JP5892989B2 - Regeneration method of hydrodesulfurization catalyst - Google Patents

Regeneration method of hydrodesulfurization catalyst Download PDF

Info

Publication number
JP5892989B2
JP5892989B2 JP2013210284A JP2013210284A JP5892989B2 JP 5892989 B2 JP5892989 B2 JP 5892989B2 JP 2013210284 A JP2013210284 A JP 2013210284A JP 2013210284 A JP2013210284 A JP 2013210284A JP 5892989 B2 JP5892989 B2 JP 5892989B2
Authority
JP
Japan
Prior art keywords
catalyst
mass
hydrodesulfurization
calcined
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013210284A
Other languages
Japanese (ja)
Other versions
JP2014050838A (en
Inventor
雄一 山畑
雄一 山畑
雄二 白浜
雄二 白浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2013210284A priority Critical patent/JP5892989B2/en
Publication of JP2014050838A publication Critical patent/JP2014050838A/en
Application granted granted Critical
Publication of JP5892989B2 publication Critical patent/JP5892989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、使用済みの固定床の水素化脱硫触媒を未使用の水素化脱硫触媒の触媒活性と同等程度まで再生する方法に関する。   The present invention relates to a method for regenerating a used fixed bed hydrodesulfurization catalyst to the same degree as the catalytic activity of an unused hydrodesulfurization catalyst.

従来、アスファルテンや残炭等の炭素質や金属不純物の含有量が少ない軽質油(例えば、ナフサ、ケロセン、軽質軽油、重質軽油、減圧軽油等)の水素化脱硫に使用された水素化脱硫触媒(以下、単に「使用済み触媒」ともいう。以下同様)を焼成して、表面に付着する炭素質を除去して再生する方法が知られている。
また、重質油(例えば、常圧残油、減圧残油等)の水素化脱硫に使用された水素化脱硫触媒は、重質油に多く含まれるアスファルテン分等の炭素質及びバナジウム、鉄、ニッケル等の金属不純物の付着やシンタリング(sintering)によって、比表面積の低下が起こり、活性(例えば、脱硫活性、脱金属活性等。以下同様)が低下するので、この使用済み触媒を焼成して、付着した炭素質を除去して再生する方法が開発されている(例えば、特許文献1参照)。更に、焼成して炭素質を除去した使用済み触媒を洗浄し、付着した金属不純物を除去する水素化脱硫触媒の再生方法も知られている(例えば、特許文献2参照)。
Conventional hydrodesulfurization catalysts used for hydrodesulfurization of light oils (eg, naphtha, kerosene, light gas oil, heavy gas oil, vacuum gas oil, etc.) with low carbon and metal impurities such as asphaltene and residual coal. A method is known in which the carbonaceous material adhering to the surface is removed by calcination (hereinafter, also simply referred to as “used catalyst”; hereinafter the same).
In addition, hydrodesulfurization catalysts used for hydrodesulfurization of heavy oils (for example, atmospheric residual oil, vacuum residual oil, etc.) are carbonaceous substances such as asphaltenes and vanadium, iron, iron, The specific surface area decreases due to adhesion or sintering of metal impurities such as nickel, and the activity (for example, desulfurization activity, demetalization activity, etc.) is reduced. A method of removing the attached carbonaceous material and regenerating it has been developed (see, for example, Patent Document 1). Furthermore, a method for regenerating a hydrodesulfurization catalyst in which a used catalyst from which carbonaceous matter has been removed by calcination is washed to remove attached metal impurities is also known (see, for example, Patent Document 2).

特開2006−61845号公報JP 2006-61845 A 特許第3715893号公報Japanese Patent No. 3715893

しかしながら、軽質油を処理した使用済み触媒を焼成した再生触媒の活性は、未使用(新品)の水素化脱硫触媒(以下、単に「未使用触媒」ともいう。)の活性の95%程度にとどまるという問題があった。
また、重質油を処理した使用済み触媒を焼成して炭素質を除去する方法では、使用済み触媒に付着している金属不純物を除去できないため、再生触媒の活性が未使用触媒の活性の80%程度にとどまるという問題があった。焼成後に洗浄する方法では、付着している金属不純物を除去可能であるが、水素化脱硫触媒に担持されているモリブデンやニッケル等の活性金属成分も除去される場合があるという問題があった。
However, the activity of the regenerated catalyst obtained by calcining the used catalyst treated with light oil is only about 95% of the activity of an unused (new) hydrodesulfurization catalyst (hereinafter also simply referred to as “unused catalyst”). There was a problem.
Also, in the method of removing the carbonaceous material by calcining the used catalyst treated with heavy oil, the metal impurities adhering to the used catalyst cannot be removed, so that the activity of the regenerated catalyst is 80% of the activity of the unused catalyst. There was a problem of staying around%. The method of washing after calcination can remove attached metal impurities, but there is a problem that active metal components such as molybdenum and nickel supported on the hydrodesulfurization catalyst may be removed.

本発明はかかる事情に鑑みてなされたもので、使用済みの水素化脱硫触媒を未使用の水素化脱硫触媒の触媒活性と同等程度まで再生する固定床の水素化脱硫触媒の再生方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a method for regenerating a fixed-bed hydrodesulfurization catalyst that regenerates a used hydrodesulfurization catalyst to the same level as the catalytic activity of an unused hydrodesulfurization catalyst. For the purpose.

前記目的に沿う本発明に係る固定床の水素化脱硫触媒の再生方法は、使用済みの水素化脱硫触媒を焼成して該水素化脱硫触媒に付着する炭素質を除去し、焼成処理触媒を得る第1工程と、該焼成処理触媒に活性金属成分を担持させる第2工程とを有する。
ここで、第1工程では、まず、使用済み触媒を、例えば、180〜220℃の窒素気流中で処理して付着する油分をほぼ除去した後、焼成するのが好ましい。焼成操作においては、空気気流中(酸素濃度約21容量%)又は酸素濃度が21容量%を超える雰囲気(すなわち、空気よりも酸素濃度が高い気流中)で、350〜700℃、好ましくは、450〜550℃、かつ、60〜300分間、好ましくは、120〜240分間行い、付着している炭素質を燃焼除去することができる。これにより、焼成処理触媒に対して炭素質が3質量%以下、好ましくは1質量%以下含有された焼成処理触媒を得ることができる。なお、重質油を処理した使用済み触媒には、多くの炭素質が付着しており、焼成処理によってこの炭素質を完全に除去しなくてもよく、例えば、焼成処理触媒に対して0.1質量%程度の炭素質が残存していてもよい。また、活性金属成分としては、通常水素化脱硫触媒に用いられるものであって、例えば、モリブデン、ニッケル、コバルト、パラジウム、白金等が使用できる。
本発明に係る固定床の水素化脱硫触媒の再生方法において、前記第2工程では、前記焼成処理触媒を活性金属成分含有溶液で含浸した後、乾燥焼成する
ここで、焼成処理触媒に活性金属成分を含浸する方法としては、減圧含浸法、ポアフィリング法(pore filling method)、浸漬法、平衡吸着法等の周知の方法を用いることができる。
The method for regenerating a fixed-bed hydrodesulfurization catalyst according to the present invention in accordance with the above object is to calcinate a used hydrodesulfurization catalyst to remove carbonaceous matter adhering to the hydrodesulfurization catalyst, thereby obtaining a calcined catalyst. A first step and a second step of supporting the active metal component on the calcined catalyst.
Here, in the first step, first, it is preferable that the used catalyst is treated in, for example, a nitrogen stream at 180 to 220 ° C. to substantially remove the adhering oil and then calcined. In the firing operation, in an air stream (oxygen concentration of about 21% by volume) or in an atmosphere in which the oxygen concentration exceeds 21% by volume (that is, in an air stream having a higher oxygen concentration than air), 350 to 700 ° C., preferably 450 ˜550 ° C. and 60 to 300 minutes, preferably 120 to 240 minutes, and the attached carbonaceous matter can be removed by combustion. Thereby, a calcined catalyst containing 3% by mass or less, preferably 1% by mass or less of carbonaceous matter can be obtained with respect to the calcined catalyst. In addition, many carbonaceous matter has adhered to the used catalyst which processed heavy oil, and it is not necessary to remove this carbonaceous matter completely by a calcination process. About 1% by mass of carbonaceous matter may remain. Moreover, as an active metal component, it is normally used for a hydrodesulfurization catalyst, For example, molybdenum, nickel, cobalt, palladium, platinum etc. can be used.
In the reproducing method of a fixed bed of hydrodesulfurization catalyst according to the present invention, in the second step, after impregnating the calcined catalyst active metal component-containing solution, drying and calcining.
Here, as a method of impregnating the calcination catalyst with the active metal component, a known method such as a reduced pressure impregnation method, a pore filling method, a dipping method, an equilibrium adsorption method or the like can be used.

本発明に係る固定床の水素化脱硫触媒の再生方法において、前記活性金属成分は、少なくともモリブデン(Mo)ニッケル(Ni)をむ。この場合、前記焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として、モリブデンをモリブデン酸化物として0.5〜3質量%、好ましくは1〜2質量%、及びニッケルをニッケル酸化物として0.2〜3質量%、好ましくは0.5〜1質量%、前記焼成処理触媒にそれぞれ新たに担持するのがよい。モリブデンがモリブデン酸化物として0.5質量%未満の場合には、所定の活性が得られず、3質量%を超えると、活性が増加する割合が低くなるため経済的でない。また、ニッケルがニッケル酸化物として0.2質量%未満の場合には、所定の活性が得られず、3質量%を超えると、活性が増加する割合が低くなるため経済的でない。ここで、モリブデンの供給源としては、三酸化モリブデン、モリブデン酸アンモニウム等が好適に使用でき、ニッケルの供給源としては、炭酸ニッケル、硝酸ニッケル等が好適に使用できる。
なお、本発明において、焼成処理触媒から炭素質を実質的に完全に除去した触媒とは、焼成処理触媒を600〜1200℃(例えば、1000℃)で焼成して、例えば、高周波燃焼式カーボン分析計で測定される炭素質を定量限界以下まで除去した触媒であり、この触媒の質量は、焼成処理触媒から付着する炭素質の質量を除いたものである。このように、炭素質を実質的に完全に除去した触媒の質量を基準として、焼成処理触媒に担持する活性金属成分の質量を決めるので、焼成処理触媒に残存する炭素質の質量に関わらず、所定量の活性金属成分を新たに担持することができる。
In the reproducing method of a fixed bed of hydrodesulfurization catalyst according to the present invention, the active metal component, including at least molybdenum (Mo) and nickel (Ni). In this case, the carbonaceous from calcined catalyst based on the weight of the catalyst substantially completely removed, 0.5 to 3 wt% of Mo Ribuden as molybdenum oxide, preferably 1-2 wt%,及Beauty 0.2-3 wt% of nickel as nickel oxide, preferably from 0.5 to 1 wt%, it is preferable to newly carried to each of the firing treatment catalyst. When molybdenum is less than 0.5% by mass as molybdenum oxide, the predetermined activity cannot be obtained, and when it exceeds 3% by mass, the rate of increase in activity is low, which is not economical. Further, when nickel is less than 0.2% by mass as nickel oxide, the predetermined activity cannot be obtained, and when it exceeds 3% by mass, the rate of increase in activity is low, which is not economical. Here, molybdenum trioxide, ammonium molybdate, or the like can be suitably used as the molybdenum supply source, and nickel carbonate, nickel nitrate, or the like can be suitably used as the nickel supply source.
In the present invention, the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst is obtained by calcining the calcined catalyst at 600 to 1200 ° C. (for example, 1000 ° C.), for example, high-frequency combustion carbon analysis. This is a catalyst obtained by removing the carbonaceous matter measured by the meter up to the limit of quantification, and the mass of this catalyst is obtained by removing the mass of the carbonaceous matter adhering to the calcined catalyst. Thus, since the mass of the active metal component supported on the calcined catalyst is determined based on the mass of the catalyst from which the carbonaceous matter has been substantially completely removed, regardless of the mass of the carbonaceous material remaining in the calcined catalyst, A predetermined amount of active metal component can be newly supported.

本発明に係る固定床の水素化脱硫触媒の再生方法において、前記第1工程は、酸素濃度が21容量%を超える雰囲気で行うこともできる。ここで、酸素濃度が21容量%を超えるとは、前記したように空気よりも酸素濃度が高いことを示す。
本発明に係る固定床の水素化脱硫触媒の再生方法において、前記水素化脱硫触媒は軽質油の水素化脱硫に使用されたものであってもよい。ここで、軽質油としては、例えば、ナフサ、ケロセン、軽質軽油(Light Gas Oil、LGO)、重質軽油(Heavy Gas Oil、HGO)、減圧軽油(Vacuum Gas Oil、VGO)等がある。
本発明に係る固定床の水素化脱硫触媒の再生方法では、前記第2工程でキレート剤を添加する。これにより、前記水素化脱硫触媒として重質油の水素化脱硫に使用されたものを用いることもできる。キレート剤は、後述の活性金属成分含有溶液に添加してもよいし、別途キレート剤を含有する溶液を作って使用してもよい。ここで、キレート剤としては、リンゴ酸、クエン酸、酒石酸、シュウ酸等のカルボキシル基を有する有機酸を使用する。キレート剤の添加量は、焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として、0.1〜10質量%、好ましくは、0.3〜5質量%、より好ましくは0.4〜2質量%とする。キレート剤が0.1質量%未満では、後述する効果を得難くなると共に、活性金属成分の安定性が低くなり、10質量%を超えると、経済性が悪くなると共に、触媒の強度が弱くなる。ここで、重質油としては、例えば、常圧残油(Atmospheric Residue、AR)、減圧残油(Vacuum Residue、VR)等がある。
In the method for regenerating a fixed-bed hydrodesulfurization catalyst according to the present invention, the first step may be performed in an atmosphere having an oxygen concentration exceeding 21% by volume. Here, the oxygen concentration exceeding 21% by volume indicates that the oxygen concentration is higher than that of air as described above.
In the method for regenerating a fixed-bed hydrodesulfurization catalyst according to the present invention, the hydrodesulfurization catalyst may be used for hydrodesulfurization of light oil. Here, examples of the light oil include naphtha, kerosene, light gas oil (Light Gas Oil, LGO), heavy gas oil (Heavy Gas Oil, HGO), and vacuum gas oil (Vacuum Gas Oil, VGO).
In the method for regenerating a fixed-bed hydrodesulfurization catalyst according to the present invention, a chelating agent is added in the second step. Thereby, what was used for the hydrodesulfurization of heavy oil can also be used as said hydrodesulfurization catalyst. The chelating agent may be added to an active metal component-containing solution described later, or a solution containing a chelating agent may be separately prepared and used. Examples of the chelating agent, used re Ngosan, citric acid, tartaric acid, an organic acid having a carboxyl group such as oxalic acid. The addition amount of the chelating agent is 0.1 to 10% by mass, preferably 0.3 to 5% by mass, more preferably, based on the mass of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst. 0.4 to 2% by mass. The chelating agent is less than 0.1 wt%, with Tokunan Kunar the effect to be described later, the lower the stability of the active metal component, when it exceeds 10 wt%, the economic efficiency is deteriorated, the strength of the catalyst is weak Become. Here, examples of the heavy oil include atmospheric residual oil (Atmospheric Residue, AR), and vacuum residual oil (Vacuum Residue, VR).

本発明の固定床の水素化脱硫触媒の再生方法は、使用済みの水素化脱硫触媒を焼成して付着する炭素質を除去した後、更に活性金属成分を担持させるので、担持されている活性金属成分を除去することなく、未使用触媒の活性と同等程度まで再生することができる。ここで、未使用触媒の活性と同等程度とは、未使用触媒の活性を100%としたときの再生触媒の相対脱硫活性が、軽質油を処理した水素化脱硫触媒においては、98〜110%程度、重質油を処理した水素化脱硫触媒においては、90〜110%程度のことをいう。
また、焼成処理触媒に活性金属成分含有溶液で含浸した後、乾燥焼成することにより活性金属成分を簡単に担持することができる。活性金属成分が、モリブデン及びニッケルを含む場合には、高い活性を得ることができる。焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として、焼成処理触媒にモリブデンをモリブデン酸化物として0.5〜3質量%、及ニッケルをニッケル酸化物として0.2〜3質量%をそれぞれ新たに担持した場合には、少量の担持で活性を得ることができる。
更に、焼成を酸素濃度が21容量%を超える雰囲気で行った場合には、炭素質を効率よく除去できる。また、活性金属成分を担持する際にキレート剤を添加して、凝集した付着金属(特に、バナジウム)を再分散させることにより、重質油の水素化脱硫に使用した水素化脱硫触媒の場合でも、効率よく触媒を再生することができる。
In the method for regenerating a fixed bed hydrodesulfurization catalyst of the present invention, the used hydrodesulfurization catalyst is calcined to remove adhering carbonaceous matter, and then an active metal component is further supported. Without removing the components, it can be regenerated to the same extent as the activity of the unused catalyst. Here, the same level as the activity of the unused catalyst means that the relative desulfurization activity of the regenerated catalyst when the activity of the unused catalyst is 100% is 98 to 110% in the hydrodesulfurization catalyst treated with light oil. In the hydrodesulfurization catalyst which processed the heavy oil, it means about 90 to 110%.
Further, after impregnating the calcination catalyst with the active metal component-containing solution, the active metal component can be easily supported by drying and calcination. Active metal component, when containing molybdenum及beauty nickel can obtain high activity. Based on the weight of the substantially complete removal catalyst carbonaceous from calcined catalyst, 0.5 to 3 wt% of molybdenum as molybdenum oxide calcined catalyst, the及Beauty nickel as nickel oxide 0.2 When ~ 3 mass% is newly supported, activity can be obtained with a small amount of support.
Furthermore, when firing is performed in an atmosphere where the oxygen concentration exceeds 21% by volume, the carbonaceous matter can be efficiently removed. Even in the case of hydrodesulfurization catalyst used for hydrodesulfurization of heavy oil by adding a chelating agent when supporting the active metal component and redispersing the agglomerated deposited metal (especially vanadium). The catalyst can be efficiently regenerated.

本発明の第1の実施の形態に係る軽質油を水素化脱硫した水素化脱硫触媒の再生方法について説明する。
(第1工程)
ナフサ、ケロセン、軽質軽油、重質軽油、減圧軽油等の軽質油の水素化脱硫に使用した水素化脱硫触媒(使用済み触媒)を、例えば、180〜220℃の窒素気流中(空気よりも酸素濃度が低い状態、すなわち、窒素濃度が80容量%以上、好ましくは90容量%以上、より好ましくは95容量%以上である。以下同様)で処理して付着している油分(軽質油)をほぼ除去した後、更に空気気流中(酸素濃度約21容量%)で、350〜700℃、好ましくは450〜550℃、より好ましくは500℃を超え550℃以下、かつ、60〜300分間、好ましくは120〜240分間焼成し、付着している炭素質を燃焼して除去し焼成処理触媒を得る。ここで、焼成処理触媒に付着する炭素質が、焼成処理触媒に対して3質量%以下、好ましくは1質量%以下、例えば、焼成処理触媒に対して0.1質量%程度となるように焼成するのがよい。また、空気気流に酸素を添加して、焼成時の酸素濃度が21容量%を超える雰囲気としてもよい。なお、本実施の形態において、焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量とは、焼成処理触媒を1000℃で焼成した後の触媒の質量であり、また、焼成処理触媒を1000℃で焼成した前後の質量の差を、該焼成処理触媒に付着している炭素質の質量として算出している(以下の実施の形態においても同様である)。なお、焼成処理触媒を1000℃で焼成した際に、炭素質が完全に除去されているか否かは、例えば、高周波燃焼式カーボン分析計による測定によって確認することができる。
A method for regenerating a hydrodesulfurization catalyst obtained by hydrodesulfurizing light oil according to a first embodiment of the present invention will be described.
(First step)
Hydrodesulfurization catalyst (used catalyst) used for hydrodesulfurization of light oil such as naphtha, kerosene, light gas oil, heavy gas oil, vacuum gas oil, etc., for example, in a nitrogen stream at 180-220 ° C (oxygen than air) In a low concentration state, that is, nitrogen concentration is 80% by volume or more, preferably 90% by volume or more, more preferably 95% by volume or more. After the removal, in an air stream (oxygen concentration of about 21% by volume), 350 to 700 ° C., preferably 450 to 550 ° C., more preferably more than 500 ° C. and 550 ° C. or less, and 60 to 300 minutes, preferably Calcination is performed for 120 to 240 minutes, and the adhering carbon is burned and removed to obtain a calcination catalyst. Here, calcination is performed so that the carbonaceous matter attached to the calcination catalyst is 3 mass% or less, preferably 1 mass% or less, for example, about 0.1 mass% with respect to the calcination catalyst. It is good to do. Alternatively, oxygen may be added to the air stream to create an atmosphere in which the oxygen concentration during firing exceeds 21% by volume. In the present embodiment, the mass of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst is the mass of the catalyst after calcining the calcined catalyst at 1000 ° C., and the calcined catalyst. The difference between the masses before and after calcining at 1000 ° C. is calculated as the carbonaceous mass adhering to the calcined catalyst (the same applies to the following embodiments). In addition, when a calcination process catalyst is baked at 1000 degreeC, it can be confirmed by the measurement by a high frequency combustion type | mold carbon analyzer, for example whether carbonaceous material is removed completely.

(第2工程)
次に、得られた焼成処理触媒に、活性金属成分として、例えば、モリブデン(Mo)及びニッケル(Ni)の双方を含む溶液(活性金属成分含有溶液。以下、「含浸液」ともいう)を、減圧含浸法、ポアフィリング法、浸漬法、平衡吸着法等の周知の方法によって含浸した後、室温から300℃まで、好ましくは室温から270℃まで、更に好ましくは室温から250℃まで昇温乾燥し、更に空気気流中で400〜700℃、好ましくは500〜600℃、かつ、30〜120分間、好ましくは45〜90分間焼成して、焼成処理触媒に活性金属成分を担持した再生触媒を製造する。ここで、焼成処理触媒に新たに担持されるモリブデン(Mo)及びニッケル(Ni)の量は、焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として、それぞれモリブデン酸化物(MoO)として0.5〜3質量%、好ましくは1〜2質量%ニッケル酸化物(NiO)として0.2〜3質量%、好ましくは0.5〜1質量%がよい。ここで、モリブデンの供給源としては、三酸化モリブデン、モリブデン酸アンモニウム等が使用でき、ニッケルの供給源としては、炭酸ニッケル、硝酸ニッケル等が使用できる。前記したポアフィリング法とは、予め秤量した焼成処理触媒の全細孔容積に相当する量の活性金属含有溶液を作製し、この活性金属含有溶液を減圧条件下で脱気された該焼成処理触媒の細孔に取り込むことにより、活性金属成分を細孔内に含浸させる方法である。なお、焼成処理触媒の全細孔容積は、水滴定法、水銀圧入法等の周知の方法によって求めることができる。
(Second step)
Next, the obtained calcined catalyst, as active metal components, for example, a solution including a bi-how molybdenum (Mo) and nickel (Ni) (the active metal ingredient-containing solution. Hereinafter, referred to as "impregnation fluid") , Impregnation by a well-known method such as reduced pressure impregnation method, pore filling method, dipping method, equilibrium adsorption method, etc., followed by drying by heating from room temperature to 300 ° C, preferably from room temperature to 270 ° C, more preferably from room temperature to 250 ° C Further, the catalyst is calcined in an air stream at 400 to 700 ° C., preferably 500 to 600 ° C., and 30 to 120 minutes, preferably 45 to 90 minutes, to produce a regenerated catalyst carrying an active metal component on the calcined catalyst. To do. Here, the amounts of molybdenum (Mo) and nickel (Ni) newly supported on the calcined catalyst are molybdenum oxides based on the mass of the catalyst from which the carbonaceous matter is substantially completely removed from the calcined catalyst. (MoO 3 ) is 0.5 to 3% by mass, preferably 1 to 2% by mass , and nickel oxide (NiO) is 0.2 to 3% by mass, preferably 0.5 to 1% by mass. Here, molybdenum trioxide, ammonium molybdate, or the like can be used as a supply source of molybdenum, and nickel carbonate, nickel nitrate, or the like can be used as a supply source of nickel. The pore filling method described above is to prepare an active metal-containing solution in an amount corresponding to the total pore volume of the calcined catalyst weighed in advance, and the calcined catalyst degassed under reduced pressure conditions. In this method, the active metal component is impregnated in the pores by being taken into the pores. The total pore volume of the calcined catalyst can be determined by a known method such as a water titration method or a mercury intrusion method.

本発明の実施の形態に係る重質油を水素化脱硫した水素化脱硫触媒の再生方法について詳しく説明する。
(第1工程)
常圧残油、減圧残油等の重質油の水素化脱硫に使用した水素化脱硫触媒(使用済み触媒)を、例えば、180〜220℃の窒素気流中で処理して付着している油分をほぼ除去した後、空気気流中で、350〜700℃、好ましくは、450〜550℃、かつ、60〜300分間、好ましくは、120〜240分間焼成し、付着している炭素質が、焼成処理触媒に対して3質量%以下、好ましくは1質量%以下、例えば、焼成処理触媒に対して0.1質量%程度となるように燃焼除去して焼成処理触媒を得る。また、焼成時の酸素濃度は、21容量%を超える雰囲気で行ってもよい。
(第2工程)
次に、得られた焼成処理触媒に、前記した活性金属成分及びキレート剤(例えば、リンゴ酸、クエン酸、酒石酸、シュウ酸等のカルボキシル基を有する有機酸)を含む含浸液を、減圧含浸法、ポアフィリング法、浸漬法、平衡吸着法等の周知の方法によって含浸した後、室温から300℃まで、好ましくは室温から270℃まで、更に好ましくは室温から250℃まで昇温乾燥し、更に空気気流中で400〜700℃、好ましくは500〜600℃、かつ、30〜120分間、好ましくは45〜90分間焼成して、焼成処理触媒に所定量の活性金属成分(モリブデン及びニッケル)を担持した再生触媒を製造する。ここで、含浸液には、焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として、0.1〜10質量%、好ましくは0.3〜5質量%、より好ましくは0.4〜2質量%となる量のキレート剤が含有させる。キレート剤が0.1質量%未満の場合には、活性金属成分が析出し、沈殿を生成することがある。なお、活性金属成分、すなわちモリブデン及びニッケルの供給源やその添加量は、第1の実施の形態の第2工程における条件と同様である。
A method for regenerating a hydrodesulfurization catalyst obtained by hydrodesulfurizing heavy oil according to an embodiment of the present invention will be described in detail.
(First step)
For example, a hydrodesulfurization catalyst (used catalyst) used for hydrodesulfurization of heavy oil such as normal pressure residue and reduced pressure residue is treated and treated in a nitrogen stream at 180 to 220 ° C., for example. After being almost removed, it is baked in an air stream at 350 to 700 ° C., preferably 450 to 550 ° C. and 60 to 300 minutes, preferably 120 to 240 minutes. A calcination treatment catalyst is obtained by combustion removal so as to be 3 mass% or less, preferably 1 mass% or less, for example, about 0.1 mass% with respect to the calcination treatment catalyst. The oxygen concentration during firing may be performed in an atmosphere exceeding 21% by volume.
(Second step)
Next, an impregnating liquid containing the above-mentioned active metal component and a chelating agent (for example, an organic acid having a carboxyl group such as malic acid, citric acid, tartaric acid, oxalic acid ) is added to the obtained calcination treatment catalyst under reduced pressure impregnation method. , Impregnation by a well-known method such as pore filling method, dipping method, equilibrium adsorption method, etc., followed by drying at elevated temperature from room temperature to 300 ° C., preferably from room temperature to 270 ° C., more preferably from room temperature to 250 ° C., and further air Firing at 400 to 700 ° C., preferably 500 to 600 ° C., and 30 to 120 minutes, preferably 45 to 90 minutes in an air stream, supporting a predetermined amount of active metal components (molybdenum and nickel) on the calcined catalyst. A regenerated catalyst is produced. Here, the impregnating liquid contains 0... 0 based on the mass of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst. The chelating agent is contained in an amount of 1 to 10% by mass, preferably 0.3 to 5% by mass, more preferably 0.4 to 2% by mass . When the chelating agent is less than 0.1% by mass, the active metal component may be precipitated to generate a precipitate. In addition, the supply source and addition amount of the active metal component, that is, molybdenum and nickel are the same as the conditions in the second step of the first embodiment.

〔軽質油の水素化脱硫に使用した水素化脱硫触媒の再生〕
(実施例1)
ニッケル及びモリブデンを担持した新品のアルミナ担体触媒(未使用触媒)を軽質油水素化脱硫装置に配置し、表1に示す性状の軽質軽油(軽質油の一例)を、表2に示す一般的な軽油脱硫条件で、16000時間通油して水素化脱硫を行って、使用済みの水素化脱硫触媒(使用済み触媒)を得た。次に、この使用済み触媒を200℃に保持された窒素気流中で通気し、表面に付着した油分を除去した後、500℃に保持された空気気流中で3時間焼成して炭素質等を除去し、焼成処理触媒αを得た。また、得られた焼成処理触媒αの一部を秤量した後、これを1000℃で焼成し、焼成処理触媒αから炭素質を実質的に完全に除去した触媒を作製し、この触媒と焼成処理触媒αとの質量の差から焼成処理触媒αに付着する炭素質の質量を求めた。ここで、焼成処理触媒αの性状を表3に示す。なお、焼成処理触媒αから炭素質を実質的に完全に除去した触媒を高周波燃焼式カーボン分析計によって測定し、炭素質が完全に除去されていることを確認した。
[Regeneration of hydrodesulfurization catalyst used for hydrodesulfurization of light oil]
Example 1
A new alumina-supported catalyst (unused catalyst) supporting nickel and molybdenum is placed in a light oil hydrodesulfurization unit, and light light oils having the properties shown in Table 1 (an example of light oil) are shown in Table 2. Under light oil desulfurization conditions, oil was passed for 16000 hours to perform hydrodesulfurization to obtain a used hydrodesulfurization catalyst (used catalyst). Next, this used catalyst is aerated in a nitrogen stream maintained at 200 ° C. to remove oil adhering to the surface, and then calcined for 3 hours in an air stream maintained at 500 ° C. This was removed to obtain a calcination catalyst α. Moreover, after weighing a part of the obtained calcination treatment catalyst α, this was calcinated at 1000 ° C. to produce a catalyst from which the carbonaceous matter was substantially completely removed from the calcination treatment catalyst α. The mass of carbonaceous matter adhering to the calcined catalyst α was determined from the difference in mass from the catalyst α. Here, properties of the calcination catalyst α are shown in Table 3. The catalyst from which the carbonaceous matter was substantially completely removed from the calcined catalyst α was measured with a high-frequency combustion type carbon analyzer, and it was confirmed that the carbonaceous matter was completely removed.

Figure 0005892989
Figure 0005892989

Figure 0005892989
Figure 0005892989

Figure 0005892989
Figure 0005892989

次に、焼成処理触媒αから炭素質を実質的に完全に除去した触媒400gに相当する焼成処理触媒α400.2g(炭素質を0.2g含む)を秤取り、焼成処理触媒αの細孔容積に相当する容量である224mlの含浸液aを減圧含浸法によって含浸した後、空気気流中において500℃で60分間焼成し、再生触媒Aを得た。
ここで、含浸液aは、三酸化モリブデン2.0g(焼成処理触媒αから炭素質を実質的に完全に除去した触媒の質量、すなわち、400gを基準として、0.5質量%である。以下同様。)、及び炭酸ニッケル1.3g(NiOとして、0.2質量%)、及び、炭酸ニッケルを溶解させるためのリンゴ酸2.0g(0.5質量%。少なくともNiOの2.5倍質量%必要である。以下同様)を水に溶解して全量を224mlとして作製した。
Next, 400.2 g (including 0.2 g of carbonaceous matter) of the calcined catalyst α corresponding to 400 g of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst α is weighed, and the pore volume of the calcined catalyst α After impregnating 224 ml of the impregnating solution a having a volume corresponding to 1 by a reduced pressure impregnation method, the regenerated catalyst A was obtained by calcining in an air stream at 500 ° C. for 60 minutes.
Here, the impregnating liquid a is 2.0 g of molybdenum trioxide (the mass of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst α, that is, 0.5% by mass based on 400 g. The same), and nickel carbonate 1.3 g (as NiO, 0.2% by mass) and malic acid 2.0 g (0.5% by mass, at least 2.5 times the mass of NiO) for dissolving nickel carbonate % Is necessary. The same applies hereinafter) was dissolved in water to make a total volume of 224 ml.

(実施例2〜4、参考例5〜6)
実施例2〜4及び参考例5〜6は、焼成処理触媒α400.2gに対して、以下に示す224mlの含浸液b〜fをそれぞれ減圧含浸法によって含浸した後、空気気流中において500℃で60分間焼成し、再生触媒B〜Fを作製した。
含浸液bは、三酸化モリブデン4.0g(1.0質量%)、炭酸ニッケル2.6g(NiOとして、0.4質量%)、及び、リンゴ酸4.0g(1.0質量%)を水に溶解して全量を224mlとした。含浸液cは、三酸化モリブデン8.0g(2.0質量%)、炭酸ニッケル6.5g(NiOとして、1.0質量%)、及び、リンゴ酸10.0g(2.5質量%)を水に溶解して全量を224mlとした。含浸液dは、三酸化モリブデン12.0g(3.0質量%)、炭酸ニッケル19.5g(3.0質量%)、及び、リンゴ酸30.0g(7.5質量%)を水に溶解して全量を224mlとした。含浸液eは、三酸化モリブデン12.0g(3.0質量%)を水に溶解して全量を224mlとした。含浸液fは、炭酸ニッケル19.5g(NiOとして、3.0質量%)、及び、リンゴ酸30.0g(7.5質量%)を水に溶解して全量を224mlとした。
(比較例1)
焼成処理触媒αに活性金属成分を含浸せず、再生触媒Gとして使用した。
(Examples 2 to 4, Reference Examples 5 to 6)
In Examples 2 to 4 and Reference Examples 5 to 6, after impregnating each of 224 ml of impregnating liquids b to f shown below by a reduced pressure impregnation method with respect to 400.2 g of the calcined catalyst α, at 500 ° C. in an air stream. Firing was performed for 60 minutes to prepare regenerated catalysts B to F.
The impregnating liquid b contains 4.0 g (1.0% by mass) of molybdenum trioxide, 2.6 g of nickel carbonate (0.4% by mass as NiO), and 4.0 g (1.0% by mass) of malic acid. The total volume was made up to 224 ml by dissolving in water. The impregnating liquid c is composed of 8.0 g (2.0 mass%) of molybdenum trioxide, 6.5 g of nickel carbonate (1.0 mass% as NiO), and 10.0 g (2.5 mass%) of malic acid. The total volume was made up to 224 ml by dissolving in water. As the impregnation liquid d, 12.0 g (3.0 mass%) of molybdenum trioxide, 19.5 g (3.0 mass%) of nickel carbonate, and 30.0 g (7.5 mass%) of malic acid are dissolved in water. The total volume was 224 ml. The impregnating solution e was dissolved in water with 12.0 g (3.0% by mass) of molybdenum trioxide to make a total amount of 224 ml. The impregnating solution f was dissolved in 19.5 g of nickel carbonate (3.0% by mass as NiO) and 30.0 g (7.5% by mass) of malic acid in water to make a total amount of 224 ml.
(Comparative Example 1)
The calcined catalyst α was not impregnated with an active metal component and used as a regenerated catalyst G.

(試験例1)
高圧反応が可能な内径1インチの固定床反応器に再生触媒A〜G及び未使用の触媒をそれぞれ充填し、前記した軽質軽油を表2の軽油脱硫条件で通油して各々水素化脱硫を行い再生触媒A〜Gの水素化脱硫活性を未使用の触媒の活性を100%として相対評価を行った。その結果を表4に示す。
(Test Example 1)
Regenerated catalysts A to G and unused catalyst are filled in a fixed bed reactor having an inner diameter of 1 inch capable of high pressure reaction, respectively, and the above light diesel oil is passed under the diesel oil desulfurization conditions shown in Table 2 for hydrodesulfurization. The hydrodesulfurization activity of the regenerated catalysts A to G was evaluated relative to the activity of the unused catalyst as 100%. The results are shown in Table 4.

Figure 0005892989
Figure 0005892989

これらの結果から解るように、軽質油の水素化脱硫に使用した触媒を焼成して、付着した炭素質を除去した後、活性金属成分を担持することにより、未使用の水素化脱硫触媒の触媒活性と同等程度まで再生させることが可能となった。   As can be seen from these results, the catalyst used for hydrodesulfurization of light oil is calcined to remove the adhering carbonaceous matter and then loaded with an active metal component, so that an unused hydrodesulfurization catalyst catalyst It was possible to regenerate to the same extent as the activity.

〔重質油の水素化脱硫に使用した水素化脱硫触媒の再生〕
(実施例7〜10、参考例11〜13)
ニッケル及びモリブデンを担持したアルミナ担体触媒(未使用触媒)を重質油水素化脱硫装置に配置し、表5に示す性状の中東系の常圧残油(重質油の一例)を、表6に示す一般的な直接脱硫条件で、8000時間通油して水素化脱硫を行って、使用済みの水素化脱硫触媒(使用済み触媒)を得た。次に、この使用済み触媒を200℃に保持された窒素気流中で通気し、表面に付着した油分を除去した後、500℃に保持された空気気流中で3時間焼成して炭素質等を除去し、焼成処理触媒βを得た。また、焼成処理触媒βを1000℃で焼成し、焼成処理触媒βから炭素質を実質的に完全に除去した触媒を作製し、この触媒と焼成処理触媒βとの質量の差から焼成処理触媒βに付着する炭素質の質量を求めた。ここで、焼成処理触媒βの性状を表7に示す。なお、焼成処理触媒βから炭素質を実質的に完全に除去した触媒を高周波燃焼式カーボン分析計によって測定し、炭素質が完全に除去されていることを確認した。
[Regeneration of hydrodesulfurization catalyst used for hydrodesulfurization of heavy oil]
(Examples 7 to 10, Reference Examples 11 to 13)
An alumina-supported catalyst (unused catalyst) carrying nickel and molybdenum is placed in a heavy oil hydrodesulfurization unit, and the Middle Eastern atmospheric residual oil (an example of heavy oil) having the properties shown in Table 5 is shown in Table 6. The used hydrodesulfurization catalyst (used catalyst) was obtained by passing oil for 8000 hours under the general direct desulfurization conditions shown in FIG. Next, this used catalyst is aerated in a nitrogen stream maintained at 200 ° C. to remove oil adhering to the surface, and then calcined for 3 hours in an air stream maintained at 500 ° C. This was removed to obtain a calcined catalyst β. Further, the calcined catalyst β is calcined at 1000 ° C. to prepare a catalyst in which carbonaceous matter is substantially completely removed from the calcined catalyst β, and the calcined catalyst β is determined from the difference in mass between the catalyst and the calcined catalyst β. The mass of carbonaceous matter adhering to was determined. Here, Table 7 shows properties of the calcination catalyst β. In addition, the catalyst from which the carbonaceous matter was substantially completely removed from the calcined catalyst β was measured with a high-frequency combustion type carbon analyzer, and it was confirmed that the carbonaceous matter was completely removed.

Figure 0005892989
Figure 0005892989

Figure 0005892989
Figure 0005892989

Figure 0005892989
Figure 0005892989

次に、焼成処理触媒βから炭素質を実質的に完全に除去した触媒400gに相当する焼成処理触媒β400.5g(炭素質を0.5g含む)を秤取り、焼成処理触媒βの細孔容積に相当する容量である240mlの含浸液a〜f(実施例1参照)及びnを減圧含浸法によってそれぞれ含浸した後、空気気流中において500℃で60分間焼成し、再生触媒H〜Nを得た。なお、含浸液nは、三酸化モリブデン12.0g(3.0質量%)、及び、リンゴ酸30.0g(7.5質量%)を水に溶解して全量を224mlとした。
(比較例2)
焼成処理触媒βに活性金属成分及びキレート剤(リンゴ酸)を含浸せず、再生触媒Oとして使用した。
Next, 400.5 g (including 0.5 g of carbonaceous matter) of the calcined catalyst β corresponding to 400 g of the catalyst from which the carbonaceous matter has been substantially completely removed from the calcined catalyst β is weighed, and the pore volume of the calcined catalyst β After impregnating 240 ml of impregnating liquids a to f (see Example 1) and n each having a volume corresponding to 1 by a reduced pressure impregnation method, the regenerated catalysts H to N were obtained by calcining in an air stream at 500 ° C. for 60 minutes. It was. The impregnating liquid n was dissolved in water by dissolving 12.0 g (3.0% by mass) of molybdenum trioxide and 30.0 g (7.5% by mass) of malic acid in a total amount of 224 ml.
(Comparative Example 2)
The calcined catalyst β was not impregnated with an active metal component and a chelating agent (malic acid) and used as a regenerated catalyst O.

(試験例2)
高圧反応が可能な内径1インチの固定床反応器に、再生触媒H〜O及び未使用の触媒をそれぞれ充填し、前記した常圧残油を表6の直接脱硫条件で通油して各々水素化脱硫を行い再生触媒H〜Oの水素化脱硫活性を未使用の触媒の活性を100%として相対評価を行った。その結果を表8に示す。
(Test Example 2)
A fixed bed reactor having an inner diameter of 1 inch capable of high-pressure reaction is filled with regenerated catalysts HO and unused catalyst, and the above-mentioned atmospheric residue is passed under the direct desulfurization conditions shown in Table 6 to generate hydrogen. The hydrodesulfurization activity of the regenerated catalysts H to O was evaluated relative to the activity of the unused catalyst as 100%. The results are shown in Table 8.

Figure 0005892989
Figure 0005892989

これらの結果から解るように、重質油の水素化脱硫に使用した触媒を焼成して付着した炭素質を除去した後、活性金属成分を担持することにより、未使用の水素化脱硫触媒の触媒活性と同等程度まで再生させることが可能となった As can be seen from these results, the catalyst used in the hydrodesulfurization catalyst of the unused oil is supported by calcining the catalyst used in the hydrodesulfurization of heavy oil to remove the adhering carbon and then supporting the active metal component. It was possible to regenerate to the same extent as the activity .

本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の固定床の水素化脱硫触媒の再生方法を構成する場合も本発明の権利範囲に含まれる。
例えば、本実施の形態では、活性金属成分として、三酸化モリブデンを用いたが、モリブデン酸アンモニウムを使用してよく、また、炭酸ニッケルの替わりに、硝酸ニッケルを用いてもよい
The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. The combination of the above and the method for regenerating the fixed bed hydrodesulfurization catalyst of the present invention is also included in the scope of the present invention.
For example, in the present embodiment, molybdenum trioxide is used as the active metal component, but ammonium molybdate may be used, and nickel nitrate may be used instead of nickel carbonate .

Claims (2)

使用済み水素化脱硫触媒を焼成し、該水素化脱硫触媒に付着する炭素質を除去して焼成処理触媒を得る第1工程と、該焼成処理触媒にキレート剤を添加して少なくともモリブデンとニッケルを含む活性金属成分を担持させた後、空気気流中、400〜700℃で焼成する第2工程とを有し、前記キレート剤として、カルボキシル基を有する有機酸を、前記焼成処理触媒から炭素質を実質的に完全に除去した触媒の質量を基準として0.1〜10質量%添加することを特徴とする固定床の水素化脱硫触媒の再生方法。 A first step of calcining a spent hydrodesulfurization catalyst to remove carbonaceous matter adhering to the hydrodesulfurization catalyst to obtain a calcined catalyst; and adding a chelating agent to the calcined catalyst to at least molybdenum and nickel after supporting an active metal component containing, in an air stream, it has a second step of firing at 400 to 700 ° C., as the chelating agent, an organic acid having a carboxyl group, a carbonaceous from the calcination treatment catalyst A method for regenerating a fixed-bed hydrodesulfurization catalyst, comprising adding 0.1 to 10% by mass based on the mass of the catalyst that has been substantially completely removed . 水素化脱硫触媒が重質油の水素化脱硫触媒である請求項に記載の固定床の水素化脱硫触媒の再生方法。 The method for regenerating a fixed bed hydrodesulfurization catalyst according to claim 1 , wherein the hydrodesulfurization catalyst is a heavy oil hydrodesulfurization catalyst.
JP2013210284A 2013-10-07 2013-10-07 Regeneration method of hydrodesulfurization catalyst Active JP5892989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013210284A JP5892989B2 (en) 2013-10-07 2013-10-07 Regeneration method of hydrodesulfurization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013210284A JP5892989B2 (en) 2013-10-07 2013-10-07 Regeneration method of hydrodesulfurization catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007340833A Division JP2009160498A (en) 2007-12-28 2007-12-28 Method of regenerating hydrogenation catalyst

Publications (2)

Publication Number Publication Date
JP2014050838A JP2014050838A (en) 2014-03-20
JP5892989B2 true JP5892989B2 (en) 2016-03-23

Family

ID=50609836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013210284A Active JP5892989B2 (en) 2013-10-07 2013-10-07 Regeneration method of hydrodesulfurization catalyst

Country Status (1)

Country Link
JP (1) JP5892989B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180064193A (en) * 2016-12-05 2018-06-14 한국화학연구원 Catalyst for heavy oil hydrocracking and methods of heavy oil hydrocracking using the same
FR3117380A1 (en) 2020-12-15 2022-06-17 IFP Energies Nouvelles Process for rejuvenating a catalyst from a hydrotreating and/or hydrocracking process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198691A (en) * 2015-04-07 2016-12-01 出光興産株式会社 Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil
FR3089824B1 (en) * 2018-12-18 2021-05-07 Ifp Energies Now A process for the rejuvenation of a spent and regenerated catalyst from a gasoline hydrodesulfurization process.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3020239A (en) * 1958-12-04 1962-02-06 Gulf Research Development Co Removal of vanadium from a supported molybdenum-containing catalyst
US3791989A (en) * 1971-03-12 1974-02-12 Chevron Res Catalyst rejuvenation with oxalic acid
JPH11319567A (en) * 1998-05-11 1999-11-24 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst
TWI277649B (en) * 2001-06-07 2007-04-01 Shell Int Research Process to prepare a base oil from slack-wax
HUE059665T2 (en) * 2003-10-03 2022-12-28 Albemarle Netherlands Bv Process for activating a hydrotreating catalyst
DK1737571T3 (en) * 2004-01-20 2016-10-03 Shell Int Research PROCESS FOR RECOVERY OF CATALYTIC ACTIVITY OF A SPENT hydroprocessing catalyst.
JP4519719B2 (en) * 2005-06-10 2010-08-04 財団法人石油産業活性化センター Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
ES2619363T3 (en) * 2006-01-17 2017-06-26 Exxonmobil Research And Engineering Company Selective catalysts for hydrodesulfurization of naphtha

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180064193A (en) * 2016-12-05 2018-06-14 한국화학연구원 Catalyst for heavy oil hydrocracking and methods of heavy oil hydrocracking using the same
FR3117380A1 (en) 2020-12-15 2022-06-17 IFP Energies Nouvelles Process for rejuvenating a catalyst from a hydrotreating and/or hydrocracking process
WO2022128486A1 (en) 2020-12-15 2022-06-23 IFP Energies Nouvelles Method for rejuvenating a catalyst from a hydroprocessing and/or hydrocracking process

Also Published As

Publication number Publication date
JP2014050838A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP2009160498A (en) Method of regenerating hydrogenation catalyst
RU2146171C1 (en) Catalytic system for catalytic hydrodesulfurization hydrodehydrogenation, reforming, hydrogenation - dehydrogenation and isomerization of hydrocarbon raw material; method of production, activation, regeneration and use
JP5796871B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP5562611B2 (en) Method for regenerating a catalyst for treating hydrocarbons
JP5892989B2 (en) Regeneration method of hydrodesulfurization catalyst
US9457343B2 (en) Regeneration or remanufacturing catalyst for hydrogenation processing heavy oil, and method for manufacturing same
JP2014508203A (en) Method for simultaneously removing sulfur and mercury-containing hydrocarbon feedstocks by hydrotreating reaction using a catalyst
EP3315195A1 (en) Processes for activating an hydrotreating catalyst
JP6335575B2 (en) Recycling method of heavy oil desulfurization catalyst
JP6420961B2 (en) Recycling method of heavy oil desulfurization catalyst
JP5841481B2 (en) Method for hydrotreating heavy residual oil
KR101458817B1 (en) Method for preparing regenerated or remanufactured catalyst for hydortreating of heavy residue
KR20120124047A (en) Regenerated or remanufactured catalyst for hydortreating of heavy residue
JP5825572B2 (en) Method for regenerating hydrotreating catalyst
JP2008272646A (en) Hydrogenation catalyst re-activation method and manufacturing method of hydrogenation catalyst
JP3715893B2 (en) Method for regenerating hydrotreating catalyst
CN111195525A (en) Residual oil hydrodesulfurization catalyst and preparation method thereof
JP3990676B2 (en) Hydrodesulfurization method of light oil
JP5611750B2 (en) Sulfurization method for hydrocarbon treatment catalyst
JP5773644B2 (en) Method for regenerating hydrotreating catalyst
CN114130409B (en) Regeneration method of hydrogenation catalyst
CN113000074B (en) Regeneration method of hydrogenation catalyst
CN114130418B (en) Method for regenerating hydrogenation catalyst
CN113000073B (en) Regeneration method of hydrogenation catalyst
JP2005013848A (en) Carrier for hydrogenation catalyst, hydrogenation catalyst of hydrocarbon oil and hydrogenation method using the hydrogenation catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160223

R150 Certificate of patent or registration of utility model

Ref document number: 5892989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250