JP2009160498A - Method of regenerating hydrogenation catalyst - Google Patents

Method of regenerating hydrogenation catalyst Download PDF

Info

Publication number
JP2009160498A
JP2009160498A JP2007340833A JP2007340833A JP2009160498A JP 2009160498 A JP2009160498 A JP 2009160498A JP 2007340833 A JP2007340833 A JP 2007340833A JP 2007340833 A JP2007340833 A JP 2007340833A JP 2009160498 A JP2009160498 A JP 2009160498A
Authority
JP
Japan
Prior art keywords
catalyst
mass
hydrotreating
regenerating
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007340833A
Other languages
Japanese (ja)
Inventor
Yuichi Yamahata
雄一 山畑
Yuji Shirahama
雄二 白浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2007340833A priority Critical patent/JP2009160498A/en
Publication of JP2009160498A publication Critical patent/JP2009160498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of regenerating a hydrogenation catalyst which regenerates a used hydrogenation catalyst to such an extent that the catalytic activity of the catalyst is restored close to that of the unused catalyst. <P>SOLUTION: The regenerating method has the first process of baking a used hydrogenation catalyst to remove carbonaceous matter adhering to the catalyst so as to obtain a baked catalyst and the second process of causing an active metal ingredient to be supported in the baked catalyst. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、使用済みの水素化処理触媒を未使用の水素化処理触媒の触媒活性と同等程度まで再生する方法に関する。   The present invention relates to a method for regenerating a spent hydroprocessing catalyst to the same extent as the catalytic activity of an unused hydroprocessing catalyst.

従来、アスファルテンや残炭等の炭素質や金属不純物の含有量が少ない軽質油(例えば、ナフサ、ケロセン、軽質軽油、重質軽油、減圧軽油等)の水素化処理に使用された水素化処理触媒(以下、単に「使用済み触媒」ともいう。以下同様)を焼成して、表面に付着する炭素質を除去して再生する方法が知られている。
また、重質油(例えば、常圧残油、減圧残油等)の水素化処理に使用された水素化処理触媒は、重質油に多く含まれるアスファルテン分等の炭素質及びバナジウム、鉄、ニッケル等の金属不純物の付着やシンタリング(sintering)によって、比表面積の低下が起こり、活性(例えば、脱硫活性、脱金属活性等。以下同様)が低下するので、この使用済み触媒を焼成して、付着した炭素質を除去して再生する方法が開発されている(例えば、特許文献1参照)。更に、焼成して炭素質を除去した使用済み触媒を洗浄し、付着した金属不純物を除去する水素化処理触媒の再生方法も知られている(例えば、特許文献2参照)。
Conventionally, hydrotreating catalysts used for hydrotreating light oils (eg, naphtha, kerosene, light gas oil, heavy gas oil, vacuum gas oil, etc.) with low carbon and metal impurities such as asphaltene and residual coal. A method is known in which the carbonaceous material adhering to the surface is removed by calcination (hereinafter, also simply referred to as “used catalyst”; hereinafter the same).
Moreover, the hydrotreating catalyst used for the hydrotreating of heavy oil (for example, atmospheric residual oil, vacuum residual oil, etc.) is a carbonaceous material such as asphaltene contained in heavy oil and vanadium, iron, The specific surface area decreases due to adhesion or sintering of metal impurities such as nickel, and the activity (for example, desulfurization activity, demetalization activity, etc.) is reduced. A method of removing the attached carbonaceous material and regenerating it has been developed (see, for example, Patent Document 1). Furthermore, there is also known a method for regenerating a hydroprocessing catalyst in which a used catalyst from which carbonaceous matter has been removed by calcination is washed to remove attached metal impurities (for example, see Patent Document 2).

特開2006−61845号公報JP 2006-61845 A 特許第3715893号公報Japanese Patent No. 3715893

しかしながら、軽質油を処理した使用済み触媒を焼成した再生触媒の活性は、未使用(新品)の水素化処理触媒(以下、単に「未使用触媒」ともいう。以下同様)の活性の95%程度にとどまるという問題があった。
また、重質油を処理した使用済み触媒を焼成して炭素質を除去する方法では、使用済み触媒に付着している金属不純物を除去できないため、再生触媒の活性が未使用触媒の活性の80%程度にとどまるという問題があった。焼成後に洗浄する方法では、付着している金属不純物を除去可能であるが、水素化処理触媒に担持されているモリブデンやニッケル等の活性金属成分も除去される場合があるという問題があった。
However, the activity of the regenerated catalyst obtained by calcining the used catalyst treated with light oil is about 95% of the activity of an unused (new) hydrotreating catalyst (hereinafter also referred to simply as “unused catalyst”, the same shall apply hereinafter). There was a problem of staying.
Also, in the method of removing the carbonaceous material by calcining the used catalyst treated with heavy oil, the metal impurities adhering to the used catalyst cannot be removed, so that the activity of the regenerated catalyst is 80% of the activity of the unused catalyst. There was a problem of staying around%. The method of washing after calcination can remove attached metal impurities, but there is a problem that active metal components such as molybdenum and nickel supported on the hydrotreating catalyst may also be removed.

本発明はかかる事情に鑑みてなされたもので、使用済みの水素化処理触媒を未使用の水素化処理触媒の触媒活性と同等程度まで再生する水素化処理触媒の再生方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for regenerating a hydroprocessing catalyst that regenerates a used hydroprocessing catalyst to the same level as the catalytic activity of an unused hydroprocessing catalyst. And

前記目的に沿う本発明に係る水素化処理触媒の再生方法は、使用済みの水素化処理触媒を焼成して該水素化処理触媒に付着する炭素質を除去し、焼成処理触媒を得る第1工程と、該焼成処理触媒に活性金属成分を担持させる第2工程とを有する。
ここで、第1工程では、まず、使用済み触媒を、例えば、180〜220℃の窒素気流中で処理して付着する油分をほぼ除去した後、焼成するのが好ましい。焼成操作においては、空気気流中(酸素濃度約21容量%)又は酸素濃度が21容量%を超える雰囲気(すなわち、空気よりも酸素濃度が高い気流中)で、350〜700℃、好ましくは、450〜550℃、かつ、60〜300分間、好ましくは、120〜240分間行い、付着している炭素質を燃焼除去することができる。これにより、焼成処理触媒に対して炭素質が3質量%以下、好ましくは1質量%以下含有された焼成処理触媒を得ることができる。なお、重質油を処理した使用済み触媒には、多くの炭素質が付着しており、焼成処理によってこの炭素質を完全に除去しなくてもよく、例えば、焼成処理触媒に対して0.1質量%程度の炭素質が残存していてもよい。また、活性金属成分としては、通常水素化処理触媒に用いられるものであって、例えば、モリブデン、ニッケル、コバルト、パラジウム、白金等が使用できる。
本発明に係る水素化処理触媒の再生方法において、前記第2工程では、前記焼成処理触媒を活性金属成分含有溶液で含浸した後、乾燥及び/又は焼成してもよい。
ここで、焼成処理触媒に活性金属成分を含浸する方法としては、減圧含浸法、ポアフィリング法(pore filling method)、浸漬法、平衡吸着法等の周知の方法を用いることができる。
The method for regenerating a hydrotreating catalyst according to the present invention in accordance with the above object is a first step of obtaining a calcined catalyst by calcining a used hydrotreating catalyst to remove carbonaceous matter adhering to the hydrotreated catalyst. And a second step of supporting the active metal component on the calcined catalyst.
Here, in the first step, first, it is preferable that the used catalyst is treated in, for example, a nitrogen stream at 180 to 220 ° C. to substantially remove the adhering oil and then calcined. In the firing operation, in an air stream (oxygen concentration of about 21% by volume) or in an atmosphere in which the oxygen concentration exceeds 21% by volume (that is, in an air stream having a higher oxygen concentration than air), 350 to 700 ° C., preferably 450 ˜550 ° C. and 60 to 300 minutes, preferably 120 to 240 minutes, and the attached carbonaceous matter can be removed by combustion. Thereby, a calcined catalyst containing 3% by mass or less, preferably 1% by mass or less of carbonaceous matter can be obtained with respect to the calcined catalyst. In addition, many carbonaceous matter has adhered to the used catalyst which processed heavy oil, and it is not necessary to remove this carbonaceous matter completely by a calcination process. About 1% by mass of carbonaceous matter may remain. Moreover, as an active metal component, it is normally used for a hydroprocessing catalyst, For example, molybdenum, nickel, cobalt, palladium, platinum etc. can be used.
In the method for regenerating a hydroprocessing catalyst according to the present invention, in the second step, the calcination catalyst may be impregnated with an active metal component-containing solution, and then dried and / or calcined.
Here, as a method of impregnating the calcination catalyst with the active metal component, a known method such as a reduced pressure impregnation method, a pore filling method, a dipping method, an equilibrium adsorption method or the like can be used.

本発明に係る水素化処理触媒の再生方法において、前記活性金属成分は、モリブデン(Mo)及びニッケル(Ni)のいずれか一方又は双方を含むのが好ましい。この場合、前記焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として、前記モリブデンをモリブデン酸化物として0.5〜3質量%、好ましくは1〜2質量%、及び/又は、前記ニッケルをニッケル酸化物として0.2〜3質量%、好ましくは0.5〜1質量%を前記焼成処理触媒にそれぞれ新たに担持するのがよい。モリブデンがモリブデン酸化物として、0.5質量%未満の場合には、所定の活性が得られず、3質量%を超えると、活性が増加する割合が低くなるため経済的でない。また、ニッケルがニッケル酸化物として、0.2質量%未満の場合には、所定の活性が得られず、3質量%を超えると、活性が増加する割合が低くなるため経済的でない。ここで、モリブデンの供給源としては、三酸化モリブデン、モリブデン酸アンモニウム等が好適に使用でき、ニッケルの供給源としては、炭酸ニッケル、硝酸ニッケル等が好適に使用できる。
なお、本発明において、焼成処理触媒から炭素質を実質的に完全に除去した触媒とは、焼成処理触媒を600〜1200℃(例えば、1000℃)で焼成して、例えば、高周波燃焼式カーボン分析計で測定される炭素質を定量限界以下まで除去した触媒であり、この触媒の質量は、焼成処理触媒から付着する炭素質の質量を除いたものである。このように、炭素質を実質的に完全に除去した触媒の質量を基準として、焼成処理触媒に担持する活性金属成分の質量を決めるので、焼成処理触媒に残存する炭素質の質量に関わらず、所定量の活性金属成分を新たに担持することができる。
In the method for regenerating a hydrotreating catalyst according to the present invention, the active metal component preferably contains one or both of molybdenum (Mo) and nickel (Ni). In this case, based on the mass of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst, the molybdenum as a molybdenum oxide is 0.5 to 3% by mass, preferably 1 to 2% by mass, and / or Alternatively, 0.2 to 3% by mass, preferably 0.5 to 1% by mass of nickel as nickel oxide may be newly supported on the calcined catalyst. When molybdenum is less than 0.5% by mass as molybdenum oxide, the predetermined activity cannot be obtained, and when it exceeds 3% by mass, the rate of increase in activity is low, which is not economical. Further, when nickel is less than 0.2% by mass as nickel oxide, the predetermined activity cannot be obtained, and when it exceeds 3% by mass, the rate of increase in activity is low, which is not economical. Here, molybdenum trioxide, ammonium molybdate, or the like can be suitably used as the molybdenum supply source, and nickel carbonate, nickel nitrate, or the like can be suitably used as the nickel supply source.
In the present invention, the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst is obtained by calcining the calcined catalyst at 600 to 1200 ° C. (for example, 1000 ° C.), for example, high-frequency combustion carbon analysis. This is a catalyst obtained by removing the carbonaceous matter measured by the meter up to the limit of quantification, and the mass of this catalyst is obtained by removing the mass of the carbonaceous matter adhering to the calcined catalyst. Thus, since the mass of the active metal component supported on the calcined catalyst is determined based on the mass of the catalyst from which the carbonaceous matter has been substantially completely removed, regardless of the mass of the carbonaceous material remaining in the calcined catalyst, A predetermined amount of active metal component can be newly supported.

本発明に係る水素化処理触媒の再生方法において、前記第1工程は、酸素濃度が21容量%を超える雰囲気で行うこともできる。ここで、酸素濃度が21容量%を超えるとは、前記したように空気よりも酸素濃度が高いことを示す。
本発明に係る水素化処理触媒の再生方法において、前記水素化処理触媒は軽質油の水素化処理に使用されたものであってもよい。ここで、軽質油としては、例えば、ナフサ、ケロセン、軽質軽油(Light Gas Oil、LGO)、重質軽油(Heavy Gas Oil、HGO)、減圧軽油(Vacuum Gas Oil、VGO)等がある。
本発明に係る水素化処理触媒の再生方法において、前記水素化処理触媒は重質油の水素化処理に使用されたものであってもよく、この場合には、前記第2工程でキレート剤を添加するのが好ましい。キレート剤は、後述の活性金属成分含有溶液に添加してもよいし、別途キレート剤を含有する溶液を作って使用してもよい。ここで、キレート剤としては、例えば、リンゴ酸、クエン酸、酒石酸、シュウ酸等が使用でき、焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として、0.1〜10質量%、好ましくは0.3〜5質量%、より好ましくは0.4〜2質量%添加するのがよく、キレート剤が、0.1質量%未満では、後述する効果が得られ難くなると共に、活性金属成分の安定性が低くなり、10質量%を超えると、経済性が悪くなると共に、触媒の強度が弱くなる。ここで、重質油としては、例えば、常圧残油(Atmospheric Residue、AR)、減圧残油(Vacuum Residue、VR)等がある。
In the method for regenerating a hydroprocessing catalyst according to the present invention, the first step may be performed in an atmosphere having an oxygen concentration exceeding 21% by volume. Here, the oxygen concentration exceeding 21% by volume indicates that the oxygen concentration is higher than that of air as described above.
In the method for regenerating a hydrotreating catalyst according to the present invention, the hydrotreating catalyst may be one used for hydrotreating light oil. Here, examples of the light oil include naphtha, kerosene, light gas oil (Light Gas Oil, LGO), heavy gas oil (Heavy Gas Oil, HGO), and vacuum gas oil (Vacuum Gas Oil, VGO).
In the method for regenerating a hydrotreating catalyst according to the present invention, the hydrotreating catalyst may be used for hydrotreating heavy oil. In this case, a chelating agent is added in the second step. It is preferable to add. The chelating agent may be added to an active metal component-containing solution described later, or a solution containing a chelating agent may be separately prepared and used. Here, as the chelating agent, for example, malic acid, citric acid, tartaric acid, oxalic acid and the like can be used, and 0.1 to 0.1 based on the mass of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst. 10% by mass, preferably 0.3-5% by mass, more preferably 0.4-2% by mass is added. If the chelating agent is less than 0.1% by mass, the effects described later are hardly obtained. At the same time, the stability of the active metal component is lowered, and if it exceeds 10% by mass, the economy becomes worse and the strength of the catalyst becomes weaker. Here, examples of the heavy oil include atmospheric residual oil (Atmospheric Residue, AR), and vacuum residual oil (Vacuum Residue, VR).

本発明の水素化処理触媒の再生方法は、使用済みの水素化処理触媒を焼成して付着する炭素質を除去した後、更に活性金属成分を担持させるので、担持されている活性金属成分を除去することなく、未使用触媒の活性と同等程度まで再生することができる。ここで、未使用触媒の活性と同等程度とは、未使用触媒の活性を100%としたときの再生触媒の相対脱硫活性が、軽質油を処理した水素化処理触媒においては、98〜110%程度、重質油を処理した水素化処理触媒においては、90〜110%程度のことをいう。
また、焼成処理触媒に活性金属成分含有溶液で含浸した後、乾燥及び/又は焼成する場合には、活性金属成分を簡単に担持することができる。活性金属成分が、モリブデン及び/又はニッケルを含む場合には、高い活性を得ることができる。焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として、焼成処理触媒にモリブデンをモリブデン酸化物として0.5〜3質量%、及び/又は、ニッケルをニッケル酸化物として0.2〜3質量%をそれぞれ新たに担持した場合には、少量の担持で活性を得ることができる。
更に、焼成を酸素濃度が21容量%を超える雰囲気で行った場合には、炭素質を効率よく除去できる。また、重質油の水素化処理に使用した水素化処理触媒を再生する場合、活性金属成分を担持する際にキレート剤を添加して、凝集した付着金属(特に、バナジウム)を再分散させて、効率よく触媒を再生することができる。
In the method for regenerating a hydrotreating catalyst of the present invention, after the used hydrotreating catalyst is baked to remove adhering carbonaceous matter, an active metal component is further supported, so the supported active metal component is removed. Without regenerating to the same extent as the activity of the unused catalyst. Here, the same level as the activity of the unused catalyst means that the relative desulfurization activity of the regenerated catalyst when the activity of the unused catalyst is 100% is 98 to 110% in the hydrotreating catalyst treated with light oil. In the hydroprocessing catalyst which processed the heavy oil, it means about 90 to 110%.
In addition, when the calcination treatment catalyst is impregnated with the active metal component-containing solution and then dried and / or calcined, the active metal component can be easily supported. When the active metal component contains molybdenum and / or nickel, high activity can be obtained. On the basis of the mass of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst, 0.5 to 3% by mass of molybdenum as molybdenum oxide and / or 0 as nickel as nickel oxide. When 2 to 3% by mass is newly supported, the activity can be obtained with a small amount of support.
Furthermore, when firing is performed in an atmosphere where the oxygen concentration exceeds 21% by volume, the carbonaceous matter can be efficiently removed. In addition, when regenerating the hydrotreating catalyst used in the hydrotreating of heavy oil, a chelating agent is added when supporting the active metal component, and the agglomerated deposited metal (particularly vanadium) is redispersed. The catalyst can be efficiently regenerated.

本発明の第1の実施の形態に係る軽質油を水素化処理した水素化処理触媒の再生方法について説明する。
(第1工程)
ナフサ、ケロセン、軽質軽油、重質軽油、減圧軽油等の軽質油の水素化処理に使用した水素化処理触媒(使用済み触媒)を、例えば、180〜220℃の窒素気流中(空気よりも酸素濃度が低い状態、すなわち、窒素濃度が80容量%以上、好ましくは90容量%以上、より好ましくは95容量%以上である。以下同様)で処理して付着している油分(軽質油)をほぼ除去した後、更に空気気流中(酸素濃度約21容量%)で、350〜700℃、好ましくは450〜550℃、より好ましくは500℃を超え550℃以下、かつ、60〜300分間、好ましくは120〜240分間焼成し、付着している炭素質を燃焼して除去し焼成処理触媒を得る。ここで、焼成処理触媒に付着する炭素質が、焼成処理触媒に対して3質量%以下、好ましくは1質量%以下、例えば、焼成処理触媒に対して0.1質量%程度となるように焼成するのがよい。また、空気気流に酸素を添加して、焼成時の酸素濃度が21容量%を超える雰囲気としてもよい。なお、本実施の形態において、焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量とは、焼成処理触媒を1000℃で焼成した後の触媒の質量であり、また、焼成処理触媒を1000℃で焼成した前後の質量の差を、該焼成処理触媒に付着している炭素質の質量として算出している(以下の実施の形態においても同様である)。なお、焼成処理触媒を1000℃で焼成した際に、炭素質が完全に除去されているか否かは、例えば、高周波燃焼式カーボン分析計による測定によって確認することができる。
A method for regenerating a hydrotreating catalyst obtained by hydrotreating light oil according to the first embodiment of the present invention will be described.
(First step)
Hydrotreating catalyst (used catalyst) used for hydrotreating light oil such as naphtha, kerosene, light gas oil, heavy gas oil, vacuum gas oil, etc. is used in, for example, a nitrogen stream at 180 to 220 ° C. (oxygen than air). In a low concentration state, that is, nitrogen concentration is 80% by volume or more, preferably 90% by volume or more, more preferably 95% by volume or more. After the removal, in an air stream (oxygen concentration of about 21% by volume), 350 to 700 ° C., preferably 450 to 550 ° C., more preferably more than 500 ° C. and 550 ° C. or less, and 60 to 300 minutes, preferably Calcination is performed for 120 to 240 minutes, and the adhering carbon is burned and removed to obtain a calcination catalyst. Here, calcination is performed so that the carbonaceous matter attached to the calcination catalyst is 3 mass% or less, preferably 1 mass% or less, for example, about 0.1 mass% with respect to the calcination catalyst. It is good to do. Alternatively, oxygen may be added to the air stream to create an atmosphere in which the oxygen concentration during firing exceeds 21% by volume. In the present embodiment, the mass of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst is the mass of the catalyst after calcining the calcined catalyst at 1000 ° C., and the calcined catalyst. The difference between the masses before and after calcining at 1000 ° C. is calculated as the carbonaceous mass adhering to the calcined catalyst (the same applies to the following embodiments). In addition, when a calcination process catalyst is baked at 1000 degreeC, it can be confirmed by the measurement by a high frequency combustion type | mold carbon analyzer, for example whether carbonaceous material is removed completely.

(第2工程)
次に、得られた焼成処理触媒に、活性金属成分として、例えば、モリブデン(Mo)及びニッケル(Ni)のいずれか一方又は双方を含む溶液(活性金属成分含有溶液。以下、「含浸液」ともいう)を、減圧含浸法、ポアフィリング法、浸漬法、平衡吸着法等の周知の方法によって含浸した後、室温から300℃まで、好ましくは室温から270℃まで、更に好ましくは室温から250℃まで昇温乾燥し、更に空気気流中で400〜700℃、好ましくは500〜600℃、かつ、30〜120分間、好ましくは45〜90分間焼成して、焼成処理触媒に活性金属成分を担持した再生触媒を製造する。ここで、焼成処理触媒に新たに担持されるモリブデン(Mo)及びニッケル(Ni)の量は、焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として、それぞれモリブデン酸化物(MoO)として0.5〜3質量%、好ましくは1〜2質量%、また、ニッケル酸化物(NiO)として0.2〜3質量%、好ましくは0.5〜1質量%がよい。ここで、モリブデンの供給源としては、三酸化モリブデン、モリブデン酸アンモニウム等が使用でき、ニッケルの供給源としては、炭酸ニッケル、硝酸ニッケル等が使用できる。前記したポアフィリング法とは、予め秤量した焼成処理触媒の全細孔容積に相当する量の活性金属含有溶液を作製し、この活性金属含有溶液を減圧条件下で脱気された該焼成処理触媒の細孔に取り込むことにより、活性金属成分を細孔内に含浸させる方法である。なお、焼成処理触媒の全細孔容積は、水滴定法、水銀圧入法等の周知の方法によって求めることができる。
(Second step)
Next, a solution containing an active metal component, for example, one or both of molybdenum (Mo) and nickel (Ni) (active metal component-containing solution. Is impregnated by a known method such as a reduced pressure impregnation method, a pore filling method, an immersion method, an equilibrium adsorption method, etc., and then from room temperature to 300 ° C., preferably from room temperature to 270 ° C., more preferably from room temperature to 250 ° C. Recycled by heating and drying, and further calcining in an air stream at 400 to 700 ° C., preferably 500 to 600 ° C. and 30 to 120 minutes, preferably 45 to 90 minutes, and carrying the active metal component on the calcined catalyst. A catalyst is produced. Here, the amounts of molybdenum (Mo) and nickel (Ni) newly supported on the calcined catalyst are molybdenum oxides based on the mass of the catalyst from which the carbonaceous matter is substantially completely removed from the calcined catalyst. (MoO 3 ) is 0.5 to 3% by mass, preferably 1 to 2% by mass, and nickel oxide (NiO) is 0.2 to 3% by mass, preferably 0.5 to 1% by mass. Here, molybdenum trioxide, ammonium molybdate, or the like can be used as a supply source of molybdenum, and nickel carbonate, nickel nitrate, or the like can be used as a supply source of nickel. The pore filling method described above is to prepare an active metal-containing solution in an amount corresponding to the total pore volume of the calcined catalyst weighed in advance, and the calcined catalyst degassed under reduced pressure conditions. In this method, the active metal component is impregnated in the pores by being taken into the pores. The total pore volume of the calcined catalyst can be determined by a known method such as a water titration method or a mercury intrusion method.

本発明の第2の実施の形態に係る重質油を水素化処理した水素化処理触媒の再生方法は、第2工程でキレート剤を添加する点が、前記した第1の実施の形態と大きく異なっている。以下、詳しく説明する。
(第1工程)
常圧残油、減圧残油等の重質油の水素化処理に使用した水素化処理触媒(使用済み触媒)を、例えば、180〜220℃の窒素気流中で処理して付着している油分をほぼ除去した後、空気気流中で、350〜700℃、好ましくは、450〜550℃、かつ、60〜300分間、好ましくは、120〜240分間焼成し、付着している炭素質が、焼成処理触媒に対して3質量%以下、好ましくは1質量%以下、例えば、焼成処理触媒に対して0.1質量%程度となるように燃焼除去して焼成処理触媒を得る。また、焼成時の酸素濃度は、21容量%を超える雰囲気で行ってもよい。
(第2工程)
次に、得られた焼成処理触媒に、前記した活性金属成分及びキレート剤(例えば、リンゴ酸、クエン酸、酒石酸、シュウ酸等)を含む含浸液を、減圧含浸法、ポアフィリング法、浸漬法、平衡吸着法等の周知の方法によって含浸した後、室温から300℃まで、好ましくは室温から270℃まで、更に好ましくは室温から250℃まで昇温乾燥し、更に空気気流中で400〜700℃、好ましくは500〜600℃、かつ、30〜120分間、好ましくは45〜90分間焼成して、焼成処理触媒に所定量の活性金属成分(モリブデン及びニッケル)を担持した再生触媒を製造する。ここで、含浸液には、焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として、例えば、0.1〜10質量%、好ましくは0.3〜5質量%、より好ましくは0.4〜2質量%となる量のキレート剤が含有されている。なお、この際に、キレート剤が0.1質量%未満の場合には、活性金属成分が析出し、沈殿を生成することがある。なお、活性金属成分、すなわち、モリブデン及びニッケルの供給源やその添加量は、第1の実施の形態の第2工程における条件と同様である。
The method for regenerating a hydrotreating catalyst obtained by hydrotreating heavy oil according to the second embodiment of the present invention is greatly different from the first embodiment described above in that a chelating agent is added in the second step. Is different. This will be described in detail below.
(First step)
For example, an oil component deposited by treating a hydrotreating catalyst (used catalyst) used for hydrotreating heavy oil such as normal pressure residue or reduced pressure residue in a nitrogen stream at 180 to 220 ° C. After being almost removed, it is baked in an air stream at 350 to 700 ° C., preferably 450 to 550 ° C. and 60 to 300 minutes, preferably 120 to 240 minutes. A calcination treatment catalyst is obtained by combustion removal so that the amount is 3% by mass or less, preferably 1% by mass or less, for example, about 0.1% by mass with respect to the calcination treatment catalyst. The oxygen concentration during firing may be performed in an atmosphere exceeding 21% by volume.
(Second step)
Next, an impregnating solution containing the active metal component and a chelating agent (for example, malic acid, citric acid, tartaric acid, oxalic acid, etc.) is added to the obtained calcination treatment catalyst under reduced pressure impregnation method, pore filling method, immersion method. Then, after impregnation by a well-known method such as an equilibrium adsorption method, the temperature is dried from room temperature to 300 ° C, preferably from room temperature to 270 ° C, more preferably from room temperature to 250 ° C, and further from 400 to 700 ° C in an air stream. The regenerated catalyst in which a predetermined amount of active metal components (molybdenum and nickel) are supported on the calcined catalyst is produced by calcining, preferably at 500 to 600 ° C. and for 30 to 120 minutes, preferably 45 to 90 minutes. Here, the impregnating liquid contains, for example, 0.1 to 10% by mass, preferably 0.3 to 5% by mass, based on the mass of the catalyst from which the carbonaceous matter is substantially completely removed from the calcined catalyst. The chelating agent is preferably contained in an amount of 0.4 to 2% by mass. At this time, when the chelating agent is less than 0.1% by mass, the active metal component may be precipitated to generate a precipitate. In addition, the supply source and addition amount of the active metal component, that is, molybdenum and nickel are the same as the conditions in the second step of the first embodiment.

〔軽質油の水素化処理に使用した水素化処理触媒の再生〕
(実施例1)
ニッケル及びモリブデンを担持した新品のアルミナ担体触媒(未使用触媒)を軽質油水素化処理装置に配置し、表1に示す性状の軽質軽油(軽質油の一例)を、表2に示す一般的な軽油脱硫条件で、16000時間通油して水素化処理を行って、使用済みの水素化処理触媒(使用済み触媒)を得た。次に、この使用済み触媒を200℃に保持された窒素気流中で通気し、表面に付着した油分を除去した後、500℃に保持された空気気流中で3時間焼成して炭素質等を除去し、焼成処理触媒αを得た。また、得られた焼成処理触媒αの一部を秤量した後、これを1000℃で焼成し、焼成処理触媒αから炭素質を実質的に完全に除去した触媒を作製し、この触媒と焼成処理触媒αとの質量の差から焼成処理触媒αに付着する炭素質の質量を求めた。ここで、焼成処理触媒αの性状を表3に示す。なお、焼成処理触媒αから炭素質を実質的に完全に除去した触媒を高周波燃焼式カーボン分析計によって測定し、炭素質が完全に除去されていることを確認した。
[Regeneration of hydrotreating catalyst used for hydrotreating light oil]
Example 1
A new alumina-supported catalyst (unused catalyst) carrying nickel and molybdenum is placed in a light oil hydrotreating apparatus, and light light oils having the properties shown in Table 1 (an example of light oil) are shown in Table 2. Under light oil desulfurization conditions, oil was passed through for 16000 hours to obtain a used hydroprocessing catalyst (used catalyst). Next, this used catalyst is aerated in a nitrogen stream maintained at 200 ° C. to remove oil adhering to the surface, and then calcined for 3 hours in an air stream maintained at 500 ° C. This was removed to obtain a calcination catalyst α. Moreover, after weighing a part of the obtained calcination treatment catalyst α, this was calcinated at 1000 ° C. to produce a catalyst from which the carbonaceous matter was substantially completely removed from the calcination treatment catalyst α. The mass of carbonaceous matter adhering to the calcined catalyst α was determined from the difference in mass from the catalyst α. Here, properties of the calcination catalyst α are shown in Table 3. The catalyst from which the carbonaceous matter was substantially completely removed from the calcined catalyst α was measured with a high-frequency combustion type carbon analyzer, and it was confirmed that the carbonaceous matter was completely removed.

Figure 2009160498
Figure 2009160498

Figure 2009160498
Figure 2009160498

Figure 2009160498
Figure 2009160498

次に、焼成処理触媒αから炭素質を実質的に完全に除去した触媒400gに相当する焼成処理触媒α400.2g(炭素質を0.2g含む)を秤取り、焼成処理触媒αの細孔容積に相当する容量である224mlの含浸液aを減圧含浸法によって含浸した後、空気気流中において500℃で60分間焼成し、再生触媒Aを得た。
ここで、含浸液aは、三酸化モリブデン2.0g(焼成処理触媒αから炭素質を実質的に完全に除去した触媒の質量、すなわち、400gを基準として、0.5質量%である。以下同様。)、及び炭酸ニッケル1.3g(NiOとして、0.2質量%)、及び、炭酸ニッケルを溶解させるためのリンゴ酸2.0g(0.5質量%。少なくともNiOの2.5倍質量%必要である。以下同様)を水に溶解して全量を224mlとして作製した。
Next, 400.2 g (including 0.2 g of carbonaceous matter) of the calcined catalyst α corresponding to 400 g of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst α is weighed, and the pore volume of the calcined catalyst α After impregnating 224 ml of the impregnating solution a having a volume corresponding to 1 by a reduced pressure impregnation method, the regenerated catalyst A was obtained by calcining in an air stream at 500 ° C. for 60 minutes.
Here, the impregnating liquid a is 2.0 g of molybdenum trioxide (the mass of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst α, that is, 0.5% by mass based on 400 g. The same), and nickel carbonate 1.3 g (as NiO, 0.2% by mass) and malic acid 2.0 g (0.5% by mass, at least 2.5 times the mass of NiO) for dissolving nickel carbonate % Is necessary. The same applies hereinafter) was dissolved in water to make a total volume of 224 ml.

(実施例2〜6)
実施例2〜6は、焼成処理触媒α400.2gに対して、以下に示す224mlの含浸液b〜fをそれぞれ減圧含浸法によって含浸した後、空気気流中において500℃で60分間焼成し、再生触媒B〜Fを作製した。
含浸液bは、三酸化モリブデン4.0g(1.0質量%)、炭酸ニッケル2.6g(NiOとして、0.4質量%)、及び、リンゴ酸4.0g(1.0質量%)を水に溶解して全量を224mlとした。含浸液cは、三酸化モリブデン8.0g(2.0質量%)、炭酸ニッケル6.5g(NiOとして、1.0質量%)、及び、リンゴ酸10.0g(2.5質量%)を水に溶解して全量を224mlとした。含浸液dは、三酸化モリブデン12.0g(3.0質量%)、炭酸ニッケル19.5g(3.0質量%)、及び、リンゴ酸30.0g(7.5質量%)を水に溶解して全量を224mlとした。含浸液eは、三酸化モリブデン12.0g(3.0質量%)を水に溶解して全量を224mlとした。含浸液fは、炭酸ニッケル19.5g(NiOとして、3.0質量%)、及び、リンゴ酸30.0g(7.5質量%)を水に溶解して全量を224mlとした。
(比較例1)
焼成処理触媒αに活性金属成分を含浸せず、再生触媒Gとして使用した。
(Examples 2 to 6)
In Examples 2 to 6, 224 ml of impregnating liquids b to f shown below were impregnated by a reduced pressure impregnation method with respect to 400.2 g of the calcined catalyst α, respectively, and then calcined at 500 ° C. for 60 minutes in an air stream. Catalysts B to F were prepared.
The impregnating liquid b contains 4.0 g (1.0% by mass) of molybdenum trioxide, 2.6 g of nickel carbonate (0.4% by mass as NiO), and 4.0 g (1.0% by mass) of malic acid. The total volume was made up to 224 ml by dissolving in water. The impregnating liquid c is composed of 8.0 g (2.0 mass%) of molybdenum trioxide, 6.5 g of nickel carbonate (1.0 mass% as NiO), and 10.0 g (2.5 mass%) of malic acid. The total volume was made up to 224 ml by dissolving in water. As the impregnation liquid d, 12.0 g (3.0 mass%) of molybdenum trioxide, 19.5 g (3.0 mass%) of nickel carbonate, and 30.0 g (7.5 mass%) of malic acid are dissolved in water. The total volume was 224 ml. The impregnating solution e was dissolved in water with 12.0 g (3.0% by mass) of molybdenum trioxide to make a total amount of 224 ml. The impregnating solution f was dissolved in 19.5 g of nickel carbonate (3.0% by mass as NiO) and 30.0 g (7.5% by mass) of malic acid in water to make a total amount of 224 ml.
(Comparative Example 1)
The calcined catalyst α was not impregnated with an active metal component and used as a regenerated catalyst G.

(試験例1)
高圧反応が可能な内径1インチの固定床反応器に再生触媒A〜G及び未使用の触媒をそれぞれ充填し、前記した軽質軽油を表2の軽油脱硫条件で通油して各々水素化処理を行い再生触媒A〜Gの水素化脱硫活性を未使用の触媒の活性を100%として相対評価を行った。その結果を表4に示す。
(Test Example 1)
Recycled catalysts A to G and unused catalyst are filled in a fixed bed reactor having an inner diameter of 1 inch capable of high pressure reaction, respectively, and the light diesel oil described above is passed under the diesel oil desulfurization conditions shown in Table 2 for hydrogenation treatment. The hydrodesulfurization activity of the regenerated catalysts A to G was evaluated relative to the activity of the unused catalyst as 100%. The results are shown in Table 4.

Figure 2009160498
Figure 2009160498

これらの結果から解るように、軽質油の水素化処理に使用した触媒を焼成して、付着した炭素質を除去した後、活性金属成分を担持することにより、未使用の水素化処理触媒の触媒活性と同等程度まで再生させることが可能となった。   As can be seen from these results, the catalyst used in the hydrotreatment of light oil is calcined to remove the adhering carbonaceous matter, and then the active metal component is supported, whereby the catalyst of the unused hydrotreatment catalyst. It was possible to regenerate to the same extent as the activity.

〔重質油の水素化処理に使用した水素化処理触媒の再生〕
(実施例7〜13)
ニッケル及びモリブデンを担持したアルミナ担体触媒(未使用触媒)を重質油水素化処理装置に配置し、表5に示す性状の中東系の常圧残油(重質油の一例)を、表6に示す一般的な直接脱硫条件で、8000時間通油して水素化処理を行って、使用済みの水素化処理触媒(使用済み触媒)を得た。次に、この使用済み触媒を200℃に保持された窒素気流中で通気し、表面に付着した油分を除去した後、500℃に保持された空気気流中で3時間焼成して炭素質等を除去し、焼成処理触媒βを得た。また、焼成処理触媒βを1000℃で焼成し、焼成処理触媒βから炭素質を実質的に完全に除去した触媒を作製し、この触媒と焼成処理触媒βとの質量の差から焼成処理触媒βに付着する炭素質の質量を求めた。ここで、焼成処理触媒βの性状を表7に示す。なお、焼成処理触媒βから炭素質を実質的に完全に除去した触媒を高周波燃焼式カーボン分析計によって測定し、炭素質が完全に除去されていることを確認した。
[Regeneration of hydrotreating catalyst used for hydrotreating heavy oil]
(Examples 7 to 13)
An alumina-supported catalyst (unused catalyst) supporting nickel and molybdenum is placed in a heavy oil hydrotreating apparatus, and Middle Eastern atmospheric pressure residual oil (an example of heavy oil) having the properties shown in Table 5 is shown in Table 6. Under the general direct desulfurization conditions shown in Fig. 4, the oil was passed through for 8000 hours to carry out the hydrogenation treatment to obtain a used hydrotreatment catalyst (used catalyst). Next, this used catalyst is aerated in a nitrogen stream maintained at 200 ° C. to remove oil adhering to the surface, and then calcined for 3 hours in an air stream maintained at 500 ° C. This was removed to obtain a calcined catalyst β. Further, the calcined catalyst β is calcined at 1000 ° C. to prepare a catalyst in which carbonaceous matter is substantially completely removed from the calcined catalyst β, and the calcined catalyst β is determined from the difference in mass between the catalyst and the calcined catalyst β. The mass of carbonaceous matter adhering to was determined. Here, Table 7 shows properties of the calcination catalyst β. In addition, the catalyst from which the carbonaceous matter was substantially completely removed from the calcined catalyst β was measured with a high-frequency combustion type carbon analyzer, and it was confirmed that the carbonaceous matter was completely removed.

Figure 2009160498
Figure 2009160498

Figure 2009160498
Figure 2009160498

Figure 2009160498
Figure 2009160498

次に、焼成処理触媒βから炭素質を実質的に完全に除去した触媒400gに相当する焼成処理触媒β400.5g(炭素質を0.5g含む)を秤取り、焼成処理触媒βの細孔容積に相当する容量である240mlの含浸液a〜f(実施例1参照)及びnを減圧含浸法によってそれぞれ含浸した後、空気気流中において500℃で60分間焼成し、再生触媒H〜Nを得た。なお、含浸液nは、三酸化モリブデン12.0g(3.0質量%)、及び、リンゴ酸30.0g(7.5質量%)を水に溶解して全量を224mlとした。
(比較例2)
焼成処理触媒βに活性金属成分及びキレート剤(リンゴ酸)を含浸せず、再生触媒Oとして使用した。
Next, 400.5 g (including 0.5 g of carbonaceous matter) of the calcined catalyst β corresponding to 400 g of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst β is weighed, and the pore volume of the calcined catalyst β After impregnating 240 ml of impregnating liquids a to f (see Example 1) and n each having a volume corresponding to 1 by a reduced pressure impregnation method, the regenerated catalysts H to N were obtained by calcining in an air stream at 500 ° C. for 60 minutes. It was. In addition, the impregnating liquid n was dissolved in water with 12.0 g (3.0% by mass) of molybdenum trioxide and 30.0 g (7.5% by mass) of malic acid in a total amount of 224 ml.
(Comparative Example 2)
The calcined catalyst β was not impregnated with an active metal component and a chelating agent (malic acid) and used as a regenerated catalyst O.

(試験例2)
高圧反応が可能な内径1インチの固定床反応器に、再生触媒H〜O及び未使用の触媒をそれぞれ充填し、前記した常圧残油を表6の直接脱硫条件で通油して各々水素化処理を行い再生触媒H〜Oの水素化脱硫活性を未使用の触媒の活性を100%として相対評価を行った。その結果を表8に示す。
(Test Example 2)
A fixed bed reactor having an inner diameter of 1 inch capable of high-pressure reaction is filled with regenerated catalysts HO and unused catalyst, and the above-mentioned atmospheric residue is passed under the direct desulfurization conditions shown in Table 6 to generate hydrogen. The hydrodesulfurization activity of the regenerated catalysts H to O was evaluated relative to the activity of the unused catalyst as 100%. The results are shown in Table 8.

Figure 2009160498
Figure 2009160498

これらの結果から解るように、重質油の水素化処理に使用した触媒を焼成して付着した炭素質を除去した後、活性金属成分を担持することにより、未使用の水素化処理触媒の触媒活性と同等程度まで再生させることが可能となった。また、再生触媒Lと再生触媒Nとを比較すると、リンゴ酸による効果が解る。   As can be seen from these results, the catalyst used for the hydroprocessing of heavy oil is baked to remove the adhering carbonaceous matter, and then the active metal component is supported, so that the catalyst of the unused hydroprocessing catalyst. It was possible to regenerate to the same extent as the activity. Further, when the regenerated catalyst L and the regenerated catalyst N are compared, the effect of malic acid is understood.

本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の水素化処理触媒の再生方法を構成する場合も本発明の権利範囲に含まれる。
例えば、本実施の形態では、活性金属成分として、三酸化モリブデンを用いたが、モリブデン酸アンモニウムを使用してよく、また、炭酸ニッケルの替わりに、硝酸ニッケルを用いてもよい。特に、硝酸ニッケルは水に溶解するため、軽質油を処理した水素化処理触媒の再生に使用する活性金属成分として用いると、含浸液にリンゴ酸等を使用しなくてもよくなる。
The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. A case where the method for regenerating a hydroprocessing catalyst of the present invention is configured by combining the above is also included in the scope of the present invention.
For example, in the present embodiment, molybdenum trioxide is used as the active metal component, but ammonium molybdate may be used, and nickel nitrate may be used instead of nickel carbonate. In particular, since nickel nitrate dissolves in water, malic acid or the like does not have to be used in the impregnation liquid when used as an active metal component used for regenerating a hydroprocessing catalyst that has been processed with light oil.

Claims (8)

使用済みの水素化処理触媒を焼成し、該水素化処理触媒に付着する炭素質を除去して焼成処理触媒を得る第1工程と、該焼成処理触媒に活性金属成分を担持させる第2工程とを有することを特徴とする水素化処理触媒の再生方法。   A first step of calcining a used hydrotreating catalyst, removing carbonaceous matter adhering to the hydrotreating catalyst to obtain a calcined catalyst, and a second step of supporting an active metal component on the calcined catalyst; A method for regenerating a hydrotreating catalyst, comprising: 前記第2工程では、前記焼成処理触媒を活性金属成分含有溶液で含浸した後、乾燥及び/又は焼成することを特徴とする請求項1記載の水素化処理触媒の再生方法。   The method for regenerating a hydroprocessing catalyst according to claim 1, wherein, in the second step, the calcination treatment catalyst is impregnated with an active metal component-containing solution, and then dried and / or calcination. 前記活性金属成分は、モリブデン及びニッケルのいずれか一方又は双方を含むことを特徴とする請求項1又は2に記載の水素化処理触媒の再生方法。   The method for regenerating a hydroprocessing catalyst according to claim 1 or 2, wherein the active metal component contains one or both of molybdenum and nickel. 前記焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として、前記モリブデンをモリブデン酸化物として0.5〜3質量%、及び/又は、前記ニッケルをニッケル酸化物として0.2〜3質量%を前記焼成処理触媒にそれぞれ新たに担持することを特徴とする請求項3記載の水素化処理触媒の再生方法。   On the basis of the mass of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst, 0.5 to 3 mass% of the molybdenum as a molybdenum oxide and / or the nickel as a nickel oxide of 0. The method for regenerating a hydroprocessing catalyst according to claim 3, wherein 2 to 3 mass% is newly supported on the calcining catalyst. 前記第1工程は、酸素濃度が21容量%を超える雰囲気で行うことを特徴とする請求項1〜4のいずれか1項に記載の水素化処理触媒の再生方法。   The said 1st process is performed in the atmosphere where oxygen concentration exceeds 21 volume%, The regeneration method of the hydroprocessing catalyst of any one of Claims 1-4 characterized by the above-mentioned. 前記水素化処理触媒は軽質油の水素化処理に使用されたものであることを特徴とする請求項1〜5のいずれか1項に記載の水素化処理触媒の再生方法。   The method for regenerating a hydrotreating catalyst according to any one of claims 1 to 5, wherein the hydrotreating catalyst is used for hydrotreating light oil. 前記水素化処理触媒は重質油の水素化処理に使用されたものであることを特徴とする請求項1〜5のいずれか1項に記載の水素化処理触媒の再生方法。   The method for regenerating a hydrotreating catalyst according to any one of claims 1 to 5, wherein the hydrotreating catalyst is used for hydrotreating heavy oil. 前記第2工程でキレート剤を添加することを特徴とする請求項7記載の水素化処理触媒の再生方法。   8. The method for regenerating a hydroprocessing catalyst according to claim 7, wherein a chelating agent is added in the second step.
JP2007340833A 2007-12-28 2007-12-28 Method of regenerating hydrogenation catalyst Pending JP2009160498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007340833A JP2009160498A (en) 2007-12-28 2007-12-28 Method of regenerating hydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007340833A JP2009160498A (en) 2007-12-28 2007-12-28 Method of regenerating hydrogenation catalyst

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013210284A Division JP5892989B2 (en) 2013-10-07 2013-10-07 Regeneration method of hydrodesulfurization catalyst

Publications (1)

Publication Number Publication Date
JP2009160498A true JP2009160498A (en) 2009-07-23

Family

ID=40963725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007340833A Pending JP2009160498A (en) 2007-12-28 2007-12-28 Method of regenerating hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP2009160498A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009126319A1 (en) * 2008-04-11 2009-10-15 Exxonmobil Research And Engineering Company Hydroprocessing using rejuvenated supported hydroprocessing catalysts
WO2009126278A3 (en) * 2008-04-11 2009-12-03 Exxonmobil Research And Engineering Company Regeneration and rejuvenation of supported hydroprocessing catalysts
JP2012139626A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Method for regeneration of hydrotreating catalyst
JP2012148215A (en) * 2011-01-17 2012-08-09 Cosmo Oil Co Ltd Regeneration method for hydrotreatment catalyst for hydrocarbon oil
JP2013027839A (en) * 2011-07-29 2013-02-07 Jgc Catalysts & Chemicals Ltd Method of manufacturing hydrogenation catalyst
JP2013027838A (en) * 2011-07-29 2013-02-07 Jgc Catalysts & Chemicals Ltd Method of regenerating hydrogenation catalyst
RU2484896C1 (en) * 2012-04-09 2013-06-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Regenerated catalyst for hydrofining hydrocarbon material, method of regenerating deactivated catalyst and process of hydrofining hydrocarbon material
WO2014013784A1 (en) * 2012-07-19 2014-01-23 千代田化工建設株式会社 Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
JP2014502205A (en) * 2010-08-13 2014-01-30 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Method for recovering activity of spent hydrotreating catalyst, spent hydrotreating catalyst having recovered catalytic activity, and hydrotreating method
JP2015171693A (en) * 2014-03-12 2015-10-01 Jfeケミカル株式会社 Regeneration process of hydrodesulfurization catalyst
JP2017517382A (en) * 2014-04-16 2017-06-29 カタリスト リカバリー ヨーロッパ エス.エー.Catalyst Recovery Europe S.A. Method for activating hydrotreating catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111446A (en) * 1988-09-06 1990-04-24 Intevep Sa Hydroconversion of heavy oil and catalyst used therein and its production
JPH05192591A (en) * 1991-07-03 1993-08-03 Texaco Dev Corp Method for reactivating waste alumina supported hydrogenating catalyst
JP2005262040A (en) * 2004-03-17 2005-09-29 Honda Motor Co Ltd Method for controlling catalytic activity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111446A (en) * 1988-09-06 1990-04-24 Intevep Sa Hydroconversion of heavy oil and catalyst used therein and its production
JPH05192591A (en) * 1991-07-03 1993-08-03 Texaco Dev Corp Method for reactivating waste alumina supported hydrogenating catalyst
JP2005262040A (en) * 2004-03-17 2005-09-29 Honda Motor Co Ltd Method for controlling catalytic activity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7013002925; GEORGE Z M et al.: 'Regeneration of a spent hydroprocessing catalyst' PROCEEDINGS INTERNATIONAL CONGRESS ON CATALYSIS , 19880701, page.230-237 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009126319A1 (en) * 2008-04-11 2009-10-15 Exxonmobil Research And Engineering Company Hydroprocessing using rejuvenated supported hydroprocessing catalysts
WO2009126278A3 (en) * 2008-04-11 2009-12-03 Exxonmobil Research And Engineering Company Regeneration and rejuvenation of supported hydroprocessing catalysts
US7906447B2 (en) 2008-04-11 2011-03-15 Exxonmobil Research And Engineering Company Regeneration and rejuvenation of supported hydroprocessing catalysts
JP2011516686A (en) * 2008-04-11 2011-05-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー Hydrogenation method using regenerated supported hydrogenation catalyst
JP2011516259A (en) * 2008-04-11 2011-05-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー Regeneration and activation of supported hydrotreating catalysts
JP2014502205A (en) * 2010-08-13 2014-01-30 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Method for recovering activity of spent hydrotreating catalyst, spent hydrotreating catalyst having recovered catalytic activity, and hydrotreating method
JP2012139626A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Method for regeneration of hydrotreating catalyst
JP2012148215A (en) * 2011-01-17 2012-08-09 Cosmo Oil Co Ltd Regeneration method for hydrotreatment catalyst for hydrocarbon oil
JP2013027838A (en) * 2011-07-29 2013-02-07 Jgc Catalysts & Chemicals Ltd Method of regenerating hydrogenation catalyst
JP2013027839A (en) * 2011-07-29 2013-02-07 Jgc Catalysts & Chemicals Ltd Method of manufacturing hydrogenation catalyst
RU2484896C1 (en) * 2012-04-09 2013-06-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Regenerated catalyst for hydrofining hydrocarbon material, method of regenerating deactivated catalyst and process of hydrofining hydrocarbon material
WO2014013784A1 (en) * 2012-07-19 2014-01-23 千代田化工建設株式会社 Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
JP5826936B2 (en) * 2012-07-19 2015-12-02 千代田化工建設株式会社 Method for reactivation of used titania catalyst for hydrotreating
JPWO2014013784A1 (en) * 2012-07-19 2016-06-30 千代田化工建設株式会社 Method for reactivation of used titania catalyst for hydrotreating
US10071370B2 (en) 2012-07-19 2018-09-11 Chiyoda Corporation Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
JP2015171693A (en) * 2014-03-12 2015-10-01 Jfeケミカル株式会社 Regeneration process of hydrodesulfurization catalyst
JP2017517382A (en) * 2014-04-16 2017-06-29 カタリスト リカバリー ヨーロッパ エス.エー.Catalyst Recovery Europe S.A. Method for activating hydrotreating catalyst

Similar Documents

Publication Publication Date Title
JP2009160498A (en) Method of regenerating hydrogenation catalyst
RU2146171C1 (en) Catalytic system for catalytic hydrodesulfurization hydrodehydrogenation, reforming, hydrogenation - dehydrogenation and isomerization of hydrocarbon raw material; method of production, activation, regeneration and use
JP5200219B2 (en) Hydrotreatment catalyst, process for its production and use thereof
JP5057785B2 (en) Method for recovering the catalytic activity of a spent hydroprocessing catalyst, resulting recovered catalyst, and hydroprocessing method
CN101928593B (en) Grading combination of heavy oil hydrogenation catalyst
AU2009234361B2 (en) Regeneration and rejuvenation of supported hydroprocessing catalysts
JP5474490B2 (en) Method for regenerating a catalyst for treating hydrocarbons
RU2500477C2 (en) Method of catalyst regeneration for processing of hydrocarbons
JP4303820B2 (en) Hydrotreating catalyst and hydrotreating method
JP5892989B2 (en) Regeneration method of hydrodesulfurization catalyst
JP6335575B2 (en) Recycling method of heavy oil desulfurization catalyst
JP5439673B2 (en) Method for hydrotreating heavy hydrocarbon oil
KR20120124048A (en) Method for preparing regenerated or remanufactured catalyst for hydortreating of heavy residue
JP6420961B2 (en) Recycling method of heavy oil desulfurization catalyst
JP2005314657A (en) Method for hydrotreating heavy hydrocarbon oil
JP3715893B2 (en) Method for regenerating hydrotreating catalyst
KR101366697B1 (en) Regenerated or remanufactured catalyst for hydortreating of heavy residue
JP2008272646A (en) Hydrogenation catalyst re-activation method and manufacturing method of hydrogenation catalyst
JP2007319844A (en) Regeneration method of heavy oil hydrogenation catalyst
JP2013027838A (en) Method of regenerating hydrogenation catalyst
CN111195525A (en) Residual oil hydrodesulfurization catalyst and preparation method thereof
JP5611750B2 (en) Sulfurization method for hydrocarbon treatment catalyst
WO2021001474A1 (en) Gas phase sulfidation of hydrotreating and hydrocracking catalysts
JP2009045526A (en) Method for preparing nickel-ruthenium desulfurization agent and nickel-ruthenium catalyst
CN114130409B (en) Regeneration method of hydrogenation catalyst

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708