JP4370124B2 - Hydrotreating catalyst composition - Google Patents

Hydrotreating catalyst composition Download PDF

Info

Publication number
JP4370124B2
JP4370124B2 JP2003184409A JP2003184409A JP4370124B2 JP 4370124 B2 JP4370124 B2 JP 4370124B2 JP 2003184409 A JP2003184409 A JP 2003184409A JP 2003184409 A JP2003184409 A JP 2003184409A JP 4370124 B2 JP4370124 B2 JP 4370124B2
Authority
JP
Japan
Prior art keywords
alumina
catalyst
inorganic oxide
microwave
catalyst composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003184409A
Other languages
Japanese (ja)
Other versions
JP2005013930A (en
Inventor
泰治 古川
隆 亀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2003184409A priority Critical patent/JP4370124B2/en
Publication of JP2005013930A publication Critical patent/JP2005013930A/en
Application granted granted Critical
Publication of JP4370124B2 publication Critical patent/JP4370124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はアルミナ含有多孔性無機酸化物担体を使用した炭化水素の水素化処理触媒組成物に関し、更に詳しくは、成型体担体の圧壊強度が強く、該担体を使用した触媒の使用時および再生処理して再使用時における触媒の粉化や破壊が少ない水素化処理触媒用担体として好適なアルミナ含有多孔性無機酸化物担体および炭化水素、特に軽油中の硫黄分を低減させる水素化処理に使用して好適な該アルミナ含有多孔性無機酸化物担体を使用した水素化処理触媒組成物に関する。
【0002】
【従来の技術】
従来、アルミナ含有多孔性無機酸化物の成型体は、触媒、乾燥剤、吸着剤、消臭剤などに広く利用されているが、これらの用途では成型体は強い圧壊強度が要求される。特に、固定床で使用される成型体触媒は、圧壊強度が弱いと触媒の充填時や使用時に触媒の粉化や破壊が生じ、反応塔での圧力損失を生じる原因となるので、成型体触媒用担体では強い圧壊強度を有することが重要である。
【0003】
また、炭化水素の水素化処理においては、水素化処理装置の使用済み触媒を再生処理して再利用するケースが増えており、触媒の圧壊強度は重要な要素となってきている。従来、炭化水素の水素化処理触媒ではアルミナ、アルミナ−シリカ、アルミナ−ボリアなどのアルミナ含有多孔性無機酸化物成型体が担体として使用されているが、その圧壊強度の改善が望まれていた。
【0004】
前述のような事情から、成型体触媒の圧壊強度を改善する方法が種々提案されている。例えば、特許文献1には、アスペクト比が10以下のアルミナ一次粒子を用いて混練法により高強度のアルミナ触媒担体を製造する方法が記載されている。また、特許文献2には、アルミナ水和物の擬ベーマイト粉に水を加えて混練してアルミナケーキを得、これにアンモニア水を添加し十分混合した後、正リン酸を添加する方法などにより特定の式を満たす強度を備えた形状が柱状の炭化水素油水素化処理触媒が開示されている。しかし、従来の成型体触媒の強度の改善方法は個々の成型体成分の原料に依存する方法であった。
【0005】
一方、加熱手段としてのマイクロ波加熱法は、従来から調理などに利用されているが、最近ではプラスチックの硬化、セラミックスの乾燥・焼結など各方面に利用されるようになった。マイクロ波加熱法を用いた触媒調製技術については、例えば、特許文献3がある。ここには、気相でエチレン、酢酸および酸素または酸素含有ガスから高い選択率で酢酸ビニールを得るための触媒製造法において、パラジウム及び/またはその化合物、金及び/またはその化合物並びにアルカリ金属化合物を粒子状多孔質担体に担持させ、最終工程でこの担体にマイクロ波を照射することによって製造する方法が記載されている。
【0006】
また、特許文献4には、ダイオキシン除去用触媒の製造方法において、触媒前駆物質を押出成形した後、乾燥し、焼成する工程の乾燥工程を熱風乾燥機、マイクロ波乾燥機又はサーモハイドロスタットを用いて60〜120℃で3〜48時間行う方法が記載されている。しかし、マイクロ波加熱法の詳細については何ら開示されていない。
【0007】
【特許文献1】
特開平9−110516号公報
【特許文献2】
特開平2003−112056号公報
【特許文献3】
特開平11−244696号公報
【特許文献4】
特開2002−248352号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、前述のように従来の成型体触媒の強度の改善が個々の成型体成分の原料に依存する方法であったのに対し、成型体成分の原料に依存することなく乾燥方法によって成型体の強度を改善したアルミナ含有多孔性無機酸化物担体使用して、炭化水素、特に軽油中の硫黄分を低減させる水素化処理に好適な該アルミナ含有多孔性無機酸化物担体を使用した水素化処理触媒組成物を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、前述の目的を達成するために鋭意研究した結果、アルミナ含有多孔性無機酸化物担体の製造方法において、成型物にマイクロ波を照射して乾燥すると成型体の圧壊強度が従来の加熱乾燥に比較して強くなることを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明の第1は、アルミナ含有無機酸化物および/またはアルミナ含有無機酸化物前駆物質を成型して得られた成型物マイクロ波を照射して乾燥することにより得られたアルミナ含有多孔性無機酸化物担体を使用したことを特徴とする水素化処理触媒組成物に関する。
本発明の第2は、前記マイクロ波の周波数が2.45GHzである請求項1記載の水素化処理触媒組成物に関する。
本発明の第3は、前記周波数が2.45GHzのマイクロ波をマイクロ波出力電力が0.1〜80kW・hr/kg−酸化物基準の範囲で照射して乾燥する請求項記載の水素化処理触媒組成物に関する。
本発明の第4は、前記アルミナ含有無機酸化物が、アルミナ、アルミナ−シリカ、アルミナ−チタニア、アルミナ−ボリア、アルミナ−シリカ−ボリア、アルミナ−リン−ボリア、アルミナ−超安定性Y型ゼオライト(USY)から選ばれた少なくとも1種である請求項1〜3いずれか記載の水素化処理触媒組成物に関する。
【0011】
【発明の実施の形態】
以下、本発明の好適な実施の形態について、詳細に説明する。
【0012】
本発明でのアルミナ含有多孔性無機酸化物担体とは、アルミナ含有量が50重量%を越える多孔性無機酸化物担体をいう。また、本発明で使用されるアルミナ含有無機酸化物および/またはその前駆物質(以下、担体成分ということがある)は、触媒、乾燥剤、吸着剤などに使用されるアルミナ含有無機酸化物および/またはその前駆物質が使用可能である。アルミナ含有無機酸化物としては、例えば、アルミナ、アルミナ−シリカ、アルミナ−チタニア、アルミナ−ボリア、アルミナ−リン、アルミナ−シリカ−チタニア、アルミナ−シリカ−ボリア、アルミナ−リン−ボリア、アルミナ−チタニア−ボリア、アルミナ−シリカ−リン、アルミナ−チタニア−リン−ボリア、およびY型ゼオライト、X型ゼオライト、L型ゼオライト、ベータ型ゼオライト、チャバサイト、エリオナイト、モルデナイト、ZSMゼオライト、MFI型ゼオライトなどを含有するアルミナなどが例示される。特に、アルミナ、アルミナ−シリカ、アルミナ−チタニア、アルミナ−ボリア、アルミナ−シリカ−ボリア、アルミナ−リン−ボリア、アルミナ−超安定性Y型ゼオライト(USY)などのアルミナ含有無機酸化物は比表面積や細孔容積が大きいので炭化水素の水素化処理触媒用担体として好ましい。
【0013】
本発明では、前述のアルミナ含有無機酸化物および/またはその前駆物質を通常の方法で成型して成型物を得る。例えば、アルミン酸ソーダ水溶液と硫酸アルミニウム水溶液とを反応させて得られたアルミナ水和物を洗浄、加温熟成したアルミナヒドロゲルを、ニーダで混練・捏和して成型に適した水分に調整した捏和物を所望の形状に押出成型する方法やアルミナ粉末とシリカヒドロゲルの混合物をニーダで混練・捏和して成型に適した水分に調整した捏和物を所望の形状に押出成型する方法などが例示される。押出成型される成型物形状としては、円柱状、円筒形状、三葉形状、四葉形状など所望の形状に任意の寸法で成型される。また、アルミナ粉末などを造粒法により球形状に成型することも可能である。
【0014】
本発明では、通常の方法で得られた成型物を、マイクロ波を照射して乾燥することを特徴とする。マイクロ波としては、周波数にして1GHz〜1000GHzの範囲であるが、通常は1GHz〜10GHzが適当である。特に、2.45GHzの周波数は家庭で使用されている電子レンジのマイクロ波と同じで水分子が共振して加熱されるので好適である。前述の成型物に前記のマイクロ波を照射して水分を蒸発させて乾燥するが、マイクロ波の照射は成型物の水分量が照射前の水分量よりも30wt%以上、好ましくは50wt%以上、更に好ましくは70〜100wt%減少するようにマイクロ波の強さおよび照射時間を調節するのが望ましい。
【0015】
本発明では、前記周波数が2.45GHz(実際には2.45±0.05GHz程度の範囲)のマイクロ波をマイクロ波出力電力が0.1〜80kW・hr/kg−酸化物基準の範囲で照射して乾燥することが好ましい。マイクロ波出力電力が0.1kW・hr/kg−酸化物基準よりも少ない場合には、成型物の水分が充分に蒸発しないために所望の効果が得られないことがあり、また、マイクロ波出力電力が80kW・hr/kg−酸化物基準よりも多い場合には、マイクロ波をこれ以上照射しても成型物の水分の蒸発が非常に少ないために経済的でない。更に好ましいマイクロ波出力電力は0.5〜50kW・hr/kg−酸化物基準の範囲であることが望ましい。
本発明では、前述の成型物にマイクロ波を照射して乾燥した後、所望により、更に通常の方法で加熱乾燥することもできる。また、マイクロ波を照射して乾燥された成型物は通常の方法で、例えば、400〜800℃の温度で0.1〜10時間焼成してアルミナ含有多孔性無機酸化物担体を製造する。
【0016】
本発明で得られるアルミナ含有多孔性無機酸化物担体は、従来の加熱乾燥法による担体に比較して圧壊強度が強いので、炭化水素の水素化処理触媒に好適に使用される。該アルミナ含有多孔性無機酸化物担体は、42〜10000Åの細孔が占める細孔容積(PV)が0.60〜1.00ml/gの範囲で、平均細孔直径が100〜200Åの範囲で、平均細孔直径±25Åの範囲の直径の細孔が占める細孔容積(PVPD)が細孔容積(PV)の30〜80%の範囲にあり、表面積が150〜400m/gの範囲であることが望ましい。
【0017】
本発明の水素化処理触媒組成物は、前述のアルミナ含有多孔性無機酸化物担体に活性金属成分を担持して調製される。
本発明の多孔性無機酸化物担体に担持させて触媒として使用できる活性金属成分としては、通常の炭化水素などの水素化処理触媒に使用される活性金属成分を挙げることができる。特に、該活性金属成分は、周期律表第6A族金属および周期律表第8族金属から選ばれた少なくとも一種の金属成分であることが好ましい。周期律表第6A族金属としてはクロム、モリブデン、タングステンが挙げられ、周期律表第8族金属としては鉄、コバルト、ニッケルなどの卑金属および白金、パラジウムなどの貴金属が挙げられる。前記活性金属成分を含有する溶液の調製に使用される周期律表第6A族金属化合物の形態としては、例えば酸化クロム、酸化モリブデン、酸化タングステンなどの金属酸化物の他に、アンモニウム塩、ハロゲン化物、硝酸塩、硫酸塩、有機酸塩などの金属塩を使用することが可能である。また、周期律表第8族卑金属化合物の形態としては、例えば金属酸化物、水酸化物、硝酸塩、ハロゲン化物、硫酸塩、炭酸塩、有機酸塩などの金属塩を使用することができ、第8族貴金属化合物の形態としては、塩化物、硝酸塩やアンミン錯体などの水に溶解性の金属塩や錯体化合物が使用可能である。
本発明の多孔性無機酸化物担体に前述の活性金属成分を担持させるには、水などの溶媒に前述の活性金属の化合物を溶解した含浸溶液が用いられる。本発明で使用される活性金属成分を含有する含浸溶液は、周知の方法で調製することができる。例えば、所定量の三酸化モリブデンと塩基性炭酸ニッケルを水に加えて加熱溶解する方法などである。該溶液中の活性金属成分の含有量は、任意に調製できるが、該含浸溶液を担体成分に含浸して得られた触媒組成物中の活性金属成分(周期律表第8族貴金属を除く)量が酸化物として5〜35重量%の範囲となるようにすることが望ましい。
前記活性金属成分を含有する含浸溶液は、さらにリン化合物を含有することが好ましい。リン化合物としては、正リン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウム、トリメタリン酸、ピロリン酸、トリポリリン酸などを用いることができる。該溶液中のリン化合物の含有量は、該溶液を担体成分に含浸して得られた触媒組成物中のリン化合物がPとして0.5〜10重量%の範囲となるようにすることが望ましい。
また、前述の活性金属成分を均一かつ安定に溶解させるために、金属成分に容易に配位して安定な複合錯体を形成するキレート剤(錯化剤)を用いることが好ましい。キレート剤としては、通常、水素化処理触媒の活性金属成分を含有する溶液の調製に安定化剤として使用されるキレート剤が使用可能である。キレート剤としては、クエン酸、リンゴ酸、酒石酸、グルコン酸、マンノン酸、グルコール酸などの有機酸;エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコールなどのアルコール類;エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテルなどのエーテル類;ブドウ糖、果糖、麦芽糖、乳糖、ショ糖などの糖類などが例示される。該溶液中のキレート剤の含有量は、活性金属のモル数に対して、0.2〜3モル倍、好ましくは0.5〜1.5モル倍の範囲となるようにすることが望ましい。また、前記活性金属成分含有溶液を前述のアルミナ含有多孔性無機酸化物担体に含浸する方法としては、一般に公知の含浸方法が採用される。本発明の水素化処理触媒組成物は、前述のアルミナ含有多孔性無機酸化物担体に前記活性成分含有水溶液を含浸した後は、通常の方法で乾燥、焼成して調製される。
【0018】
本発明の水素化処理触媒組成物は、特に、前述のアルミナ含有多孔性無機酸化物担体に前記活性成分含有水溶液を含浸した後、得られた含浸品に前記のマイクロ波を照射して水分を蒸発させて乾燥する方法で調製することが好ましい。マイクロ波の照射は、前述のアルミナ含有多孔性無機酸化物の成型物の場合と同様にして、含浸品の水分量が照射前の水分量よりも5wt%以上、好ましくは10wt%以上、更に好ましくは50〜100wt%減少するようにマイクロ波出力および照射時間を調節するのが望ましい。含浸品にマイクロ波を照射した後、所望により、更に通常の方法で加熱乾燥することもできる。マイクロ波を照射し水分が減少した含浸品は通常の方法で、例えば、200〜700℃の温度で0.1〜10時間焼成して水素化処理触媒組成物を得ることもできる。
このように含浸品にマイクロ波を照射すると含浸品の内部と表面の温度が均一に上昇するので、通常の加熱乾燥法に較べて活性金属の移動が少なく、水素化活性成分が均一に分散した触媒を得ることができる。
本発明の水素化処理触媒組成物は、活性金属成分として、周期律表第6A族金属から選ばれた少なくとも一種の活性金属を酸化物して5〜30重量%、周期律表第8族卑金属から選ばれた少なくとも一種の活性金属を酸化物として1〜10重量%の範囲で含有することが望ましく、さらにリン化合物をPとして0.5〜10重量%の範囲で含有することが望ましい。また、前記活性金属成分が周期律表第8族貴金属の場合は、金属として0.1〜5重量%の範囲であることが望ましい。
【0019】
本発明では、マイクロ波の照射により成型物の各部が同時に発熱するので、複雑な形状の成型物でも均一に加熱することができるため成型物に歪みや亀裂が生じることがない。本発明のアルミナ含有多孔性無機酸化物担体は、成型体成分の原料に依存することなく成型体の強度が改善されるため、該担体の細孔容積、細孔分布や表面積などの性状は従来の方法で得られるものとほとんど変わらず、触媒、乾燥剤、吸着剤、消臭剤などの広い分野で利用される。
【0020】
また、本発明の水素化処理触媒組成物は、通常の水素化処理条件が採用され、また、水素化処理の対象油は、特に制限されるものではなく、原油、常圧残渣油、減圧残渣油などの重質油、直留軽油、減圧蒸留軽油などの留出油などの水素化処理に使用可能である。特に、該水素化処理触媒組成物は、直留軽油、脱硫処理後軽油、水素化処理軽油、接触分解軽油、熱分解軽油・減圧蒸留軽油などの、沸点範囲が150〜450℃、含有硫黄分が2重量%以下の軽油留分の超深度脱硫に使用して好適である。
【0021】
【実施例】
以下に実施例および比較例を示し本発明を説明するが、本発明はこれにより限定されるものではない。
【0022】
実施例1(担体の調製)
(1)アルミナの調製
アルミナとして濃度5重量%のアルミン酸ソーダー水溶液20kgを調合容器に入れ、この水溶液を撹拌しながら濃度2重量%の硫酸アルミニウム水溶液をpHが7になるまで添加し、擬ベーマイトのアルミナ水和物スラリーを生成させた。このスラリーを洗浄、熟成した後、加熱捏和してアルミナ捏和物とした。これを押し出し成型機で直径1.6mmの円柱状に成型した。
(2)担体の調製
(1)のアルミナ成型物150gを2.45GHzの周波数を持つマイクロ波を出力750Wで10分間照射し、さらに出力1000Wで5分間照射して乾燥させた乾燥品79.6gを得た。この乾燥品の1000℃−1時間焼成での灼熱減量(L.O.I)は34.0wt%であった。この場合のマイクロ波の出力電力は4.0kW・hr/kg−Alとなる。該乾燥品をさらに550℃で3時間焼成してアルミナ担体Aを得た。アルミナ担体Aの表面積は240m/gであり、細孔容積(PV)は0.77ml/gで、平均細孔直径が120Åで、平均細孔直径120ű25Åの範囲の直径の細孔が占める細孔容積は細孔容積(PV)の68%であった。
【0023】
実施例2(担体の調製)
実施例1のアルミナ成型物を用い、マイクロ波出力と照射時間を変えたほかは、実施例1と同様の操作によりアルミナ担体を調製した。すなわち、アルミナ成型物150gを2.45GHzの周波数を持つマイクロ波を出力1500Wで10分間照射し、さらに出力2000Wで2分間照射して乾燥させた乾燥品66.4gを得た。この乾燥品の1000℃−1時間焼成での灼熱減量(L.O.I)は20.9wt%であった。この場合のマイクロ波の出力電力は6.3kW・hr/kg−Alとなる。該乾燥品を550℃で3時間焼成してアルミナ担体Bを得た。アルミナ担体Bの表面積は244m/gであり、細孔容積(PV)は0.76ml/gで、平均細孔直径が118Åで、平均細孔直径118ű25Åの範囲の直径の細孔が占める細孔容積は細孔容積(PV)の70%であった。
【0024】
比較例1(担体の調製)
実施例1のアルミナ成型物を用い、実施例1においてマイクロ波を照射して乾燥する代わりに、通常の外部加熱乾燥法で乾燥した他は実施例1と同様にしてアルミナ担体を調製した。すなわち、アルミナ成型物150gをオーブン式乾燥器で110℃で12時間乾燥して乾燥品65.0gを得た。この乾燥品の1000℃−1時間焼成での灼熱減量(L.O.I)は19.2wt%であった。該乾燥品を550℃で3時間焼成してアルミナ担体Cを得た。アルミナ担体Cの表面積は238m/gであり、細孔容積(PV)は0.76ml/gで、平均細孔直径が118Åで、平均細孔直径118ű25Åの範囲の直径の細孔が占める細孔容積は細孔容積(PV)の70%であった。
【0025】
応用例1(担体の評価)
実施例1、2及び比較例1で調製したアルミナ担体A、B、Cを用いて圧壊強度を評価した。円柱状担体(ペレット)約30mlを500℃の電気炉で1時間焼成を行い、デシケータ内で冷却後圧壊強度の測定に用いた。測定はランダムにペレット40個を選出し、木屋式硬度計(10kg計)で行った。各担体の圧壊強度〔N(ニュートン)/mm〕は、次式により求めた。結果を表1に示す。マイクロ波乾燥による方法が外部加熱乾燥による方法に比較して優れた圧壊強度を示している。
【数1】

Figure 0004370124
【表1】
Figure 0004370124
【0026】
実施例3(触媒の調製)
(1)含浸液の調製
1000mlビーカーに水750ml、三酸化モリブデン17.1gを加え、95℃で10時間攪拌した。次いで塩基性炭酸ニッケル8.04gを加え、95℃で5時間攪拌した。この混合物を75℃まで冷却し、リンゴ酸7.93g〔リンゴ酸/ニッケル=1/1(mol/mol)〕を加えて同温で5時間攪拌した。得られた溶液を44mlまで濃縮し、続いてリン酸二水素アンモニウム1.54gを加えて溶解させNi−Mo−P−リンゴ酸水溶液を調製した。
(2)触媒の調製
実施例1のアルミナ担体A50gに、(1)で調製したNi−Mo−P−リンゴ酸水溶液を含浸させた。次いで、この含浸品を2.45GHzの周波数を持つマイクロ波を出力500Wで10分間照射して乾燥させ、触媒A−1を調製した。なお、調製した触媒の含水率を調べるため触媒A−1を570℃で2時間焼成して、その灼熱減量を(L.O.I)を求めたところ灼熱減量は20wt%であった。
【0027】
実施例4
実施例3の触媒A−1(乾燥品)の一部を、さらに550℃で1時間空気中で焼成して触媒A−2を調製した。触媒A−2の570℃−2時間焼成の灼熱減量(L.O.I)は2wt%であった。
【0028】
実施例5(触媒の調製)
(1)含浸液の調製
1000mlビーカーに水750ml、三酸化モリブデン17.1gを加え、95℃で10時間攪拌した。次いで塩基性炭酸ニッケル8.04gを加え、95℃で5時間攪拌した。この混合物を75℃まで冷却し、クエン酸8.29g〔クエン酸/ニッケル=2/3(mol/mol)〕を加えて同温で5時間攪拌した。得られた溶液を44mlまで濃縮し、続いてリン酸二水素アンモニウム1.54gを加えて溶解させNi−Mo−P−クエン酸水溶液を調製した。
(2)触媒の調製
実施例2のアルミナ担体B50gに、(1)で調製したNi−Mo−P−クエン酸水溶液を含浸させた。次いで、この含浸品を2.45GHzの周波数を持つマイクロ波を出力500Wで10分間照射して乾燥させ触媒B−1を調製した。触媒B−1の570℃−2時間焼成の灼熱減量(L.O.I)は20wt%であった。
【0029】
実施例6
実施例5の方法により調製した触媒B−1(乾燥品)の一部を、さらに550℃で1時間空気中で焼成して触媒B−2を調製した。触媒B−2の570℃−2時間焼成の灼熱減量(L.O.I)は2wt%であった。
【0030】
比較例2(触媒の調製)
実施例3において、アルミナ担体Aの代わりにアルミナ担体Cを使用して、実施例3と同じ操作により触媒を調製した。すなわち、1000mlビーカーに水750ml、三酸化モリブデン17.1gを加え、95℃で10時間攪拌した。次いで塩基性炭酸ニッケル8.04gを加え、95℃で5時間攪拌した。この混合物を75℃まで冷却し、リンゴ酸7.93g〔リンゴ酸/ニッケル=1/1(mol/mol)〕を加えて同温で5時間攪拌した。得られた溶液を44mlまで濃縮し、続いてリン酸二水素アンモニウム1.54gを加えて溶解させNi−Mo−P−リンゴ酸水溶液を調製した。このNi−Mo−P−リンゴ酸水溶液をアルミナ担体C50gに含浸させた。次いで、この含浸品を150℃の乾燥器で12時間乾燥させ触媒C―1を調製した。触媒C−1の570℃−2時間焼成の灼熱減量(L.O.I)は12wt%であった。
【0031】
比較例3(触媒の調製)
比較例2の方法により調製した触媒C−1(乾燥品)の一部を、さらに550℃で1時間空気中で焼成して触媒C−2を調製した。触媒C−2の570℃−2時間焼成の灼熱減量(L.O.I)は2wt%であった。
【0032】
応用例2(触媒の評価)
実施例3、4、5、6及び比較例2、3で調製した触媒A−1、A−2、B−1、B−2および触媒C−1、C−2を用いて硫黄及び窒素化合物を含む芳香族炭化水素油の水素化脱硫活性を評価した。触媒は粉砕して粒径を300〜710ミクロンに揃えて反応管に充填した後、5%硫化水素/95%水素気流中、360℃で3時間予備硫化を行い反応に用いた。水素化脱硫活性評価のための反応は、4,6−ジメチルジベンゾチオフェン(硫黄として300ppm)/n−ブチルアミン(窒素として20ppm)/テトラリン(芳香族成分:30%)/n−ヘキサデカン(約70%)混合油を用い、反応温度:320℃、反応圧:3.9MPa、WHSV:16h−1、水素初圧:500Nl/lの条件で行った。4,6−ジメチルジベンゾチオフェンの脱硫活性は硫黄の元素分析による濃度測定により分析定量した。
反応50時間後の反応結果を担体、触媒製造条件および触媒の性状と共に表2、表3に示す。
【0033】
表2、表3に示すように、本発明の触媒A−1、触媒B−1は、「従来の外部加熱乾燥により得られたアルミナ担体に含浸溶液を含浸し、外部加熱乾燥して調製された比較例の触媒C−1」に比較して高い水素化脱硫性能を示しており、また、それらを焼成して得られた、本発明の触媒A−2、触媒B−2は比較例の触媒C−2に比較して高い水素化脱硫性能を示しており、高活性であることが分かる。
【0034】
【表2】
Figure 0004370124
【0035】
【表3】
Figure 0004370124
【0036】
以下に本発明の実施態様項を列記する
(1)アルミナ含有多孔性無機酸化物担体の製造方法において、アルミナ含有無機酸化物および/またはアルミナ含有無機酸化物前駆物質を成型して得られた成型物を、マイクロ波を照射して乾燥することを特徴とするアルミナ含有多孔性無機酸化物担体の製造方法。
(2)前記マイクロ波の周波数が2.45GHzである前項(1)記載のアルミナ含有多孔性無機酸化物担体の製造方法。
(3)前記周波数が2.45GHzのマイクロ波をマイクロ波出力電力が0.1〜80kW・hr/kg−酸化物基準の範囲で照射して乾燥する前項(1)または(2)記載のアルミナ含有多孔性無機酸化物担体の製造方法。
(4)前記アルミナ含有無機酸化物が、アルミナ、アルミナ−シリカ、アルミナ−チタニア、アルミナ−ボリア、アルミナ−シリカ−ボリア、アルミナ−リン−ボリア、アルミナ−超安定性Y型ゼオライト(USY)から選ばれた少なくとも1種である前項(1)〜(3)いずれか記載のアルミナ含有多孔性無機酸化物担体の製造方法。
(5)前項(1)〜(4)いずれか記載のアルミナ含有多孔性無機酸化物担体の製造方法で得られたアルミナ含有多孔性無機酸化物担体を使用した水素化処理触媒組成物。
(6)前記アルミナ含有多孔性無機酸化物担体が、42〜10000Åの細孔が占める細孔容積(PV)が0.60〜1.00ml/gの範囲で、平均細孔直径が100〜200Åの範囲で、平均細孔直径±25Åの範囲の直径の細孔が占める細孔容積(PVPD)が前記細孔容積(PV)の30〜80%の範囲にあり、かつ表面積が150〜400m/gの範囲のものである前項(5)記載の水素化処理触媒組成物。
(7)前項(1)〜(4)いずれか記載のアルミナ含有多孔性無機酸化物担体の製造方法で得られたアルミナ含有多孔性無機酸化物担体に、活性金属成分を含有する含浸溶液を含浸した後、マイクロ波を照射することを特徴とする炭化水素の水素化処理触媒組成物の製造方法。
(8)前記マイクロ波の周波数が2.45GHzである前項(7)記載の炭化水素の水素化処理触媒組成物の製造方法。
(9)前記活性金属成分が周期律表第6A族金属および周期律表第8族金属から選ばれた少なくとも一種の金属成分である前項(7)または(8)記載の炭化水素の水素化処理触媒組成物の製造方法。
(10)前記含浸溶液がキレート剤を含有するものである前項(7)〜(9)いずれか記載の炭化水素の水素化処理触媒組成物の製造方法。
(11)前記含浸溶液がリン化合物を含有するものである前項(7)〜(10)いずれか記載の炭化水素の水素化処理触媒組成物の製造方法。
(12) 前記多孔性無機酸化物担体がアルミナ含有担体である前項(7)〜(11)いずれか記載の炭化水素の水素化処理触媒組成物の製造方法。
【0037】
【発明の効果】
本発明によるマイクロ波で乾燥して調製したアルミナ含有多孔性無機酸化物担体は、外部加熱により乾燥して調製したアルミナ含有多孔性無機酸化物担体に比較して強い圧壊強度を有しており、また、該担体を使用して調製した水素化処理触媒は水素化脱硫性能が優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention , The hydrocarbon hydrotreating catalyst composition using the alumina-containing porous inorganic oxide support is more specifically described. More specifically, the compact support has a strong crushing strength. Alumina-containing porous inorganic oxide carrier suitable as a carrier for hydrotreating catalyst with less catalyst pulverization and destruction during use and The present invention relates to a hydrotreating catalyst composition using the alumina-containing porous inorganic oxide support suitable for hydrotreating to reduce the sulfur content in hydrocarbons, particularly light oil.
[0002]
[Prior art]
Conventionally, a molded body of an alumina-containing porous inorganic oxide has been widely used as a catalyst, a desiccant, an adsorbent, a deodorant, and the like, but for these applications, the molded body is required to have a strong crushing strength. In particular, a molded catalyst used in a fixed bed has a low crushing strength, which may cause pulverization or destruction of the catalyst during filling or use of the catalyst, resulting in pressure loss in the reaction tower. It is important for the carrier to have a strong crushing strength.
[0003]
Further, in the hydrotreating of hydrocarbons, the number of cases where the spent catalyst of the hydrotreating apparatus is regenerated and reused is increasing, and the crushing strength of the catalyst has become an important factor. Conventionally, a hydrocarbon hydrotreating catalyst uses an alumina-containing porous inorganic oxide molded body such as alumina, alumina-silica, alumina-boria or the like as a carrier. However, improvement of the crushing strength has been desired.
[0004]
In view of the circumstances as described above, various methods for improving the crushing strength of the molded catalyst have been proposed. For example, Patent Document 1 describes a method for producing a high-strength alumina catalyst carrier by kneading using primary alumina particles having an aspect ratio of 10 or less. Patent Document 2 discloses a method in which water is added to a pseudo boehmite powder of alumina hydrate to knead to obtain an alumina cake, ammonia water is added thereto and mixed sufficiently, and then normal phosphoric acid is added. A hydrocarbon oil hydrotreating catalyst having a columnar shape having a strength satisfying a specific formula is disclosed. However, the conventional method for improving the strength of a molded body catalyst is a method that depends on the raw materials of the individual molded body components.
[0005]
On the other hand, the microwave heating method as a heating means has been conventionally used for cooking and the like, but recently it has been used in various fields such as hardening of plastics and drying / sintering of ceramics. For example, Patent Literature 3 discloses a catalyst preparation technique using a microwave heating method. In the catalyst production method for obtaining vinyl acetate with high selectivity from ethylene, acetic acid and oxygen or oxygen-containing gas in the gas phase, palladium and / or its compound, gold and / or its compound and alkali metal compound are used. A method is described in which a carrier is supported on a particulate porous carrier and the carrier is irradiated with microwaves in the final step.
[0006]
Further, Patent Document 4 uses a hot air dryer, a microwave dryer, or a thermohydrostat as a drying step in the method for producing a catalyst for removing dioxin in which a catalyst precursor is extruded, dried, and fired. The method of performing at 60-120 degreeC for 3 to 48 hours is described. However, no details of the microwave heating method are disclosed.
[0007]
[Patent Document 1]
JP-A-9-110516
[Patent Document 2]
Japanese Patent Laid-Open No. 2003-112056
[Patent Document 3]
Japanese Patent Laid-Open No. 11-244696
[Patent Document 4]
JP 2002-248352 A
[0008]
[Problems to be solved by the invention]
The object of the present invention is, as described above, a method for improving the strength of a conventional molded body catalyst depending on the raw material of each molded body component, whereas a drying method without depending on the raw material of the molded body component. Improves the strength of the molded body did Alumina-containing porous inorganic oxide support The Use , For hydrotreating to reduce the sulfur content in hydrocarbons, especially light oil It is an object of the present invention to provide a hydrotreating catalyst composition using the preferred alumina-containing porous inorganic oxide support.
[0009]
[Means for Solving the Problems]
As a result of diligent research to achieve the above-mentioned object, the present inventors have found that, in the method for producing an alumina-containing porous inorganic oxide support, when the molded product is irradiated with microwaves and dried, the crushing strength of the molded product is conventionally increased. As a result, the present invention was completed.
[0010]
That is, the first of the present invention is a molded product obtained by molding an alumina-containing inorganic oxide and / or an alumina-containing inorganic oxide precursor. In Drying by microwave irradiation Obtained by Alumina-containing porous inorganic oxide support Hydrotreating catalyst composition characterized by using About.
The second aspect of the present invention is that the frequency of the microwave is 2.45 GHz. Hydrotreating catalyst composition About.
According to a third aspect of the present invention, drying is performed by irradiating a microwave having a frequency of 2.45 GHz within a microwave output power range of 0.1 to 80 kW · hr / kg-oxide reference. 2 Described Hydrotreating catalyst composition About.
A fourth aspect of the present invention is that the alumina-containing inorganic oxide contains alumina, alumina-silica, alumina-titania, alumina-boria, alumina-silica-boria, alumina-phosphorus-boria, alumina-superstable Y-type zeolite ( It is at least 1 sort (s) chosen from USY). Hydrotreating catalyst composition About.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
[0012]
The alumina-containing porous inorganic oxide carrier in the present invention refers to a porous inorganic oxide carrier having an alumina content exceeding 50% by weight. In addition, the alumina-containing inorganic oxide and / or its precursor (hereinafter sometimes referred to as support component) used in the present invention is an alumina-containing inorganic oxide and / or a catalyst, a desiccant, an adsorbent and the like. Alternatively, precursors thereof can be used. Examples of the alumina-containing inorganic oxide include alumina, alumina-silica, alumina-titania, alumina-boria, alumina-phosphorus, alumina-silica-titania, alumina-silica-boria, alumina-phosphorus-boria, alumina-titania- Contains boria, alumina-silica-phosphorus, alumina-titania-phosphorus-boria, Y-type zeolite, X-type zeolite, L-type zeolite, beta-type zeolite, chabasite, erionite, mordenite, ZSM zeolite, MFI-type zeolite, etc. Examples thereof include alumina. In particular, alumina-containing inorganic oxides such as alumina, alumina-silica, alumina-titania, alumina-boria, alumina-silica-boria, alumina-phosphorus-boria, alumina-superstable Y-type zeolite (USY) have specific surface area and Since the pore volume is large, it is preferable as a carrier for hydrocarbon hydrotreating catalyst.
[0013]
In the present invention, the above-mentioned alumina-containing inorganic oxide and / or precursor thereof is molded by a usual method to obtain a molded product. For example, an alumina hydrogel obtained by reacting an aqueous solution of sodium aluminate and an aqueous solution of aluminum sulfate was washed, heated and aged, and kneaded and kneaded with a kneader to adjust the moisture to suitable for molding. A method of extruding a Japanese product into a desired shape, a method of extruding a kneaded product adjusted to moisture suitable for molding by kneading and kneading a mixture of alumina powder and silica hydrogel with a kneader, etc. Illustrated. As a shape of a molded product to be extruded, it is molded into a desired shape such as a columnar shape, a cylindrical shape, a trilobal shape, or a four-leaf shape with an arbitrary dimension. It is also possible to form alumina powder or the like into a spherical shape by a granulation method.
[0014]
Main departure In the light Is characterized in that a molded product obtained by a normal method is dried by irradiation with microwaves. The microwave has a frequency in the range of 1 GHz to 1000 GHz, but usually 1 GHz to 10 GHz is appropriate. In particular, the frequency of 2.45 GHz is the same as that of microwave ovens used at home, and water molecules resonate and are heated. The above-mentioned molded product is irradiated with the above-mentioned microwave to evaporate moisture and dried, but the microwave irradiation is 30 wt% or more, preferably 50 wt% or more than the amount of moisture before irradiation, More preferably, the intensity of the microwave and the irradiation time are adjusted so as to decrease by 70 to 100 wt%.
[0015]
Main departure In the light Irradiates the microwave with the frequency of 2.45 GHz (actually in the range of about 2.45 ± 0.05 GHz) in the range of the microwave output power of 0.1 to 80 kW · hr / kg-oxide standard. And drying. When the microwave output power is less than 0.1 kW · hr / kg-oxide standard, the desired effect may not be obtained because the moisture of the molded product is not sufficiently evaporated. When the power is higher than the 80 kW · hr / kg-oxide standard, it is not economical because the moisture of the molded product evaporates very little even if the microwave is further irradiated. The more preferable microwave output power is desirably in the range of 0.5 to 50 kW · hr / kg-oxide standard.
Main departure In the light Can be dried by irradiating the above-mentioned molded product with microwaves, and then heat-dried by a conventional method if desired. Moreover, the molded object dried by irradiating a microwave is baked by the normal method, for example for 0.1 to 10 hours at the temperature of 400-800 degreeC, and an alumina containing porous inorganic oxide support | carrier is manufactured.
[0016]
Main departure In the light The resulting alumina-containing porous inorganic oxide support has a strong crushing strength as compared with a support obtained by a conventional heat drying method, and therefore is suitably used as a hydrocarbon hydrotreating catalyst. The alumina-containing porous inorganic oxide support has a pore volume (PV T ) In the range of 0.60 to 1.00 ml / g, the average pore diameter is in the range of 100 to 200 mm, and the pore volume (PV PD ) Is the pore volume (PV T ) In the range of 30 to 80%, and the surface area is 150 to 400 m. 2 / G is desirable.
[0017]
The hydrotreating catalyst composition of the present invention is prepared by supporting an active metal component on the aforementioned alumina-containing porous inorganic oxide support.
Examples of the active metal component that can be used as a catalyst by being supported on the porous inorganic oxide support of the present invention include active metal components used in hydrotreating catalysts such as ordinary hydrocarbons. In particular, the active metal component is preferably at least one metal component selected from Group 6A metals and Group 8 metals of the Periodic Table. The Periodic Table Group 6A metal includes chromium, molybdenum, and tungsten, and the Periodic Table Group 8 metal includes base metals such as iron, cobalt, and nickel and noble metals such as platinum and palladium. Examples of the form of the Group 6A metal compound used in the preparation of the solution containing the active metal component include ammonium salts and halides in addition to metal oxides such as chromium oxide, molybdenum oxide, and tungsten oxide. Metal salts such as nitrates, sulfates and organic acid salts can be used. In addition, as the form of the group 8 base metal compound of the periodic table, for example, metal salts such as metal oxides, hydroxides, nitrates, halides, sulfates, carbonates, and organic acid salts can be used. As the group 8 noble metal compound, water-soluble metal salts and complex compounds such as chlorides, nitrates and ammine complexes can be used.
In order to support the active metal component on the porous inorganic oxide carrier of the present invention, an impregnation solution in which the compound of the active metal is dissolved in a solvent such as water is used. The impregnation solution containing the active metal component used in the present invention can be prepared by a well-known method. For example, a predetermined amount of molybdenum trioxide and basic nickel carbonate are added to water and dissolved by heating. The content of the active metal component in the solution can be arbitrarily adjusted, but the active metal component in the catalyst composition obtained by impregnating the impregnation solution into the support component (excluding group 8 noble metals in the periodic table) It is desirable that the amount be in the range of 5 to 35% by weight as oxide.
It is preferable that the impregnation solution containing the active metal component further contains a phosphorus compound. As the phosphorus compound, orthophosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, trimetaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid and the like can be used. The phosphorus compound content in the solution is such that the phosphorus compound in the catalyst composition obtained by impregnating the solution with the carrier component is P. 2 O 5 Is preferably in the range of 0.5 to 10% by weight.
In order to dissolve the above-mentioned active metal component uniformly and stably, it is preferable to use a chelating agent (complexing agent) that easily coordinates to the metal component to form a stable complex. As the chelating agent, a chelating agent that is usually used as a stabilizer for preparing a solution containing the active metal component of the hydrotreating catalyst can be used. Examples of chelating agents include organic acids such as citric acid, malic acid, tartaric acid, gluconic acid, mannonic acid, and glycolic acid; alcohols such as ethylene glycol, propylene glycol, diethylene glycol, and triethylene glycol; ethylene glycol monobutyl ether, diethylene glycol monomethyl ether And ethers such as diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, and diethylene glycol monobutyl ether; sugars such as glucose, fructose, maltose, lactose, and sucrose. The content of the chelating agent in the solution is desirably 0.2 to 3 mole times, preferably 0.5 to 1.5 mole times the number of moles of the active metal. Moreover, as a method for impregnating the above-mentioned alumina-containing porous inorganic oxide carrier with the active metal component-containing solution, generally known impregnation methods are employed. The hydrotreatment catalyst composition of the present invention is prepared by impregnating the above-mentioned alumina-containing porous inorganic oxide carrier with the above-mentioned aqueous solution containing the active ingredient, followed by drying and calcination by ordinary methods.
[0018]
In particular, the hydrotreating catalyst composition of the present invention, after impregnating the above-mentioned alumina-containing porous inorganic oxide carrier with the above-mentioned aqueous solution containing the active ingredient, irradiates the above-mentioned impregnated product with the above-mentioned microwaves to provide moisture. It is preferable to prepare by the method of evaporating and drying. In the microwave irradiation, the water content of the impregnated product is 5 wt% or more, preferably 10 wt% or more, more preferably the water content before irradiation, in the same manner as in the case of the above-mentioned molded product of alumina-containing porous inorganic oxide. It is desirable to adjust the microwave output and the irradiation time so that the amount is reduced by 50 to 100 wt%. After irradiating the impregnated product with microwaves, if desired, the impregnated product can be further heat-dried by a usual method. The impregnated product in which moisture is reduced by irradiation with microwaves can be calcined by a conventional method, for example, at a temperature of 200 to 700 ° C. for 0.1 to 10 hours to obtain a hydrotreating catalyst composition.
In this way, when the impregnated product is irradiated with microwaves, the temperature of the inside and the surface of the impregnated product rises uniformly, so there is less movement of the active metal compared to the usual heat drying method, and the hydrogenation active component is uniformly dispersed. A catalyst can be obtained.
The hydrotreating catalyst composition of the present invention comprises, as an active metal component, an oxide of at least one active metal selected from Group 6A metals of the Periodic Table and 5 to 30% by weight of Group 8 base metal of the Periodic Table. It is desirable to contain at least one active metal selected from 1 to 10% by weight as an oxide, and further a phosphorus compound as P 2 O 5 It is desirable to contain in the range of 0.5 to 10% by weight. Moreover, when the said active metal component is a periodic table group 8 noble metal, it is desirable that it is the range of 0.1 to 5 weight% as a metal.
[0019]
Main departure In the light Since each part of a molded product generates heat simultaneously by irradiation with microwaves, even a molded product having a complicated shape can be heated uniformly, so that the molded product is not distorted or cracked. Since the alumina-containing porous inorganic oxide carrier of the present invention improves the strength of the molded body without depending on the raw material of the molded body component, the properties such as pore volume, pore distribution and surface area of the carrier are conventionally known. It is almost the same as that obtained by this method, and is used in a wide range of fields such as a catalyst, a desiccant, an adsorbent, and a deodorant.
[0020]
In addition, the hydrotreating catalyst composition of the present invention employs normal hydrotreating conditions, and the target oil for hydrotreating is not particularly limited, and crude oil, atmospheric residue oil, reduced pressure residue It can be used for hydrotreating heavy oil such as oil, distillate oil such as straight-run light oil and vacuum distilled light oil. In particular, the hydrotreating catalyst composition has a boiling range of 150 to 450 ° C., sulfur content, such as straight-run gas oil, desulfurized gas oil, hydrotreated gas oil, catalytic cracking gas oil, pyrolysis gas oil / vacuum distilled gas oil, etc. Is suitable for ultra-deep desulfurization of gas oil fractions of 2% by weight or less.
[0021]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited thereto.
[0022]
Example 1 (Preparation of carrier)
(1) Preparation of alumina
20 kg of 5% strength by weight sodium aluminate aqueous solution as alumina is put into a preparation container, and 2% by weight aqueous solution of aluminum sulfate is added while stirring the aqueous solution until the pH becomes 7, and a pseudo boehmite alumina hydrate slurry Was generated. The slurry was washed and aged, and then kneaded with heating to obtain an alumina kneaded product. This was molded into a cylindrical shape having a diameter of 1.6 mm by an extrusion molding machine.
(2) Preparation of carrier
150 g of the alumina molded product (1) was irradiated with microwaves having a frequency of 2.45 GHz at an output of 750 W for 10 minutes, and further irradiated at an output of 1000 W for 5 minutes to obtain 79.6 g of a dried product. The loss on ignition (LO) of this dried product after baking at 1000 ° C. for 1 hour was 34.0 wt%. In this case, the output power of the microwave is 4.0 kW · hr / kg-Al. 2 O 3 It becomes. The dried product was further calcined at 550 ° C. for 3 hours to obtain alumina support A. The surface area of the alumina carrier A is 240 m. 2 / G, pore volume (PV T ) Is 0.77 ml / g, the average pore diameter is 120 mm, and the pore volume occupied by pores having an average pore diameter in the range of 120 mm ± 25 mm is the pore volume (PV T ) Was 68%.
[0023]
Example 2 (Preparation of carrier)
An alumina support was prepared in the same manner as in Example 1 except that the alumina molded product of Example 1 was used and the microwave output and irradiation time were changed. That is, 66.4 g of a dried product obtained by irradiating 150 g of an alumina molded product with microwaves having a frequency of 2.45 GHz at an output of 1500 W for 10 minutes and further irradiating at an output of 2000 W for 2 minutes was obtained. The loss on ignition (LO) of this dried product after baking at 1000 ° C. for 1 hour was 20.9 wt%. In this case, the output power of the microwave is 6.3 kW · hr / kg-Al. 2 O 3 It becomes. The dried product was calcined at 550 ° C. for 3 hours to obtain an alumina carrier B. Alumina carrier B has a surface area of 244m 2 / G, pore volume (PV T ) Is 0.76 ml / g, the average pore diameter is 118 mm, and the pore volume occupied by pores having a diameter in the range of average pore diameter 118 mm ± 25 mm is the pore volume (PV T ) Of 70).
[0024]
Comparative Example 1 (Preparation of carrier)
An alumina support was prepared in the same manner as in Example 1 except that the alumina molded product of Example 1 was used and dried by a normal external heating drying method instead of drying by microwave irradiation in Example 1. That is, 150 g of the alumina molded product was dried at 110 ° C. for 12 hours by an oven-type dryer to obtain 65.0 g of a dried product. The loss on ignition (LO) of this dried product after baking at 1000 ° C. for 1 hour was 19.2 wt%. The dried product was calcined at 550 ° C. for 3 hours to obtain alumina support C. The surface area of the alumina carrier C is 238 m. 2 / G, pore volume (PV T ) Is 0.76 ml / g, the average pore diameter is 118 mm, and the pore volume occupied by pores having a diameter in the range of average pore diameter 118 mm ± 25 mm is the pore volume (PV T ) Of 70).
[0025]
Application Example 1 (Evaluation of Carrier)
The crushing strength was evaluated using the alumina carriers A, B, and C prepared in Examples 1 and 2 and Comparative Example 1. About 30 ml of a cylindrical carrier (pellet) was fired in an electric furnace at 500 ° C. for 1 hour, and used for measurement of crushing strength after cooling in a desiccator. Measurement was performed by randomly selecting 40 pellets and using a Kiyama-type hardness meter (10 kg meter). The crushing strength [N (Newton) / mm] of each carrier was determined by the following equation. The results are shown in Table 1. The method by microwave drying shows an excellent crushing strength as compared with the method by external heat drying.
[Expression 1]
Figure 0004370124
[Table 1]
Figure 0004370124
[0026]
Example 3 (Preparation of catalyst)
(1) Preparation of impregnation solution
750 ml of water and 17.1 g of molybdenum trioxide were added to a 1000 ml beaker and stirred at 95 ° C. for 10 hours. Next, 8.04 g of basic nickel carbonate was added, and the mixture was stirred at 95 ° C. for 5 hours. The mixture was cooled to 75 ° C., 7.93 g of malic acid [malic acid / nickel = 1/1 (mol / mol)] was added, and the mixture was stirred at the same temperature for 5 hours. The obtained solution was concentrated to 44 ml, and then 1.54 g of ammonium dihydrogen phosphate was added and dissolved to prepare a Ni-Mo-P-malic acid aqueous solution.
(2) Preparation of catalyst
50 g of the alumina carrier A of Example 1 was impregnated with the aqueous Ni-Mo-P-malic acid solution prepared in (1). Next, the impregnated product was dried by irradiating microwaves having a frequency of 2.45 GHz with an output of 500 W for 10 minutes to prepare catalyst A-1. In order to examine the water content of the prepared catalyst, the catalyst A-1 was calcined at 570 ° C. for 2 hours, and the loss on ignition was determined as (LO). The loss on ignition was 20 wt%.
[0027]
Example 4
A part of the catalyst A-1 (dried product) of Example 3 was further calcined in the air at 550 ° C. for 1 hour to prepare a catalyst A-2. The loss on ignition (L.O.I) of catalyst A-2 after calcination at 570 ° C. for 2 hours was 2 wt%.
[0028]
Example 5 (Preparation of catalyst)
(1) Preparation of impregnation solution
750 ml of water and 17.1 g of molybdenum trioxide were added to a 1000 ml beaker and stirred at 95 ° C. for 10 hours. Next, 8.04 g of basic nickel carbonate was added, and the mixture was stirred at 95 ° C. for 5 hours. The mixture was cooled to 75 ° C., 8.29 g of citric acid [citric acid / nickel = 2/3 (mol / mol)] was added, and the mixture was stirred at the same temperature for 5 hours. The obtained solution was concentrated to 44 ml, and then 1.54 g of ammonium dihydrogen phosphate was added and dissolved to prepare an aqueous Ni-Mo-P-citric acid solution.
(2) Preparation of catalyst
50 g of the alumina carrier B of Example 2 was impregnated with the aqueous Ni-Mo-P-citric acid solution prepared in (1). Next, this impregnated product was dried by irradiating microwaves having a frequency of 2.45 GHz with an output of 500 W for 10 minutes to prepare catalyst B-1. The loss on ignition (L.O.I) of catalyst B-1 after baking at 570 ° C. for 2 hours was 20 wt%.
[0029]
Example 6
A part of the catalyst B-1 (dried product) prepared by the method of Example 5 was further calcined in the air at 550 ° C. for 1 hour to prepare a catalyst B-2. The loss on ignition (L.O.I) of catalyst B-2 after calcination at 570 ° C. for 2 hours was 2 wt%.
[0030]
Comparative Example 2 (Preparation of catalyst)
In Example 3, an alumina support C was used in place of the alumina support A, and a catalyst was prepared by the same operation as in Example 3. That is, 750 ml of water and 17.1 g of molybdenum trioxide were added to a 1000 ml beaker and stirred at 95 ° C. for 10 hours. Next, 8.04 g of basic nickel carbonate was added, and the mixture was stirred at 95 ° C. for 5 hours. The mixture was cooled to 75 ° C., 7.93 g of malic acid [malic acid / nickel = 1/1 (mol / mol)] was added, and the mixture was stirred at the same temperature for 5 hours. The obtained solution was concentrated to 44 ml, and then 1.54 g of ammonium dihydrogen phosphate was added and dissolved to prepare a Ni-Mo-P-malic acid aqueous solution. This Ni-Mo-P-malic acid aqueous solution was impregnated into 50 g of alumina carrier C. Next, this impregnated product was dried in a dryer at 150 ° C. for 12 hours to prepare Catalyst C-1. The loss on ignition (LO) of the catalyst C-1 after calcination at 570 ° C. for 2 hours was 12 wt%.
[0031]
Comparative Example 3 (Preparation of catalyst)
Part of the catalyst C-1 (dried product) prepared by the method of Comparative Example 2 was further calcined in the air at 550 ° C. for 1 hour to prepare Catalyst C-2. The loss on ignition (LO) of the catalyst C-2 after calcination at 570 ° C. for 2 hours was 2 wt%.
[0032]
Application example 2 (Evaluation of catalyst)
Sulfur and nitrogen compounds using Catalysts A-1, A-2, B-1, B-2 and Catalysts C-1, C-2 prepared in Examples 3, 4, 5, 6 and Comparative Examples 2, 3 The hydrodesulfurization activity of aromatic hydrocarbon oils containing was evaluated. The catalyst was pulverized and packed in a reaction tube with a particle size of 300 to 710 microns, and then presulfided in a 5% hydrogen sulfide / 95% hydrogen stream at 360 ° C. for 3 hours and used for the reaction. The reaction for evaluating hydrodesulfurization activity is 4,6-dimethyldibenzothiophene (300 ppm as sulfur) / n-butylamine (20 ppm as nitrogen) / tetralin (aromatic component: 30%) / n-hexadecane (about 70%). ) Using mixed oil, reaction temperature: 320 ° C., reaction pressure: 3.9 MPa, WHSV: 16 h -1 The hydrogen initial pressure was 500 Nl / l. The desulfurization activity of 4,6-dimethyldibenzothiophene was analyzed and determined by measuring the concentration of sulfur by elemental analysis.
The reaction results after 50 hours of reaction are shown in Tables 2 and 3 together with the support, catalyst production conditions and catalyst properties.
[0033]
As shown in Tables 2 and 3, Catalyst A-1 and Catalyst B-1 of the present invention were prepared by impregnating an alumina carrier obtained by conventional external heating and drying with an impregnation solution and drying by external heating. The catalyst A-2 and the catalyst B-2 of the present invention obtained by calcination of the hydrodesulfurization performance compared to the catalyst C-1 of the comparative example were obtained. It shows high hydrodesulfurization performance compared with the catalyst C-2, and it turns out that it is highly active.
[0034]
[Table 2]
Figure 0004370124
[0035]
[Table 3]
Figure 0004370124
[0036]
The embodiments of the present invention are listed below.
(1) In the method for producing an alumina-containing porous inorganic oxide carrier, a molded product obtained by molding an alumina-containing inorganic oxide and / or an alumina-containing inorganic oxide precursor is irradiated with microwaves and dried. A method for producing an alumina-containing porous inorganic oxide support characterized by the above.
(2) The method for producing an alumina-containing porous inorganic oxide support as described in (1) above, wherein the microwave frequency is 2.45 GHz.
(3) Alumina according to the preceding item (1) or (2), wherein the microwave having the frequency of 2.45 GHz is irradiated and dried in a range of microwave output power of 0.1 to 80 kW · hr / kg-oxide standard. A method for producing a porous inorganic oxide carrier.
(4) The alumina-containing inorganic oxide is selected from alumina, alumina-silica, alumina-titania, alumina-boria, alumina-silica-boria, alumina-phosphorus-boria, alumina-superstable Y-type zeolite (USY) The method for producing an alumina-containing porous inorganic oxide support according to any one of (1) to (3) above, which is at least one kind.
(5) A hydrotreating catalyst composition using an alumina-containing porous inorganic oxide support obtained by the method for producing an alumina-containing porous inorganic oxide support according to any one of (1) to (4).
(6) The alumina-containing porous inorganic oxide carrier has a pore volume (PV T ) In the range of 0.60 to 1.00 ml / g, the average pore diameter is in the range of 100 to 200 mm, and the pore volume (PV PD ) Is the pore volume (PV T ) And the surface area is 150 to 400 m. 2 The hydrotreating catalyst composition according to the above item (5), which is in the range of / g.
(7) The alumina-containing porous inorganic oxide support obtained by the method for producing an alumina-containing porous inorganic oxide support according to any one of (1) to (4) is impregnated with an impregnation solution containing an active metal component. After that, a method for producing a hydrocarbon hydrotreating catalyst composition, which is irradiated with microwaves.
(8) The method for producing a hydrocarbon hydrotreating catalyst composition as described in (7) above, wherein the microwave frequency is 2.45 GHz.
(9) Hydrocarbon treatment of hydrocarbon according to item (7) or (8), wherein the active metal component is at least one metal component selected from Group 6A metals and Group 8 metals of the Periodic Table A method for producing a catalyst composition.
(10) The method for producing a hydrocarbon hydrotreating catalyst composition according to any one of (7) to (9), wherein the impregnation solution contains a chelating agent.
(11) The method for producing a hydrocarbon hydrotreating catalyst composition according to any one of (7) to (10), wherein the impregnation solution contains a phosphorus compound.
(12) The method for producing a hydrocarbon hydrotreating catalyst composition according to any one of (7) to (11), wherein the porous inorganic oxide support is an alumina-containing support.
[0037]
【The invention's effect】
The alumina-containing porous inorganic oxide support prepared by drying with microwaves according to the present invention has a strong crushing strength compared to the alumina-containing porous inorganic oxide support prepared by drying by external heating, Moreover, the hydrotreating catalyst prepared using the carrier has excellent hydrodesulfurization performance.

Claims (4)

アルミナ含有無機酸化物および/またはアルミナ含有無機酸化物前駆物質を成型して得られた成型物マイクロ波を照射して乾燥することにより得られたアルミナ含有多孔性無機酸化物担体を使用したことを特徴とする水素化処理触媒組成物 That an alumina-containing porous inorganic oxide carrier obtained by drying using microwave radiation in molded product obtained by molding the alumina-containing inorganic oxide and / or alumina-containing inorganic oxide precursor A hydrotreating catalyst composition characterized by the above . 前記マイクロ波の周波数が2.45GHzである請求項1記載の水素化処理触媒組成物The hydroprocessing catalyst composition according to claim 1, wherein the microwave frequency is 2.45 GHz. 前記周波数が2.45GHzのマイクロ波をマイクロ波出力電力が0.1〜80kW・hr/kg−酸化物基準の範囲で照射して乾燥する請求項記載の水素化処理触媒組成物3. The hydrotreating catalyst composition according to claim 2, which is dried by irradiating a microwave having a frequency of 2.45 GHz with a microwave output power in a range of 0.1 to 80 kW · hr / kg-oxide standard. 前記アルミナ含有無機酸化物が、アルミナ、アルミナ−シリカ、アルミナ−チタニア、アルミナ−ボリア、アルミナ−シリカ−ボリア、アルミナ−リン−ボリア、アルミナ−超安定性Y型ゼオライト(USY)から選ばれた少なくとも1種である請求項1〜3いずれか記載の水素化処理触媒組成物The alumina-containing inorganic oxide is at least selected from alumina, alumina-silica, alumina-titania, alumina-boria, alumina-silica-boria, alumina-phosphorus-boria, alumina-superstable Y-type zeolite (USY) The hydrotreating catalyst composition according to any one of claims 1 to 3, which is one type.
JP2003184409A 2003-06-27 2003-06-27 Hydrotreating catalyst composition Expired - Fee Related JP4370124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184409A JP4370124B2 (en) 2003-06-27 2003-06-27 Hydrotreating catalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184409A JP4370124B2 (en) 2003-06-27 2003-06-27 Hydrotreating catalyst composition

Publications (2)

Publication Number Publication Date
JP2005013930A JP2005013930A (en) 2005-01-20
JP4370124B2 true JP4370124B2 (en) 2009-11-25

Family

ID=34184191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184409A Expired - Fee Related JP4370124B2 (en) 2003-06-27 2003-06-27 Hydrotreating catalyst composition

Country Status (1)

Country Link
JP (1) JP4370124B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5654720B2 (en) * 2006-02-22 2015-01-14 出光興産株式会社 Hydrodesulfurization catalyst and hydrodesulfurization method for kerosene fraction
JP5599212B2 (en) * 2010-03-30 2014-10-01 千代田化工建設株式会社 Hydrocarbon oil hydrotreating catalyst, method for producing the same, and hydrotreating method for hydrocarbon oil using the same
EP2603317A4 (en) * 2010-08-13 2014-08-06 Shell Oil Co A hydroprocessing catalyst prepared with waste catalyst fines and its use
CA2806601C (en) * 2010-08-13 2019-10-29 Shell Internationale Research Maatschappij B.V. A chelant and polar additive containing composition for hydroprocessing of hydrocarbon feedstocks
JP5773644B2 (en) * 2010-12-28 2015-09-02 日揮触媒化成株式会社 Method for regenerating hydrotreating catalyst
JP5660672B2 (en) * 2011-01-17 2015-01-28 コスモ石油株式会社 Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP6574201B2 (en) * 2014-04-24 2019-09-11 アドバンスド・リフアイニング・テクノロジーズ・エルエルシー Highly active hydrotreating catalyst
US10370600B2 (en) 2014-04-24 2019-08-06 Advanced Refining Technologies Llc High activity hydrotreating catalysts and processes using the same
US10376873B2 (en) 2014-04-24 2019-08-13 Advanced Refining Technologies Llc Method of preparing high activity hydrotreating catalysts
US10369558B2 (en) 2014-04-24 2019-08-06 Advanced Refining Technologies Llc High activity hydrotreating catalysts
CN111729689A (en) * 2020-06-19 2020-10-02 湖北中超化工科技有限公司 Regeneration method of deactivated hydrogenation catalyst

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018374A (en) * 1973-06-22 1975-02-26
JPS63107751A (en) * 1986-10-27 1988-05-12 Toyota Central Res & Dev Lab Inc Method for coating catalyst carrier
JP3244693B2 (en) * 1990-10-17 2002-01-07 住友金属鉱山株式会社 Method for producing catalyst for hydrotreating hydrocarbon oil
US5266548A (en) * 1992-08-31 1993-11-30 Norton Chemical Process Products Corp. Catalyst carrier
DE4242227A1 (en) * 1992-12-15 1994-06-16 Heraeus Quarzglas Catalyst support and process for its manufacture
DE69521993T2 (en) * 1994-05-13 2002-04-04 Cytec Tech Corp HIGHLY ACTIVE CATALYSTS
WO1999049964A1 (en) * 1998-03-31 1999-10-07 Grace Gmbh & Co. Kg Shaped body of zeolite, a process for its production and its use
DE60020292T2 (en) * 1999-04-08 2006-05-04 Albemarle Netherlands B.V. A process for sulfiding an organic nitrogen and carbonyl-containing hydrotreating catalyst
US6387246B1 (en) * 1999-05-19 2002-05-14 Institut Francais Du Petrole Catalyst that comprises a partially amorphous Y zeolite and its use in hydroconversion of hydrocarbon petroleum feedstocks
JP2002234780A (en) * 2001-02-01 2002-08-23 Hitachi Metals Ltd Method for producing porous ceramic honeycomb structure
JP3876634B2 (en) * 2001-03-14 2007-02-07 トヨタ自動車株式会社 Process for producing alloy catalyst and exhaust gas purification catalyst
JP4428682B2 (en) * 2001-04-20 2010-03-10 東亞合成株式会社 Method for producing a catalyst for acrylic acid production
JP4069613B2 (en) * 2001-11-09 2008-04-02 株式会社デンソー Manufacturing method and drying apparatus for ceramic honeycomb structure
JP2003284961A (en) * 2002-03-27 2003-10-07 National Institute Of Advanced Industrial & Technology Method for producing hydrocarbon hydrogenation treatment catalyst composition

Also Published As

Publication number Publication date
JP2005013930A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP5508744B2 (en) Method for producing beta zeolite and method for producing hydrocracking catalyst
US10058852B2 (en) Hydrotreatment catalyst with a high density of molybdenum, and process for its preparation
JP5492431B2 (en) Hydrocracking catalyst, method for hydrocracking, and method for producing hydrocracking catalyst
US7807044B2 (en) Process for slurry phase hydroconversion of heavy hydrocarbon feeds and/or coal using a supported catalyst
US7666296B2 (en) Process for the hydroconversion in a slurry of heavy hydrocarbonaceous feedstocks in the presence of a dispersed phase and an alumina-based oxide
JP2908959B2 (en) New catalyst composition
US10130942B2 (en) Mesoporous catalyst for hydroconversion of residues and method for preparing the latter
JP5537646B2 (en) High surface area compositions for use in the catalytic hydrogen conversion of heavy hydrocarbon feedstocks, methods for making such compositions and uses thereof
RU2687084C2 (en) Catalyst with bimodal porosity, method for preparing same by comulling active phase and use thereof for hydrotreatment of hydrocarbon residuum
KR102193676B1 (en) Improved resid hydrotreating catalyst containing titania
JP4370124B2 (en) Hydrotreating catalyst composition
TWI630269B (en) Hydrocracking catalyst and use thereof
RU2678456C2 (en) Process for preparing hydrotreating catalyst
JP6511553B2 (en) Self-activated hydrogenation catalyst and method for treating heavy hydrocarbon feedstocks
JP6553030B2 (en) Process for catalytic conversion of micro-residual carbon content of heavy hydrocarbon feedstock and low surface area catalyst for use in said process
JP4519719B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
KR20180134961A (en) Nano-sized zeolite-supported catalysts and methods for their preparation
CN105709805B (en) A kind of chemical industry type hydrocracking catalyst and preparation method thereof
JP2005000873A (en) Method for producing hydrotreating catalyst composition of hydrocarbon
KR102593164B1 (en) Phosphorus-containing molecular sieve, its production method and its application
RU2385764C2 (en) Method of preparing catalysts for deep hydrofining oil fractions
JP2003284961A (en) Method for producing hydrocarbon hydrogenation treatment catalyst composition
JP2006314916A (en) Hydrogenation catalyst, its manufacturing method and hydrogenation method
CN107983405B (en) Preparation method of hydrogenation catalyst
JP2021531962A (en) Comixed catalysts resulting from solutions containing heteropolyanions, methods for their production, and their use in the hydrogenation conversion of heavy hydrocarbon feedstocks.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Ref document number: 4370124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees