JP2012148215A - Regeneration method for hydrotreatment catalyst for hydrocarbon oil - Google Patents

Regeneration method for hydrotreatment catalyst for hydrocarbon oil Download PDF

Info

Publication number
JP2012148215A
JP2012148215A JP2011006879A JP2011006879A JP2012148215A JP 2012148215 A JP2012148215 A JP 2012148215A JP 2011006879 A JP2011006879 A JP 2011006879A JP 2011006879 A JP2011006879 A JP 2011006879A JP 2012148215 A JP2012148215 A JP 2012148215A
Authority
JP
Japan
Prior art keywords
catalyst
group
phosphorus
metal
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011006879A
Other languages
Japanese (ja)
Other versions
JP5660672B2 (en
Inventor
Takashi Fujikawa
貴志 藤川
Daisuke Usui
大輔 薄井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2011006879A priority Critical patent/JP5660672B2/en
Publication of JP2012148215A publication Critical patent/JP2012148215A/en
Application granted granted Critical
Publication of JP5660672B2 publication Critical patent/JP5660672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a regeneration method capable of sufficiently recovering desulfurization activity of a used hydrotreatment catalyst.SOLUTION: The regeneration method for the used hydrotreatment catalyst for hydrocarbon oil includes: an oil removing process of subjecting oil removing treatment to the used hydrotreatment catalyst supporting group 6 metals in the periodic table, group 8 metals in the periodic table and phosphorus, whose activity is lowered by being used in the hydrotreatment of the hydrocarbon oil; a firing process of firing the hydrotreatment catalyst after the oil removing process at 300-600°C; a supporting process for making a fired material obtained by the firing process support organic acid and phosphorus so that the molar ratio of [organic acid]/[group 8 metals in the periodic table] is 0.6-1 and the molar ratio of [phosphorus excluding the phosphorus contained in the fired material after the firing process and before the supporting process (as PO)]/[group 6 metals in the periodic table] is 0.05-0.3; and a drying process of drying the fired material after the supporting process at or below 200°C.

Description

本発明は、炭化水素油の水素化処理に使用して活性の低下した使用済み水素化処理触媒の再生方法に関する。より詳しくは、使用済み水素化処理触媒を、従来の方法で再生した水素化処理触媒よりも一層優れた脱硫活性を有し、使用していない水素化処理触媒と同等程度まで再生する方法に関する。   The present invention relates to a method for regenerating a spent hydrotreating catalyst having a reduced activity used for hydrotreating a hydrocarbon oil. More specifically, the present invention relates to a method for regenerating a spent hydroprocessing catalyst to a level equivalent to that of a non-used hydroprocessing catalyst having a desulfurization activity superior to that of a hydroprocessing catalyst regenerated by a conventional method.

近年、大気環境改善のために、石油製品の品質規制値が世界的に厳しくなる傾向にある。特に、軽油中の硫黄分は、排気ガス対策として期待されている窒素酸化物(NOx)還元触媒、連続再生式ディーゼル排気微粒子除去フィルター等の後処理装置の耐久性に影響を及ぼすため、軽油中の硫黄化合物の低減が要請されている。   In recent years, quality control values for petroleum products tend to be stricter worldwide in order to improve the air environment. In particular, the sulfur content in light oil affects the durability of post-treatment devices such as nitrogen oxide (NOx) reduction catalysts and continuous regeneration diesel exhaust particulate removal filters that are expected as a countermeasure for exhaust gas. Reduction of sulfur compounds is required.

このような状況下で、運転条件を過酷にすることなしに炭化水素油の超深度脱硫を達成し得る、優れた脱硫活性を有する水素化処理触媒が開発されてきた。
水素化処理触媒は、一定期間使用すると、触媒表面上に炭素質が析出し、活性が低下する。このため、当該使用済み水素化処理触媒を、その優れた脱硫活性が十分復活するように再生し、複数回、商業装置で使用することが可能な水素化処理触媒の再生方法の開発が喫緊の課題となっている。
Under such circumstances, hydrotreating catalysts having excellent desulfurization activity have been developed that can achieve ultra-deep desulfurization of hydrocarbon oils without severe operating conditions.
When the hydrotreating catalyst is used for a certain period of time, the carbonaceous matter is deposited on the surface of the catalyst and the activity is lowered. For this reason, it is urgent to develop a method for regenerating a hydroprocessing catalyst that can be regenerated so that its excellent desulfurization activity is fully restored and used in commercial equipment multiple times. It has become a challenge.

近年、脱硫触媒の再生方法について多くの検討が多方面において進められている。例えば、優れた使用済みの水素化処理触媒の再生方法として、使用済み触媒中の油分を除去した後、焼成し、その後、所定量の有機物を触媒に担持させ、乾燥する方法が提案されている。(特許文献1参照。)。この方法は、失活した使用済み触媒の活性を復活させるための方法として、簡易的に所定の性能が得られる点で、有用な方法といえる。   In recent years, many studies have been made on a method for regenerating a desulfurization catalyst. For example, as a method for regenerating an excellent used hydroprocessing catalyst, a method has been proposed in which the oil in the used catalyst is removed and calcined, and then a predetermined amount of organic matter is supported on the catalyst and dried. . (See Patent Document 1). This method can be said to be a useful method in that a predetermined performance can be easily obtained as a method for restoring the activity of the deactivated spent catalyst.

特開2008−290071号公報JP 2008-290071 A

廃棄物削減など環境政策が重視されている現況下、使用済み触媒の再生後の活性を更に向上させ、また、再生後においても触媒物性にあまり影響を与えず、ほぼ新触媒と同様の物性を維持することができるような再生方法の開発が切望されている。   Under the current situation where environmental policies such as waste reduction are important, the activity after regeneration of the used catalyst is further improved, and the physical properties of the catalyst are almost the same as those of the new catalyst without much impact on the catalyst properties after regeneration. There is an urgent need to develop a regeneration method that can be maintained.

本発明の目的は、上記従来の状況に鑑み、再生後の触媒の脱硫活性をより一層向上させることができ、かつ再生後にも新触媒とほぼ同様の触媒物性を維持することを可能とする使用済み水素化処理触媒の再生方法を提供することである。   In view of the above-described conventional situation, the object of the present invention is to further improve the desulfurization activity of the regenerated catalyst and to maintain substantially the same catalyst physical properties as the new catalyst after the regeneration. The present invention provides a method for regenerating a spent hydroprocessing catalyst.

本発明者らは、上記の目的を達成すべく鋭意研究した結果、使用済みの水素化処理触媒を焼成して触媒上の炭素質を除去した後、得られた焼成物に、有機酸とリン酸化合物を、〔有機酸〕/〔周期律表第8族金属〕(モル比)、〔P〕/〔周期律表第6族金属〕(モル比)を特定の範囲となるように担持させることにより、未使用の触媒とほぼ同様の物性を維持しつつ、未使用の触媒とほぼ同等の脱硫活性領域まで向上できる再生方法を見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the inventors of the present invention calcined a used hydroprocessing catalyst to remove carbonaceous matter on the catalyst, and then obtained organic acid and phosphorus were added to the obtained calcined product. [Organic acid] / [Group 8 metal] (molar ratio), [P 2 O 5 ] / [Group 6 metal] (molar ratio) in a specific range Thus, the present invention has been completed by finding a regeneration method capable of improving the desulfurization active region to substantially the same as that of the unused catalyst while maintaining the same physical properties as those of the unused catalyst.

すなわち、本発明は、 炭化水素油の水素化処理に使用して活性の低下した使用済みの、周期律表第6族金属、周期律表第8族金属、及びリンを担持した水素化処理触媒を、油分除去処理する油分除去工程、
前記油分除去工程後の水素化処理触媒を、300〜600℃で焼成する焼成工程、
前記焼成工程により得られた焼成物に、有機酸とリンを、〔有機酸〕/〔周期律表第8族金属〕のモル比率が0.6〜1、かつ、〔前記焼成工程後担持工程前の焼成物中に含まれていたリンを除くリン(P換算)〕/〔周期律表第6族金属〕のモル比率が0.05〜0.3となるように担持させる担持工程、
及び前記担持工程後の焼成物を、200℃以下で乾燥させる乾燥工程を含むことを特徴とする使用済みの炭化水素油の水素化処理触媒の再生方法を提供するものである。
That is, the present invention relates to a hydrotreating catalyst carrying a spent periodic group 6 metal, a periodic table group 8 metal, and phosphorus, which has been used for hydrotreating hydrocarbon oil and has decreased activity. An oil removal step for removing oil,
A calcining step of calcining the hydrotreating catalyst after the oil removal step at 300 to 600 ° C .;
In the fired product obtained by the firing step, an organic acid and phosphorus, [organic acid] / [group 8 metal of the periodic table] molar ratio is 0.6 to 1, and [supporting step after the firing step] Supporting so that the molar ratio of phosphorus excluding phosphorus contained in the previous fired product (in terms of P 2 O 5 ) / [Group 6 metal of the periodic table] is 0.05 to 0.3 Process,
And a method for regenerating a used hydrocarbon oil hydrotreating catalyst, comprising a drying step of drying the calcined product after the supporting step at 200 ° C. or lower.

本発明の再生方法によれば、使用済み炭化水素油の水素化処理触媒の脱硫活性を一層十分に復活させることができ、以って本発明は、一層脱硫活性に優れた炭化水素油の水素化処理触媒を提供することができる。また、再生された水素化処理触媒を用いれば、過酷な運転条件を必要とせずに、新触媒とほぼ同一の運転条件下で、炭化水素油中の硫黄化合物を高度に脱硫することができる。   According to the regeneration method of the present invention, the desulfurization activity of the spent hydrocarbon oil hydrotreating catalyst can be more fully restored, and thus the present invention provides a hydrogen of hydrocarbon oil having further excellent desulfurization activity. A chemical conversion catalyst can be provided. Moreover, if the regenerated hydrotreating catalyst is used, sulfur compounds in hydrocarbon oil can be highly desulfurized under almost the same operating conditions as the new catalyst without requiring severe operating conditions.

本発明の触媒の再生方法は、周期律表第6族金属、周期律表第8族金属、及びリンが担持されており、かつ炭化水素油の水素化処理に使用して活性の低下した使用済みの水素化処理触媒を再生する方法であり、下記の工程を含むことを特徴とする。
炭化水素油の水素化処理に使用して活性の低下した使用済みの、周期律表第6族金属、周期律表第8族金属、及びリンを担持した水素化処理触媒を、油分除去処理する油分除去工程、
前記油分除去工程後の水素化処理触媒を、300〜600℃で焼成する焼成工程、
前記焼成工程により得られた焼成物に、有機酸とリンを、〔有機酸〕/〔周期律表第8族金属〕のモル比率が0.6〜1、かつ、〔前記焼成工程後担持工程前の焼成物中に含まれていたリンを除くリン(P換算)〕/〔周期律表第6族金属〕のモル比率が0.05〜0.3となるように担持させる担持工程、
及び前記担持工程後の焼成物を、200℃以下で乾燥させる乾燥工程。
The catalyst regeneration method of the present invention is a use in which a metal of Group 6 of the periodic table, a metal of Group 8 of the periodic table, and phosphorus are supported, and used for hydrotreating hydrocarbon oil. A method for regenerating a spent hydrotreating catalyst, comprising the following steps.
Oil removal treatment is performed on a hydrotreating catalyst loaded with a periodic group 6 metal, a periodic group 8 metal, and phosphorus, which has been used for hydrotreating a hydrocarbon oil, and which has been used. Oil removal process,
A calcining step of calcining the hydrotreating catalyst after the oil removal step at 300 to 600 ° C .;
In the fired product obtained by the firing step, an organic acid and phosphorus, [organic acid] / [group 8 metal of the periodic table] molar ratio is 0.6 to 1, and [supporting step after the firing step] Supporting so that the molar ratio of phosphorus excluding phosphorus contained in the previous fired product (in terms of P 2 O 5 ) / [Group 6 metal of the periodic table] is 0.05 to 0.3 Process,
And a drying step of drying the fired product after the supporting step at 200 ° C. or lower.

本発明では、担体に、周期律表第6族金属、周期律表第8族金属、及びリンが担持されており、かつ炭化水素油の水素化処理に使用された水素化処理触媒であれば、その製造由来や使用由来を問うことなく、種々の製造方法で製造され、また、種々の炭化水素油の水素化処理に用いられた、種々の使用済み水素化処理触媒の再生を行うことができる。   In the present invention, any hydrotreating catalyst used in the hydrotreating of hydrocarbon oil in which the support is loaded with a group 6 metal of the periodic table, a group 8 metal of the periodic table, and phosphorus. It is possible to regenerate various used hydroprocessing catalysts that are manufactured by various manufacturing methods and used for hydroprocessing various hydrocarbon oils, regardless of their origin or use. it can.

なお、本発明において、「周期律表第6族金属」とは、長周期型周期表における第6A族金属を意味し、「周期律表第8族金属」とは、長周期型周期表における第8族金属を意味する(「化学大辞典」、第1版第3刷、株式会社東京化学同人、1994年4月1日、p.1079−1081)。   In the present invention, “Group 6 metal of the periodic table” means a Group 6A metal in the long periodic table, and “Group 8 metal of the periodic table” means in the long periodic table. It means a Group 8 metal ("Chemical Dictionary", 1st edition, 3rd edition, Tokyo Chemical Co., Ltd., April 1, 1994, p. 1079-1081).

本発明で再生対象とする水素化処理触媒としては、無機酸化物担体に、周期律表第6族金属、周期律表第8族金属、及びリンが担持された触媒であることが好ましい。
水素化処理触媒中の無機酸化物担体としては、各種無機酸化物を用いることができるが、主成分がアルミナである無機酸化物が好ましい。
The hydrotreating catalyst to be regenerated in the present invention is preferably a catalyst in which a group 6 metal of the periodic table, a group 8 metal of the periodic table, and phosphorus are supported on an inorganic oxide support.
Various inorganic oxides can be used as the inorganic oxide support in the hydrotreating catalyst, but an inorganic oxide whose main component is alumina is preferable.

担体に用いるアルミナは、α−アルミナ、γ−アルミナ、δ−アルミナ、アルミナ水和物等の種々のアルミナを使用することができるが、多孔質で高比表面積であるアルミナが好ましく、中でもγ−アルミナが適している。アルミナの純度は、約98質量%以上、好ましくは約99質量%以上のものが適している。アルミナ中の不純物としては、SO 2-、Cl-、Fe、NaO等が挙げられるが、これらの不純物はできるだけ少ないことが望ましく、不純物全量で2質量%以下、好ましくは1質量%以下で、成分毎では、SO 2-<1.5質量%、Cl-、Fe、NaO<0.1質量%であることが好ましい。 As the alumina used for the carrier, various aluminas such as α-alumina, γ-alumina, δ-alumina, and alumina hydrate can be used, and porous and high specific surface area alumina is preferable. Alumina is suitable. The purity of alumina is about 98% by mass or more, preferably about 99% by mass or more. Examples of the impurities in alumina include SO 4 2− , Cl , Fe 2 O 3 , Na 2 O and the like. These impurities are desirably as small as possible, and the total amount of impurities is 2% by mass or less, preferably 1 It is preferable that SO 4 2 − <1.5% by mass, Cl , Fe 2 O 3 , and Na 2 O <0.1% by mass for each component.

担体に用いるアルミナには、他の酸化物成分を添加することが好ましく、他の酸化物成分としては、ゼオライト、ボリア、シリカ及びジルコニアから選ばれる一種以上が好ましい。これらを複合化させることにより、脱硫活性点を形成する二硫化モリブデンの積層化が有利になる。このうちゼオライトは、好ましくは、コールカウンター法(1質量%NaCl水溶液、アパーチャ−30μm、超音波処理3分)での測定による平均粒子径が2.5〜6μm、更に好ましくは3〜4μmのものである。また、このゼオライトは、粒子径6μm以下のものがゼオライト全粒子に対して占める割合が、約70〜98%、好ましくは約75〜98%、より好ましくは約80〜98%のものが望ましい。   It is preferable to add another oxide component to the alumina used for the carrier, and the other oxide component is preferably one or more selected from zeolite, boria, silica and zirconia. By compounding these, it is advantageous to laminate molybdenum disulfide that forms desulfurization active sites. Among these, the zeolite preferably has an average particle diameter of 2.5 to 6 μm, more preferably 3 to 4 μm, as measured by a coal counter method (1 mass% NaCl aqueous solution, aperture 30 μm, ultrasonic treatment 3 minutes). It is. In addition, it is desirable that the zeolite has a particle size of 6 μm or less with respect to all the zeolite particles, about 70 to 98%, preferably about 75 to 98%, more preferably about 80 to 98%.

また、水素化処理触媒中の無機酸化物担体としては、リン酸化物を含有するものであってもよい。無機酸化物担体にリン酸化物を含有させる方法は、特に限定されるものではなく、平衡吸着法、共沈法、混練法等により行うことができるが、脱硫活性の高い触媒が得られる点で、担体の原料のアルミナ水和物中にリン酸化物の原料を混練する混練法によることが好ましい。   Further, the inorganic oxide carrier in the hydrotreating catalyst may contain a phosphorus oxide. The method of incorporating the phosphorus oxide into the inorganic oxide support is not particularly limited and can be performed by an equilibrium adsorption method, a coprecipitation method, a kneading method, or the like, but a catalyst having a high desulfurization activity can be obtained. It is preferable to use a kneading method in which a raw material of phosphorous oxide is kneaded in alumina hydrate as a raw material of the carrier.

水素化処理触媒において、担体に担持されている6族金属は、モリブデン、タングステンが好ましく、より好ましくは、モリブデンである。6族金属の担持量は、触媒基準、酸化物換算で、10〜40質量%が好ましく、より好ましくは10〜30質量%である。10質量%以上であれば、6族金属に起因する効果を発現させるのに十分であり、好ましい。また、40質量%以下であれば、6族金属の含浸(担持)工程で6族金属化合物の凝集が生じず、6族金属の分散性が良くなり、また、効率的に分散する6族金属担持量の限度を超えず、触媒表面積が大幅に低下しない等により、触媒活性の向上がみられ、好ましい。   In the hydrotreating catalyst, the Group 6 metal supported on the carrier is preferably molybdenum or tungsten, and more preferably molybdenum. The supported amount of Group 6 metal is preferably 10 to 40% by mass, more preferably 10 to 30% by mass in terms of catalyst and oxide. If it is 10 mass% or more, it is sufficient for expressing the effects attributable to the Group 6 metal, and it is preferable. Moreover, if it is 40 mass% or less, the group 6 metal compound does not aggregate in the impregnation (support) step of the group 6 metal, the dispersibility of the group 6 metal is improved, and the group 6 metal that is dispersed efficiently The catalyst activity is improved because it does not exceed the supported amount limit and the surface area of the catalyst is not significantly reduced.

水素化処理触媒において、担体に担持されている8族金属は、コバルト、ニッケルが好ましい。8族金属の担持量は、触媒基準、酸化物換算で、1〜15質量%が好ましく、より好ましくは、3〜8質量%である。1質量%以上であれば、8族金属に帰属する活性点が十分に得られ、好ましい。また、15質量%以下であれば、8族金属の含有(担持)工程で8族金属化合物の凝集が生じず、8族金属の分散性が良くなることに加え、不活性なコバルト、ニッケル種等の8族金属種であるCo種、Ni種等の前駆体であるCoO種、NiO種等や担体の格子内に取り込まれたCoスピネル種、Niスピネル種等が生成しないと考えられるため、触媒能の向上が見られ、好ましい。また、8族金属としてコバルトとニッケルを使用するときは、〔Co〕/〔Ni+Co〕のモル比が0.6〜1の範囲、より好ましくは、0.7〜1の範囲になるように使用することが望ましい。この比が0.6以上では、Ni上でコーク前駆体が生成せず、触媒活性点がコークで被覆されず、その結果活性が低下しないため、好ましい。 In the hydrotreating catalyst, the group 8 metal supported on the carrier is preferably cobalt or nickel. The supported amount of the group 8 metal is preferably 1 to 15% by mass, more preferably 3 to 8% by mass in terms of catalyst and oxide. If it is 1 mass% or more, the active point which belongs to a group 8 metal is fully obtained, and it is preferable. Further, if it is 15% by mass or less, the group 8 metal compound is not aggregated in the step of containing (supporting) the group 8 metal, the dispersibility of the group 8 metal is improved, and inactive cobalt and nickel species Co 8 S species such as Co 9 S, which is a group 8 metal species such as Ni 3 S 2 species, CoO species, NiO species, etc., Co spinel species incorporated into the support lattice, Ni spinel species, etc. are generated. Therefore, it is preferable that the catalytic ability is improved. When cobalt and nickel are used as the group 8 metal, the molar ratio of [Co] / [Ni + Co] is in the range of 0.6 to 1, more preferably in the range of 0.7 to 1. It is desirable to do. When this ratio is 0.6 or more, a coke precursor is not formed on Ni, and the catalytic active sites are not covered with coke, and as a result, the activity does not decrease.

8族金属と6族金属の上記した含有量において、8族金属と6族金属の最適質量比は、好ましくは、酸化物換算で、〔8族金属〕/〔8族金属+6族金属〕の値で、0.1〜0.25である。この値が0.1以上であれば、脱硫の活性点と考えられるCoMoS構造、NiMoS構造等の生成が抑制されず、脱硫活性向上の度合いが高くなるため、好ましい。0.25以下であれば、上記の不活性なコバルト、ニッケル種等(Co種、Ni種等)の生成が抑制され、触媒活性が向上されるので好ましい。 In the above-described contents of the Group 8 metal and the Group 6 metal, the optimum mass ratio of the Group 8 metal to the Group 6 metal is preferably [group 8 metal] / [group 8 metal + group 6 metal] in terms of oxide. The value is 0.1 to 0.25. If this value is 0.1 or more, the generation of CoMoS structure, NiMoS structure and the like, which are considered to be desulfurization active points, is not suppressed, and the degree of desulfurization activity improvement is increased, which is preferable. If it is 0.25 or less, the production of the above-described inert cobalt, nickel species (Co 9 S 8 species, Ni 3 S 2 species, etc.) is suppressed, and the catalytic activity is improved, which is preferable.

なお、無機酸化物担体への、6族金属、8族金属、及びリンの担持成分の担持は、一般に、これらの担持成分を含む原料化合物を含有する含浸溶液を調製し、それを、得られる触媒の担持成分の担持量が所望の範囲となるように、担体に含浸させる含浸法により行われる。   In addition, the carrying | support of the carrying | support component of a 6th group metal, a 8th group metal, and phosphorus to an inorganic oxide support | carrier generally prepares the impregnation solution containing the raw material compound containing these carrying | support components, and is obtained. It is carried out by an impregnation method in which the support is impregnated so that the supported amount of the catalyst support component falls within a desired range.

例えば、6族金属を担持させるに用いる6族金属を含む原料化合物としては、三酸化モリブデン、モリブドリン酸、モリブデン酸アンモニウム、モリブデン酸等が挙げられる。また、8族金属を担持させるに用いる8族金属を含む原料化合物としては、炭酸コバルト、炭酸ニッケル、硝酸コバルト6水和物、硝酸ニッケル6水和物等が挙げられる。さらに、リンを担持させるのに用いるリンを含む原料化合物としては、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等のリン酸化合物が挙げられる。   For example, examples of the raw material compound containing a Group 6 metal used for supporting a Group 6 metal include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, and molybdic acid. Examples of the raw material compound containing a group 8 metal used for supporting a group 8 metal include cobalt carbonate, nickel carbonate, cobalt nitrate hexahydrate, nickel nitrate hexahydrate, and the like. Furthermore, examples of the raw material compound containing phosphorus used for supporting phosphorus include phosphoric acid compounds such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid.

また、本発明で再生対象とする水素化処理触媒は、担体に、周期律表第6族金属、周期律表第8族金属、及びリン以外の成分、例えば有機酸ないし有機物由来の炭素を担持した触媒であっても良い。当該水素化処理触媒として、例えば、ゼオライトを含有した無機酸化物担体に周期律表第6族金属、周期律表第8族金属、及びリン以外に、有機酸ないし有機物由来の炭素を担持した触媒等が挙げられる。より具体的には、ゼオライトを含有した無機酸化物担体に周期律表第6族金属、周期律表第8族金属、及びリン以外に、クエン酸ないしクエン酸由来の炭素を担持した触媒が挙げられる。   In addition, the hydrotreating catalyst to be regenerated in the present invention carries a component other than the Group 6 metal of the periodic table, the Group 8 metal of the periodic table, and phosphorus, such as organic acid or carbon derived from organic substances, on the support. It may be a catalyst. As the hydrotreating catalyst, for example, a catalyst in which an organic acid or carbon derived from an organic substance is supported in addition to a group 6 metal of a periodic table, a group 8 metal of a periodic table, and phosphorus on an inorganic oxide support containing zeolite. Etc. More specifically, there is a catalyst in which citric acid or citric acid-derived carbon is supported in addition to a periodic table group 6 metal, a periodic table group 8 metal, and phosphorus on an inorganic oxide support containing zeolite. It is done.

本発明では、上記した水素化処理触媒を軽油などの炭化水素油の水素化処理に用いた後の使用済み触媒の再生を好適に行うことができる。
以下、本発明の触媒の再生方法の各工程について詳細に説明する。
In the present invention, it is possible to suitably perform regeneration of the used catalyst after using the above-described hydrotreating catalyst for hydrotreating hydrocarbon oil such as light oil.
Hereafter, each process of the regeneration method of the catalyst of this invention is demonstrated in detail.

本発明では、まず、使用済み触媒を油分除去処理する(油分除去工程)。この油分除去処理は、一般に窒素、水蒸気、二酸化炭素、空気等を使用できる。例えば、使用済み触媒を300〜400℃の加熱空気に接触させることにより、当該使用済み触媒表面の油分等の揮発分を除去する場合、加熱空気中の酸素濃度は、多くの処理条件によって最適な濃度は異なるが、一般に21容量%以下、好ましくは、20容量%以下である。   In the present invention, first, a used catalyst is subjected to oil removal treatment (oil removal step). In general, nitrogen, water vapor, carbon dioxide, air, or the like can be used for this oil removal treatment. For example, when volatile components such as oil on the surface of the used catalyst are removed by contacting the used catalyst with heated air at 300 to 400 ° C., the oxygen concentration in the heated air is optimal depending on many processing conditions. Although the concentration is different, it is generally 21% by volume or less, preferably 20% by volume or less.

本発明では、上記のように油分除去処理された使用済み触媒を300〜600℃、好ましくは400〜500℃で焼成する(焼成工程)。焼成時間は、焼成温度にもよるが、一般に、15分間〜10時間、好ましくは30分間〜9時間である。焼成温度が300℃未満では、触媒上に析出して炭素分を十分に除去できないため、活性を十分に回復させることができない。一方、600℃を超える高温では、周期律表第6族金属、周期律表第8族金属がシンタリングしてしまうため、活性を十分に回復させることができない。また、焼成温度にもよるが、一般に、焼成時間が15分間以上であれば、触媒上に析出した炭素を除去することが可能であり、また、10時間以下であれば、設備規模を拡張することなく、必要量の触媒再生が可能である。   In the present invention, the spent catalyst subjected to the oil removal treatment as described above is calcined at 300 to 600 ° C., preferably 400 to 500 ° C. (calcining step). Although the firing time depends on the firing temperature, it is generally 15 minutes to 10 hours, preferably 30 minutes to 9 hours. If the calcination temperature is less than 300 ° C., the carbon content cannot be sufficiently removed by depositing on the catalyst, so that the activity cannot be sufficiently recovered. On the other hand, at a temperature higher than 600 ° C., the group 6 metal of the periodic table and the group 8 metal of the periodic table are sintered, so that the activity cannot be sufficiently recovered. Although depending on the calcination temperature, in general, if the calcination time is 15 minutes or more, it is possible to remove carbon deposited on the catalyst, and if it is 10 hours or less, the scale of equipment is expanded. Therefore, the necessary amount of catalyst regeneration can be performed.

本発明では、上記のように油分除去処理された使用済み触媒を焼成して得られた焼成物(すなわち、焼成工程後に得られた焼成物)に、有機酸とリンを担持させて(担持工程)、しかる後200℃以下、好ましくは80〜200℃で乾燥する(乾燥工程)。   In the present invention, an organic acid and phosphorus are supported on a calcined product obtained by calcining a used catalyst that has been subjected to oil removal treatment as described above (that is, a calcined product obtained after the calcining step) (supporting step). ), And then dried at 200 ° C. or lower, preferably 80 to 200 ° C. (drying step).

この使用済み触媒の焼成物への有機酸の担持は、有機酸が担持された後の焼成物中の、周期律表第8族金属の担持量に対する有機酸の担持量のモル比率(〔有機酸〕/〔周期律表第8族金属〕のモル比率)が0.6〜1、好ましくは0.6〜0.8となるように行われる。   The organic catalyst is supported on the baked product of the spent catalyst by the molar ratio of the supported amount of the organic acid to the supported amount of the group 8 metal in the periodic table ([organic Acid] / [molar ratio of Group 8 metal of periodic table)] is 0.6 to 1, preferably 0.6 to 0.8.

〔有機酸〕/〔周期律表第8族金属〕のモル比率が0.6以上であれば、触媒表面で8族金属が有機酸と錯体化合物を十分に形成して、予備硫化工程において、8族金属に帰属する脱硫活性点が十分に得られるため好ましい。また、当該モル比率が1以下であれば、触媒表面で8族金属が有機酸と十分に錯体化合物を形成でき、一方で、過剰な有機酸が6族金属と錯体化合物を形成することを抑制することができると考えられるため好ましい。   If the molar ratio of [organic acid] / [group 8 metal of the periodic table] is 0.6 or more, the group 8 metal sufficiently forms an organic acid and a complex compound on the catalyst surface. This is preferable because a desulfurization active site belonging to the Group 8 metal can be sufficiently obtained. Moreover, if the said molar ratio is 1 or less, a group 8 metal can fully form a complex compound with an organic acid on the catalyst surface, On the other hand, it suppresses that an excess organic acid forms a complex compound with a group 6 metal. It is preferable because it is considered that the

使用済み触媒の焼成物に担持させる有機化合物としては、一般的に、多価アルコールなど種々の有機物が用いられているが、本発明では、特に有機酸を用いている。有機酸は、周期律表第8族金属と水溶性錯体を形成する点で好適である。   Various organic substances such as polyhydric alcohols are generally used as the organic compound supported on the burned product of the used catalyst. In the present invention, an organic acid is particularly used. Organic acids are preferred in that they form water soluble complexes with Group 8 metals of the Periodic Table.

本発明で用いることのできる有機酸としては、脂肪族多価カルボン酸類、例えばクエン酸、リンゴ酸、酒石酸、シュウ酸、コハク酸、グルタン酸、グルコン酸、アジピン酸、安息香酸、フタル酸、イソフタル酸、サリチル酸、マロン酸等が挙げられ、特に周期律表第8族金属イオンと極めて安定な水溶性錯体を生成する点で、クエン酸が好ましい。
これらの有機酸は、硫黄を実質的に含まない化合物を使用することが好ましい。これらの有機酸は、必要に応じて、1種用いることも、2種以上を混合して用いることもできる。
Examples of organic acids that can be used in the present invention include aliphatic polycarboxylic acids such as citric acid, malic acid, tartaric acid, oxalic acid, succinic acid, glutamic acid, gluconic acid, adipic acid, benzoic acid, phthalic acid, and isophthalic acid. Examples thereof include acid, salicylic acid, malonic acid and the like, and citric acid is particularly preferable in that it forms a very stable water-soluble complex with a group 8 metal ion of the periodic table.
These organic acids are preferably compounds that do not substantially contain sulfur. These organic acids can be used alone or in admixture of two or more as required.

本発明では、使用済み触媒の焼成物に、有機酸とともに新たにリンを担持させることが必要である。リンの担持は、リンが担持された後の焼成物中において、周期律表第6族金属の担持量に対する、新たに担持されるリンのP換算による担持量のモル比率(〔前記焼成工程後担時工程前の焼成物中に含まれていたリンを除くリン(P換算)〕/〔周期律表第6族金属〕のモル比率)が0.05〜0.3、好ましくは0.07〜0.2、より好ましくは0.1〜0.2の範囲となる量とする。 In this invention, it is necessary to carry | support new phosphorus with the organic acid to the baked product of a used catalyst. Phosphorus loading is the molar ratio of the amount of phosphorus newly supported in terms of P 2 O 5 to the amount of Group 6 metal in the periodic table in the calcined product after the phosphorus is supported (the above-mentioned The molar ratio of phosphorus (in terms of P 2 O 5 ) / [group 6 metal of the periodic table) excluding phosphorus contained in the fired product before and after the firing process is 0.05 to 0.3. The amount is preferably in the range of 0.07 to 0.2, more preferably 0.1 to 0.2.

周期律表第6族金属に対する、当該担持工程において新たに担持されたリンのP換算による担持量(以下、単に「P換算量」ということがある。)のモル比率が0.05以上であれば、触媒表面上でヘテロポリ酸を形成し、なおかつヘテロポリ酸を形成しないリンは、アルミナ表面上に分散するため、予備硫化工程で高分散かつ多層な二硫化モリブデン結晶が形成されて、脱硫活性点を十分に配置できると推測されるため好ましい。また、当該モル比率が0.3以下であれば、触媒表面上で6族金属が十分にヘテロポリ酸を形成し、かつヘテロポリ酸を形成しないリンはアルミナ表面に分散し、予備硫化工程で高品質な脱硫活性点を被覆しないと推測されるため、活性低下を引き起こさないため好ましい。 The molar ratio of the amount of phosphorus newly supported in the supporting step in terms of P 2 O 5 (hereinafter sometimes simply referred to as “P 2 O 5 converted amount”) to the Group 6 metal of the periodic table is as follows. If it is 0.05 or more, phosphorous that forms heteropolyacid on the catalyst surface and that does not form heteropolyacid is dispersed on the alumina surface, so highly dispersed and multilayer molybdenum disulfide crystals are formed in the preliminary sulfidation step. Therefore, it is presumed that desulfurization active sites can be sufficiently arranged. Further, if the molar ratio is 0.3 or less, the group 6 metal sufficiently forms a heteropolyacid on the catalyst surface, and phosphorus that does not form the heteropolyacid is dispersed on the alumina surface. It is presumed that no active desulfurization active sites are covered, and therefore, it is preferable because it does not cause a decrease in activity.

さらに、使用済み触媒の焼成物に、〔P換算量〕/〔周期律表第6族金属〕のモル比率が0.05〜0.3の範囲となるようにリンを担持させることにより、再生後の触媒の側面機械的強度(Side Crashing Strength:SCS)の劣化を抑制することができる。 Further, phosphorus is supported on the calcined product of the spent catalyst so that the molar ratio of [P 2 O 5 equivalent] / [Group 6 metal of the periodic table] is in the range of 0.05 to 0.3. Thus, it is possible to suppress the deterioration of the side mechanical strength (SCS) of the catalyst after regeneration.

なお、再生後の触媒中に過剰量のリンが存在する場合には、予備硫化工程において脱硫活性点がリンによって被覆されてしまい、脱硫活性が低下するおそれがある。このため、再生後の触媒中に含まれるリンの量は、10質量%程度以下であることが好ましい。   When an excessive amount of phosphorus is present in the regenerated catalyst, the desulfurization active sites are covered with phosphorus in the preliminary sulfidation step, and the desulfurization activity may be reduced. For this reason, the amount of phosphorus contained in the regenerated catalyst is preferably about 10% by mass or less.

上記焼成物にリンを担持させるためには、リンを含む原料化合物としてリン酸化合物を用いる。当該リン酸化合物としては、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等が挙げられ、中でもオルトリン酸が好ましい。これらのリン酸化合物は、必要に応じて、1種用いることも、2種以上を混合して用いることもできる。   In order to carry phosphorus on the fired product, a phosphoric acid compound is used as a raw material compound containing phosphorus. Examples of the phosphoric acid compound include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid. Among them, orthophosphoric acid is preferable. These phosphoric acid compounds can be used singly or in combination of two or more as required.

使用済み触媒の焼成物へ有機酸及びリンを担持させる方法は、特に限定されるものではなく、当該技術分野で公知のいずれの手法で行ってもよい。例えば、使用済み触媒の焼成物への有機酸及びリンの担持は、有機酸とリン酸化合物を含有する溶液を用いて行うことができる。具体的には、使用済み触媒の焼成物を、有機酸とリン酸化合物を含有する溶液に含浸させて行われる。この有機酸とリン酸化合物を含有する含浸溶液の調製は、常法により行うことができる。有機酸とリン化合物を溶解させるために用いる溶媒は、一般に水である。   The method for supporting the organic acid and phosphorus on the burned product of the used catalyst is not particularly limited, and any method known in the art may be used. For example, the loading of the organic acid and phosphorus on the burned product of the used catalyst can be performed using a solution containing the organic acid and the phosphoric acid compound. Specifically, it is carried out by impregnating the calcined product of the used catalyst with a solution containing an organic acid and a phosphoric acid compound. The impregnation solution containing the organic acid and the phosphoric acid compound can be prepared by a conventional method. The solvent used for dissolving the organic acid and the phosphorus compound is generally water.

また、上記使用済み触媒の焼成物への有機酸とリン酸化合物の含浸溶液の含浸も、常法により行うことができる。含浸条件は、種々の条件を採ることができるが、通常、含浸温度は0℃を超え100℃未満が適しており、含浸時間は15分から3時間が適している。
含浸温度が上記範囲であれば、含浸中に乾燥が起こり、有機酸とリン酸化合物の分散度が低下することがない。また、含浸時間が上記範囲であれば、上記焼成物中に有機酸、リンが均一となる。
Moreover, impregnation of the impregnated solution of the organic acid and the phosphoric acid compound into the calcined product of the used catalyst can be performed by a conventional method. Various conditions can be adopted as the impregnation conditions. Usually, the impregnation temperature is preferably more than 0 ° C. and less than 100 ° C., and the impregnation time is suitably from 15 minutes to 3 hours.
If the impregnation temperature is within the above range, drying occurs during the impregnation, and the dispersibility of the organic acid and the phosphoric acid compound does not decrease. If the impregnation time is within the above range, the organic acid and phosphorus are uniform in the fired product.

有機酸とリン酸化合物の含浸溶液を含浸させて、有機酸とリンを担持させた上記使用済み触媒の焼成物を、200℃以下で乾燥させたものが、再生された水素化処理触媒である。有機酸とリンを担持させた上記使用済み触媒の焼成物の乾燥は、200℃以下で行われる手法であれば、特に限定されるものではない。例えば、一般に、常温〜約80℃、窒素気流中、空気気流中、あるいは真空中で、水分をある程度〔LOIが50%以下となるように〕除去し、その後、空気気流中、窒素気流中、あるいは真空中で200℃以下、好ましくは80〜200℃、5時間〜20時間の乾燥を行う。ここで、真空中で乾燥を行う場合は、圧力760mmHg換算で上記の温度範囲になるようにして乾燥を行うことが好ましい。   A regenerated hydrotreating catalyst is obtained by impregnating an impregnating solution of an organic acid and a phosphoric acid compound and drying the used catalyst fired on the organic acid and phosphorus at 200 ° C. or lower. . The drying of the fired product of the used catalyst carrying the organic acid and phosphorus is not particularly limited as long as it is performed at 200 ° C. or lower. For example, in general, water is removed to a certain extent (so that the LOI is 50% or less) in a nitrogen stream, an air stream, or a vacuum in a room temperature to about 80 ° C., and then in an air stream, a nitrogen stream, Alternatively, drying is performed in vacuum at 200 ° C. or lower, preferably 80 to 200 ° C. for 5 to 20 hours. Here, when drying in a vacuum, it is preferable to perform the drying so as to be within the above temperature range in terms of pressure of 760 mmHg.

有機物を担持させた上記使用済み触媒の焼成物においては、担持させた有機酸は、使用済み触媒に担持されている周期律表第8金属と錯体化し、担持させたリン化合物は使用済み触媒に担持されている周期律表第6族金属とヘテロポリ化していると考えられる。
また、乾燥を200℃以下の温度で行うと、この使用済み触媒に担持されている周期律表第8族金属と錯体化している有機酸、及び、周期律表第6金属とヘテロポリ化しているリンが金属から脱離せず、その結果、得られる触媒を硫化処理したときに上記の活性点と考えられるCoMoS構造、NiMoS構造の形成の精密制御が容易になるためと推測され、好ましい。
In the fired product of the above-mentioned used catalyst carrying an organic substance, the supported organic acid is complexed with the eighth metal of the periodic table supported on the used catalyst, and the supported phosphorus compound is converted into the used catalyst. It is thought that it is heteropolyized with the supported Group 6 metal of the periodic table.
Further, when drying is performed at a temperature of 200 ° C. or less, the organic acid complexed with the group 8 metal of the periodic table and the metal of the periodic table 6 which are supported on the used catalyst are heteropolyized. It is presumed that phosphorus is not desorbed from the metal, and as a result, precise control of formation of the CoMoS structure and NiMoS structure, which are considered to be active sites, is facilitated when the resulting catalyst is subjected to sulfurization treatment.

本発明により上記の如くして再生された水素化処理触媒は、脱硫活性が十分に復活されており、使用前の水素化処理触媒と同様に、炭化水素油の水素化処理に好適に用いることができる。すなわち、本発明の再生方法によって再生された水素化処理触媒は、過酷な運転条件を必要とせずに、炭化水素油中の硫黄化合物を超深度脱硫することができる。
なお、触媒の側面機械的強度(Side Crashing Strength:SCS)としては、通常、2lbs/mm以上が要求される。
The hydrotreating catalyst regenerated as described above according to the present invention has sufficiently recovered its desulfurization activity and should be suitably used for hydrotreating hydrocarbon oils in the same manner as the hydrotreating catalyst before use. Can do. That is, the hydrotreating catalyst regenerated by the regeneration method of the present invention can ultra-desulfurize sulfur compounds in hydrocarbon oil without requiring severe operating conditions.
In addition, as a side mechanical strength (Side Crash Strength: SCS) of a catalyst, 2 lbs / mm or more is normally requested | required.

本発明により再生された水素化処理触媒は、例えば、直留ナフサ、接触改質ナフサ、接触分解ナフサ、接触分解ガソリン、直留灯油、直留軽油、接触分解軽油、熱分解軽油、水素化処理軽油、脱硫処理軽油、減圧蒸留軽油(VGO)等の留分の水素化処理に好適に用いることができる。本発明により再生された水素化処理触媒により好適に水素化処理がなされ得る炭化水素油の代表的な性状例として、沸点範囲が30〜560℃、硫黄化合物濃度が5質量%以下のものが挙げられる。   Examples of the hydrotreating catalyst regenerated by the present invention include straight-run naphtha, catalytic reforming naphtha, catalytic cracking naphtha, catalytic cracking gasoline, straight-run kerosene, straight-run light oil, catalytic cracking light oil, pyrolysis light oil, hydrotreating. It can be suitably used for hydrotreating fractions such as light oil, desulfurized light oil, and vacuum distilled light oil (VGO). Typical examples of the properties of hydrocarbon oils that can be suitably hydrotreated by the hydrotreating catalyst regenerated by the present invention include those having a boiling range of 30 to 560 ° C. and a sulfur compound concentration of 5% by mass or less. It is done.

また、本発明により再生された水素化処理触媒による上記のような炭化水素油の水素化処理は、一般に、水素分圧0.7〜20MPa、温度220〜420℃、液空間速度0.3〜10hr−1、水素/オイル比20〜1000m(normal)/klの条件により好適に行うことができる。 Further, the hydrotreatment of hydrocarbon oil as described above with the hydrotreating catalyst regenerated according to the present invention is generally performed with a hydrogen partial pressure of 0.7 to 20 MPa, a temperature of 220 to 420 ° C., and a liquid space velocity of 0.3 to It can be suitably carried out under the conditions of 10 hr −1 and a hydrogen / oil ratio of 20 to 1000 m 3 (normal) / kl.

以下、実施例、比較例を挙げて本発明を説明するが、本発明は以下の実施例に何ら限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained, the present invention is not limited to the following examples at all.

[実施例1]
<水素化処理触媒の製造>
国際公開第2004/054712号パンフレットにおいて実施例1に記載されている方法に従って、次のようにして触媒イを製造した。
即ち、SiO/Alモル比6のSHYゼオライト粉末(平均粒子径3.5μm、粒子径6μm以下のものがゼオライト全粒子の87%)と、アルミナ水和物を混練、押出成形後、600℃で2時間焼成して直径1.5mmの柱状成形物のゼオライト−アルミナ複合担体(ゼオライト/アルミナ質量比:5/95、細孔容積:0.79ml/g、比表面積:311m/g、平均細孔直径:93Å)を得た。
[Example 1]
<Manufacture of hydrotreating catalyst>
According to the method described in Example 1 in the pamphlet of International Publication No. 2004/054712, Catalyst A was produced as follows.
That is, after kneading and extruding SHY zeolite powder having an SiO 2 / Al 2 O 3 molar ratio of 6 (average particle size of 3.5 μm, particle size of 6 μm or less is 87% of all zeolite particles) and alumina hydrate And a zeolite-alumina composite support in a columnar shaped product having a diameter of 1.5 mm after calcination at 600 ° C. for 2 hours (zeolite / alumina mass ratio: 5/95, pore volume: 0.79 ml / g, specific surface area: 311 m 2 / g, average pore diameter: 93 mm).

イオン交換水22.3gに、クエン酸第一コバルト10.27gとリン酸(85%水溶液)2.24gを投入し、80℃に加温して10分間攪拌した。次いで、モリブドリン酸17.61gを投入し溶解させ、同温度で15分間攪拌して含浸用の溶液を調製した。
ナス型フラスコ中に、上記のゼオライト−アルミナ複合体の無機酸化物担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。その後、窒素気流中で風乾し、マッフル炉中、空気気流中・大気圧・120℃で約16時間乾燥させ、触媒イを得た。
10.23 g of cobaltous citrate and 2.24 g of phosphoric acid (85% aqueous solution) were added to 22.3 g of ion-exchanged water, heated to 80 ° C. and stirred for 10 minutes. Next, 17.61 g of molybdophosphoric acid was added and dissolved, and stirred at the same temperature for 15 minutes to prepare a solution for impregnation.
Into an eggplant-shaped flask, 30.0 g of the inorganic oxide carrier of the above zeolite-alumina composite was put, and the whole amount of the above impregnating solution was added thereto with a pipette and immersed at about 25 ° C. for 3 hours. Thereafter, it was air-dried in a nitrogen stream, and dried in a muffle furnace, in an air stream, at atmospheric pressure, and 120 ° C. for about 16 hours to obtain catalyst i.

<水素化処理触媒の使用>
この触媒イを、原料軽油(硫黄分:1.61質量%、密度(15/4℃):0.8570g/cm)を用いて、圧力(水素分圧):4.9MPa、液空間速度:1.5hr-1の条件で生成油硫黄分が10ppm以下になるように水素化処理を施し、その活性が許容されないレベルに低下するまで使用した。
<Use of hydrotreating catalyst>
This catalyst (i) was used as a raw material gas oil (sulfur content: 1.61% by mass, density (15/4 ° C.): 0.8570 g / cm 3 ), pressure (hydrogen partial pressure): 4.9 MPa, liquid space velocity : Hydrogenation treatment was performed so that the sulfur content of the produced oil was 10 ppm or less under the condition of 1.5 hr −1 , and it was used until its activity was lowered to an unacceptable level.

<使用済み水素化処理触媒の再生>
当該触媒を反応装置から抜き出し、空気雰囲気中において300℃、3時間処理することでこの使用済み触媒に残存している炭化水素油を除去した。さらに、この残存炭化水素油を除去した使用済み触媒上に析出している炭素を主成分とする不純物を、430℃で、4時間焼成して除去した。
<Regeneration of spent hydrotreating catalyst>
The catalyst was extracted from the reactor and treated in an air atmosphere at 300 ° C. for 3 hours to remove hydrocarbon oil remaining in the used catalyst. Further, impurities mainly composed of carbon precipitated on the used catalyst from which the residual hydrocarbon oil was removed were removed by calcination at 430 ° C. for 4 hours.

その後、得られた焼成物に、有機酸としてクエン酸・1水和物5.34gとリン酸化合物としてオルトリン酸(85%水溶液)3.09gを含む26.00gの水溶液を含浸させることにより、当該焼成物(触媒)に含まれるコバルトに対し、〔クエン酸〕/〔CoO〕のモル比率が0.67となり、かつ当該焼成物に含まれるモリブデンに対し、〔P換算量〕/〔MoO〕のモル比率が0.15となるように、当該焼成物に有機酸とリンを担持させた。さらに、含浸後の焼成物をマッフル炉で120℃、16時間乾燥させて触媒Aを得た。 Then, the obtained fired product was impregnated with 26.00 g of an aqueous solution containing 5.34 g of citric acid monohydrate as an organic acid and 3.09 g of orthophosphoric acid (85% aqueous solution) as a phosphoric acid compound. The molar ratio of [citric acid] / [CoO] is 0.67 with respect to cobalt contained in the fired product (catalyst), and [money equivalent to P 2 O 5 ] / molybdenum contained in the fired product. The fired product was supported with an organic acid and phosphorus so that the molar ratio of [MoO 3 ] was 0.15. Further, the fired product after impregnation was dried at 120 ° C. for 16 hours in a muffle furnace to obtain Catalyst A.

[実施例2]
焼成物に含浸させる含浸液として、クエン酸・1水和物5.34gとリン酸化合物としてオルトリン酸(85%水溶液)3.86gを含む26.00gの水溶液を用いて、焼成物に含まれるコバルトに対し、〔クエン酸〕/〔CoO〕のモル比率が0.67となり、かつ当該触媒に含まれるモリブデンに対し、〔P換算量〕/〔MoO〕のモル比率が0.19となるように焼成物にクエン酸とリンを担持させた以外は実施例1と同様にして、触媒Bを得た。
[Example 2]
As the impregnating liquid to be impregnated into the fired product, an aqueous solution of 26.00 g containing 5.34 g of citric acid monohydrate and 3.86 g of orthophosphoric acid (85% aqueous solution) as a phosphoric acid compound is included in the fired product. The molar ratio of [citric acid] / [CoO] to cobalt is 0.67, and the molar ratio of [P 2 O 5 equivalent] / [MoO 3 ] is 0. 0 to molybdenum contained in the catalyst. A catalyst B was obtained in the same manner as in Example 1 except that the calcined product was supported with citric acid and phosphorus so as to be 19.

[実施例3]
焼成物に含浸させる含浸液として、有機酸としてクエン酸・1水和物5.34gとリン酸化合物としてオルトリン酸(85%水溶液)1.54gを含む26.00gの水溶液を用いて、触媒(含浸後の焼成物)に含まれるコバルトに対し、〔クエン酸〕/〔CoO〕のモル比率が0.67となり、かつ当該触媒に含まれるモリブデンに対し、〔P換算量〕/〔MoO〕のモル比率が0.08となるように焼成物にクエン酸とリンを担持させた以外は実施例1と同様にして、触媒Cを得た。
[Example 3]
As an impregnation liquid to be impregnated into the baked product, an aqueous solution of 26.00 g containing 5.34 g of citric acid monohydrate as an organic acid and 1.54 g of orthophosphoric acid (85% aqueous solution) as a phosphoric acid compound was used. The molar ratio of [citric acid] / [CoO] is 0.67 with respect to cobalt contained in the fired product after impregnation, and [P 2 O 5 equivalent] / [ Catalyst C was obtained in the same manner as in Example 1, except that the calcined product was supported with citric acid and phosphorus so that the molar ratio of MoO 3 ] was 0.08.

[実施例4]
焼成物に含浸させる含浸液として、有機酸としてクエン酸・1水和物7.21gとリン酸化合物としてオルトリン酸(85%水溶液)3.09gを含む26.00gの水溶液を用いて、触媒(含浸後の焼成物)に含まれるコバルトに対し、〔クエン酸〕/〔CoO〕のモル比率が0.90となり、かつ当該触媒に含まれるモリブデンに対し、〔P換算量〕/〔MoO〕のモル比率が0.15となるように焼成物にクエン酸とリンを担持させた以外は実施例1と同様にして、触媒Dを得た。
[Example 4]
As an impregnating liquid to be impregnated into the calcined product, a catalyst (using a 26.00 g aqueous solution containing 7.21 g of citric acid monohydrate as an organic acid and 3.09 g of orthophosphoric acid (85% aqueous solution) as a phosphoric acid compound was used. The molar ratio of [citric acid] / [CoO] is 0.90 with respect to cobalt contained in the fired product after impregnation, and [P 2 O 5 equivalent] / [ Catalyst D was obtained in the same manner as in Example 1, except that the calcined product was supported with citric acid and phosphorus so that the molar ratio of MoO 3 ] was 0.15.

[実施例5]
焼成物に含浸させる含浸液として、有機酸としてクエン酸・1水和物4.88gとリン酸化合物としてオルトリン酸(85%水溶液)3.09gを含む26.00gの水溶液を用いて、触媒(含浸後の焼成物)に含まれるコバルトに対し、〔クエン酸〕/〔CoO〕のモル比率が0.61となり、かつ当該触媒に含まれるモリブデンに対し、〔P換算量〕/〔MoO〕のモル比率が0.15となるように焼成物にクエン酸とリンを担持させた以外は実施例1と同様にして、触媒Eを得た。
[Example 5]
As an impregnating liquid to be impregnated into the calcined product, a catalyst (using a 26.00 g aqueous solution containing 4.88 g of citric acid monohydrate as an organic acid and 3.09 g of orthophosphoric acid (85% aqueous solution) as a phosphoric acid compound ( The molar ratio of [citric acid] / [CoO] is 0.61 with respect to cobalt contained in the fired product after impregnation, and [P 2 O 5 equivalent] / [ Catalyst E was obtained in the same manner as in Example 1, except that the calcined product was supported with citric acid and phosphorus so that the molar ratio of MoO 3 ] was 0.15.

[比較例1]
焼成物に含浸させる含浸液として、有機酸としてクエン酸・1水和物5.34gを含む26.00gの水溶液を用いて、触媒(含浸後の焼成物)に含まれるコバルトに対し、〔クエン酸〕/〔CoO〕のモル比率が0.67となるように焼成物にクエン酸のみを担持させた以外は実施例1と同様にして、触媒aを得た。
[Comparative Example 1]
As an impregnation liquid to be impregnated into the calcined product, an aqueous solution of 26.00 g containing 5.34 g of citric acid / monohydrate as an organic acid was used. Catalyst a was obtained in the same manner as in Example 1 except that only the citric acid was supported on the calcined product so that the molar ratio of [acid] / [CoO] was 0.67.

[比較例2]
焼成物に含浸させる含浸液として、有機酸としてクエン酸・1水和物5.34gとリン酸化合物としてオルトリン酸(85%水溶液)6.96gを含む26.00gの水溶液を用いて、触媒(含浸後の焼成物)に含まれるコバルトに対し、〔クエン酸〕/〔CoO〕のモル比率が0.67となり、かつ当該触媒に含まれるモリブデンに対し、〔P換算量〕/〔MoO〕のモル比率が0.34となるように焼成物にクエン酸とリンを担持させた以外は実施例1と同様にして、触媒bを得た。
[Comparative Example 2]
As an impregnation liquid to be impregnated into the baked product, an aqueous solution of 26.00 g containing 5.34 g of citric acid monohydrate as an organic acid and 6.96 g of orthophosphoric acid (85% aqueous solution) as a phosphoric acid compound was used. The molar ratio of [citric acid] / [CoO] is 0.67 with respect to cobalt contained in the fired product after impregnation, and [P 2 O 5 equivalent] / [ Catalyst b was obtained in the same manner as in Example 1 except that the calcined product was supported with citric acid and phosphorus so that the molar ratio of MoO 3 ] was 0.34.

[比較例3]
焼成物に含浸させる含浸液として、有機酸としてクエン酸・1水和物5.34gとリン酸化合物としてオルトリン酸(85%水溶液)0.77gを含む26.00gの水溶液を用いて、触媒(含浸後の焼成物)に含まれるコバルトに対し、〔クエン酸〕/〔CoO〕のモル比率が0.67となり、かつ当該触媒に含まれるモリブデンに対し、〔P換算量〕/〔MoO〕のモル比率が0.04となるように焼成物にクエン酸とリンを担持させた以外は実施例1と同様にして、触媒cを得た。
[Comparative Example 3]
As an impregnating liquid to be impregnated into the calcined product, 26.00 g of an aqueous solution containing 5.34 g of citric acid monohydrate as an organic acid and 0.77 g of orthophosphoric acid (85% aqueous solution) as a phosphoric acid compound was used. The molar ratio of [citric acid] / [CoO] is 0.67 with respect to cobalt contained in the fired product after impregnation, and [P 2 O 5 equivalent] / [ Catalyst c was obtained in the same manner as in Example 1, except that the calcined product was supported with citric acid and phosphorus so that the molar ratio of MoO 3 ] was 0.04.

[比較例4]
焼成物に含浸させる含浸液として、有機酸としてクエン酸・1水和物4.00gとリン酸化合物としてオルトリン酸(85%水溶液)3.09gを含む26.00gの水溶液を用いて、触媒(含浸後の焼成物)に含まれるコバルトに対し、〔クエン酸〕/〔CoO〕のモル比率が0.30となり、かつ当該触媒に含まれるモリブデンに対し、〔P換算量〕/〔MoO〕のモル比率が0.15となるように焼成物にクエン酸とリンを担持させた以外は実施例1と同様にして、触媒dを得た。
[Comparative Example 4]
As an impregnation liquid to be impregnated into the calcined product, 26.00 g of an aqueous solution containing 4.00 g of citric acid monohydrate as an organic acid and 3.09 g of orthophosphoric acid (85% aqueous solution) as a phosphoric acid compound was used. The molar ratio of [citric acid] / [CoO] is 0.30 with respect to cobalt contained in the fired product after impregnation) and [P 2 O 5 equivalent] / [ Catalyst d was obtained in the same manner as in Example 1, except that the calcined product was supported with citric acid and phosphorus so that the molar ratio of MoO 3 ] was 0.15.

<再生された触媒の分析>
以上の実施例及び比較例で再生された触媒の化学組成及び物性を分析した。各触媒の元素分析値、物性価を表1に示す。
なお、触媒の分析に用いた方法及び分析機器を以下に示す。
<Analysis of regenerated catalyst>
The chemical composition and physical properties of the catalysts regenerated in the above examples and comparative examples were analyzed. Table 1 shows the elemental analysis values and physical property values of each catalyst.
The method and analytical equipment used for the analysis of the catalyst are shown below.

〔比表面積の測定〕
各触媒の比表面積は、窒素吸着によるBET法により測定した。窒素吸着装置は、日本ベル(株)製の表面積測定装置(ベルソープ28) を使用した。
[Measurement of specific surface area]
The specific surface area of each catalyst was measured by the BET method by nitrogen adsorption. As the nitrogen adsorption device, a surface area measuring device (Bell Soap 28) manufactured by Nippon Bell Co., Ltd. was used.

〔細孔容積、平均細孔直径、及び細孔分布の測定〕
各触媒の細孔容積、平均細孔直径、及び細孔分布は、水銀圧入法により測定した。
水銀圧入法は、毛細管現象の法則に基づく。水銀と円筒細孔の場合には、この法則は次式で表される。
D =−(1/P)4γcosθ
式中、Dは細孔直径、Pは掛けた圧力、γは表面張力、θは接触角である。掛けた圧力Pの関数としての細孔への進入水銀体積を測定する。なお、触媒の細孔水銀の表面張力は484dyne/cm とし、接触角は130度とした。細孔容積は、細孔へ進入した触媒グラム当たりの全水銀体積量であり、平均細孔直径は、Pの関数として算出されたDの平均値である。さらに、細孔分布は、Pを関数として算出されたDの分布である。
(Measurement of pore volume, average pore diameter, and pore distribution)
The pore volume, average pore diameter, and pore distribution of each catalyst were measured by mercury porosimetry.
The mercury intrusion method is based on the law of capillary action. In the case of mercury and cylindrical pores, this law is expressed as:
D = − (1 / P) 4γcos θ
In the formula, D is the pore diameter, P is the applied pressure, γ is the surface tension, and θ is the contact angle. Measure the volume of mercury entering the pores as a function of the applied pressure P. The surface tension of the pore mercury of the catalyst was 484 dyne / cm 2 and the contact angle was 130 degrees. The pore volume is the total volume of mercury per gram of catalyst that has entered the pores, and the average pore diameter is the average value of D calculated as a function of P. Further, the pore distribution is a distribution of D calculated as a function of P.

具体的には、下記のようにして測定した。なお、水銀圧入装置は、ポロシメーター(MICROMERITICS AUTO−PORE9200:島津製作所製) を使用した。
(1) 真空加熱脱気装置の電源を入れ、温度400℃ 、真空度5×10−2Torr以下になることを確認した。
(2) サンプルビュレットを空のまま真空加熱脱気装置に掛けた。
(3) 真空度が5×10−2Torr以下となったなら、サンプルビュレットを、そのコックを閉じて真空加熱脱気装置から取外し、冷却後、重量を測定した。
(4) サンプルビュレットに試料(触媒)を入れた。
(5) 試料入りサンプルビュレットを真空加熱脱気装置に掛け、真空度が5×10−2Torr 以下になってから1時間以上保持した。
(6) 試料入りサンプルビュレットを真空加熱脱気装置から取外し、冷却後、重量を測定し、試料重量を求めた。
(7) AUTO−PORE9200用セルに試料を入れた。
(8) AUTO−PORE9200により測定した。
Specifically, it measured as follows. In addition, the porosimeter (MICROMERITICS AUTO-PORE9200: Shimadzu Corporation make) was used for the mercury intrusion apparatus.
(1) The vacuum heating deaerator was turned on, and it was confirmed that the temperature was 400 ° C. and the degree of vacuum was 5 × 10 −2 Torr or less.
(2) The sample burette was emptied and placed on a vacuum heating deaerator.
(3) When the degree of vacuum was 5 × 10 −2 Torr or less, the sample burette was removed from the vacuum heat deaerator with its cock closed, and after cooling, the weight was measured.
(4) A sample (catalyst) was placed in a sample bullet.
(5) The sample-containing burette was placed in a vacuum heating and degassing apparatus and held for 1 hour or more after the degree of vacuum became 5 × 10 −2 Torr or less.
(6) The sample burette containing the sample was removed from the vacuum heating and degassing device, and after cooling, the weight was measured to obtain the sample weight.
(7) The sample was put into the cell for AUTO-PORE9200.
(8) Measured with AUTO-PORE 9200.

〔化学組成の分析〕
a)金属及びリンの組成の分析
各職場意中の金属及びリンの組成を、酸化物換算で分析した。分析装置は、誘導結合プラズマ発光分析(ICPS−2000: 島津製作所製)を用いて行った。
具体的には、ユニシールに、触媒0.05g、塩酸(50%)1ml、フッ酸一滴、及び純水1ccを投入し、加熱して溶解させた。溶解後、ポリプロピレン製メスフラスコ(50ml)に移し換え、純水を加えて50mlに秤量した。得られた溶液をICPS−2000 により測定した。なお、金属及びリンの定量は、絶対検量線法にて行った。
[Analysis of chemical composition]
a) Analysis of metal and phosphorus composition The composition of metal and phosphorus in each workplace was analyzed in terms of oxides. The analysis apparatus was performed using inductively coupled plasma emission spectrometry (ICPS-2000: manufactured by Shimadzu Corporation).
Specifically, 0.05 g of catalyst, 1 ml of hydrochloric acid (50%), one drop of hydrofluoric acid, and 1 cc of pure water were added to Uniseal and dissolved by heating. After dissolution, it was transferred to a polypropylene volumetric flask (50 ml), pure water was added and weighed to 50 ml. The obtained solution was measured by ICPS-2000. Metals and phosphorus were quantified by the absolute calibration curve method.

b)炭素組成の分析
各触媒中の炭素質量は、触媒を乳鉢にて粉砕した後、(株)柳本株式会社製CHN分析計(MT−5)を用い、950 ℃ で燃焼させ、燃焼生成ガスを差動熱伝導度計で測定した。
b) Analysis of Carbon Composition The carbon mass in each catalyst was combusted at 950 ° C. using a CHN analyzer (MT-5) manufactured by Yanagimoto Co., Ltd. Was measured with a differential thermal conductivity meter.

Figure 2012148215
Figure 2012148215

CoO、MoO、P、及びCの測定値(質量%)から、各触媒の単位量当たりの、コバルト、モリブデン、リン(P換算)、及び有機酸の含有量(モル)を算出した。
なお、触媒aは、担持工程においてリンを担持させていないため、各触媒のリン含有量から触媒a中のリン含有量を差し引いた値を、各触媒において再生工程により新たに担持されたリンの量とした。
算出された各含有量から、各触媒の〔クエン酸〕/〔CoO〕のモル比率及び〔P換算量〕/〔MoO〕のモル比率を求めたところ、いずれの触媒においても、両モル比率が期待された数値(各実施例及び比較例に記載された数値)であることが確認された。
From the measured values (mass%) of CoO, MoO 3 , P 2 O 5 , and C, the content (moles) of cobalt, molybdenum, phosphorus (in terms of P 2 O 5 ), and organic acid per unit amount of each catalyst ) Was calculated.
Since catalyst a does not carry phosphorus in the loading step, the value obtained by subtracting the phosphorus content in catalyst a from the phosphorus content in each catalyst is the value of the newly loaded phosphorus in each catalyst. The amount.
From each calculated content, the molar ratio of [citric acid] / [CoO] of each catalyst and the molar ratio of [P 2 O 5 equivalent] / [MoO 3 ] were determined. Both molar ratios were confirmed to be the expected values (values described in each example and comparative example).

〔直留軽油の水素化処理反応〕
上記の実施例及び比較例で調製した触媒A、B、C、D、E、a、b、c、dを用い、以下の要領にて、下記性状の直留軽油の水素化処理を行った。
先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の条件で前処理を行った。
次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上部より導入して、下記の条件で水素化反応を進行させ、生成油とガスの混合流体を、反応装置の下部より流出させ、気液分離器で生成油を分離した。
[Hydrolysis reaction of straight-run gas oil]
Using the catalysts A, B, C, D, E, a, b, c, and d prepared in the above Examples and Comparative Examples, hydrogenation of straight-run gas oil having the following properties was performed in the following manner. .
First, the catalyst was filled into a high-pressure flow reactor to form a fixed bed catalyst layer, and pretreatment was performed under the following conditions.
Next, a mixed fluid of the raw material oil heated to the reaction temperature and the hydrogen-containing gas is introduced from the upper part of the reactor, and the hydrogenation reaction proceeds under the following conditions, and the mixed fluid of the product oil and the gas is reacted. The oil was discharged from the lower part of the apparatus, and the produced oil was separated by a gas-liquid separator.

<触媒の前処理条件>
触媒の硫化 :原料油による液硫化を行った。
圧力(水素分圧) :4.9MPa
雰囲気 :水素及び原料油(液空間速度:1.5hr−1、水素/オイル比:200m(normal)/kl)
温度 :常温約22℃で水素及び原料油を導入し、20℃/hrで昇温し、300℃にて24hr維持、次いで反応温度である350℃まで20℃/hrで昇温。
<Pretreatment conditions for catalyst>
Catalyst sulfidation: Liquid sulfidation with raw material oil was performed.
Pressure (hydrogen partial pressure): 4.9 MPa
Atmosphere: Hydrogen and raw material oil (liquid space velocity: 1.5 hr −1 , hydrogen / oil ratio: 200 m 3 (normal) / kl)
Temperature: Hydrogen and raw material oil are introduced at a room temperature of about 22 ° C., the temperature is raised at 20 ° C./hr, maintained at 300 ° C. for 24 hours, and then the reaction temperature is raised to 350 ° C. at 20 ° C./hr.

<水素化反応条件>
反応温度 :350℃
圧力(水素分圧) :4.9MPa
液空間速度 :1.5hr−1
水素/オイル比 :200m3(normal)/kl
<Hydrogenation reaction conditions>
Reaction temperature: 350 ° C
Pressure (hydrogen partial pressure): 4.9 MPa
Liquid space velocity: 1.5 hr −1
Hydrogen / oil ratio: 200 m 3 (normal) / kl

<原料油の性状>
油種 :中東系直留軽油
密度(15/4℃):0.8570g/cm
蒸留性状 :初留点が212.5 ℃、50%点が303.5℃、90%点が354.0℃、終点が372.5℃
硫黄成分 :1.61質量%
窒素成分 :140質量ppm
動粘度(30℃) :5.857cSt
流動点 :−2.5℃
くもり点 :1.0℃
セタン指数 :54.5
セイボルトカラー :−6
<Properties of raw oil>
Oil type: Middle East straight run diesel oil density (15/4 ° C.): 0.8570 g / cm 3
Distillation properties: initial boiling point is 212.5 ° C, 50% point is 303.5 ° C, 90% point is 354.0 ° C, end point is 372.5 ° C
Sulfur component: 1.61% by mass
Nitrogen component: 140 mass ppm
Kinematic viscosity (30 ° C.): 5.857 cSt
Pour point: -2.5 ° C
Cloudy point: 1.0 ° C
Cetane index: 54.5
Saybolt color: -6

反応結果については、以下の方法で解析した。
350℃で反応装置を運転し、6日経過した時点で生成油を採取し、その性状を分析した。また、下記の如く脱硫率、脱硫反応速度定数、比活性を算出した。これらの結果を表2に示した。
The reaction results were analyzed by the following method.
The reaction apparatus was operated at 350 ° C., and after 6 days, the product oil was collected and analyzed for its properties. Further, the desulfurization rate, desulfurization reaction rate constant, and specific activity were calculated as follows. These results are shown in Table 2.

〔脱硫率(HDS)(%)の算出〕
原料中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下の式により算出した。式中、Sfは原料油中の硫黄分(質量%)、Spは反応生成油中の硫黄分(質量%)である。
脱硫率(%)=〔(Sf−Sp)/Sf〕×100
[Calculation of Desulfurization Rate (HDS) (%)]
By converting the sulfur content in the raw material into hydrogen sulfide by a desulfurization reaction, the ratio of the sulfur content that disappeared from the raw material oil was defined as the desulfurization rate, and was calculated from the sulfur analysis values of the raw material oil and the product oil by the following formula. In the formula, Sf is a sulfur content (mass%) in the raw material oil, and Sp is a sulfur content (mass%) in the reaction product oil.
Desulfurization rate (%) = [(Sf−Sp) / Sf] × 100

〔脱硫反応速度定数(Ks)の算出〕
生成油の硫黄分(Sp)の減少量に対して、1.3次の反応次数を得る反応速度式の定数を脱硫反応速度定数(Ks)とした。なお、反応速度定数が高い程、触媒活性が優れていることを示している。式中、Sfは原料油中の硫黄分(質量%)、Spは反応生成油中の硫黄分(質量%)、LHSVは液空間速度(hr-1)である。
脱硫反応速度定数=〔1/(Sp)(1.3-1)−1/(Sf)(1.3-1)〕×(LHSV)×1/(1.3−1)
[Calculation of desulfurization reaction rate constant (Ks)]
The constant of the reaction rate equation that obtains the reaction order of 1.3 with respect to the reduction amount of the sulfur content (Sp) of the product oil was defined as the desulfurization reaction rate constant (Ks). The higher the reaction rate constant, the better the catalytic activity. In the formula, Sf is the sulfur content (mass%) in the raw material oil, Sp is the sulfur content (mass%) in the reaction product oil, and LHSV is the liquid space velocity (hr-1).
Desulfurization reaction rate constant = [1 / (Sp) (1.3-1) −1 / (Sf) (1.3-1) ] × (LHSV) × 1 / (1.3-1)

〔比活性(%)の算出〕
触媒aの活性を基準として、各触媒の比活性を下記式より算出した。
比活性(%)=(各脱硫反応速度定数/比較触媒aの脱硫反応速度定数)×100
[Calculation of specific activity (%)]
Based on the activity of the catalyst a, the specific activity of each catalyst was calculated from the following equation.
Specific activity (%) = (each desulfurization reaction rate constant / desulfurization reaction rate constant of comparative catalyst a) × 100

Figure 2012148215
Figure 2012148215

この結果、触媒aに対する比活性は、いずれの触媒においても100%より高かった。これより、再生工程において、クエン酸のみを担持させた触媒aよりも、クエン酸とリン酸を共に担持させた触媒のほうが、再生によってより脱硫活性の高い水素化処理触媒が得られることが明らかである。
また、再生後の触媒において、〔クエン酸〕/〔CoO〕のモル比が0.6〜1の範囲内であり、かつ〔P換算量〕/〔MoO〕のモル比率が0.05〜0.3の範囲内である触媒A〜Eは、両モル比率の少なくともいずれか一方が当該範囲内から外れている触媒a〜dよりも、顕著に脱硫活性が高かった。これらの結果から、水素化処理触媒の再生において、触媒中の〔有機酸〕/〔周期律表第8族金属〕のモル比及び〔P換算量〕/〔周期律表第6族金属〕のモル比率を特定の範囲内となるように有機酸とリンを担持させることにより、脱硫活性が従来になく充分に復活された再生触媒が得られることが明らかである。
As a result, the specific activity with respect to the catalyst a was higher than 100% in any catalyst. From this, it is clear that in the regeneration step, a catalyst having both citric acid and phosphoric acid supported thereon can obtain a hydrotreating catalyst having a higher desulfurization activity than the catalyst a supporting only citric acid. It is.
Further, in the catalyst after regeneration, the molar ratio of the molar ratio of [citric acid] / [CoO] is in the range of 0.6-1, and [P 2 O 5 equivalent amount) / (MoO 3] 0 Catalysts A to E in the range of 0.05 to 0.3 had significantly higher desulfurization activity than the catalysts a to d in which at least one of the molar ratios was out of the range. From these results, in the regeneration of the hydrotreating catalyst, the molar ratio of [organic acid] / [group 8 metal of periodic table] in the catalyst and [P 2 O 5 equivalent] / [group 6 of periodic table] It is clear that by supporting the organic acid and phosphorus so that the molar ratio of [metal] is within a specific range, a regenerated catalyst having a desulfurization activity that has been fully restored can be obtained.

Claims (1)

炭化水素油の水素化処理に使用して活性の低下した使用済みの、周期律表第6族金属、周期律表第8族金属、及びリンを担持した水素化処理触媒を、油分除去処理する油分除去工程、
前記油分除去工程後の水素化処理触媒を、300〜600℃で焼成する焼成工程、
前記焼成工程により得られた焼成物に、有機酸とリンを、〔有機酸〕/〔周期律表第8族金属〕のモル比率が0.6〜1、かつ、〔前記焼成工程後担持工程前の焼成物中に含まれていたリンを除くリン(P換算)〕/〔周期律表第6族金属〕のモル比率が0.05〜0.3となるように担持させる担持工程、
及び前記担持工程後の焼成物を、200℃以下で乾燥させる乾燥工程を含むことを特徴とする使用済みの炭化水素油の水素化処理触媒の再生方法。
Oil removal treatment is performed on a hydrotreating catalyst loaded with a periodic group 6 metal, a periodic group 8 metal, and phosphorus, which has been used for hydrotreating a hydrocarbon oil, and which has been used. Oil removal process,
A calcining step of calcining the hydrotreating catalyst after the oil removal step at 300 to 600 ° C .;
In the fired product obtained by the firing step, an organic acid and phosphorus, [organic acid] / [group 8 metal of the periodic table] molar ratio is 0.6 to 1, and [supporting step after the firing step] Supporting so that the molar ratio of phosphorus excluding phosphorus contained in the previous fired product (in terms of P 2 O 5 ) / [Group 6 metal of the periodic table] is 0.05 to 0.3 Process,
And a method for regenerating a spent hydrocarbon oil hydrotreating catalyst, comprising a drying step of drying the calcined product after the supporting step at 200 ° C. or lower.
JP2011006879A 2011-01-17 2011-01-17 Regeneration method for hydroprocessing catalyst of hydrocarbon oil Active JP5660672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011006879A JP5660672B2 (en) 2011-01-17 2011-01-17 Regeneration method for hydroprocessing catalyst of hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011006879A JP5660672B2 (en) 2011-01-17 2011-01-17 Regeneration method for hydroprocessing catalyst of hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2012148215A true JP2012148215A (en) 2012-08-09
JP5660672B2 JP5660672B2 (en) 2015-01-28

Family

ID=46791041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011006879A Active JP5660672B2 (en) 2011-01-17 2011-01-17 Regeneration method for hydroprocessing catalyst of hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP5660672B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214745A (en) * 1988-05-10 1990-01-18 Union Oil Co Calif Catalyst composition and manufacture thereof
JP2003503194A (en) * 1999-07-05 2003-01-28 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for regenerating and rejuvenating additive-containing catalyst
JP2003299960A (en) * 2001-06-20 2003-10-21 Cosmo Oil Co Ltd Hydrogenation treatment catalyst and method for light oil, and manufacturing method therefor
JP2005013930A (en) * 2003-06-27 2005-01-20 Catalysts & Chem Ind Co Ltd Method for preparing alumina-containing porous inorganic oxide carrier and hydrogenating catalyst composition using the carrier
JP2007507334A (en) * 2003-10-03 2007-03-29 アルベマーレ ネザーランズ ビー.ブイ. Method for activating hydrotreating catalyst
JP2008290071A (en) * 2007-04-27 2008-12-04 Cosmo Oil Co Ltd Method for manufacturing catalyst for hydrotreating hydrocarbon oil and regeneration method
JP2009160498A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Method of regenerating hydrogenation catalyst
JP2011516259A (en) * 2008-04-11 2011-05-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー Regeneration and activation of supported hydrotreating catalysts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214745A (en) * 1988-05-10 1990-01-18 Union Oil Co Calif Catalyst composition and manufacture thereof
JP2003503194A (en) * 1999-07-05 2003-01-28 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for regenerating and rejuvenating additive-containing catalyst
JP2003299960A (en) * 2001-06-20 2003-10-21 Cosmo Oil Co Ltd Hydrogenation treatment catalyst and method for light oil, and manufacturing method therefor
JP2005013930A (en) * 2003-06-27 2005-01-20 Catalysts & Chem Ind Co Ltd Method for preparing alumina-containing porous inorganic oxide carrier and hydrogenating catalyst composition using the carrier
JP2007507334A (en) * 2003-10-03 2007-03-29 アルベマーレ ネザーランズ ビー.ブイ. Method for activating hydrotreating catalyst
JP2008290071A (en) * 2007-04-27 2008-12-04 Cosmo Oil Co Ltd Method for manufacturing catalyst for hydrotreating hydrocarbon oil and regeneration method
JP2009160498A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Method of regenerating hydrogenation catalyst
JP2011516259A (en) * 2008-04-11 2011-05-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー Regeneration and activation of supported hydrotreating catalysts

Also Published As

Publication number Publication date
JP5660672B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP5796871B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP6506430B2 (en) Improved resid hydroprocessing catalyst containing titania
WO2014156486A1 (en) Hydrogenation desulfurization catalyst for diesel oil and hydrogenation treatment method for diesel oil
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP2019218556A (en) Hydrotreating method of heavy hydrocarbon oil
KR20160064123A (en) Hydrogenation catalyst for heavy hydrocarbon oil, production method for hydrogenation catalyst for heavy hydrocarbon oil, and hydrogenation method for heavy hydrocarbon oil
JP5815321B2 (en) Hydrocarbon oil hydrotreating catalyst, hydrocarbon oil hydrotreating catalyst production method, and hydrocarbon oil hydrotreating method
JP4545328B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP4805211B2 (en) Heavy hydrocarbon oil hydrotreating catalyst, method for producing the same, and hydrotreating method
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4047044B2 (en) Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4916370B2 (en) Process for hydrotreating diesel oil
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP2019177356A (en) Hydrotreating catalyst for heavy hydrocarbon oil, method for producing hydrotreating catalyst for heavy hydrocarbon oil, and hydrotreating method for heavy hydrocarbon oil
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP2006306974A (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil
TWI611015B (en) Hydrodesufurization catalyst for hydrocarbon oil
JP5337978B2 (en) Hydrotreating catalyst and hydrotreating method of vacuum gas oil
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JP2019177357A (en) Hydrotreating catalyst for heavy hydrocarbon oil, method for producing hydrotreating catalyst for heavy hydrocarbon oil, and hydrotreating method for heavy hydrocarbon oil
JP2014111233A (en) Hydrodesulfurization catalyst of hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141128

R150 Certificate of patent or registration of utility model

Ref document number: 5660672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250