、温度720℃、スチーム濃度20体積%、空気濃度80体積%の条件で4時間、さらに温度850℃、スチーム濃度5体積%、空気濃度95体積%の条件で4時間、触媒の擬似平衡化処理を行い、脱硫機能付加FCC触媒(最終触媒)を調製した。該触媒の性状を第1表に示す。
(2)分解、脱硫反応
上記(1)で調製した脱硫機能付加FCC触媒200gと、V4400ppm及びNi2000ppmが蓄積されたFCC平衡触媒1800gとを均一に混合した。この混合触媒を連続式流動床ベンチプラントに充填し、硫黄分含有量0.5質量%の水素化処理重油を、反応温度515℃、反応圧力0.18MPa・G、触媒再生温度730℃、触媒/原料油質量比6.5、原料油供給量550g/hの条件で、分解、脱硫反応させた。
【0014】
生成油を15段蒸留装置にて、沸点C5〜210℃の留分を接触分解ガソリンとして分取し、その硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
実施例2
(1)触媒の調製
実施例1(1)において、最終触媒の質量基準で、噴霧乾燥ベーマイトゲルアルミナが30質量%及びUSYゼオライトが20質量%になるように変更した以外は、実施例1(1)と同様にして、脱硫機能付加FCC触媒(最終触媒)を調製した。該触媒の性状を第1表に示す。
(2)分解、脱硫反応
上記(1)で調製した脱硫機能付加FCC触媒とV4400ppm及びNi2000ppmが蓄積されたFCC平衡触媒を用い、実施例1(2)と同様にして、水素化処理重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
【0015】
比較例1
(1)触媒の調製
実施例1(1)において、酸化亜鉛、V及びNiを担持しなかったこと以外は、実施例1(1)と同様にして触媒を調製した。この触媒の性状を第1表に示す。
(2)分解、脱硫反応
上記(1)で調製した触媒とV4400ppm及びNi2000ppmが蓄積されたFCC平衡触媒を用い、実施例1(2)と同様にして、水素化処理重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
比較例2
(1)触媒の調製
最終触媒の質量基準で、径10nmの細孔を多く有する噴霧乾燥ベーマイトゲルアルミナ[ラロッシュ・ケミカルズ社製「VERSAL250」]が2質量%、USYゼオライト[東ソー(株)製「FSZ−330HUA」]が20質量%、粘土鉱物カオリン[土屋カオリン工業(株)製「ASP−170」]が45質量%及びシリカゾルが20質量%になるように、それぞれの成分をイオン交換水に加え、固形分15質量%のスラリーとした。
以下、実施例1(1)と同様な操作を行い、ランタン、酸化亜鉛、V及びNiを担持した触媒を調製した。この触媒の性状を第1表に示す。
(2)分解、脱硫反応
上記(1)で調製した触媒とV4400ppm及びNi2000ppmが蓄積されたFCC平衡触媒を用い、実施例1(2)と同様にして、水素化処理重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
【0016】
比較例3
(1)触媒の調製
実施例1(1)において、酸化亜鉛の担持量を13質量%に変更した以外は、実施例1(1)と同様にして触媒を調製した。この触媒の性状を第1表に示す。
(2)分解、脱硫反応
上記(1)で調製した触媒とV4400ppm及びNi2000ppmが蓄積されたFCC平衡触媒を用い、実施例1(2)と同様にして、水素化処理重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
比較例4
実施例1(2)において、混合触媒におけるFCC平衡触媒として、V360ppm及びNi120ppmが蓄積された平衡触媒を用いた以外は、実施例1(2)と同様にして、水素化処理重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
【0017】
比較例5
実施例1(2)において、原料油として、未水素化処理重油で硫黄分含有量0.2質量%の大慶RCを用いた以外は、実施例1(2)と同様にして分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
比較例6
実施例1(2)において、脱硫機能付加FCC触媒とFCC平衡触媒との混合触媒を用いる代わりに、FCC平衡触媒のみを用いた以外は、実施例1(2)と同様にして、水素化処理重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
比較例7
実施例1(2)において、混合触媒として、脱硫機能付加FCC触媒40質量%とFCC平衡触媒60質量%とからなる混合触媒を用いた以外は、実施例1(2)と同様にして、水素化処理重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
比較例8
実施例1(2)において、混合触媒として、脱硫機能付加FCC触媒20質量%とV16,800ppm及びNi5,200ppmが蓄積されたFCC平衡触媒80質量%とからなる混合触媒を用いた以外は、実施例1(2)と同様にして、水素化処理重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
【0018】
比較例9
・ 触媒の調製
実施例1(1)における触媒の調製において、V及びNiの担持を行わず、温度720℃、スチーム濃度20体積%、空気濃度80体積%の条件で4時間、さらに温度850℃、スチーム濃度5体積%、空気濃度95体積%の条件で4時間、触媒の擬似平衡化処理のみを行った以外は、実施例1(1)と同様にして触媒を調製した。この触媒の性状を第1表に示す。
・ 分解、脱硫反応
上記(1)で調製した触媒とV4400ppm及びNi2000ppmが蓄積されたFCC平衡触媒を用い、実施例1(2)と同様にして、水素化処理重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
比較例10
・ 触媒の調製
実施例1(1)において、Vの担持量を14,000ppm及びNiの担持量を7,000ppmにした以外は、実施例1(1)と同様にして触媒を調製した。この触媒の性状を第1表に示す。
・ 分解、脱硫反応
実施例1(2)において、混合触媒における脱硫機能付加FCC触媒として、上記(1)で調製した触媒を用いた以外は、実施例1(2)と同様にして、水素化処理重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
【0019】
【表1】
【0020】
【表2】
【0021】
【表3】
【0022】
【発明の効果】
本発明によれば、水素化処理脱硫重油又は水素化処理脱硫重質軽油を、FCC装置により分解処理するに際し、特定の触媒を用いて、分解反応と脱硫反応を同時に行わせることにより、50ppm以下の低硫黄分接触分解ガソリンを、効率よく、工業的に有利に製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a method for producing low sulfur content fluid catalytic cracking (hereinafter, fluid catalytic cracking is abbreviated as FCC) gasoline. More specifically, the present invention, when hydrotreating desulfurized heavy oil or hydrotreated desulfurized heavy gas oil is subjected to cracking treatment with an FCC unit, using a specific catalyst, simultaneously performing a cracking reaction and a desulfurizing reaction, and 50 ppm or less The present invention relates to an industrially advantageous method for efficiently producing low sulfur catalytic cracking gasoline.
[Prior art]
With the recent increase in environmental issues, the sulfur content in gasoline has been regulated worldwide. In Japan as well, the sulfur content in gasoline is regulated to 50 ppm or less in 2005, and it is expected that the sulfur content regulation will be reduced to 10 ppm or less thereafter.
[0002]
Generally, a catalytic cracking gasoline produced by an FCC unit contains a sulfur compound which is an air pollutant. Therefore, it is difficult to remove sulfur from the catalytic cracking gasoline to produce an environmentally friendly gasoline. Urgent for refining companies.
By the way, there has been reported an example in which undesulfurized vacuum gas oil is treated with a desulfurization function-added catalyst manufactured by Davison [“Oil & Gas Journal”, Feb. 12 (2001)]. However, in this case, the raw material oil used is an undesulfurized treated oil and the desulfurization function of the catalyst is not sufficient, so that the resulting catalytic cracked gasoline has a high sulfur content of 200 to 400 ppm. FCC gasoline with a sulfur content of less than 200 ppm using heavy oil or heavy gas oil that has not been subjected to hydrodesulfurization treatment has a structure in which the sulfur content is difficult to be removed by catalytic cracking. Is difficult to manufacture. In addition, even if hydrotreated desulfurized heavy oil or hydrogenated heavy gas oil is used as the feedstock, catalytic cracking gasoline with a sulfur content of 50 ppm or less must be produced because the existing desulfurization function-added FCC catalyst does not have sufficient desulfurization activity. Is difficult.
[0003]
Several proposals have been made on the technology for desulfurizing catalytic cracking gasoline using an FCC catalyst with a desulfurization function. For example, a sulfur-containing hydrocarbon is contacted with zeolite and alumina dispersed in an oxide matrix using a catalyst having 1 to 50% by mass of a Lewis acid selected from compounds such as Ni, Cu, Zn, Al, and Sn. A method for producing catalytic cracked gasoline with reduced sulfur content by cracking is disclosed (JP-A-6-277519). However, in this method, the sulfur content in the resulting catalytic cracked gasoline is as high as 200 to 300 ppm or more, and the desulfurization performance of the catalyst is not sufficient.
Also, a mixed catalyst of a desulfurization function-added catalyst containing (1) V, Zn and (2) a rare earth element in an oxidation state larger than 0 in the pore structure inside the zeolite, and a normal FCC equilibrium catalyst, A method for producing catalytic cracking gasoline with a reduced sulfur content has been disclosed (JP-A-2000-198989). However, in this method, the amounts of accumulated V and Ni in the equilibrium catalyst in the mixed catalyst are small, and the total is 860 ppm, for example. The sulfur content in the obtained catalytic cracking gasoline is as high as about 600 ppm. Further, even when a raw material oil having an extremely low sulfur content of 0.071% by mass is used, the sulfur content in the catalytic cracking gasoline is as high as 79 ppm, and the desulfurization function of the mixed catalyst is not sufficient.
[0004]
[Problems to be solved by the invention]
The present invention is industrially advantageous in that, when gasoline is produced by catalytically cracking heavy oil or heavy gas oil with an FCC device under such circumstances, the sulfur content in the gasoline can be efficiently reduced to 50 ppm or less. It is intended to provide a simple method.
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, using a hydrotreated desulfurized heavy oil or a hydrotreated desulfurized heavy gas oil as a feed oil, and a desulfurization function having a specific property as a catalyst. By using a mixture of an additional FCC catalyst and an FCC equilibrium catalyst in which the accumulated amount of vanadium and / or nickel is in a specific range at a predetermined ratio, the decomposition reaction and the desulfurization reaction are simultaneously performed to achieve the purpose. It has been found that it can be achieved. The present invention has been completed based on such findings.
That is, the present invention
-When hydrotreating desulfurized heavy oil or hydrotreated desulfurized heavy gas oil is subjected to cracking treatment with an FCC unit to produce catalytic cracking gasoline, (A) acid amount: 200 to 400 micromol / g, macropore surface area: 50 to 150 m 2 / g, 2 to 30% by mass of a desulfurization function-added FCC catalyst having a zinc oxide carrying amount of 0.4 to 10% by mass, a vanadium and / or nickel carrying amount of 0.3 to 1.5% by mass, and (B) vanadium and And / or using a mixed catalyst consisting of 98 to 70 mass% of an FCC equilibrium catalyst having a nickel accumulation amount of 3000 to 15000 ppm and performing a desulfurization reaction together with a decomposition reaction,
The method for producing a low-sulfur catalytic cracking gasoline according to the above (1), wherein the hydrotreated desulfurized heavy oil or the hydrotreated desulfurized heavy gas oil contains 0.05 to 0.7% by mass of sulfur, and (1) The method for producing a low sulfur catalytic cracking gasoline according to the above (1) or (2), wherein the sulfur catalytic cracking gasoline has a sulfur content of 50 ppm or less in a boiling point range of C 5 to 210 ° C.
Is provided.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for producing low-sulfur catalytic cracking gasoline of the present invention, the cracking reaction and the desulfurization reaction of the feedstock oil are simultaneously performed in the FCC unit. Therefore, in order to easily cause a desulfurization reaction in the FCC unit and obtain a low-sulfur catalytic cracking gasoline, a hydrotreated desulfurized heavy oil or a hydrotreated desulfurized oil having a structure in which a sulfur compound is easily desulfurized is used as a feed oil. Heavy light oil is used.
The method for hydrodesulfurization of heavy oil or heavy gas oil is not particularly limited, and a method conventionally used for hydrodesulfurization of heavy oil or heavy gas oil can be used. For example, alumina, silica, zeolite may be obtained by converting one or more of Group 6 metals of the periodic table such as Mo and W and metals of Group 8 of the periodic table such as Co and Ni, specifically, Co-Mo or Ni-Mo to alumina, silica, or zeolite. Alternatively, using a catalyst supported on a carrier such as a mixture thereof, the reaction temperature is about 300 to 450 ° C., the hydrogen partial pressure is about 3 to 20 MPa · G, the LHSV (liquid hourly space velocity) is about 0.1 to 2.0 hr −1. A method of performing hydrodesulfurization treatment under the following conditions is used.
In the present invention, the sulfur content of the hydrotreated desulfurized heavy oil or the hydrotreated desulfurized heavy gas oil which is the feedstock is usually 0.05 to 0.7% by mass, preferably 0.05 to 0.5% by mass. Those in the range of mass% are used.
[0006]
In the method of the present invention, a mixed catalyst comprising (A) a desulfurization function-added FCC catalyst and (B) an FCC equilibrium catalyst is used as a catalyst for the FCC unit.
As the desulfurization function-added FCC catalyst of the component (A) in the mixed catalyst, a catalyst obtained by supporting at least zinc oxide, vanadium and / or nickel on an inorganic porous carrier is used. As the inorganic porous carrier, for example, alumina, silica, silica-alumina, titania, metal oxides such as alumina / titania, kaolin, clay minerals such as bentonite, various zeolites, and further from these, conventional methods, for example, alumina, silica FCC catalyst prepared by a method such as spray drying using alumina, rare earth-substituted Y-type zeolite, clay mineral kaolin, or the like.
In the present invention, one or more kinds are appropriately selected from the inorganic porous supports as the support so that the acid content and the macropore surface area of the obtained desulfurization function-added FCC catalyst fall within the following ranges. Used.
In the present invention, the desulfurization function-added FCC catalyst of the component (A) has an acid amount in the range of 200 to 400 μmol / g and a macropore surface area in the range of 50 to 150 m 2 / g. It is necessary. When the amount of the acid is less than 200 μmol / g, decomposition and desulfurization of the sulfur compound become insufficient. On the other hand, when the amount of the acid exceeds 400 μmol / g, the decomposition reaction proceeds too much and the yield of undesired products such as gas and coke is reduced. Higher, and the economics decrease. The preferred amount of acid is in the range of 250-300 micromol / g.
[0007]
Further, since the macropore surface area 50 m 2 / is less than g decomposition of the raw material oil is not sufficient, low yields of catalytically cracked gasoline, and the desulfurization is also insufficient, whereas large pore exceeds 150 meters 2 / g The number of pores becomes too large, the decomposition activity decreases, and desulfurization becomes insufficient. Preferred macroporous surface area is in the range of 60~120m 2 / g.
The acid content and the macropore surface area are values measured by the following methods.
<Acid amount>
Using the fact that basic gases (ammonia, pyridine) are strongly adsorbed to the acid sites on the catalyst, the acid properties of the catalyst are measured by an ammonia differential adsorption heat measurement method. The strength of the acid point can be evaluated by the magnitude of the heat of adsorption, and at the same time, the acid amount can be determined from the amount of adsorption. The heat of adsorption is directly measured by a calorimeter, and the amount of adsorption is measured from the pressure change.
<Macropore surface area>
This is a value obtained by subtracting the t-plot micro surface area from the surface area measured at a relative pressure of nitrogen (P / P 0 ) = 0.3 in the BET multipoint method.
Further, in the desulfurization function-added FCC catalyst, the supported amount of zinc oxide is in the range of 0.4 to 10% by mass based on the total amount of the catalyst, and the supported amount of vanadium and / or nickel is based on the total amount of the catalyst. It needs to be in the range of 0.3 to 1.5% by mass. When the amount of the supported zinc oxide is less than 0.4% by mass, the reactive adsorption point of the sulfur compound is not sufficient, and the desulfurization performance is not sufficiently exhibited. When the amount exceeds 10% by mass, the zinc oxide covers the catalyst surface, Neither desulfurization performance nor decomposition performance is fully exhibited. The preferred zinc oxide loading is in the range of 0.4 to 5% by mass.
[0008]
On the other hand, when the amount of vanadium and / or nickel supported is less than 0.3% by mass, the effect of supporting them is not exhibited, and the desired desulfurization performance cannot be obtained. The yield of unintended products is increased, and the economic efficiency is reduced.
In addition, in this desulfurization function-added FCC catalyst, a rare earth element such as lanthanum or cerium may be added in an amount of 0.5 to 2.0 to provide catalyst stability, particularly hydrothermal stability, and to improve decomposition activity. It can be supported at a ratio of about 5% by mass.
There is no particular limitation on the method for supporting each of the above metals on the inorganic porous carrier, and a conventionally known method, for example, an impregnation method or a coprecipitation method can be adopted. As a specific example of the supporting method, a method of supporting by an impregnation method using an organic solvent solution such as zinc naphthenate, vanadium naphthenate, and nickel naphthenate as a metal source, or using an aqueous solution such as zinc salicylate and vanadyl oxalate. In addition, a method in which a thickener such as polyethylene glycol, water-soluble cellulose, and gum arabic is combined therewith and supported by an impregnation method, etc.
After drying the inorganic porous carrier carrying each metal compound in this manner, steaming and baking at a temperature of about 500 to 900 ° C. in the presence of oxygen and steam to obtain the desired desulfurization A function-added FCC catalyst is obtained.
[0009]
On the other hand, in the mixed catalyst, an FCC equilibrium catalyst is used as the component (B). The FCC equilibrium catalyst is a catalytic cracking catalyst generally used in an FCC unit, and is a catalyst that is completely mixed and averaged from a fresh catalyst to a catalyst that has reached the end of its life in the FCC unit. In the present invention, an FCC equilibrium catalyst having a vanadium and / or nickel accumulation amount in a range of 3000 to 15000 ppm based on the total amount of the catalyst is used. If the amount of vanadium and / or nickel accumulated is less than 3000 ppm, the hydrogenation ability is low, and it is difficult to obtain a desired low-sulfur catalytic cracking gasoline. If the amount exceeds 15,000 ppm, the catalyst is poisoned by vanadium or nickel, and the decomposition activity is not high. Will be enough. The preferred vanadium and / or nickel accumulation is in the range of 3000-10000 ppm.
The FCC equilibrium catalyst used in the present invention includes, for example, zeolites such as REUSY, USY, and REY having an accumulated amount of vanadium and / or nickel in the range of 3000 to 15000 ppm, alumina, silica-alumina, titania, alumina-titania, and clay. A catalyst comprising a mineral (eg, kaolin, halloysite, etc.) can be mentioned.
[0010]
In the mixed catalyst, the content ratio of the desulfurization function-added FCC catalyst of the component (A) and the FCC equilibrium catalyst of the component (B) is 2 to 30% by mass for the component (A) and 98 to 98% for the component (B). 70% by mass. When the content of the component (A) is less than 2% by mass, the desulfurization performance is not sufficiently exhibited, and the object of the present invention cannot be achieved. When the content exceeds 30% by mass, the decomposition activity becomes high, and the gas and coke yields are reduced. Increase and the economics decrease. More preferable content ratios of the component (A) and the component (B) are 5 to 20% by mass of the component (A) and 95 to 80% by mass of the component (B).
In the present invention, using the mixed catalyst thus prepared, hydrotreated desulfurized heavy oil or hydrotreated desulfurized heavy gas oil is subjected to a decomposition treatment by an FCC unit, and a desulfurization reaction is carried out together with the decomposition reaction to obtain a low sulfur content. Produce catalytic cracking gasoline.
The treatment conditions at this time are, for example, a temperature of 480 to 650 ° C., preferably 480 to 550 ° C., and a reaction pressure of 0.02 to 5 MPa · G, preferably 0.02 to 0.5 MPa · G. When the treatment temperature is within the above range, the decomposition activity of the catalyst and the desulfurization rate of the produced gasoline fraction are high, and when the reaction pressure is within the above range, similarly, the decomposition activity of the catalyst and the produced gasoline fraction Is preferred because of high desulfurization rate. The catalyst regeneration temperature is usually about 600 to 800 ° C.
In the present invention, the desired low sulfur catalytic cracking gasoline is produced from the cracked oil thus obtained by distilling a fraction having a boiling point of about C 5 to 210 ° C. by distillation. Can be. And the sulfur content in the catalytic cracking gasoline can be reduced to 50 ppm or less. The sulfur content in the catalytic cracking gasoline is a value measured by the following method.
[0011]
<Sulfur content in catalytic cracking gasoline>
The catalytic cracking gasoline of the sample is introduced into a heated combustion tube and burned in a stream of oxygen and an inert gas. The sulfur dioxide generated by combustion is absorbed in the electrolytic solution and coulometrically titrated, and the sulfur content is determined from the amount of electricity consumed at this time. In addition, the sulfur content in the sample is corrected by a recovery coefficient previously obtained using a sulfur standard solution.
According to the method of the present invention, the amount of sulfur in catalytic cracking gasoline can be reduced to 50 ppm or less. Therefore, when the sulfur content regulation value is 50 ppm or less, severe pretreatment in a direct removal device and hydrodesulfurization of catalytic cracking gasoline This eliminates the need for post-treatments and improves the economics. Further, when the sulfur content regulation value is 10 ppm or less, the scale of the aftertreatment device is reduced, the hydrogen consumption is reduced, and the decrease in octane value is reduced, so that low sulfur content catalytic cracking gasoline is produced economically. can do.
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In addition, various characteristics in each example were measured according to the methods described below.
(1) Sulfur content in feed oil Measured according to JIS K2541.
(2) Sulfur content in catalytic cracking gasoline Measured according to the method described in the specification.
(3) The amount of the FCC catalyst acid with a desulfurization function and the macropore surface area were measured according to the method described in the specification.
(4) FCC gasoline yield (% by mass)
The value obtained by dividing the weight of the obtained C5 + to 210 ° C fraction by the weight of the feedstock oil and multiplying by 100.
(5) Coke yield (% by mass)
The carbon weight was determined from the CO and CO 2 amounts obtained in the regeneration tower, divided by the feed oil weight, and multiplied by 100.
(6) Conversion rate of feedstock oil (% by mass)
The value obtained by adding the gas yield, the C 3 and C 4 fraction yields, the FCC gasoline yield, and the coke yield.
[0012]
Example 1
(1) Preparation of Catalyst Based on the mass of the final catalyst, 20% by mass of spray-dried boehmite gel alumina [Larosche Chemicals '"VERSAL250"] having many pores having a diameter of 10 nm, and USY zeolite [Tosoh Co., Ltd.' FSZ-330HUA "], 30% by mass of clay mineral kaolin [" ASP-170 "manufactured by Tsuchiya Kaolin Industries Co., Ltd.] and 20% by mass of silica sol. In addition, a slurry having a solid content of 15% by mass was obtained.
Next, the slurry was spray-dried using a spray dryer at a temperature of 250 ° C., a disk rotation speed of 9000 rpm, and a slurry supply speed of 10 cm 3 / min to obtain a spherical catalytic cracking catalyst having a diameter of 20 to 120 μm. After that, the spherical catalytic cracking catalyst is immersed in a 5% by mass aqueous solution of ion exchange with lanthanum nitrate, dried at 100 ° C. for 1 hour, and calcined at 200 ° C. for 3 hours in an electric calcining furnace to give the catalyst. 2% by weight of lanthanum was supported on the basis of the weight of the final catalyst. Next, a zinc naphthenate mineral spirit solution having a zinc concentration of 8% by mass was diluted with cyclohexane, and while stirring, the zinc oxide carrying amount was reduced to 2% by mass based on the mass of the final catalyst. It was supported by the organic solvent solution impregnation method so that it became possible.
[0013]
Subsequently, 320 g of the catalyst was subjected to a steaming treatment for 15 hours under the conditions of a temperature of 770 ° C., a steam concentration of 98% by volume, an air concentration of 2% by volume, and a supply amount of ion-exchanged water of 1.66 g / min. Then, after vanadium naphthenate and nickel naphthenate were supported on 250 g of this catalyst so that V was 2800 ppm and Ni was 1400 ppm based on the mass of the final catalyst, the temperature was 720 ° C., the steam concentration was 20 vol%, and the air concentration was 80. Pseudo-equilibration treatment of the catalyst was performed for 4 hours under the condition of volume% for 4 hours, and further at the temperature of 850 ° C., the steam concentration of 5 volume% and the air concentration of 95 volume% for 4 hours to prepare an FCC catalyst with a desulfurization function (final catalyst) did. Table 1 shows the properties of the catalyst.
(2) Decomposition and desulfurization reaction 200 g of the desulfurization function-added FCC catalyst prepared in the above (1) and 1800 g of an FCC equilibrium catalyst in which V4400 ppm and Ni2000 ppm were accumulated were uniformly mixed. This mixed catalyst was packed in a continuous fluidized bed bench plant, and a hydrotreated heavy oil having a sulfur content of 0.5% by mass was reacted at a reaction temperature of 515 ° C., a reaction pressure of 0.18 MPa · G, a catalyst regeneration temperature of 730 ° C., and a catalyst. Decomposition and desulfurization reaction were carried out under the conditions of a feedstock oil mass ratio of 6.5 and a feedstock feed rate of 550 g / h.
[0014]
The product oil at 15-stage distillation apparatus, aliquoted of a fraction having a boiling point of C 5 to 210 ° C. as catalytically cracked gasoline, and measured the sulfur content.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
Example 2
(1) Preparation of catalyst Example 1 (1) was prepared in the same manner as in Example 1 (1) except that the spray-dried boehmite gel alumina was changed to 30% by mass and the USY zeolite to 20% by mass based on the mass of the final catalyst. A desulfurization function-added FCC catalyst (final catalyst) was prepared in the same manner as in 1). Table 1 shows the properties of the catalyst.
(2) Decomposition and Desulfurization Reaction Using the desulfurization function-added FCC catalyst prepared in the above (1) and an FCC equilibrium catalyst in which V4400 ppm and Ni2000 ppm were accumulated, decomposition of the hydrotreated heavy oil was performed in the same manner as in Example 1 (2). A catalytic cracking gasoline was fractionated by distillation, and the sulfur content in the gasoline was measured.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
[0015]
Comparative Example 1
(1) Preparation of catalyst A catalyst was prepared in the same manner as in Example 1 (1) except that zinc oxide, V and Ni were not supported. Table 1 shows the properties of this catalyst.
(2) Decomposition and desulfurization reaction Using the catalyst prepared in the above (1) and an FCC equilibrium catalyst in which V4400 ppm and Ni2000 ppm were accumulated, the decomposition and desulfurization reaction of the hydrotreated heavy oil was carried out in the same manner as in Example 1 (2). The catalytic cracking gasoline was further fractionated by distillation, and the sulfur content therein was measured.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
Comparative Example 2
(1) Preparation of Catalyst Based on the mass of the final catalyst, 2% by mass of spray-dried boehmite gel alumina having many pores having a diameter of 10 nm [“VERSAL250” manufactured by Laroche Chemicals] was used, and USY zeolite [manufactured by Tosoh Corporation “ FSZ-330HUA "], 20% by mass of clay mineral kaolin [" ASP-170 "manufactured by Tsuchiya Kaolin Industries, Ltd.] and 20% by mass of silica sol. In addition, a slurry having a solid content of 15% by mass was obtained.
Thereafter, the same operation as in Example 1 (1) was performed to prepare a catalyst supporting lanthanum, zinc oxide, V and Ni. Table 1 shows the properties of this catalyst.
(2) Decomposition and desulfurization reaction Using the catalyst prepared in the above (1) and an FCC equilibrium catalyst in which V4400 ppm and Ni2000 ppm were accumulated, the decomposition and desulfurization reaction of the hydrotreated heavy oil was carried out in the same manner as in Example 1 (2). The catalytic cracking gasoline was further fractionated by distillation, and the sulfur content therein was measured.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
[0016]
Comparative Example 3
(1) Preparation of catalyst A catalyst was prepared in the same manner as in Example 1 (1), except that the amount of zinc oxide carried was changed to 13% by mass. Table 1 shows the properties of this catalyst.
(2) Decomposition and desulfurization reaction Using the catalyst prepared in the above (1) and an FCC equilibrium catalyst in which V4400 ppm and Ni2000 ppm were accumulated, the decomposition and desulfurization reaction of the hydrotreated heavy oil was carried out in the same manner as in Example 1 (2). The catalytic cracking gasoline was further fractionated by distillation, and the sulfur content therein was measured.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
Comparative Example 4
Decomposition and desulfurization of hydrotreated heavy oil in the same manner as in Example 1 (2) except that in Example 1 (2), an FCC equilibrium catalyst in the mixed catalyst was used, in which 360 ppm of V and 120 ppm of Ni were used. The reaction was carried out, and the catalytic cracking gasoline was further fractionated by distillation, and the sulfur content therein was measured.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
[0017]
Comparative Example 5
The decomposition and desulfurization reactions were performed in the same manner as in Example 1 (2), except that in Example 1 (2), Daikei RC, a non-hydrotreated heavy oil having a sulfur content of 0.2% by mass, was used as the feedstock oil. The catalytic cracking gasoline was further fractionated by distillation, and the sulfur content therein was measured.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
Comparative Example 6
The hydrogenation treatment was performed in the same manner as in Example 1 (2) except that only the FCC equilibrium catalyst was used instead of using the mixed catalyst of the desulfurization function-added FCC catalyst and the FCC equilibrium catalyst in Example 1 (2). The cracking and desulfurization reaction of heavy oil was performed, and the catalytic cracking gasoline was further fractionated by distillation, and the sulfur content therein was measured.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
Comparative Example 7
In Example 1 (2), hydrogen was used in the same manner as in Example 1 (2), except that a mixed catalyst composed of 40% by mass of a desulfurization function-added FCC catalyst and 60% by mass of an FCC equilibrium catalyst was used as a mixed catalyst. The cracked heavy oil was decomposed and desulfurized, and catalytically cracked gasoline was fractionated by distillation, and the sulfur content in the gasoline was measured.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
Comparative Example 8
Example 1 (2) was carried out except that a mixed catalyst composed of 20% by mass of a desulfurization function-added FCC catalyst and 80% by mass of an FCC equilibrium catalyst in which 16,800 ppm of V and 5,200 ppm of Ni were accumulated was used as a mixed catalyst. In the same manner as in Example 1 (2), the hydrotreated heavy oil was decomposed and desulfurized, and the catalytically cracked gasoline was fractionated by distillation, and the sulfur content therein was measured.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
[0018]
Comparative Example 9
-Preparation of catalyst In the preparation of the catalyst in Example 1 (1), V and Ni were not supported, and the temperature was 720 ° C, the steam concentration was 20% by volume, and the air concentration was 80% by volume for 4 hours, and further the temperature was 850 ° C. A catalyst was prepared in the same manner as in Example 1 (1), except that only the quasi-equilibration treatment of the catalyst was performed under the conditions of a steam concentration of 5% by volume and an air concentration of 95% by volume for 4 hours. Table 1 shows the properties of this catalyst.
-Decomposition and desulfurization reaction Using the catalyst prepared in the above (1) and an FCC equilibrium catalyst in which V4400 ppm and Ni2000 ppm are accumulated, the decomposition and desulfurization reaction of the hydrotreated heavy oil was performed in the same manner as in Example 1 (2). Further, the catalytic cracking gasoline was separated by distillation, and the sulfur content therein was measured.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
Comparative Example 10
Preparation of Catalyst A catalyst was prepared in the same manner as in Example 1 (1), except that the amount of V supported was 14,000 ppm and the amount of Ni supported was 7,000 ppm. Table 1 shows the properties of this catalyst.
-Decomposition and desulfurization reaction In Example 1 (2), hydrogenation was carried out in the same manner as in Example 1 (2) except that the catalyst prepared in (1) above was used as the FCC catalyst with a desulfurization function in the mixed catalyst. The treated heavy oil was decomposed and desulfurized, and the catalytic cracked gasoline was fractionated by distillation, and the sulfur content in the gasoline was measured.
Table 1 shows the evaluation results of the reaction and the sulfur content in the catalytic cracking gasoline.
[0019]
[Table 1]
[0020]
[Table 2]
[0021]
[Table 3]
[0022]
【The invention's effect】
According to the present invention, when hydrotreating desulfurized heavy oil or hydrotreated desulfurized heavy gas oil is decomposed by an FCC unit, by using a specific catalyst, the decomposition reaction and the desulfurization reaction are simultaneously performed, so that 50 ppm or less. Can be efficiently and industrially advantageously produced.