JP5773644B2 - Method for regenerating hydrotreating catalyst - Google Patents

Method for regenerating hydrotreating catalyst Download PDF

Info

Publication number
JP5773644B2
JP5773644B2 JP2010293091A JP2010293091A JP5773644B2 JP 5773644 B2 JP5773644 B2 JP 5773644B2 JP 2010293091 A JP2010293091 A JP 2010293091A JP 2010293091 A JP2010293091 A JP 2010293091A JP 5773644 B2 JP5773644 B2 JP 5773644B2
Authority
JP
Japan
Prior art keywords
catalyst
acid
active metal
metal component
acid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010293091A
Other languages
Japanese (ja)
Other versions
JP2012139626A5 (en
JP2012139626A (en
Inventor
久也 石原
久也 石原
勝吾 田河
勝吾 田河
智靖 香川
智靖 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2010293091A priority Critical patent/JP5773644B2/en
Publication of JP2012139626A publication Critical patent/JP2012139626A/en
Publication of JP2012139626A5 publication Critical patent/JP2012139626A5/ja
Application granted granted Critical
Publication of JP5773644B2 publication Critical patent/JP5773644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

本発明は、使用済みの水素化処理触媒を再生する技術に関する。   The present invention relates to a technique for regenerating a spent hydroprocessing catalyst.

灯・軽油などの燃料油中の硫黄分を水素化処理により除去する際には、水素化処理触媒が用いられている。近年、環境保護の観点から硫黄分の品質規制が強化されており、より脱硫性能の高く低コストの水素化処理触媒が望まれている。
水素化処理触媒は、使用過程で炭素(コーク)が付着し、また活性金属である第6族や第8族〜第10族の活性金属成分の凝集が起こって、脱硫性能が徐々に低下してしまうため再生処理が必要である。一般的に水素化処理触媒の再生では、脱脂、焼成によるコーク除去といった処理が行われ、これらの処理により使用前触媒と比較してその性能が9割程度まで再生すると言われている。
また水素化処理触媒を製造する方法には、例えば活性金属成分を含む溶液を含浸させた担体を焼成せず、乾燥させる工程までで触媒の製造を終了することにより、担体上の活性金属成分を高分散状態に保つ技術がある。こうした方法により製造された水素化処理触媒を再生する場合には、一般的な水素化処理触媒の再生に加えてコーク除去時の焼成工程で凝集した活性金属成分を再分散させるため、有機添加剤やキレート剤を水溶液として再含浸させ再度乾燥させるという処理が必要であった。
しかしながら有機添加剤やキレート剤を利用する上述の手法においては、水素化処理触媒に再含浸したキレート剤や有機添加剤が活性金属成分の再分散を十分に進行させるまで、長時間の熟成工程が必要であり、商業的には生産性が悪く、コストが高くなっていた。
When removing sulfur content in fuel oil such as kerosene or light oil by hydrotreating, a hydrotreating catalyst is used. In recent years, quality control of sulfur content has been strengthened from the viewpoint of environmental protection, and a hydrotreating catalyst with higher desulfurization performance and lower cost is desired.
The hydrotreating catalyst has carbon (coke) attached in the process of use, and the active metal components of Group 6 and Group 8 to Group 10 which are active metals are aggregated, and the desulfurization performance gradually decreases. Therefore, playback processing is necessary. Generally, in the regeneration of a hydrotreating catalyst, treatments such as degreasing and coke removal by calcination are performed, and it is said that the performance is regenerated up to about 90% compared with the catalyst before use.
Further, in the method for producing a hydrotreating catalyst, for example, the active metal component on the carrier can be obtained by ending the production of the catalyst until the step of drying without baking the carrier impregnated with the solution containing the active metal component. There is a technology to maintain a highly dispersed state. When regenerating the hydrotreating catalyst produced by such a method, in addition to regenerating a general hydrotreating catalyst, an organic additive is added to redisperse the active metal component aggregated in the firing step at the time of coke removal. And a process of re-impregnating the chelating agent as an aqueous solution and drying again.
However, in the above-described method using an organic additive or a chelating agent, a long aging step is required until the chelating agent or the organic additive re-impregnated into the hydrotreating catalyst sufficiently proceeds the redispersion of the active metal component. It was necessary, and the productivity was not good commercially and the cost was high.

ここで特許文献1には、使用済み触媒を焼成し、その焼成処理触媒にモリブデンおよびニッケルのいずれか一方又は双方を再含浸させることによって活性を同等程度まで回復させる方法が記載され、その際にクエン酸やリンゴ酸などのキレート剤を利用する手法も記載されている。しかしながらこの特許文献1には、キレート剤を用いたときにおける熟成時間を短縮する手法の記述はない。
また特許文献2には、水素化処理触媒に再生処理(油分除去および焼成)を施したあと、当該触媒に所定量の有機物を担持させて、水素化処理触媒に担持された2種類の活性金属成分のうちの一方側と優先的に錯体を形成させることにより、活性金属の硫化処理を行う際に形成される活性点を増加させる技術が記載されている。そしてこの有機物としてクエン酸やリンゴ酸などの有機物が例示されているが、活性金属成分の再分散に関する詳細な記述はなく、その処理時間を短縮する手法の記載もない。
さらに特許文献3には、水素化処理触媒を酸およびエチレングリコールなどの有機添加剤と接触させることにより、当該触媒の活性の向上させる技術が記載されている。このうち酸は、触媒中の結晶質の量を低減する役割を果たし、その具体例として硝酸やリン酸などの無機酸、クエン酸やリンゴ酸などの有機酸が列挙されている。しかしながら当該特許文献3ではこれらの酸は触媒の活性を向上させるという共通の作用を発揮する添加剤として並列に列記されているものであり、クエン酸やリンゴ酸をキレート剤として使用する際の熟成時間を短縮する手法には言及されていない。
次いで特許文献4には、IUPAC表記の周期表で第6族(モリブデン、タングステンなど)および第8族〜第10族(鉄、コバルト、ニッケルなど)の活性金属につき、各族の活性金属を少なくとも1つ担体に担持して水素化処理触媒を製造する方法が記載されている。当該技術においては、担体および活性金属を含む分散液に、キレート剤(クエン酸やリンゴ酸など)とリン含有酸性成分(リン酸など)とを添加して活性金属の分散性を向上させている。しかしながら、本技術は活性金属が担持されていない担体へ新たに活性金属を担持する技術であり、使用済みの水素化処理触媒を再生する技術についての言及はない。
Here, Patent Document 1 describes a method of recovering the activity to an equivalent level by calcining a used catalyst and reimpregnating either or both of molybdenum and nickel into the calcined catalyst. Techniques using chelating agents such as citric acid and malic acid are also described. However, this Patent Document 1 does not describe a method for shortening the aging time when a chelating agent is used.
Further, Patent Document 2 discloses that two types of active metals supported on the hydrotreating catalyst are obtained by subjecting the hydrotreating catalyst to regeneration (oil removal and calcination), and then supporting a predetermined amount of organic substances on the catalyst. A technique is described that increases the active sites formed when sulfiding an active metal by preferentially forming a complex with one of the components. Examples of the organic substance include citric acid and malic acid, but there is no detailed description about redispersion of the active metal component, and no description of a method for shortening the processing time.
Further, Patent Document 3 describes a technique for improving the activity of the catalyst by bringing the hydrotreating catalyst into contact with an acid and an organic additive such as ethylene glycol. Among these, the acid plays a role of reducing the amount of the crystalline substance in the catalyst, and specific examples thereof include inorganic acids such as nitric acid and phosphoric acid, and organic acids such as citric acid and malic acid. However, in the said patent document 3, these acids are listed in parallel as an additive which exhibits the common effect | action which improves the activity of a catalyst, Aging at the time of using a citric acid or malic acid as a chelating agent. There is no mention of time saving techniques.
Next, Patent Document 4 discloses at least an active metal of each group for active metals of Group 6 (molybdenum, tungsten, etc.) and Groups 8-10 (iron, cobalt, nickel, etc.) in the periodic table of IUPAC notation. A method for producing a hydrotreating catalyst supported on one carrier is described. In this technique, a chelating agent (such as citric acid or malic acid) and a phosphorus-containing acidic component (such as phosphoric acid) are added to a dispersion containing a carrier and an active metal to improve the dispersibility of the active metal. . However, this technology is a technology for newly supporting an active metal on a carrier on which no active metal is supported, and there is no mention of a technology for regenerating a used hydroprocessing catalyst.

特開2009−160498号公報:請求項1、8、段落0012JP 2009-160498 A: claims 1, 8, paragraph 0012 特開2008−290071号公報:請求項2、段落0038〜0039JP 2008-290071 A: claim 2, paragraphs 0038-0039 特表2007−507334号公報:請求項1、段落0021、0027、0029、0032〜0033JP-T-2007-507334: Claim 1, paragraphs 0021, 0027, 0029, 0032-0033 特表2009−519815号公報:請求項1、段落0009、0011Japanese translation of PCT publication No. 2009-519815: claim 1, paragraphs 0009 and 0011

本発明は、このような事情を鑑みてなされたものであり、その目的は比較的短い熟成時間で活性金属成分を再分散させ、高い水素化処理活性を得ることが可能な水素化処理触媒の再生方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a hydroprocessing catalyst capable of redispersing active metal components in a relatively short aging time and obtaining high hydroprocessing activity. It is to provide a reproduction method.

第1の発明は、担体に、周期表第6族および第8〜10族から選ばれる少なくとも1種の活性金属成分が担持された、使用済みの炭化水素油の水素化処理触媒を、300℃を超える温度で焼成する第1工程と、
この第1工程にて焼成された水素化処理触媒を無機酸とキレート剤との双方を含む酸溶液に接触させて、前記活性金属成分を担体上に分散させる第2工程と、を含み、無機酸がリン酸または硝酸であり、キレート剤が多価カルボン酸であるクエン酸またはリンゴ酸であることを特徴とする水素化処理触媒の再生方法である。
第2の発明は、前記第2工程で用いる酸溶液に含まれるキレート剤のモル数に対する無機酸のモル数の比が0.01〜0.2の範囲内にあることを特徴とする。
第3の発明は、前記第2工程にて無機酸とキレート剤との双方を含む酸溶液に接触させた水素化処理触媒に対し、乾燥または焼成の少なくとも一方の処理を行う第3工程を含むことを特徴とする。
第4の発明は、前記活性金属成分は、モリブデン、コバルト、およびニッケルから選択された少なくとも1つ以上の金属であることを特徴とする。




In a first aspect of the invention, there is provided a used hydrocarbon oil hydrotreating catalyst having a carrier on which at least one active metal component selected from Groups 6 and 8 to 10 of the periodic table is supported. A first step of firing at a temperature exceeding
The hydrotreating catalysts calcined at the first step into contact with an acid solution containing both an inorganic acid and a chelating agent, wherein the second step of dispersing onto the support of the active metal component, an inorganic A method for regenerating a hydrotreating catalyst, wherein the acid is phosphoric acid or nitric acid, and the chelating agent is citric acid or malic acid, which is a polyvalent carboxylic acid.
The second invention is characterized in that the ratio of the number of moles of the inorganic acid to the number of moles of the chelating agent contained in the acid solution used in the second step is in the range of 0.01 to 0.2.
The third invention includes a third step of performing at least one treatment of drying or calcination on the hydrotreatment catalyst brought into contact with the acid solution containing both the inorganic acid and the chelating agent in the second step. It is characterized by that.
The fourth invention is characterized in that the active metal component is at least one metal selected from molybdenum, cobalt, and nickel.




第5の発明は、前記第2工程の無機酸とキレート剤との双方を含む酸溶液には、前記周期表第6族および第8〜10族から選ばれる少なくとも1種の活性金属成分が添加されており、当該第2工程では、これら活性金属成分を含む酸溶液に水素化処理触媒を接触させることにより、前記担体に担持されている活性金属成分の分散と、酸溶液に添加されている活性金属成分の当該担体への担持と、が行われることを特徴とする。
第6の発明は、第6の発明における酸溶液には、モリブデン、コバルト、およびニッケルから選択された少なくとも1つ以上の活性金属成分が、第1工程で得た水素化処理触媒の質量を基準にして、活性金属成分の酸化物に換算して1質量%以下に相当する量だけ含まれていることを特徴とする。
According to a fifth aspect of the invention, in the acid solution containing both the inorganic acid and the chelating agent in the second step, at least one active metal component selected from Groups 6 and 8 to 10 of the periodic table is added. In the second step, the hydrotreating catalyst is brought into contact with the acid solution containing these active metal components, whereby the active metal components supported on the carrier are dispersed and added to the acid solution. The active metal component is supported on the carrier.
According to a sixth aspect of the invention, in the acid solution according to the sixth aspect, at least one active metal component selected from molybdenum, cobalt, and nickel is based on the mass of the hydrotreating catalyst obtained in the first step. Thus, it is characterized by being contained in an amount corresponding to 1% by mass or less in terms of the oxide of the active metal component.

本発明によれば、焼成した後の水素化処理触媒を、無機酸とキレート剤との双方を含む酸溶液に接触させるので、無機酸により担体の細孔内への活性金属成分の浸透を促進させる効果および酸溶液の粘性を低減する効果と、キレート剤による担体−活性金属成分間の相互作用を軽減する効果とが発揮され、比較的短い時間で活性金属成分を再分散させることができる。   According to the present invention, since the hydrotreated catalyst after firing is brought into contact with an acid solution containing both an inorganic acid and a chelating agent, the inorganic acid promotes the penetration of the active metal component into the pores of the support. And the effect of reducing the viscosity of the acid solution and the effect of reducing the interaction between the carrier and the active metal component due to the chelating agent, and the active metal component can be redispersed in a relatively short time.

本発明の実施の形態に係る水素化処理触媒の再生方法について説明する。
(水素化処理触媒)
本発明が適用される炭化水素油の水素化処理触媒は、高温高圧雰囲気下で、炭化水素油である軽質油や重質油と水素とを当該触媒の存在下で接触させることにより、脱硫や脱窒素、脱メタルや水素化分解などの反応を進行させる一般的な水素化処理触媒である。軽質油の例としてはナフサ、灯油、軽質軽油(Light Gas Oil、LGO)、重質軽油(Heavy Gas Oil、HGO)、減圧軽油(Vacuum Gas Oil、VGO)等が挙げられ、重質油の例としては常圧残油(Atmospheric Residue、AR)、減圧残油(Vacuum Residue、VR)などが挙げられる。
前記水素化処理触媒を構成する担体としては、無機酸化物から構成され、例えば、アルミナ、シリカ、チタニア、シリカ−アルミナ、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−ボリア、リン−アルミナ、シリカ−アルミナ−ボリア、リン−アルミナ−ボリア、リン−アルミナ−シリカ、シリカ−アルミナ−チタニア、シリカ−アルミナ−ジルコニアなどを例示することができる。
A method for regenerating a hydroprocessing catalyst according to an embodiment of the present invention will be described.
(Hydroprocessing catalyst)
The hydrotreating catalyst for hydrocarbon oil to which the present invention is applied is a desulfurization or desulfurization catalyst by contacting light oil or heavy oil that is hydrocarbon oil with hydrogen in the presence of the catalyst under a high temperature and high pressure atmosphere. It is a general hydroprocessing catalyst that promotes reactions such as denitrification, demetalization and hydrocracking. Examples of light oil include naphtha, kerosene, light gas oil (LGO), heavy gas oil (HGO), vacuum gas oil (Vacuum Gas Oil, VGO), etc. Examples of heavy oil Examples thereof include atmospheric residual oil (Atmospheric Residue, AR) and vacuum residual oil (Vacuum Residue, VR).
The carrier constituting the hydrotreating catalyst is composed of an inorganic oxide, such as alumina, silica, titania, silica-alumina, alumina-titania, alumina-zirconia, alumina-boria, phosphorus-alumina, silica-alumina. -Boria, phosphorus-alumina-boria, phosphorus-alumina-silica, silica-alumina-titania, silica-alumina-zirconia and the like can be exemplified.

前記担体に担持される活性金属成分は、周期表の第6族および第8族〜第10族から少なくとも1種類の活性金属成分が選ばれ、より好適には第6族および第8族〜第10族の各族からすくなくとも1種類ずつの活性金属成分が選ばれる。第6族の活性金属成分としてはモリブデン(Mo)、タングステン(W)、クロム(Cr)などが挙げられ、第8族〜第10族の活性金属成分としてはニッケル(Ni)、コバルト(Co)などが挙げられる。またこれらの活性金属成分に加え、リンやホウ素などの他の元素を適宜添加してもよい。選択される活性金属成分の種類やその担持量は、処理対象の炭化水素油の種類やプロセス条件などに応じて適宜設定される。
また使用済み触媒とは、炭化水素油の水素化処理に使用された後の水素化処理触媒を意味し、具体例としては水素化処理装置から回収された水素化処理触媒などを挙げることができる。使用済み触媒の表面には、炭化水素油から析出したコークなどの炭素質や、重質油に多く含まれるバナジウム(V)や鉄(Fe)、ニッケル(Ni)などの金属不純物などが付着している。
As the active metal component supported on the carrier, at least one active metal component is selected from Group 6 and Group 8 to Group 10 of the periodic table, and more preferably Group 6 and Group 8 to Group 8 are selected. At least one active metal component is selected from each of the 10 groups. Examples of Group 6 active metal components include molybdenum (Mo), tungsten (W), and chromium (Cr), and Group 8 to Group 10 active metal components include nickel (Ni) and cobalt (Co). Etc. In addition to these active metal components, other elements such as phosphorus and boron may be added as appropriate. The type of active metal component selected and the amount of the active metal component selected are appropriately set according to the type of hydrocarbon oil to be treated and the process conditions.
The used catalyst means a hydrotreating catalyst after being used for hydrotreating hydrocarbon oil, and specific examples include a hydrotreating catalyst recovered from a hydrotreating apparatus. . Carbon impurities such as coke deposited from hydrocarbon oil and metal impurities such as vanadium (V), iron (Fe), nickel (Ni), etc., which are abundant in heavy oil, adhere to the surface of the used catalyst. ing.

(第1工程)
本工程では、使用済みの水素化処理触媒を、300℃を超える温度で焼成する。使用済み触媒を焼成する場合には、前処理として例えば180〜220℃の窒素などの不活性ガス雰囲気中で触媒に付着している油分(軽質油分)を除去する処理を行った後に焼成を行ってもよい。ここで例えば窒素雰囲気の場合、空気よりも酸素濃度が低い状態、すなわち、窒素濃度が80容量%以上、好ましくは90容量%以上、より好ましくは95容量%以上の状態で前処理を行うとよい。
必要に応じて前処理が行われた使用済み触媒は、空気(酸素濃度約21容量%)などの含酸素雰囲気中で焼成されることにより、表面に付着している炭素質などを燃焼して除去する。また焼成雰囲気としては、空気に酸素を添加して、焼成時の酸素濃度が21容量%を超える富酸素雰囲気としてもよい。焼成温度は、300℃以上、好ましくは320〜500℃、より好ましくは350℃を超え450℃以下の温度範囲にて行う場合が好適である。焼成時間は、焼成前後に水素化処理触媒に付着している炭素質の量により、適宜変化するが、例えば60〜300分間、好ましくは120〜240分間程度の焼成が行われる。これらの焼成条件は、焼成後の水素化処理触媒に付着している炭素質が、当該炭素質を含む水素化処理触媒の全重量の3質量%以下、好ましくは1質量%以下、より好ましくは0.1質量%程度となるように設定される。
(First step)
In this step, the used hydrotreatment catalyst is calcined at a temperature exceeding 300 ° C. When the used catalyst is calcined, it is calcined as a pretreatment after removing the oil (light oil) adhering to the catalyst in an inert gas atmosphere such as nitrogen at 180 to 220 ° C. May be. Here, for example, in the case of a nitrogen atmosphere, the pretreatment may be performed in a state where the oxygen concentration is lower than that of air, that is, in a state where the nitrogen concentration is 80% by volume or higher, preferably 90% by volume or higher, more preferably 95% by volume or higher. .
The used catalyst, which has been pretreated as necessary, is baked in an oxygen-containing atmosphere such as air (oxygen concentration of about 21% by volume) to burn carbonaceous matter adhering to the surface. Remove. The firing atmosphere may be an oxygen-rich atmosphere in which oxygen is added to air and the oxygen concentration during firing exceeds 21% by volume. The baking temperature is preferably 300 ° C. or higher, preferably 320 to 500 ° C., more preferably 350 ° C. or higher and 450 ° C. or lower. The calcination time varies as appropriate depending on the amount of carbonaceous matter attached to the hydroprocessing catalyst before and after calcination, but for example, calcination is performed for 60 to 300 minutes, preferably about 120 to 240 minutes. These calcination conditions are such that the carbonaceous matter adhering to the hydrotreated catalyst after calcination is 3% by mass or less, preferably 1% by mass or less, more preferably, of the total weight of the hydrotreating catalyst containing the carbonaceous matter. It is set to be about 0.1% by mass.

(第2工程)
次に、第1工程にて得られた焼成処理後の水素化処理触媒(以下、焼成触媒という)を無機酸とキレート剤との双方を含む酸溶液に接触させる処理について説明する。例えば使用済みの触媒は、実運転や焼成処理により触媒内の活性金属成分が凝集した状態となっているため、これら凝集した活性金属成分を再分散させる必要がある。この点、担体に担持された活性金属成分を酸溶液などに溶解してから同担体に再含浸させることにより、活性金属成分の分散性を向上させ、高活性の水素化処理触媒を得ることができる。
ここで、発明者らは、硝酸やリン酸などの無機酸は水素化処理触媒を構成する担体の細孔内を拡散して浸透する速度が大きいことを把握している。その一方で、無機酸溶液中に溶解して触媒表面から脱離した活性金属成分は、例えば担体表面の塩基性水酸基と、活性金属のカチオンが静電気的に引き合って活性金属が強く固定される等、担体から受ける相互作用が大きく、細孔内部への拡散が遅くなってしまうという現象が発生することも判明している。
この点、キレート剤を含むキレート溶液は、溶液中に溶解した活性金属成分とキレート剤とが錯体を形成することにより、活性金属成分と担体との相互作用を小さくし、活性金属成分の細孔の内部への拡散を妨げる力を低減する作用を持っている。しかしながらキレート剤は溶液の粘性を増大させるため、活性金属成分を担体の細孔の内部にまで十分に拡散させるためには長い熟成時間を必要とするという問題がある。
(Second step)
Next, the process which makes the hydrotreating catalyst after baking processing obtained at the 1st process (henceforth a baking catalyst) contact the acid solution containing both an inorganic acid and a chelating agent is demonstrated. For example, a used catalyst is in a state in which active metal components in the catalyst are aggregated due to actual operation or calcination treatment, and thus these aggregated active metal components need to be redispersed. In this regard, it is possible to improve the dispersibility of the active metal component and obtain a highly active hydrotreating catalyst by dissolving the active metal component supported on the support in an acid solution and then reimpregnating the support. it can.
Here, the inventors have grasped that inorganic acids such as nitric acid and phosphoric acid have a high rate of diffusing and permeating through the pores of the carrier constituting the hydrotreating catalyst. On the other hand, the active metal component dissolved in the inorganic acid solution and desorbed from the catalyst surface, for example, the basic hydroxyl group on the support surface and the cation of the active metal attract each other electrostatically and the active metal is strongly fixed, etc. It has also been found that the phenomenon that the interaction received from the carrier is large and the diffusion into the pores is delayed occurs.
In this regard, the chelating solution containing the chelating agent reduces the interaction between the active metal component and the carrier by forming a complex between the active metal component dissolved in the solution and the chelating agent, and the pores of the active metal component. It has the effect of reducing the force that hinders the diffusion into the interior. However, since the chelating agent increases the viscosity of the solution, there is a problem that a long aging time is required to sufficiently diffuse the active metal component into the pores of the support.

そこで、本発明者らは、無機酸とキレート剤との双方を含む酸溶液を調製し、この酸溶液に水素化処理触媒を分散(接触)させることにより、キレート剤による活性金属成分と担体との相互作用の低減効果、無機酸によるキレート剤を含む溶液の粘性を低下させる効果、および無機酸により酸溶液が担体の細孔内に浸透する効果を並行に発揮させることが可能となることを見いだした。この結果、キレート剤単独の溶液を使用して活性金属成分を再分散させる場合と比較して、短い時間で担体の細孔内部まで活性金属成分を再分散させることが可能となる。
酸溶液に添加される無機酸としては、リン酸、硝酸、塩酸、硫酸などを採用することができ、キレート剤としては、リンゴ酸、クエン酸、酒石酸、シュウ酸などの多座配位子を持つ有機酸(カルボン酸)などが選択される。無機酸およびキレート剤は、例えば水に溶解された水溶液として調製される。酸溶液に添加するキレート剤の量は、第1工程にて得られた焼成触媒の重量を基準として、1〜20質量%、好ましくは3〜15質量%、より好ましくは5〜12質量%程度添加される。キレート剤の添加量が、3質量%未満では、活性金属成分を再分散させるのに十分な作用が得られ難くなる一方で、添加量が20質量%を超えると、経済性が悪くなると共に、触媒の活性が低下するおそれがある。
Therefore, the present inventors prepare an acid solution containing both an inorganic acid and a chelating agent, and disperse (contact) the hydrotreating catalyst in the acid solution, whereby the active metal component and the carrier by the chelating agent are mixed with each other. It is possible to exhibit the effect of reducing the interaction of the acid, the effect of reducing the viscosity of the solution containing the chelating agent by the inorganic acid, and the effect of the acid solution penetrating into the pores of the support by the inorganic acid. I found it. As a result, it is possible to redisperse the active metal component into the pores of the support in a shorter time compared to the case where the active metal component is redispersed using a solution of the chelating agent alone.
As the inorganic acid added to the acid solution, phosphoric acid, nitric acid, hydrochloric acid, sulfuric acid and the like can be adopted, and as the chelating agent, a multidentate ligand such as malic acid, citric acid, tartaric acid, oxalic acid or the like can be used. An organic acid (carboxylic acid) or the like is selected. The inorganic acid and the chelating agent are prepared, for example, as an aqueous solution dissolved in water. The amount of the chelating agent added to the acid solution is 1 to 20% by mass, preferably 3 to 15% by mass, more preferably about 5 to 12% by mass, based on the weight of the calcined catalyst obtained in the first step. Added. When the addition amount of the chelating agent is less than 3% by mass, it is difficult to obtain an effect sufficient to redisperse the active metal component. On the other hand, when the addition amount exceeds 20% by mass, the economical efficiency is deteriorated. The activity of the catalyst may be reduced.

一方、酸溶液に添加される無機酸の量は、第1工程にて得られた焼成触媒の重量を基準として、0.05〜2.0質量%、好ましくは0.1〜1.7質量%、より好ましくは0.15〜1.4質量%程度添加される。無機酸の添加量が、0.05質量%未満では、酸溶液を担体の細孔内に浸透させる作用や酸溶液の粘性を低下させる作用が十分に得られなくなる。また添加量が2.0質量%を超えると、触媒の活性が低下するおそれがある。
ここで、既述のように、本発明においては酸溶液中に無機酸とキレート剤とが同時に存在している相乗効果により、活性金属成分の再分散と熟成工程に要する時間の短縮が図られている。このため、前記酸溶液においては、無機酸およびキレート剤の各々の添加量が上述の範囲内の値に調整されるのみならず、キレート剤のモル数に対する無機酸のモル数の比も所定の範囲内の値となっていることがより好ましい。後述する実施例によれば、当該モル比の範囲は、0.01〜0.2の範囲内とすることが好ましい。前記モル比が0.01を下回ると、無機酸の添加効果が低下し、0.2を超えると、キレート剤の作用が十分に得られなくなってしまうものと考えられる。また、無機酸としてリン酸を採用する場合には、リンは再生された触媒上にPとして担持される。このことから、前記の比の値が0.2を超えると、既に表面積が小さくなっている使用済み触媒において、Pが担持されることによるさらなる表面積の低下の影響が大きくなって好ましくない。
On the other hand, the amount of the inorganic acid added to the acid solution is 0.05 to 2.0 mass%, preferably 0.1 to 1.7 mass%, based on the weight of the calcined catalyst obtained in the first step. %, More preferably about 0.15 to 1.4% by mass. When the added amount of the inorganic acid is less than 0.05% by mass, the effect of allowing the acid solution to penetrate into the pores of the carrier and the effect of reducing the viscosity of the acid solution cannot be obtained sufficiently. On the other hand, if the amount added exceeds 2.0% by mass, the activity of the catalyst may decrease.
Here, as described above, in the present invention, the synergistic effect of the presence of the inorganic acid and the chelating agent in the acid solution simultaneously reduces the time required for the redispersion of the active metal component and the aging step. ing. For this reason, in the acid solution, not only the addition amount of each of the inorganic acid and the chelating agent is adjusted to a value within the above range, but also the ratio of the number of moles of the inorganic acid to the number of moles of the chelating agent is predetermined. More preferably, the value is within the range. According to the examples described later, the molar ratio is preferably in the range of 0.01 to 0.2. If the molar ratio is less than 0.01, the effect of adding an inorganic acid is reduced, and if it exceeds 0.2, it is considered that the action of the chelating agent cannot be sufficiently obtained. When phosphoric acid is employed as the inorganic acid, phosphorus is supported as P 2 O 5 on the regenerated catalyst. For this reason, if the ratio value exceeds 0.2, in the used catalyst whose surface area has already been reduced, the effect of further reduction of the surface area due to the loading of P 2 O 5 is preferably increased. Absent.

また、使用済み触媒の場合には、炭化水素油を処理する際の摩耗やシンタリングにより水素化処理触媒の比表面積が低下したり、活性金属成分の一部が炭化水素油中に流出したりすることにより、水素化処理触媒の活性が低下することがある。このような理由により、水素化処理触媒の活性が低下した場合には、炭素質を除去したり、活性金属成分を際分散したりするだけでは水素化処理触媒の活性が未使用触媒と同等程度まで回復できない場合もある。そこで、活性金属成分を再分散するために使用する前記酸溶液中に活性金属成分を新たに添加し、上述の理由による水素化処理触媒の活性の低下を補ってもよい。   In the case of a used catalyst, the specific surface area of the hydrotreating catalyst decreases due to wear and sintering during the processing of the hydrocarbon oil, or a part of the active metal component flows into the hydrocarbon oil. By doing so, the activity of the hydrotreating catalyst may decrease. For these reasons, when the activity of the hydrotreating catalyst is reduced, the activity of the hydrotreating catalyst is almost the same as that of an unused catalyst simply by removing carbonaceous matter or dispersing the active metal component. In some cases, it cannot be recovered. Therefore, an active metal component may be newly added to the acid solution used for redispersing the active metal component to compensate for the decrease in the activity of the hydrotreating catalyst due to the above-described reason.

このとき酸溶液には、水素化処理触媒に担持されている活性金属成分の全種類を添加してもよいし、その一部の種類を添加してもよく、さらには活性金属成分の種類を追加して添加してもよい。酸溶液に添加する活性金属成分は、例えば酸溶液に活性金属成分の酸化物を溶解してもよいし、活性金属成分の各種の塩を添加してもよい。
焼成触媒を投入する前の酸溶液に添加される活性金属成分の量は、第1工程で得られた焼成触媒の重量を基準にして、活性金属成分の酸化物に換算して1質量%以下の範囲が好適である。ここでは、第6族の活性金属成分としてモリブデン(Mo)が担持され、第8族〜第10族の活性金属成分としてニッケル(Ni)、コバルト(Co)の少なくとも一方が担持されている水素化処理触媒を例に挙げて説明する。
この場合にモリブデンやニッケル、コバルトを酸化物の状態で担持する場合には、MoO、NiO、CoOなどを焼成触媒の1質量%以下の範囲内で酸溶液に添加する。一方、これらの活性金属成分を他の塩の状態で添加する場合には、上述の各酸化物に換算したとき焼成触媒の1質量%以下に相当する量を添加する。このように酸溶液に活性金属成分を加えることにより、焼成触媒上に既に担持されている活性金属成分を再分散させるだけでは回復できない触媒活性を補うことができる。第2工程にて酸溶液に添加する活性金属成分は、酸化物として焼成触媒の1質量%を超えて担持したとしても、水素化処理触媒の活性の回復の幅が小さくなり新たな活性金属成分を添加するというコスト以上のメリットが得られない場合がある。
モリブデンやニッケル、コバルト以外の活性金属成分を担持する場合についても同様の考え方に基づいて酸溶液への活性金属成分の添加量が調整される。
At this time, all kinds of active metal components supported on the hydrotreating catalyst may be added to the acid solution, or some of them may be added, and further, the kinds of active metal components may be added. You may add in addition. For the active metal component added to the acid solution, for example, an oxide of the active metal component may be dissolved in the acid solution, or various salts of the active metal component may be added.
The amount of the active metal component to be added to the acid solution before charging the calcined catalyst is 1% by mass or less in terms of the oxide of the active metal component based on the weight of the calcined catalyst obtained in the first step. The range of is preferable. Here, molybdenum (Mo) is supported as an active metal component of Group 6, and at least one of nickel (Ni) and cobalt (Co) is supported as an active metal component of Groups 8 to 10. The processing catalyst will be described as an example.
In this case, when molybdenum, nickel, or cobalt is supported in an oxide state, MoO 3 , NiO, CoO, or the like is added to the acid solution within a range of 1% by mass or less of the calcined catalyst. On the other hand, when these active metal components are added in the form of other salts, an amount corresponding to 1% by mass or less of the calcined catalyst is added when converted into the above-mentioned oxides. By adding the active metal component to the acid solution in this way, it is possible to supplement the catalytic activity that cannot be recovered simply by redispersing the active metal component already supported on the calcined catalyst. Even if the active metal component added to the acid solution in the second step is supported in excess of 1% by mass of the calcined catalyst as an oxide, the range of recovery of the activity of the hydrotreating catalyst is reduced, and a new active metal component In some cases, it is not possible to obtain a merit more than the cost of adding.
Even when an active metal component other than molybdenum, nickel, or cobalt is supported, the amount of the active metal component added to the acid solution is adjusted based on the same concept.

以上に説明した考え方に基づいて、酸溶液(必要に応じて活性金属成分を含んでいる)が調製されたら、第1工程にて得られた焼成触媒に当該酸溶液を含浸させる。そして例えば室温〜80℃の温度範囲で0.5〜3時間熟成させることにより、焼成触媒上に担持されていた活性金属成分が酸溶液中に溶解し、担体表面に分散する。また酸溶液に予め活性金属成分が添加されている場合には、当該活性金属成分も担体に含浸される。ここで酸溶液を含浸させる法は所定の手法に限定されるものではなく、減圧含浸法、ポアフィリング法、平衡吸着法など、どのような手法を使用してもよい。
このとき酸溶液中に無機酸とキレート剤とを含んでいることにより、キレート剤による活性金属成分と担体との相互作用の低減効果、無機酸による酸溶液の粘性を低下させる効果、および無機酸により酸溶液が担体の細孔内に浸透する効果が並行に発揮される。この結果、活性金属成分の再分散の進行速度が向上し、比較的短い時間で熟成工程を終えることができる。
When an acid solution (containing an active metal component as necessary) is prepared based on the above-described concept, the calcined catalyst obtained in the first step is impregnated with the acid solution. For example, by aging for 0.5 to 3 hours in a temperature range of room temperature to 80 ° C., the active metal component supported on the calcined catalyst is dissolved in the acid solution and dispersed on the surface of the support. When an active metal component is added in advance to the acid solution, the active metal component is also impregnated in the support. Here, the method of impregnating the acid solution is not limited to a predetermined method, and any method such as a reduced pressure impregnation method, a pore filling method, an equilibrium adsorption method or the like may be used.
At this time, by containing an inorganic acid and a chelating agent in the acid solution, the effect of reducing the interaction between the active metal component and the carrier by the chelating agent, the effect of reducing the viscosity of the acid solution by the inorganic acid, and the inorganic acid As a result, the effect that the acid solution penetrates into the pores of the carrier is exhibited in parallel. As a result, the progress speed of redispersion of the active metal component is improved, and the aging step can be completed in a relatively short time.

(第3工程)
第2工程にて所定時間の熟成を終えたら、酸溶液を含浸させた水素化処理触媒(以下、含浸触媒という)を乾燥し、焼成する処理を行う。ここで本発明における含浸触媒の乾燥は、担体の表面や細孔内など、含浸触媒触媒上に存在する酸溶液の液体分を蒸発させることを意味する。従って含浸触媒の液体分を蒸発させるのに十分な条件下で乾燥が行われればよく、活性金属成分やキレート剤、無機酸は乾燥の過程において化学的な性状の変化が起こってもよいし、起こらなくてもよい。乾燥処理は、例えば室温から300℃まで、好ましくは室温から270℃まで、更に好ましくは室温から250℃までの温度範囲内で液体分を蒸発させるのに十分な時間行われる。また乾燥処理が行われる雰囲気は、大気雰囲気など、含酸素雰囲気でもよいし、酸素ガスを含まない不活性ガス雰囲気でもよい。そして、乾燥処理を終えた水素化処理触媒上の活性金属成分は、キレート剤と錯体を形成した状態のまま担持されている場合もあるし、乾燥処理によりキレート剤が分解して金属の状態で担持されている場合もある。また、含酸素雰囲気中で乾燥した場合には、活性金属成分の一部が酸化していてもよい。
これに対して含浸触媒の焼成は、含浸触媒やこれを乾燥させた触媒を大気雰囲気などの含酸素雰囲気中で加熱し、活性金属成分を酸化させて酸化物を得る処理である。焼成処理は、例えば400〜700℃、好ましくは500〜600℃までの温度範囲で行われ、酸化物を得るのに十分な時間、例えば30〜120分間、好ましくは45〜90分間程度、焼成が行われる。このような高温の雰囲気下では、キレート剤や無機酸は燃焼、分解してしまう場合があり、例えば無機酸を構成していたリンや窒素などの元素は水素化処理触媒上に残留してもよいし、焼成雰囲気中に流出してもよい。また、例えば酸化物中の酸素を利用する場合などには、焼成は不活性ガス雰囲気下で行ってもよい。
(Third step)
After aging for a predetermined time in the second step, the hydrotreating catalyst impregnated with the acid solution (hereinafter referred to as impregnated catalyst) is dried and fired. Here, the drying of the impregnated catalyst in the present invention means that the liquid component of the acid solution existing on the impregnated catalyst catalyst, such as the surface of the support and the pores, is evaporated. Therefore, drying should be performed under conditions sufficient to evaporate the liquid content of the impregnated catalyst, and the active metal component, the chelating agent, and the inorganic acid may undergo chemical changes during the drying process. It does not have to happen. The drying treatment is performed for a time sufficient to evaporate the liquid component, for example, within a temperature range from room temperature to 300 ° C., preferably from room temperature to 270 ° C., more preferably from room temperature to 250 ° C. The atmosphere in which the drying treatment is performed may be an oxygen-containing atmosphere such as an air atmosphere or an inert gas atmosphere that does not contain oxygen gas. The active metal component on the hydrotreating catalyst after the drying treatment may be supported in a state of forming a complex with the chelating agent, or the chelating agent is decomposed by the drying treatment in a metal state. Sometimes it is supported. Further, when dried in an oxygen-containing atmosphere, a part of the active metal component may be oxidized.
On the other hand, the calcination of the impregnated catalyst is a treatment in which an impregnated catalyst or a catalyst obtained by drying the impregnated catalyst is heated in an oxygen-containing atmosphere such as an air atmosphere to oxidize an active metal component to obtain an oxide. The baking treatment is performed, for example, in a temperature range of 400 to 700 ° C., preferably 500 to 600 ° C., and the baking is performed for a time sufficient to obtain an oxide, for example, 30 to 120 minutes, preferably about 45 to 90 minutes. Done. In such a high-temperature atmosphere, the chelating agent or inorganic acid may burn and decompose. For example, elements such as phosphorus and nitrogen that constitute the inorganic acid may remain on the hydrotreating catalyst. It may flow out into the firing atmosphere. For example, when oxygen in the oxide is used, the firing may be performed in an inert gas atmosphere.

以上に説明した手法により再生した水素化処理触媒は、炭化水素油の水素化処理装置の反応塔などに充填され、担体上の活性金属成分を硫化する予備硫化処理などが行われる。そして、所定の温度、圧力条件に調整された反応塔に炭化水素油と水素との混合流体を供給することにより、脱硫や水素化分解などの水素化処理が実行される。
本実施の形態に関わる水素化処理触媒の再生方法によれば以下の効果がある。焼成した後の水素化処理触媒を、無機酸とキレート剤との双方を含む酸溶液に接触させるので、無機酸により担体の細孔内への活性金属成分の浸透を促進させる効果および酸溶液の粘性を低減する効果と、キレート剤による担体−活性金属成分間の相互作用を軽減する効果とが発揮され、比較的短い時間で活性金属成分を再分散させることができる。
The hydrotreating catalyst regenerated by the above-described method is filled in a reaction tower of a hydrocarbon oil hydrotreating apparatus and subjected to a presulfidation process for sulfiding an active metal component on a support. Then, a hydrogenation process such as desulfurization or hydrocracking is performed by supplying a mixed fluid of hydrocarbon oil and hydrogen to a reaction tower adjusted to a predetermined temperature and pressure conditions.
The method for regenerating a hydroprocessing catalyst according to the present embodiment has the following effects. Since the hydrotreated catalyst after calcination is brought into contact with an acid solution containing both an inorganic acid and a chelating agent, the effect of promoting the penetration of the active metal component into the pores of the support by the inorganic acid and the acid solution The effect of reducing the viscosity and the effect of reducing the interaction between the carrier and the active metal component by the chelating agent are exhibited, and the active metal component can be redispersed in a relatively short time.

(炭化水素油の水素化処理触媒の再生処理試験)
炭化水素油である軽質軽油(以下、LGOという)または減圧軽油(以下、VGOという)の水素化処理触媒について、キレート剤および無機酸を含む溶液と、キレート剤、無機酸のいずれか一方のみを含む酸溶液を用いて再生処理を行い、触媒活性の向上の程度を調べた。
(Regeneration test of hydrocarbon oil hydrotreating catalyst)
About hydrotreating catalyst of light diesel oil (hereinafter referred to as LGO) or vacuum gas oil (hereinafter referred to as VGO) which is a hydrocarbon oil, a solution containing a chelating agent and an inorganic acid, and only one of the chelating agent and the inorganic acid Regeneration treatment was performed using the acid solution contained, and the degree of improvement in catalyst activity was examined.

1.水素化処理触媒
触媒A:モリブデンおよびコバルトの前駆体と、無機酸(リン酸)とキレート剤(クエン酸)とを含む酸溶液を、アルミナ担体に含浸させ、110℃の大気雰囲気下で乾燥させてLGO用の水素化処理触媒を得た。リン酸の添加量は、アルミナ担体重量に対して1.0質量%、キレート剤の添加量は、キレート剤に対する無機酸のモル比(無機酸モル数/キレート剤モル数)が0.09となるように調製した。得られたモリブデンの酸化物(MoO)換算の担持量は、全触媒質量の18質量%、同じくコバルト酸化物(CoO)換算の担持量は4.5質量%であった。
触媒B:モリブデンおよびコバルトの前駆体と、無機酸(リン酸)とを含む酸溶液(キレート剤は含んでいない)を、アルミナ担体に含浸させ、250℃の大気雰囲気下で乾燥させ、次いで550℃の大気雰囲気下で1時間、焼成処理を行ってLGO用の水素化処理触媒を得た。リン酸の添加量は、アルミナ担体重量に対して3.0質量%となるように調製した。モリブデン酸化物(MoO)の担持量は、全触媒質量の19質量%、同じくコバルト酸化物(CoO)の担持量は3.5質量%であった。
触媒C:モリブデン、コバルトおよびニッケルの前駆体と、無機酸(リン酸)とを含む酸溶液(キレート剤は含んでいない)を、アルミナ担体に含浸させ、250℃の大気雰囲気下で乾燥させ、次いで550℃の大気雰囲気下で1時間、焼成処理を行ってVGO用の水素化処理触媒を得た。リン酸の添加量は、アルミナ担体重量に対して3.0質量%となるように調製した。モリブデン酸化物(MoO)の担持量は、全触媒質量の19質量%、同じくコバルト酸化物(CoO)の担持量は3.0質量%、同じくニッケル酸化物(NiO)の担持量は0.5質量%であった。
1. Hydrotreating catalyst
Catalyst A: An alumina carrier is impregnated with an acid solution containing a precursor of molybdenum and cobalt, an inorganic acid (phosphoric acid), and a chelating agent (citric acid), and dried in an air atmosphere at 110 ° C. for LGO. A hydrotreating catalyst was obtained. The addition amount of phosphoric acid is 1.0 mass% with respect to the weight of the alumina carrier, and the addition amount of the chelating agent is 0.09 as the molar ratio of the inorganic acid to the chelating agent (number of moles of inorganic acid / number of moles of chelating agent). It was prepared as follows. The obtained molybdenum oxide (MoO 3 ) equivalent loading was 18% by mass of the total catalyst mass, and the cobalt oxide (CoO) equivalent loading was 4.5% by mass.
Catalyst B: An acid solution (containing no chelating agent) containing a precursor of molybdenum and cobalt and an inorganic acid (phosphoric acid) is impregnated on an alumina support, dried in an air atmosphere at 250 ° C., and then 550 A calcination treatment was performed for 1 hour in an air atmosphere at 0 ° C. to obtain a hydrotreating catalyst for LGO. The amount of phosphoric acid added was adjusted to 3.0 mass% with respect to the alumina support weight. The supported amount of molybdenum oxide (MoO 3 ) was 19% by mass of the total catalyst mass, and the supported amount of cobalt oxide (CoO) was 3.5% by mass.
Catalyst C: An alumina carrier is impregnated with an acid solution containing molybdenum, cobalt and nickel precursors and an inorganic acid (phosphoric acid) (without a chelating agent), and dried in an air atmosphere at 250 ° C. Next, a calcination treatment was performed in an air atmosphere at 550 ° C. for 1 hour to obtain a hydrogenation catalyst for VGO. The amount of phosphoric acid added was adjusted to 3.0 mass% with respect to the alumina support weight. The supported amount of molybdenum oxide (MoO 3 ) was 19% by mass of the total catalyst mass, the supported amount of cobalt oxide (CoO) was 3.0% by mass, and the supported amount of nickel oxide (NiO) was 0.00%. It was 5 mass%.

2.使用済み触媒の調製
触媒A〜Cの未使用触媒に対し、(表1)に示す性状のLGO(触媒A、B)、またはVGO(触媒C)を、(表2)に示す脱硫条件で、16000時間通油して水素化処理を行い、使用済みの水素化処理触媒(使用済み触媒)を得た。各水素化処理の反応温度は、反応器出口のLGOの硫黄含有量が7質量ppm、同じくVGOの硫黄含有量が0.2質量%となるように調整した。
2. Preparation of used catalyst With respect to the unused catalysts of catalysts A to C, LGO (catalysts A and B) or VGO (catalyst C) having the properties shown in (Table 1) are subjected to desulfurization conditions shown in (Table 2). The oil was passed through for 16000 hours to perform a hydrogenation treatment, and a used hydrotreatment catalyst (used catalyst) was obtained. The reaction temperature of each hydrogenation treatment was adjusted so that the sulfur content of LGO at the outlet of the reactor was 7 mass ppm and the sulfur content of VGO was 0.2 mass%.

Figure 0005773644
Figure 0005773644

Figure 0005773644
Figure 0005773644

3.再生処理
(1)第1工程
上述の1、2の条件で調製された使用済みの触媒A〜Cについて以下の要領で再生処理をおこなった。まず前処理として、使用済みの触媒A〜Cについては、200℃に保持された窒素雰囲気中に配置し、表面に付着した油分を除去した。しかる後、430℃に保持された空気雰囲気中で3時間焼成した(第1工程)。この焼成により、使用済みの触媒に付着していたコークなどの炭素質は、触媒Aでは0.3質量%、触媒Bでは0.3質量%、触媒Cでは0.5質量%となった。
3. Playback processing
(1) First step
The used catalysts A to C prepared under the above-described conditions 1 and 2 were regenerated in the following manner. First, as a pretreatment, the used catalysts A to C were placed in a nitrogen atmosphere maintained at 200 ° C. to remove oil adhering to the surface. Thereafter, firing was performed in an air atmosphere maintained at 430 ° C. for 3 hours (first step). As a result of the calcination, the carbonaceous matter such as coke adhered to the used catalyst was 0.3% by mass in the catalyst A, 0.3% by mass in the catalyst B, and 0.5% by mass in the catalyst C.

(2)第2工程
第1工程にて得られた使用済みの焼成触媒A〜Cについて、炭素質を除いた条件で1000gに相当する量を秤量し、各焼成触媒の細孔容積に相当する量の酸溶液を減圧含浸法によって含浸させた。各焼成触媒に含浸させた酸溶液の組成(使用済み触媒、添加活性金属、無機酸量の合計を100質量%とする)を(表3)に示す。各触媒は、室温の大気雰囲気下で2時間熟成させて、使用済みの含浸触媒を得た。ここで、無機酸がリン酸の場合には、焼成後の触媒にはリンがPとして担持される一方、硝酸は焼成後の触媒に残らないことを考慮し、モル換算の無機酸添加量は、下記式に基づいて計算した。
a.無機酸がリン酸の場合
(無機酸添加量[mol])=
(使用済み触媒1000[g])×(無機酸添加量[質量%])
/{100−(活性金属添加量[質量%]+無機酸添加量[質量%])}
/(リン酸分子量98[g/mol]) …(1)
b.無機酸が硝酸の場合
(無機酸添加量[mol])=
(使用済み触媒1000[g])×(無機酸添加量[質量%])
/(100−活性金属添加量[質量%])
/(硝酸分子量63[g/mol]) …(2)
(2) Second step
For the used calcined catalysts A to C obtained in the first step, an amount corresponding to 1000 g is weighed under the condition excluding carbonaceous matter, and an acid solution corresponding to the pore volume of each calcined catalyst is decompressed. Impregnation was performed by an impregnation method. Table 3 shows the composition of the acid solution impregnated in each calcined catalyst (the total amount of used catalyst, added active metal, and inorganic acid is 100% by mass). Each catalyst was aged for 2 hours in an air atmosphere at room temperature to obtain a used impregnated catalyst. Here, in the case where the inorganic acid is phosphoric acid, in consideration of the fact that phosphorus is supported as P 2 O 5 on the catalyst after calcination, nitric acid does not remain in the catalyst after calcination. The addition amount was calculated based on the following formula.
a. When the inorganic acid is phosphoric acid
(Inorganic acid addition amount [mol]) =
(Used catalyst 1000 [g]) × (addition amount of inorganic acid [mass%])
/ {100- (active metal addition [mass%] + inorganic acid addition [mass%])}
/ (Phosphoric acid molecular weight 98 [g / mol]) (1)
b. When the inorganic acid is nitric acid (addition amount of inorganic acid [mol]) =
(Used catalyst 1000 [g]) × (addition amount of inorganic acid [mass%])
/ (100-active metal addition amount [mass%])
/ (Nitric acid molecular weight 63 [g / mol]) (2)

Figure 0005773644
Figure 0005773644

(3)第3工程
第2工程にて得られた含浸触媒につき、触媒Aについては110℃の大気雰囲気下で乾燥させ、触媒B、Cについては250℃の大気雰囲気下で乾燥させ、さらに550℃の大気雰囲気中で1時間焼成した。こうして(第1工程)〜(第3工程)の再生処理が行われた未使用触媒、および使用済み触媒A〜Cを得た。
(3) Third step
Regarding the impregnated catalyst obtained in the second step, catalyst A is dried in an air atmosphere of 110 ° C., catalysts B and C are dried in an air atmosphere of 250 ° C., and further in an air atmosphere of 550 ° C. Baked for 1 hour. Thus, an unused catalyst and used catalysts A to C that were subjected to the regeneration treatment in the (first step) to (third step) were obtained.

(脱硫活性評価試験)
再生処理を行った触媒A〜Cを反応器に充填し、硫化水素を通流させて硫化処理を行った後、(表2)に示した水素化処理条件にて、(表1)に示したLGO、VGOの水素化脱硫処理を行った。反応器を通過する前後での炭化水素油中の硫黄濃度の変化から、下記(3)式に基づいて反応速度定数を求めた。そして、未使用触媒A〜Cの反応速度定数(Kn0)に対する、再生触媒の反応速度定数(Kn)の比をパーセント表示で表した値((K/Kn0)×100[%])を相対活性とした。
=LHSV×1/(n−1)×(1/Sn−1−1/S n−1) …(3)
ここで、
:反応速度定数
n:脱硫反応速度が原料油の硫黄濃度の何乗に比例するか(LGOでは1.5、VGOでは2.0)
S:処理油中の硫黄濃度(%)
:原料油中の硫黄濃度(%)
LHSV:液空間速度(hr−1
(Desulfurization activity evaluation test)
After the regenerated catalyst A to C is charged into the reactor, hydrogen sulfide is passed through and subjected to sulfurization treatment, the hydrotreatment conditions shown in (Table 2) are shown in (Table 1). Then, hydrodesulfurization treatment of LGO and VGO was performed. From the change in the sulfur concentration in the hydrocarbon oil before and after passing through the reactor, the reaction rate constant was determined based on the following formula (3). A value ((K n / K n0 ) × 100 [%]) representing the ratio of the reaction rate constant (Kn) of the regenerated catalyst to the reaction rate constant (K n0 ) of the unused catalysts A to C. Was defined as relative activity.
K n = LHSV × 1 / (n−1) × (1 / S n−1 −1 / S 0 n−1 ) (3)
here,
K n : Reaction rate constant
n: The desulfurization reaction rate is proportional to the power of the sulfur concentration of the feedstock (1.5 for LGO, 2.0 for VGO)
S: Sulfur concentration in treated oil (%)
S 0 : Sulfur concentration (%) in the feedstock
LHSV: Liquid space velocity (hr −1 )

(実施例1〜8)使用済み触媒Aに、各々酸溶液a〜hを含浸させて再生処理を行い、LGOを処理して触媒の相対脱硫活性を求めた。
(実施例9〜16)使用済み触媒Bに、各々酸溶液a〜hを含浸させて再生処理を行い、LGOを処理して触媒の相対脱硫活性を求めた。
(実施例17〜24)使用済み触媒Cに、各々酸溶液a〜hを含浸させて再生処理を行い、VGOを処理して触媒の相対脱硫活性を求めた。
(比較例1、2)使用済み触媒Aに、各々酸溶液i、jを含浸させて再生処理を行い、LGOを処理して触媒の相対脱硫活性を計測した。
(比較例3、4)使用済み触媒Bに、各々酸溶液i、jを含浸させて再生処理を行い、LGOを処理して触媒の相対脱硫活性を計測した。
(比較例5、6)使用済み触媒Cに、各々酸溶液i、jを含浸させて再生処理を行い、VGOを処理して触媒の相対脱硫活性を計測した。
(Examples 1 to 8) The spent catalyst A was impregnated with acid solutions a to h, respectively, and regenerated, and LGO was treated to determine the relative desulfurization activity of the catalyst.
(Examples 9 to 16) The used catalyst B was impregnated with acid solutions a to h, respectively, and regenerated, and LGO was processed to determine the relative desulfurization activity of the catalyst.
(Examples 17 to 24) The used catalyst C was impregnated with acid solutions a to h, respectively, and regenerated, and VGO was processed to determine the relative desulfurization activity of the catalyst.
(Comparative Examples 1 and 2) The spent catalyst A was impregnated with acid solutions i and j, respectively, and regenerated, and LGO was treated to measure the relative desulfurization activity of the catalyst.
(Comparative Examples 3 and 4) The spent catalyst B was impregnated with acid solutions i and j, respectively, and regenerated, and LGO was treated to measure the relative desulfurization activity of the catalyst.
(Comparative Examples 5 and 6) The spent catalyst C was impregnated with acid solutions i and j, respectively, regenerated, VGO was treated, and the relative desulfurization activity of the catalyst was measured.

上述の(実施例1〜24)、(比較例1〜6)の結果を(表4)にまとめた。(表4)において、同じ行に示した実施例は、共通の酸溶液を用いて再生処理が行われている。(実施例1〜8)、(比較例1〜2)は、触媒A(乾燥処理品)にてLGOを処理した結果を示しており、(実施例9〜16)、(比較例3〜4)は触媒B(焼成品)にてLGOを処理した結果を示している。また(実施例17〜24)、(比較例5〜6)は触媒C(焼成品)にてVGOを処理した結果である。(表3)に示したように、全ての実施例に関わる触媒の再生処理に用いた酸溶液(酸溶液a〜h)には、無機酸(リン酸または硝酸)とキレート剤(クエン酸またはリンゴ酸)の双方が含まれている。これに対して比較例に関わる触媒を再生処理した酸溶液には、無機酸(酸溶液j(硝酸))またはキレート剤(酸溶液i(クエン酸))のいずれか一方が含まれている。   The results of the above-mentioned (Examples 1 to 24) and (Comparative Examples 1 to 6) are summarized in (Table 4). In Table 4, the examples shown in the same row are regenerated using a common acid solution. (Examples 1 to 8) and (Comparative Examples 1 and 2) show the results of treating LGO with Catalyst A (dried product), (Examples 9 to 16) and (Comparative Examples 3 to 4). ) Shows the result of treating LGO with catalyst B (calcined product). Further, (Examples 17 to 24) and (Comparative Examples 5 to 6) are results of treating VGO with catalyst C (calcined product). As shown in (Table 3), the acid solution (acid solutions a to h) used for the regeneration treatment of the catalyst according to all examples includes an inorganic acid (phosphoric acid or nitric acid) and a chelating agent (citric acid or citric acid). Both of malic acid) are included. On the other hand, the acid solution obtained by regenerating the catalyst according to the comparative example contains either an inorganic acid (acid solution j (nitric acid)) or a chelating agent (acid solution i (citric acid)).

Figure 0005773644
Figure 0005773644

(表4)に示した各実施例の結果によれば、無機酸とキレート剤との双方を含む酸溶液a〜hを利用して再生処理を行った場合の相対的脱硫活性は、使用済み触媒Aの場合で81〜103%(実施例1〜8)、使用済み触媒Bの場合で83〜101%(実施例9〜16)、使用済み触媒Cの場合で80〜96%(実施例17〜24)であった。
実施例に関わる再生処理の結果を概観すると、同じ酸溶液を使用した場合使用済み触媒A〜C(実施例1〜24)においては、より重質の炭化水素油を処理している使用済み触媒C(実施例17〜24)にてやや再生処理の効果が低い。これは、LGOに比べてVGOの水素化処理の条件が過酷なため、LGOを処理した触媒(使用済み触媒A、B)と同じ熟成時間では、活性金属成分の再分散の効果が十分でないためではないかと考えられる。また、同じLGOを処理した使用済み触媒A、Bの間では、乾燥品であるか焼成品であるかにかかわらず、酸溶液が同じであれば、ほぼ同等の相対的脱硫活性が得られている。
According to the result of each Example shown in (Table 4), the relative desulfurization activity at the time of performing a reproduction | regeneration process using the acid solution ah containing both an inorganic acid and a chelating agent is used. In the case of catalyst A, 81 to 103% (Examples 1 to 8), in the case of used catalyst B, 83 to 101% (Examples 9 to 16), in the case of used catalyst C, 80 to 96% (Examples) 17-24).
An overview of the results of the regeneration treatment related to the examples shows that when the same acid solution is used, in the used catalysts A to C (Examples 1 to 24), a used catalyst that is treating a heavier hydrocarbon oil. In C (Examples 17 to 24), the effect of the reproduction process is slightly low. This is because the VGO hydrotreating conditions are harsh compared to LGO, and the effect of redispersing the active metal component is not sufficient at the same aging time as the LGO-treated catalysts (used catalysts A and B). It is thought that. In addition, between the used catalysts A and B treated with the same LGO, regardless of whether the catalyst is a dry product or a calcined product, almost the same relative desulfurization activity can be obtained if the acid solution is the same. Yes.

これに対して、無機酸のみを含む酸溶液jを利用して再生処理を行った触媒の相対的脱硫活性を見ると、使用済み触媒Aでは75%(比較例2)、使用済み触媒Bでは83%(比較例4)、使用済み触媒触媒Cでは73%(比較例6)であった。これらの結果は、相対的脱硫活性の値が等しい(実施例16)と(比較例4)の場合を除き、無機酸とキレート剤の双方を含む酸溶液a〜hを用いて再生処理を行った方が、無機酸のみを含む酸溶液jを用いる場合よりも、処理後の相対的脱硫活性が高くなることを示している。これは、無機酸のみを含む酸溶液jでは、水素化処理触媒の担体と活性金属成分との間に働く相互作用が抑制されず、活性金属成分を十分に分散させることができなかったためではないかと考えられる。
また、キレート剤のみを含む酸溶液iを利用して再生処理を行った触媒の相対的脱硫活性を見ると、使用済み触媒Aでは84%(比較例1)、使用済み触媒Bでは86%(比較例3)、使用済み触媒触媒Cでは78%(比較例5)であった。
In contrast, when the relative desulfurization activity of the catalyst that was regenerated using the acid solution j containing only the inorganic acid was seen, it was 75% for the used catalyst A (Comparative Example 2) and for the used catalyst B. 83% (Comparative Example 4) and 73% (Comparative Example 6) of the used catalyst catalyst C. These results show that the regeneration treatment was performed using the acid solutions a to h containing both the inorganic acid and the chelating agent, except in the cases of the comparative desulfurization activity values (Example 16) and (Comparative Example 4). Shows that the relative desulfurization activity after the treatment is higher than that in the case of using the acid solution j containing only the inorganic acid. This is not because the acid solution j containing only the inorganic acid did not suppress the interaction between the support of the hydrotreating catalyst and the active metal component, and the active metal component could not be sufficiently dispersed. It is thought.
Further, when the relative desulfurization activity of the catalyst which was regenerated using the acid solution i containing only the chelating agent was observed, it was 84% for the used catalyst A (Comparative Example 1) and 86% for the used catalyst B ( In Comparative Example 3), the spent catalyst catalyst C was 78% (Comparative Example 5).

これらの結果は、酸溶液hを用いた(実施例8、16、24)の場合を除いて、無機酸とキレート剤の双方を含む酸溶液a〜hを用いて再生処理を行った方が、キレート剤のみを含む酸溶液iを用いる場合よりも、同じ時間熟成を行った場合の相対的脱硫活性が高くなることを示している。そして発明者らは、酸溶液iを利用した場合においても、各比較例よりも長い熟成時間を確保することによって相対的脱硫活性の値を向上させることが可能であることを確認している。
ここで酸溶液hが無機酸とキレート剤との双方を含んでいるにもかかわらず、キレート剤のみを含む酸溶液iと比較して触媒を再生する効果が低い理由について検討する。酸溶液hは実施例に関わる酸溶液の中では無機酸(リン酸)の添加量が最も多く、キレート剤に対する無機酸のモル比(無機酸/キレート剤)の値も0.428と最も高い。このため、キレート剤の添加効果が弱まり、高い再生効果が発揮されなかったのではないかと考えられる。この観点から、既述のように前記モル比の値は、0.01〜0.2の範囲内が好適であり、さらには0.04〜0.18がより好ましいといえる。但し、酸溶液hを用いた場合であっても無機酸のみを含む酸溶液jと同等かそれ以上の再生効果が得られていることから、酸溶液hが触媒の活性を向上させる効果を備えていることは否定されない。
These results are obtained when the regeneration treatment is performed using the acid solutions a to h containing both the inorganic acid and the chelating agent except in the case of using the acid solution h (Examples 8, 16, and 24). It shows that the relative desulfurization activity is higher when the aging is performed for the same time than when the acid solution i containing only the chelating agent is used. The inventors have confirmed that even when the acid solution i is used, it is possible to improve the relative desulfurization activity value by securing a longer aging time than each comparative example.
Here, the reason why the effect of regenerating the catalyst is low as compared with the acid solution i containing only the chelating agent although the acid solution h contains both the inorganic acid and the chelating agent will be examined. The acid solution h has the highest added amount of inorganic acid (phosphoric acid) among the acid solutions related to the examples, and the highest molar ratio (inorganic acid / chelating agent) of the inorganic acid to the chelating agent is 0.428. . For this reason, it is thought that the addition effect of a chelating agent weakened and the high regeneration effect was not exhibited. From this viewpoint, as described above, the value of the molar ratio is preferably in the range of 0.01 to 0.2, and more preferably 0.04 to 0.18. However, even when the acid solution h is used, since the regeneration effect is equal to or higher than that of the acid solution j containing only the inorganic acid, the acid solution h has an effect of improving the activity of the catalyst. That is not denied.

次いで、活性金属成分の添加効果について確認する。酸溶液dは、酸化物としてモリブデンを0.5質量%、コバルトを0.25質量%、ニッケルを0.25質量%含んでいる。一方でこの酸溶液dと「無機酸(リン酸)/キレート剤(クエン酸)」のモル比がほぼ同じ値となっている酸溶液aは、活性金属成分の添加量がゼロである。そこで、両実施例(酸溶液d;実施例4、12、20、酸溶液a;実施例1、9、17)を比較すると、いずれの実施例も酸溶液dを用いた方の相対的脱硫活性が高く、活性金属成分を添加することによる再生処理効果の向上を確認できる。
一方で、酸化物としてモリブデンおよびコバルトを3質量%ずつ添加した酸溶液gについては、(実施例7、15、23)の相対化脱硫活性の値は89〜101程度である。この値は他の実施例における脱硫活性(酸溶液hを利用した実施例は除く)の値である90〜107と比較して低めの活性値となっている。従って、活性金属成分の添加量を増やすだけで、無機酸およびキレート剤の添加効果を上回る触媒の再生効果が得られる訳ではないことが確認できる。
Next, the effect of adding the active metal component will be confirmed. The acid solution d contains 0.5% by mass of molybdenum, 0.25% by mass of cobalt, and 0.25% by mass of nickel as oxides. On the other hand, in the acid solution d in which the molar ratio of the acid solution d and “inorganic acid (phosphoric acid) / chelating agent (citric acid)” is substantially the same, the amount of the active metal component added is zero. Therefore, when both examples (acid solution d; Examples 4, 12, and 20, acid solution a; Examples 1, 9, and 17) are compared, in each example, relative desulfurization using the acid solution d is performed. The activity is high, and it can be confirmed that the regeneration treatment effect is improved by adding the active metal component.
On the other hand, with respect to the acid solution g to which molybdenum and cobalt are added in an amount of 3% by mass as oxides, the value of the relative desulfurization activity of (Examples 7, 15, and 23) is about 89 to 101. This value is a lower activity value compared to 90 to 107, which is the value of desulfurization activity (excluding examples using the acid solution h) in other examples. Therefore, it can be confirmed that the catalyst regeneration effect exceeding the effect of adding the inorganic acid and the chelating agent cannot be obtained only by increasing the addition amount of the active metal component.

Claims (6)

担体に、周期表第6族および第8〜10族から選ばれる少なくとも1種の活性金属成分が担持された、使用済みの炭化水素油の水素化処理触媒を、300℃を超える温度で焼成する第1工程と、
この第1工程にて焼成された水素化処理触媒を無機酸とキレート剤との双方を含む酸溶液に接触させて、前記活性金属成分を担体上に分散させる第2工程と、を含み、無機酸がリン酸または硝酸であり、キレート剤が多価カルボン酸であるクエン酸またはリンゴ酸であることを特徴とする水素化処理触媒の再生方法。
A used hydrocarbon oil hydrotreating catalyst in which at least one active metal component selected from Groups 6 and 8 to 10 of the periodic table is supported on a support is calcined at a temperature exceeding 300 ° C. The first step;
The hydrotreating catalysts calcined at the first step into contact with an acid solution containing both an inorganic acid and a chelating agent, wherein the second step of dispersing onto the support of the active metal component, an inorganic A method for regenerating a hydrotreatment catalyst, wherein the acid is phosphoric acid or nitric acid, and the chelating agent is citric acid or malic acid, which is a polyvalent carboxylic acid.
前記第2工程で用いる酸溶液に含まれるキレート剤のモル数に対する無機酸のモル数の比が0.01〜0.2の範囲内にあることを特徴とする請求項1に記載の水素化処理触媒の再生方法。   The hydrogenation according to claim 1, wherein the ratio of the number of moles of the inorganic acid to the number of moles of the chelating agent contained in the acid solution used in the second step is in the range of 0.01 to 0.2. Method for regenerating treated catalyst. 前記第2工程にて無機酸とキレート剤との双方を含む酸溶液に接触させた水素化処理触媒に対し、乾燥または焼成の少なくとも一方の処理を行う第3工程を含むことを特徴とする請求項1または2に記載の水素化処理触媒の再生方法。   The method includes a third step of performing at least one of drying or firing on the hydrotreating catalyst brought into contact with the acid solution containing both the inorganic acid and the chelating agent in the second step. Item 3. A method for regenerating a hydrotreating catalyst according to Item 1 or 2. 前記活性金属成分は、モリブデン、コバルト、およびニッケルから選択された少なくとも1つ以上の金属であることを特徴とする請求項1〜3のいずれか1項に記載の水素化処理触媒の再生方法。   The method for regenerating a hydroprocessing catalyst according to any one of claims 1 to 3, wherein the active metal component is at least one metal selected from molybdenum, cobalt, and nickel. 前記第2工程の無機酸とキレート剤との双方を含む酸溶液には、周期表第6族および第8〜10族から選ばれる少なくとも1種の活性金属成分が添加されており、当該第2工程では、これら活性金属成分を含む酸溶液に水素化処理触媒を接触させることにより、前記担体に担持されている活性金属成分の分散と、酸溶液に添加されている活性金属成分の当該担体への担持と、が行われることを特徴とする請求項1〜4のいずれか1項に記載の水素化処理触媒の再生方法。   In the acid solution containing both the inorganic acid and the chelating agent in the second step, at least one active metal component selected from Groups 6 and 8 to 10 of the periodic table is added. In the step, the hydrotreating catalyst is brought into contact with an acid solution containing these active metal components, thereby dispersing the active metal component supported on the carrier and the active metal component added to the acid solution to the carrier. The method for regenerating a hydroprocessing catalyst according to any one of claims 1 to 4, wherein the catalyst is supported. 前記酸溶液には、モリブデン、コバルト、およびニッケルから選択された少なくとも1つ以上の活性金属成分が、第1工程で得た水素化処理触媒の質量を基準にして、活性金属成分の酸化物に換算して1質量%以下に相当する量だけ含まれていることを特徴とする請求項5に記載の水素化処理触媒の再生方法。   In the acid solution, at least one active metal component selected from molybdenum, cobalt, and nickel is converted into an oxide of the active metal component based on the mass of the hydrotreating catalyst obtained in the first step. 6. The method for regenerating a hydroprocessing catalyst according to claim 5, comprising an amount corresponding to 1% by mass or less in terms of conversion.
JP2010293091A 2010-12-28 2010-12-28 Method for regenerating hydrotreating catalyst Active JP5773644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293091A JP5773644B2 (en) 2010-12-28 2010-12-28 Method for regenerating hydrotreating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293091A JP5773644B2 (en) 2010-12-28 2010-12-28 Method for regenerating hydrotreating catalyst

Publications (3)

Publication Number Publication Date
JP2012139626A JP2012139626A (en) 2012-07-26
JP2012139626A5 JP2012139626A5 (en) 2013-10-17
JP5773644B2 true JP5773644B2 (en) 2015-09-02

Family

ID=46676478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293091A Active JP5773644B2 (en) 2010-12-28 2010-12-28 Method for regenerating hydrotreating catalyst

Country Status (1)

Country Link
JP (1) JP5773644B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879265A (en) * 1982-08-19 1989-11-07 Union Oil Company Of California Hydroprocessing catalyst and phosphorous and citric acid containing impregnating solution
JP3244694B2 (en) * 1990-10-29 2002-01-07 住友金属鉱山株式会社 Method for producing hydrotreating catalyst
JPH06339635A (en) * 1993-06-01 1994-12-13 Japan Energy Corp Preparation of hydrogenation catalyst
JP3425830B2 (en) * 1995-10-06 2003-07-14 シスメックス株式会社 New compounds and their uses
JP4748497B2 (en) * 1999-07-05 2011-08-17 アルベマーレ ネザーランズ ビー.ブイ. Method for regenerating additive-containing catalyst
JP4156859B2 (en) * 2001-06-20 2008-09-24 コスモ石油株式会社 Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4370124B2 (en) * 2003-06-27 2009-11-25 日揮触媒化成株式会社 Hydrotreating catalyst composition
CN100510019C (en) * 2003-10-03 2009-07-08 阿尔伯麦尔荷兰有限公司 Process for activating a hydrotreating catalyst
EP2823886B1 (en) * 2005-12-14 2019-08-14 Advanced Refining Technologies, LLC Method of making hydroprocessing catalyst
EP2918661B1 (en) * 2006-01-17 2016-11-30 ExxonMobil Research and Engineering Company Selective catalysts for naphtha hydrodesulfurization
JP5228221B2 (en) * 2007-04-27 2013-07-03 コスモ石油株式会社 Method for producing hydrocarbon oil hydrotreating catalyst
JP2009160498A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Method of regenerating hydrogenation catalyst
US7906447B2 (en) * 2008-04-11 2011-03-15 Exxonmobil Research And Engineering Company Regeneration and rejuvenation of supported hydroprocessing catalysts

Also Published As

Publication number Publication date
JP2012139626A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5228221B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP5060044B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
US6383975B1 (en) Procedure to obtain a catalyst for the hydrodenitrogenation and hydrodesulfurization of middle and heavy oil fraction and the resulting product
US4455390A (en) Catalyst and method for impregnating at a pH less than one
WO2014033653A2 (en) Hydrotreating catalyst and process for preparing the same
EP2268398A1 (en) Hydroprocessing using rejuvenated supported hydroprocessing catalysts
AU2009234361A1 (en) Regeneration and rejuvenation of supported hydroprocessing catalysts
JP2008173640A (en) Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
CN108067243B (en) Hydrotreating catalyst and preparation method and application thereof
JP2009160498A (en) Method of regenerating hydrogenation catalyst
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP5825572B2 (en) Method for regenerating hydrotreating catalyst
CN109772387B (en) Hydrotreating catalyst and preparation method thereof
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4773274B2 (en) Regeneration method for heavy oil hydrotreating catalyst
JP2005314657A (en) Method for hydrotreating heavy hydrocarbon oil
JP2007160250A (en) Method of manufacturing catalyst, catalytic cracking catalyst and method of producing low-sulfur catalytically-cracked gasoline
JP5773644B2 (en) Method for regenerating hydrotreating catalyst
JP5863096B2 (en) Method for producing hydrotreating catalyst
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4916370B2 (en) Process for hydrotreating diesel oil
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4369165B2 (en) Titanium-containing support, method for producing the same, hydrotreating catalyst for hydrocarbon oil, and hydrotreating method using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150630

R150 Certificate of patent or registration of utility model

Ref document number: 5773644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250