JP2013027839A - Method of manufacturing hydrogenation catalyst - Google Patents

Method of manufacturing hydrogenation catalyst Download PDF

Info

Publication number
JP2013027839A
JP2013027839A JP2011167170A JP2011167170A JP2013027839A JP 2013027839 A JP2013027839 A JP 2013027839A JP 2011167170 A JP2011167170 A JP 2011167170A JP 2011167170 A JP2011167170 A JP 2011167170A JP 2013027839 A JP2013027839 A JP 2013027839A
Authority
JP
Japan
Prior art keywords
catalyst
mass
aging
hydrotreating catalyst
active metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011167170A
Other languages
Japanese (ja)
Other versions
JP5863096B2 (en
Inventor
Yusuke Matsumoto
雄介 松元
Hisaya Ishihara
久也 石原
Yuji Yoshimura
雄二 葭村
Takehisa Mochizuki
剛久 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
JGC Catalysts and Chemicals Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, JGC Catalysts and Chemicals Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011167170A priority Critical patent/JP5863096B2/en
Publication of JP2013027839A publication Critical patent/JP2013027839A/en
Application granted granted Critical
Publication of JP5863096B2 publication Critical patent/JP5863096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a hydrogenation catalyst, in which the hydrogenation catalyst with a more excellent desulfurization activity is manufactured more conveniently and industrially.SOLUTION: The method of manufacturing the hydrogenation catalyst includes: a first process in which at least one or more active metal components chosen from the periodic table group 6 and the group 8 to group 10 are supported on a carrier to obtain an active metal carrier; a second process in which the active metal carrier is impregnated with a chelating agent-containing aqueous solution including a chelating agent and moisture to obtain an impregnated carrier; a third process in which the impregnated carrier is aged at 80 to 150°C while keeping the liquid amount[mass%] of the chelating agent-containing aqueous solution contained, as calculated by the following Formula (1):{(W2-W1)/W1}×100, at ≥50% to obtain an aging carrier; and a fourth process in which the aging carrier is dried at ≤300°C. In the Formula (1), W1 is the mass after drying the aging carrier after the end of the third process at 500°C and W2 is the mass of the aging carrier at the third process end.

Description

本発明は、より脱硫活性の優れた水素化処理触媒を簡便かつ工業的に製造する方法に関する。   The present invention relates to a method for easily and industrially producing a hydrotreating catalyst having more excellent desulfurization activity.

石油精製プロセスでは、原料油中の硫黄や窒素などの不純物の除去を目的として、多種多量の水素化処理触媒が使用されている。しかしながら、全世界規模での環境保全が問われる近年おいては、精製された燃料油における硫黄分の規制が世界的に厳しさを増している。特に、自動車排出ガス中に含まれる有害物質の更なる低減として、軽油の低硫黄化は大きな課題とされている。これは、排出ガス処理装置の触媒材料として用いられる貴金属や塩基性酸化物等が硫黄による被毒を受け易いためである。このため、日本では軽油やガソリンなどの液体燃料について硫黄分を10ppm以下に低減したサルファーフリー化がなされており、それに伴い水素化処理触媒においても高い脱硫性能を有する高性能な触媒の開発が行われている。   In the oil refining process, a large amount of hydrotreating catalyst is used for the purpose of removing impurities such as sulfur and nitrogen in the feedstock. However, in recent years when environmental conservation is required on a global scale, the regulation of sulfur content in refined fuel oil has become more stringent worldwide. In particular, as a further reduction of harmful substances contained in automobile exhaust gas, reduction of sulfur in light oil is regarded as a major issue. This is because noble metals, basic oxides, and the like used as the catalyst material of the exhaust gas treatment device are easily poisoned by sulfur. For this reason, in Japan, sulfur-free liquid fuels such as light oil and gasoline have been reduced to a sulfur content of 10 ppm or less, and accordingly, high-performance catalysts with high desulfurization performance have been developed for hydrotreating catalysts. It has been broken.

従来、水素化処理触媒は、アルミナ、シリカ、アルミナ−ボリア、ゼオライトなどの多孔性無機酸化物担体に、モリブデン、タングステンなどの周期表第6族金属、及び/又は、コバルト、ニッケルなどの周期表第8族金属などの活性金属成分を含む含浸溶液を接触(含浸)させた後、乾燥、焼成し、担体に活性金属を担持させて製造されていた。この水素化処理触媒は硫化して使用される。
しかしながら、この製造方法では、焼成工程や硫化工程において活性金属の凝集が起こり、すなわち、活性金属の分散性が悪くなり、脱硫活性が低くなるという問題があった。
そこで、含浸溶液にキレート剤を添加することにより、活性金属の凝集を抑制し、更に、担体に担持された活性金属を高分散させ、脱硫性能を向上させていた(例えば、特許文献1〜3参照)。
Conventionally, a hydrotreating catalyst has a porous inorganic oxide support such as alumina, silica, alumina-boria, zeolite, etc., a periodic table group 6 metal such as molybdenum and tungsten, and / or a periodic table such as cobalt and nickel. The impregnation solution containing an active metal component such as a Group 8 metal was brought into contact (impregnated), then dried and fired, and the support was loaded with the active metal. This hydrotreating catalyst is used after being sulfurized.
However, this manufacturing method has a problem that active metal aggregation occurs in the firing step and the sulfidation step, that is, the dispersibility of the active metal is deteriorated and the desulfurization activity is lowered.
Therefore, by adding a chelating agent to the impregnating solution, the aggregation of the active metal is suppressed, and the active metal supported on the carrier is highly dispersed to improve the desulfurization performance (for example, Patent Documents 1 to 3). reference).

特開2004−344725号公報JP 2004-344725 A 特開2004−344754号公報JP 2004-344754 A 特開2005−873号公報JP-A-2005-873

しかしながら、市場では、より高い脱硫性能、更に、触媒反応の性能低下がより小さい水素化処理触媒が求められていると共に、商業的な生産性についてコスト高を回避した製造方法の開発が求められている。
本発明では、より脱硫活性の優れた水素化処理触媒をより簡便かつ工業的に製造する水素化処理触媒の製造方法を提供する。
However, in the market, there is a demand for hydrotreating catalysts with higher desulfurization performance and smaller degradation of catalytic reaction, and development of production methods that avoid high costs for commercial productivity. Yes.
In this invention, the manufacturing method of the hydrotreating catalyst which manufactures the hydrotreating catalyst more excellent in desulfurization activity more simply and industrially is provided.

第1の発明は、担体に周期表第6族、第8族〜第10族(以上、IUPAC表記。以下同様)から選ばれる少なくとも1つ以上の活性金属成分を担持して活性金属担持体を得る第1工程と、
前記活性金属担持体にキレート剤及び水分を含むキレート剤含有水溶液を含浸し、含浸担持体を得る第2工程と、
前記第2工程で得られた含浸担持体について、下記(1)式で計算される前記キレート剤含有水溶液の含液量を50%以上の状態に保ちながら、80℃以上150℃以下で熟成させ、熟成担持体を得る第3工程と、
前記第3工程で得られた熟成担持体を300℃以下で乾燥させ、水素化処理触媒を得る第4工程と、を含むことを特徴とする水素化処理触媒の製造方法。
含液量[質量%]={(W2−W1)/W1}×100・・・(1)
但し、W1は、第3工程終了後の熟成担持体を500℃で乾燥させた後の質量であり、W2は、第3工程終了時の熟成担持体の質量である。
According to a first aspect of the present invention, there is provided an active metal carrier by supporting at least one active metal component selected from Group 6, Group 8 to Group 10 (above, IUPAC notation, the same shall apply hereinafter) on the carrier. A first step to obtain;
A second step of impregnating the active metal carrier with a chelating agent-containing aqueous solution containing a chelating agent and moisture to obtain an impregnated carrier;
The impregnated carrier obtained in the second step is aged at 80 ° C. or higher and 150 ° C. or lower while maintaining the content of the chelating agent-containing aqueous solution calculated by the following formula (1) at 50% or higher. A third step of obtaining an aged carrier,
And a fourth step of obtaining the hydrotreating catalyst by drying the aged support obtained in the third step at 300 ° C. or lower.
Liquid content [% by mass] = {(W2−W1) / W1} × 100 (1)
However, W1 is the mass after drying the aged carrier after completion of the third step at 500 ° C., and W2 is the mass of the aged carrier at the end of the third step.

第2の発明は、前記第3工程を、0.10〜0.51MPa(1〜5atm)の範囲で行うことを特徴とする。
第3の発明は、前記第1工程に代え、前記第2工程において、前記キレート剤含有水溶液に、周期表第6族、第8族〜第10族から選ばれる少なくとも1つ以上の活性金属成分を添加することを特徴とする。
The second invention is characterized in that the third step is performed in a range of 0.10 to 0.51 MPa (1 to 5 atm).
In a third invention, in place of the first step, in the second step, the chelating agent-containing aqueous solution contains at least one active metal component selected from Groups 6 and 8 to 10 of the periodic table. Is added.

第4の発明は、使用前の水素化処理触媒に担持された活性金属成分を再分散させて活性を向上させる水素化処理触媒の製造方法であって、
使用前の水素化処理触媒に、キレート剤及び水分を含むキレート剤含有水溶液を含浸し、含浸触媒を得る第一工程と、
前記第一工程で得られた含浸触媒について、下記(2)式で計算される前記キレート剤含有水溶液の含液量を50%以上の状態に保ちながら、80℃以上150℃以下で熟成させ、熟成触媒を得る第二工程と、
前記第二工程で得られた熟成触媒を300℃以下で乾燥させ、改良触媒を得る第三工程と、を含むことを特徴とする水素化処理触媒の製造方法
含液量[質量%]={(W4−W3)/W3}×100・・・(2)
但し、W3は、第二工程終了後の熟成触媒を500℃で乾燥させた後の質量であり、W4は、第二工程終了時の熟成触媒の質量である。
4th invention is the manufacturing method of the hydroprocessing catalyst which re-disperses the active metal component carry | supported by the hydroprocessing catalyst before use, and improves activity,
A first step of impregnating a hydrotreatment catalyst before use with a chelating agent-containing aqueous solution containing a chelating agent and moisture to obtain an impregnated catalyst;
The impregnation catalyst obtained in the first step is aged at 80 ° C. or higher and 150 ° C. or lower while maintaining the liquid content of the chelating agent-containing aqueous solution calculated by the following formula (2) at 50% or higher. A second step of obtaining an aging catalyst;
And a third step of obtaining an improved catalyst by drying the aged catalyst obtained in the second step at 300 ° C. or less, and a liquid content [mass%] = { (W4-W3) / W3} × 100 (2)
However, W3 is a mass after drying the aged catalyst after completion | finish of a 2nd process at 500 degreeC, and W4 is a mass of the aged catalyst at the end of a 2nd process.

第5の発明は、前記第二工程を、0.10〜0.51MPa(1〜5atm)の範囲で行うことを特徴とする。
第6の発明は、前記第一工程において、前記キレート剤含有水溶液に、周期表第6族、第8族〜第10族から選ばれる少なくとも1つ以上の活性金属成分を添加することを特徴とする。
第7の発明は、前記活性金属成分が周期表第8族〜第10族から選ばれ、その添加量が酸化物換算で前記改良触媒の1質量%以下であることを特徴とする。
第8の発明は、前記第一工程において、予め使用前の水素化処理触媒を300℃を超える温度で焼成した焼成触媒を使用することを特徴とする。
The fifth invention is characterized in that the second step is performed in a range of 0.10 to 0.51 MPa (1 to 5 atm).
A sixth invention is characterized in that, in the first step, at least one active metal component selected from Groups 6 and 8 to 10 of the periodic table is added to the chelating agent-containing aqueous solution. To do.
The seventh invention is characterized in that the active metal component is selected from Group 8 to Group 10 of the periodic table, and the addition amount thereof is 1% by mass or less of the improved catalyst in terms of oxide.
The eighth invention is characterized in that, in the first step, a calcined catalyst obtained by calcining a hydrotreatment catalyst before use at a temperature exceeding 300 ° C. is used.

本発明は、キレート剤及び水分を接触させた後、十分に水分が存在し、かつ、維持できる80〜150℃で熟成するので、活性金属を担体により高分散させて担持することができ、脱硫性能をより高く、しかも、触媒反応の性能低下をより小さくすることができる。また、含浸工程後に所定温度及び所定水分量に制御された熟成工程を設けるだけでよく、しかも、従来技術よりも短い熟成時間での処理が可能となるので、高性能な触媒を低コストで製造することが出来る。   In the present invention, after bringing the chelating agent and water into contact with each other, aging is performed at 80 to 150 ° C. where sufficient water exists and can be maintained. The performance can be further improved, and the performance degradation of the catalytic reaction can be further reduced. Moreover, it is only necessary to provide an aging step controlled to a predetermined temperature and a predetermined amount of water after the impregnation step, and further, a treatment with a shorter aging time than that of the prior art is possible, so that a high-performance catalyst can be produced at a low cost. I can do it.

熟成温度を変化させたときのNO吸着量の変化を示したプロット図である。It is the plot figure which showed the change of NO adsorption amount when changing aging temperature. 熟成温度を変化させたときの相対脱硫活性の変化を示したプロット図である。It is the plot figure which showed the change of relative desulfurization activity when changing aging temperature. 熟成時の圧力を変化させたときのNO吸着量の変化を示したプロット図である。It is the plot figure which showed the change of NO adsorption amount when changing the pressure at the time of ageing | curing | ripening. 熟成時の圧力を変化させたときの相対脱硫活性の変化を示したプロット図である。It is the plot figure which showed the change of the relative desulfurization activity when changing the pressure at the time of ageing | curing | ripening.

[水素化処理触媒]
本発明が適用される炭化水素油の水素化処理触媒は、高温高圧雰囲気下で、炭化水素油である軽質油や重質油と水素とを当該触媒の存在下で接触させることにより、脱硫や脱窒素、脱メタルや水素化分解などの反応を進行させる一般的な水素化処理触媒である。軽質油の例としてはナフサ、灯油、軽質軽油(Light Gas Oil、LGO)、重質軽油(Heavy Gas Oil、HGO)、減圧軽油(Vacuum Gas Oil、VGO)などが挙げられ、重質油の例としては常圧残油(Atmospheric Residue、AR)、減圧残油(Vacuum Residue、VR)などが挙げられる。
[Hydroprocessing catalyst]
The hydrotreating catalyst for hydrocarbon oil to which the present invention is applied is a desulfurization or desulfurization catalyst by contacting light oil or heavy oil that is hydrocarbon oil with hydrogen in the presence of the catalyst under a high temperature and high pressure atmosphere. It is a general hydroprocessing catalyst that promotes reactions such as denitrification, demetalization and hydrocracking. Examples of light oil include naphtha, kerosene, light gas oil (LGO), heavy gas oil (HGO), vacuum gas oil (Vacuum Gas Oil, VGO), etc. Examples of heavy oil Examples thereof include atmospheric residual oil (Atmospheric Residue, AR) and vacuum residual oil (Vacuum Residue, VR).

前記水素化処理触媒を構成する担体としては、無機酸化物から構成され、例えば、アルミナ、シリカ、チタニア、シリカ−アルミナ、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−ボリア、リン−アルミナ、シリカ−アルミナ−ボリア、リン−アルミナ−ボリア、リン−アルミナ−シリカ、シリカ−アルミナ−チタニア、シリカ−アルミナ−ジルコニアなどを例示することができる。   The carrier constituting the hydrotreating catalyst is composed of an inorganic oxide, such as alumina, silica, titania, silica-alumina, alumina-titania, alumina-zirconia, alumina-boria, phosphorus-alumina, silica-alumina. -Boria, phosphorus-alumina-boria, phosphorus-alumina-silica, silica-alumina-titania, silica-alumina-zirconia and the like can be exemplified.

前記担体に担持される活性金属成分は、周期表第6族及び第8族〜第10族(以上、IUPAC表記。以下同様)から少なくとも1種類の活性金属成分が選ばれ、より好適には周期表第6族の少なくとも1種類及び周期表第8族〜第10族から少なくとも1種類の活性金属成分が選ばれる。周期表第6族の活性金属成分としてはモリブデン(Mo)、タングステン(W)、クロム(Cr)などが挙げられ、周期表第8族〜第10族の活性金属成分としてはニッケル(Ni)、コバルト(Co)などが挙げられる。また、これらの活性金属成分に加え、リンやホウ素などの他の元素を適宜添加してもよい。選択される活性金属成分の種類やその担持量は、処理対象の炭化水素油の種類やプロセス条件などに応じて適宜設定される。   As the active metal component supported on the carrier, at least one active metal component is selected from Groups 6 and 8 to 10 of the periodic table (hereinafter referred to as IUPAC notation, the same applies hereinafter), and more preferably At least one active metal component is selected from at least one group of Table 6 and Groups 8 to 10 of the periodic table. Examples of the active metal component of Group 6 of the periodic table include molybdenum (Mo), tungsten (W), chromium (Cr), etc., and examples of the active metal component of Groups 8 to 10 of the periodic table include nickel (Ni), Examples include cobalt (Co). In addition to these active metal components, other elements such as phosphorus and boron may be added as appropriate. The type of active metal component selected and the amount of the active metal component selected are appropriately set according to the type of hydrocarbon oil to be treated and the process conditions.

<第1の水素化処理触媒の製造方法>
[第1工程:担持工程]
本工程では既述の担体に、周期表第6族及び第8族〜第10族から選ばれる少なくとも少なくとも1つ以上の活性金属成分を担持して活性金属担持体を得る。
活性金属成分の担持方法については、格別の方法に限定されるものではないが、通常は固相混合法、液相混合法、共沈法、合浸法、逆ミセル法などの各種の担持法を採用することができる。
例えば、含浸法により担持を行う場合には、前述の担体に活性金属成分の単体の溶液又は前記活性金属成分を含む化合物(例えば、金属塩、金属酸化物、金属水酸化物)の溶液を、吸着法、平衡吸着法、ポアフィリング法、インシピアントウエットネス法、蒸発乾固法、噴霧法などの方法により含浸させる。
上記の各担持法により得られた担体と活性金属成分の原料との混合物は、大気中又は不活性雰囲気中にて室温〜300℃未満で乾燥される。また、乾燥前又は乾燥後の前記混合物を大気中又は不活性雰囲気中にて加熱することにより焼成を行ってもよい。300℃以上で焼成を行うと、乾燥のみの場合に比べて活性金属成分の分散性が低下する場合がある。
<Method for producing first hydrotreating catalyst>
[First step: loading step]
In this step, at least one active metal component selected from Groups 6 and 8 to 10 of the periodic table is supported on the above-described support to obtain an active metal support.
The supporting method of the active metal component is not limited to a special method, but usually various supporting methods such as a solid phase mixing method, a liquid phase mixing method, a coprecipitation method, a soaking method, and a reverse micelle method. Can be adopted.
For example, when carrying by the impregnation method, a solution of the active metal component alone or a compound containing the active metal component (for example, a metal salt, a metal oxide, or a metal hydroxide) on the carrier, Impregnation is performed by a method such as an adsorption method, an equilibrium adsorption method, a pore filling method, an incipient wetness method, an evaporation to dryness method, or a spray method.
The mixture of the carrier obtained by each of the above loading methods and the raw material of the active metal component is dried at room temperature to less than 300 ° C. in the air or in an inert atmosphere. Further, the mixture may be fired by heating the mixture before or after drying in the air or in an inert atmosphere. When firing at 300 ° C. or higher, the dispersibility of the active metal component may be reduced as compared with drying alone.

[第2工程:含浸工程]
本工程では、活性金属担持体を、キレート剤と水分とを含むキレート剤含有水溶液に含浸させ、含浸担持体を得る。キレート剤は、活性金属と配位結合を形成し、活性金属を担体に高分散状態で担持させ、その状態を保持する役割を果たす。
前記キレート剤としては、例えばグルコン酸、リンゴ酸、クエン酸、酒石酸、シュウ酸などを挙げることができる。キレート剤は、処理対象の活性金属成分に配位させることが可能な十分量が添加される。後述の熟成温度や細孔への浸透のし易さなどを考慮すると、キレート剤は水を溶媒とする水溶液の状態で活性金属担持体と接触させることが好ましい。キレート剤と水との混合比は、水溶液の粘度によっても変化するが、例えば液粘度目標として毛細管粘度計にて動粘度20mm/S(cSt)以下の範囲に調製される。
[Second step: impregnation step]
In this step, the active metal carrier is impregnated with a chelating agent-containing aqueous solution containing a chelating agent and moisture to obtain an impregnated carrier. The chelating agent forms a coordinate bond with the active metal, plays a role of supporting the active metal in a highly dispersed state on the support and maintaining the state.
Examples of the chelating agent include gluconic acid, malic acid, citric acid, tartaric acid, and oxalic acid. A sufficient amount of the chelating agent that can be coordinated to the active metal component to be treated is added. Considering the aging temperature described later and ease of penetration into the pores, the chelating agent is preferably brought into contact with the active metal carrier in the form of an aqueous solution containing water as a solvent. The mixing ratio of the chelating agent and water varies depending on the viscosity of the aqueous solution. For example, as a liquid viscosity target, a kinematic viscosity is adjusted to a range of 20 mm 2 / S (cSt) or less with a capillary viscometer.

また、第1工程にて予め担体に活性金属成分を担持させる工程を省略し、前記キレート剤含有水溶液に活性金属成分の原料を添加することにより、当該第2工程にて担体に活性金属成分を担持させてもよい。この場合は、前記キレート剤含有水溶液中には周期表第6族の金属(モリブデン、タングステン、クロムなど)、周期表第8族〜第10族の金属(ニッケル、コバルトなど)の微粒子ゾルやこれらの活性金属成分の原料となる金属塩や金属錯塩などが添加される。
また、キレート剤含有水溶液には、リン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウムなどの無機リン酸やグルコース、スクロース、マルトースなどの単糖類、二糖類、多糖類などの各種の添加剤を添加してもよい。
Further, the step of supporting the active metal component on the carrier in advance in the first step is omitted, and the active metal component is added to the chelating agent-containing aqueous solution, whereby the active metal component is added to the carrier in the second step. It may be supported. In this case, the chelating agent-containing aqueous solution contains fine particle sols of metals of Group 6 of the periodic table (molybdenum, tungsten, chromium, etc.), metals of Groups 8-10 of the periodic table (nickel, cobalt, etc.) A metal salt, a metal complex salt, or the like as a raw material of the active metal component is added.
In addition, various additives such as inorganic phosphoric acid such as phosphoric acid, ammonium dihydrogen phosphate and diammonium hydrogen phosphate, monosaccharides such as glucose, sucrose and maltose, disaccharides and polysaccharides are added to the chelating agent-containing aqueous solution. May be added.

キレート剤含有水溶液に活性金属担持体を含浸させる方法としては、吸着法やポアフィリング法、最小湿潤法や蒸発乾固法などの各種の含浸法が採用される。例えば後段の第3工程(熟成工程)を、キレート剤含有水溶液の飽和蒸気圧雰囲気下で行う場合、活性金属担持体に含浸させるキレート剤含有水溶液の量は、後述する所定量のキレート剤含有水溶液が活性金属担持体の表面に残存するように、該所定量よりも多い量のキレート剤含有水溶液を含浸させておくことが好ましい。この含液量は、熟成工程を実行する容器の容積や、容器内の温度、圧力条件下におけるキレート剤含有水溶液の蒸発量と、このとき活性金属担持体に残存させるべきキレート剤含有水溶液の量との合計量などから決定することができる。   As a method for impregnating the chelating agent-containing aqueous solution with the active metal carrier, various impregnation methods such as an adsorption method, a pore filling method, a minimum wetting method, and an evaporation to dryness method are employed. For example, when the subsequent third step (aging step) is performed in a saturated vapor pressure atmosphere of the chelating agent-containing aqueous solution, the amount of the chelating agent-containing aqueous solution impregnated in the active metal carrier is a predetermined amount of the chelating agent-containing aqueous solution described later. It is preferable to impregnate the chelating agent-containing aqueous solution in an amount larger than the predetermined amount so that the remaining on the surface of the active metal carrier. This liquid content is the volume of the container for executing the aging process, the amount of evaporation of the chelating agent-containing aqueous solution under the temperature and pressure conditions in the container, and the amount of the chelating agent-containing aqueous solution that should remain on the active metal carrier at this time. The total amount can be determined.

[第3工程:熟成工程]
本工程では、第2工程にて活性金属担持体と接触させたキレート剤含有水溶液の含液量を、下記(1)式で計算される50%以上の状態に保ちながら、80℃以上150℃以下で熟成させる。
含液量[質量%]={(W2−W1)/W1}×100・・・(1)
但し、W1は、第3工程終了後の水素化処理触媒を500℃で乾燥させた後の触媒の質量であり、W2は、第3工程終了時の触媒の質量である。
本工程では、キレート剤含有水溶液を含浸させた活性金属担持体を加熱し、その表面にキレート剤含有水溶液が残存している状態にて熟成を実行するので、例えばオートクレーブなどの加熱機構を備えた密閉容器内にて行うことができる。活性金属担持体の表面にキレート剤が残存している状態にて熟成を行うことにより、処理対象の活性金属成分が分散されるのに十分な時間を確保すると共に、加熱条件下にて熟成を行うことにより、加熱を行わない場合に比べて熟成時間を短くすることができる。
熟成時の温度が80℃を下回る場合にはよりキレート化反応が起こっても非常に緩慢で長い処理時間が要求され生産性が低下する可能性が高い。また、熟成時の温度が150℃を超える場合は、キレート剤が分解又は変質する可能性が高くなり、熟成処理時に活性金属の凝集が起こると共に、水分量の維持管理が難しくなる。熟成温度は、好ましくは95℃以上140℃以下、更に、好ましくは100℃以上130℃以下の範囲に設定するとよい。
[Third step: Aging step]
In this step, the liquid content of the chelating agent-containing aqueous solution brought into contact with the active metal carrier in the second step is kept at 80 ° C. or higher and 150 ° C. while maintaining a state of 50% or higher calculated by the following formula (1). Aged below.
Liquid content [% by mass] = {(W2−W1) / W1} × 100 (1)
However, W1 is the mass of the catalyst after drying the hydrotreating catalyst after completion of the third step at 500 ° C., and W2 is the mass of the catalyst at the end of the third step.
In this step, the active metal carrier impregnated with the chelating agent-containing aqueous solution is heated, and ripening is performed in a state where the chelating agent-containing aqueous solution remains on the surface, so that a heating mechanism such as an autoclave is provided. It can be carried out in a closed container. By aging in the state where the chelating agent remains on the surface of the active metal carrier, sufficient time is ensured to disperse the active metal component to be treated, and aging is performed under heating conditions. By performing, aging time can be shortened compared with the case where heating is not performed.
When the aging temperature is lower than 80 ° C., even if the chelation reaction occurs, a very slow and long treatment time is required and the productivity is likely to be lowered. Moreover, when the temperature at the time of aging exceeds 150 degreeC, possibility that a chelating agent will decompose | disassemble or change will become high, aggregation of an active metal will occur at the time of an aging process, and the maintenance management of a moisture content will become difficult. The aging temperature is preferably 95 ° C. or higher and 140 ° C. or lower, more preferably 100 ° C. or higher and 130 ° C. or lower.

熟成工程の期間中にキレート剤の作用によって活性金属成分が分散されることにより活性の高い水素化処理触媒を製造することができると共に、使用前の硫化処理時及び触媒使用時における触媒の活性点の量的変化を抑えることができる。
上記の(1)式は、第3工程終了後の水素化処理触媒の質量に対する、熟成の終了時に触媒中に存在しているキレート剤含有水溶液の質量の比を示しており、この値が大きい程、熟成の期間中に水素化処理触媒の表面に留まったキレート剤水溶液の量が多いことを示している。(1)式で表される含液量が50質量%を下回ると、処理触媒中に存在するキレート剤の量が十分でなく、熟成時間を長くしても処理対象の活性金属成分を十分に分散させることができない。一方で、含液量が95質量%を超えると、キレート剤と結合した活性金属成分がキレート剤水溶液中に流れ出してしまい、活性金属成分の分散を活性金属担持体上で進行させることが困難になってしまう。このため、(1)式で表されるキレート剤水溶液の含液量は、50〜95質量%の範囲、好ましくは50〜85質量%の範囲、更に、好適には50〜75質量%の範囲に設定される。
この他、上記キレート剤水溶液の含液量を50質量%以上に維持する方法は、密閉された容器内をキレート剤水溶液の飽和蒸気圧雰囲気とする場合に限定されない。例えば加熱機構を有する開放容器に、液体の補給機構を設け、上記含液量が維持されるようにキレート剤水溶液や水分を供給するように構成してもよい。
The active metal component is dispersed by the action of the chelating agent during the aging process, so that a highly active hydrotreating catalyst can be produced, and the active points of the catalyst during the sulfidation treatment before use and the catalyst use It is possible to suppress the quantitative change of.
The above formula (1) indicates the ratio of the mass of the chelating agent-containing aqueous solution present in the catalyst at the end of ripening to the mass of the hydrotreating catalyst after completion of the third step, and this value is large. This shows that the amount of the chelating agent aqueous solution remaining on the surface of the hydrotreating catalyst during the aging period is large. When the liquid content represented by the formula (1) is less than 50% by mass, the amount of the chelating agent present in the treatment catalyst is not sufficient, and the active metal component to be treated is sufficient even if the aging time is prolonged. Cannot be dispersed. On the other hand, when the liquid content exceeds 95% by mass, the active metal component bonded to the chelating agent flows out into the aqueous chelating agent solution, making it difficult to advance the dispersion of the active metal component on the active metal carrier. turn into. For this reason, the liquid content of the chelating agent aqueous solution represented by the formula (1) is in the range of 50 to 95% by mass, preferably in the range of 50 to 85% by mass, and more preferably in the range of 50 to 75% by mass. Set to
In addition, the method of maintaining the liquid content of the chelating agent aqueous solution at 50% by mass or more is not limited to the case where the inside of the sealed container is a saturated vapor pressure atmosphere of the chelating agent aqueous solution. For example, a liquid replenishment mechanism may be provided in an open container having a heating mechanism so that the chelating agent aqueous solution and moisture are supplied so that the liquid content is maintained.

更に、後述の実施例に示すように、0.10〜0.51MPa(1〜5atm)にて熟成を行うことにより、使用前の硫化処理時及び触媒使用時における触媒の活性点の量的変化を更に抑えることができる。これは、熟成時の圧力を0.10〜0.51MPaの範囲に調節することにより、キレート剤と活性金属種とのキレート化反応が促進されると共に、活性金属の凝集体と高温、高圧雰囲気下の水分子とが接触することにより、該活性金属の凝集体の融解及び各活性金属成分それぞれとキレート剤からなる複合金属錯体化反応が促進されるのではないかと考えられる。この結果、活性金属の分散、再構成の状態が更に良くなり、活性金属の分散性が向上し、再キレート化が促進されることによって活性点の変化が抑えられることになる。熟成時の圧力は、0.10〜0.51MPa(1〜5atm)の範囲、好ましくは0.12〜0.46MPa(1.2〜4.5atm)の範囲、より好適には0.15〜0.41MPa(1.5〜4.0atm)の範囲に設定される。
上述の温度、含液量、圧力条件の下にて、熟成は0.25〜8時間、好ましくは0.5〜5時間行われる。
こうして熟成が行われ、活性金属成分の分散が行われた活性金属担持体は、密閉容器から取り出されて次の乾燥処理に供される。
Furthermore, as shown in the examples described later, by performing aging at 0.10 to 0.51 MPa (1 to 5 atm), the quantitative change in the active point of the catalyst during sulfidation before use and during use of the catalyst Can be further suppressed. This is because the chelation reaction between the chelating agent and the active metal species is promoted by adjusting the pressure at the time of aging to the range of 0.10 to 0.51 MPa, and the active metal aggregates and the high-temperature, high-pressure atmosphere It is thought that the contact of the lower water molecules may promote the melting of the active metal aggregates and the complex metal complexation reaction comprising each active metal component and a chelating agent. As a result, the state of dispersion and reconstitution of the active metal is further improved, the dispersibility of the active metal is improved, and the rechelation is promoted, whereby the change of the active site is suppressed. The pressure during aging is in the range of 0.10 to 0.51 MPa (1 to 5 atm), preferably in the range of 0.12 to 0.46 MPa (1.2 to 4.5 atm), more preferably 0.15 to 0.51 MPa. It is set in the range of 0.41 MPa (1.5 to 4.0 atm).
The aging is performed for 0.25 to 8 hours, preferably 0.5 to 5 hours under the above-described temperature, liquid content, and pressure conditions.
The active metal carrier which has been aged in this way and has the active metal component dispersed therein is taken out of the sealed container and subjected to the next drying treatment.

[第4工程:乾燥工程]
本工程では、キレート剤水溶液が触媒表面上に十分存在する状態で熟成を行った水素化処理触媒を、300℃以下で乾燥させることにより水素化処理触媒を得る。
熟成を終えた活性金属担持体は、例えば水分含有量の少ない気体中で加熱することなどにより、担体の表面や細孔内など、熟成後の活性金属担持体に残存するキレート剤水溶液中の水分を蒸発させる乾燥処理が行われる。乾燥処理は、水素化処理触媒の表面に残存している水分を蒸発させるのに十分な条件下で乾燥が行われればよい。乾燥処理は、例えば室温から300℃以下、好ましくは室温から270℃以下、更に好ましくは室温から250℃以下の温度範囲内で水分を蒸発させるのに十分な時間行われる。また、乾燥処理が行われる雰囲気は、大気雰囲気など、含酸素雰囲気でもよいし、酸素ガスを含まない不活性ガス雰囲気でもよい。そして、乾燥処理を終えることにより製造された水素化処理触媒上の活性金属成分は、キレート剤と配位結合した状態のまま担持されている場合もあるし、乾燥処理によりキレート剤が分解して金属の状態で担持されている場合もある。また、含酸素雰囲気中で乾燥した場合には、活性金属成分の一部が酸化していてもよい。
以上に説明した第1工程〜第4工程を経て製造された水素化処理触媒は、炭化水素油の水素化処理装置の反応塔などに充填され、担体上の活性金属成分を硫化する硫化処理などが行われる。
[Fourth step: drying step]
In this step, a hydrotreating catalyst is obtained by drying the hydrotreating catalyst that has been aged in a state where the chelating agent aqueous solution is sufficiently present on the catalyst surface at 300 ° C. or lower.
The active metal carrier that has been aged is heated in a gas having a low water content, for example, by heating in the chelating agent aqueous solution remaining on the active metal carrier after aging, such as in the surface of the carrier or in the pores. A drying process for evaporating the water is performed. The drying process may be performed under conditions sufficient to evaporate water remaining on the surface of the hydrotreating catalyst. The drying treatment is performed for a time sufficient to evaporate moisture within a temperature range of, for example, room temperature to 300 ° C. or less, preferably room temperature to 270 ° C. or less, more preferably room temperature to 250 ° C. or less. The atmosphere in which the drying process is performed may be an oxygen-containing atmosphere such as an air atmosphere, or an inert gas atmosphere that does not contain oxygen gas. In some cases, the active metal component on the hydrotreating catalyst produced by finishing the drying treatment is supported while being coordinated with the chelating agent, or the chelating agent is decomposed by the drying treatment. In some cases, it is supported in a metal state. Further, when dried in an oxygen-containing atmosphere, a part of the active metal component may be oxidized.
The hydrotreating catalyst produced through the first to fourth steps described above is filled in a reaction tower of a hydrocarbon oil hydrotreating apparatus, and sulfiding treatment for sulfiding an active metal component on a support. Is done.

本実施の形態の水素化処理触媒の製造方法によれば以下の効果がある。第1工程にて活性金属成分を担持した担体にキレート剤を含む溶液を接触させた後(第2工程)、この溶液の含液量を触媒質量の50%以上に保ち、80〜150℃の温度条件下で熟成する(第3工程)ので、活性金属成分の分散や、活性金属成分のキレート化が促進される。この結果、同じ添加剤を用いて製造された従来の水素化処理触媒よりも短い熟成時間での製造を可能とする他、使用前の硫化処理時及び触媒使用時において触媒の活性点の量的変化を抑えた安定性を高めることができる。   The method for producing a hydrotreating catalyst of the present embodiment has the following effects. After bringing the solution containing the chelating agent into contact with the carrier carrying the active metal component in the first step (second step), the liquid content of this solution is kept at 50% or more of the catalyst mass, Aging under temperature conditions (third step) promotes dispersion of the active metal component and chelation of the active metal component. As a result, it is possible to produce with a shorter aging time than a conventional hydrotreating catalyst produced using the same additive, and the quantity of active sites of the catalyst during sulfidation treatment before use and when using the catalyst. It is possible to increase stability while suppressing changes.

<第2の水素化処理触媒の製造方法>
活性金属成分が担持された後、300℃以上の温度で焼成された水素化処理触媒(使用前の水素化処理触媒)は、活性金属成分の分散性が低下し、それにより触媒性能が低下する場合がある。そこで、使用前の水素化処理触媒を、キレート剤と水とを含むキレート剤含有水溶液と接触させた状態で熟成させることにより、活性金属成分を分散させて水素化処理触媒(改良触媒)の活性を向上させることができる。
<Method for producing second hydrotreating catalyst>
The hydrotreating catalyst (hydrotreating catalyst before use) calcined at a temperature of 300 ° C. or higher after the active metal component is supported decreases the dispersibility of the active metal component, thereby reducing the catalyst performance. There is a case. Therefore, the hydrotreating catalyst before use is aged in contact with a chelating agent-containing aqueous solution containing a chelating agent and water to disperse the active metal component and thereby the activity of the hydrotreating catalyst (improved catalyst). Can be improved.

[第一工程:含浸工程]
使用前の水素化処理触媒を、キレート剤と水分とを含むキレート剤含有水溶液に含浸させて、含浸触媒を得る。
但し、この水溶液中に周期表第6族の金属、周期表第8族〜第10族の金属の微粒子ゾルやこれらの活性金属の原料となる金属塩や金属錯塩などを添加する場合には、以下の点が第1の水素化処理触媒の製造方法と異なる。
即ち、水素化処理触媒に担持される活性金属は、主に、水素化処理の主成分として機能する周期表第6族金属と、助触媒として機能する周期表第8族〜第10族金属とから成り立ち、活性構造を形成する。このような触媒を300℃以上の温度で焼成すると、活性金属種の全て又は一部が僅かながらでも凝集や脱離などによって存在状態が変化する可能性がある。このような場合に、周期表第8族〜第10族の金属やその原料を添加することにより、これらの金属を水素化処理触媒上に新たに担持して、活性構造の構成を補っても良い。但し、新たに添加する活性金属の量が多くなりすぎると、新たに添加した活性金属それ自体での凝集が起こりやすくなる。この結果、本来の目的である周期表第6族の活性金属の再分散、再構成を阻害してしまい、理想的な再分散状態や活性金属構造が得られなくなってしまうおそれもある。そこで、このように新たに添加する周期表第8族〜第10族の活性金属の添加量は、水素化処理触媒の質量の1質量%以下、より好適には0.5質量%以下であるとよい。
但し、キレート剤の水溶液に添加される活性金属は、周期表第8族〜第10族の活性金属を助触媒として添加する場合に限られず、周期表第6族の活性金属や、周期表第6族と第8族〜第10族との双方の活性金属を添加してもよいことは勿論である。そしてこの場合にも新たに添加する活性金属の濃度は、水素化処理触媒の1質量%以下、より好適には0.5質量%以下とするとよい。
また、この場合にもキレート剤の水溶液には、リン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウムなどの無機リン酸やグルコース、スクロース、マルトースなどの単糖類、二糖類、多糖類などの各種の添加剤を添加してもよい。
ここで、第一工程において、使用前の水素化処理触媒の代わりに、使用前の水素化処理触媒を300℃以上で焼成した焼成触媒を使用してもよい。
[First step: Impregnation step]
The hydrotreating catalyst before use is impregnated with a chelating agent-containing aqueous solution containing a chelating agent and moisture to obtain an impregnated catalyst.
However, when adding a metal salt or metal complex salt as a raw material for these active metals, a fine particle sol of Group 6 metal of the periodic table, Group 8 to Group 10 metal of the periodic table in this aqueous solution, The following points are different from the manufacturing method of the first hydrotreating catalyst.
That is, the active metal supported on the hydrotreating catalyst is mainly composed of a periodic table group 6 metal functioning as a main component of the hydroprocessing, and a periodic table group 8 to 10 metal functioning as a co-catalyst. And forms an active structure. When such a catalyst is calcined at a temperature of 300 ° C. or higher, the presence state may change due to aggregation or desorption even if all or part of the active metal species is slight. In such a case, by adding the metals of Group 8 to Group 10 of the periodic table and their raw materials, these metals can be newly supported on the hydroprocessing catalyst to supplement the structure of the active structure. good. However, if the amount of newly added active metal is too large, aggregation of the newly added active metal itself tends to occur. As a result, re-dispersion and reconfiguration of the active metal of Group 6 of the periodic table, which is the original purpose, is hindered, and an ideal re-dispersed state and active metal structure may not be obtained. Therefore, the amount of the newly added periodic table Group 8 to Group 10 active metal is 1 mass% or less, more preferably 0.5 mass% or less of the mass of the hydrotreating catalyst. Good.
However, the active metal added to the aqueous solution of the chelating agent is not limited to the case where an active metal of Group 8 to Group 10 of the periodic table is added as a co-catalyst. It goes without saying that active metals of both Group 6 and Groups 8 to 10 may be added. In this case as well, the concentration of the newly added active metal is preferably 1% by mass or less, more preferably 0.5% by mass or less of the hydrotreating catalyst.
In this case, the aqueous solution of the chelating agent also includes inorganic phosphoric acid such as phosphoric acid, ammonium dihydrogen phosphate and diammonium hydrogen phosphate, monosaccharides such as glucose, sucrose and maltose, disaccharides and polysaccharides. Various additives may be added.
Here, in the first step, a calcined catalyst obtained by calcining the hydrotreated catalyst before use at 300 ° C. or higher may be used instead of the hydrotreated catalyst before use.

[第二工程:熟成工程]
第二工程では、上記第1の水素化処理触媒の製造方法の第3工程と同様にして、含浸触媒を熟成して熟成触媒を得る。
[第三工程:乾燥工程]
第三工程では、上記第1の水素化処理触媒の製造方法の第4工程と同様にして、熟成触媒を熟成して改良触媒(改良された水素化処理触媒)を得る。
以上に説明した第一工程〜第三工程を経て製造された改良触媒は、炭化水素油の水素化処理装置の反応塔などに充填され、担体上の活性金属成分を硫化する硫化処理などが行われる。
[Second step: Aging step]
In the second step, the impregnated catalyst is aged to obtain an aged catalyst in the same manner as in the third step of the method for producing the first hydrotreating catalyst.
[Third step: drying step]
In the third step, in the same manner as in the fourth step of the method for producing the first hydrotreating catalyst, an aged catalyst is aged to obtain an improved catalyst (improved hydrotreating catalyst).
The improved catalyst produced through the first to third steps described above is charged in a reaction tower of a hydrocarbon oil hydrotreating apparatus, and is subjected to a sulfiding treatment for sulfiding an active metal component on a support. Is called.

本実施の形態に係わる使用前の水素化処理触媒の改良方法によれば以下の効果がある。使用前の水素化処理触媒にキレート剤含有水溶液を接触させた後(第一工程)、この溶液の含液量を触媒質量の50%以上に保ちながら、80〜150℃の温度条件下で熟成する(第二工程)ので、活性金属成分の再分散や、活性金属成分のキレート化が促進される。この結果、同じ添加剤を用いて活性を向上させる場合よりも短い熟成時間での活性向上を可能とする他、使用前の硫化処理時及び触媒使用時において触媒の活性点の量的変化を抑えた安定性を高めることができる。   The method for improving the hydrotreating catalyst before use according to this embodiment has the following effects. After contacting the hydrotreating catalyst before use with the chelating agent-containing aqueous solution (first step), aging under a temperature condition of 80 to 150 ° C. while maintaining the liquid content of this solution at 50% or more of the catalyst mass Therefore (second step), redispersion of the active metal component and chelation of the active metal component are promoted. As a result, it is possible to improve the activity in a shorter aging time than when using the same additive to improve the activity, and suppress the quantitative change in the active point of the catalyst during sulfidation before use and when using the catalyst. Stability can be increased.

<実施例1:水素化処理触媒a>
(1)担体の調製
1LビーカーにAl濃度換算で22質量%のアルミン酸ナトリウム水溶液90.9gを入れ、イオン交換水を添加して400gとし、更にこの溶液に26質量%のグルコン酸ナトリウム溶液2.2gを加え、攪拌しながら60℃に加温し、Al濃度換算で5質量%のアルミン酸ナトリウム水溶液を得た。別途、500mlの容器にAl濃度換算で7質量%の硫酸アルミニウム水溶液138.6gをいれ、60℃の温水を添加して、2.5質量%の硫酸アルミニウム水溶液400gを得た。
次に、前期アルミン酸ナトリウム水溶液中に、前期硫酸アルミニウム水溶液を一定速度(40ml/分)で添加し、10分でpHが7.1となるようにした。得られた懸濁スラリーを攪拌しながら60℃で1時間熟成した。懸濁スラリーはAl濃度換算で10質量%であった。
熟成後の懸濁スラリーを脱水し、60℃の温水1.5Lで洗浄して得たケーキ状スラリーを得た。次いで、このケーキ状スラリーにAl濃度換算で10質量%になるようにイオン交換水を添加し、これを攪拌しながら95℃で10時間熟成した。熟成終了後のスラリーをスチームジャケット付の双腕式ニーダーで練りながら加温し、所定の水分量(45質量%)まで濃縮した後、加熱を停止し、更に30分間捏和した。得られた捏和物を押し出し成型機で1.8mmの円柱状に成型した後、110℃で乾燥させた。乾燥したペレットを電気炉中で550℃の温度で3時間焼成し、多孔性無機酸化物であるγ―アルミナ担体を得た。該担体の表面積は195m/g及び細孔容積は0.80cm/gであった。
(2)含浸溶液の調製
200mlビーカーにイオン交換水150ml、三酸化モリブデン[太陽鉱工(株)製:MoOとして99.9%]29.1gを加え、95℃で10時間攪拌した。次いで炭酸コバルト[(株)田中化学研究所製:CoOとして61.1%]11.8gを加え、95℃で5時間攪拌した。この混合物にリンゴ酸[扶桑化学工業(株)製:99.9%]13.5g[リンゴ酸/コバルト=1/1(mol/mol)]を加えて同温で5時間攪拌した。得られた溶液を80mlまで濃縮し、含浸溶液を得た。
<Example 1: Hydrotreating catalyst a>
(1) Preparation of carrier
In a 1 L beaker, 90.9 g of 22% by mass sodium aluminate aqueous solution in terms of Al 2 O 3 concentration is added, and ion-exchanged water is added to 400 g, and further, 2.2 g of 26% by mass sodium gluconate solution is added to this solution. In addition, the mixture was heated to 60 ° C. with stirring to obtain a 5% by mass aqueous sodium aluminate solution in terms of Al 2 O 3 concentration. Separately, 138.6 g of a 7% by mass aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration was placed in a 500 ml container, and warm water at 60 ° C. was added to obtain 400 g of a 2.5% by mass aluminum sulfate aqueous solution.
Next, the aqueous aluminum sulfate solution was added to the aqueous sodium aluminate solution at a constant rate (40 ml / min) so that the pH became 7.1 in 10 minutes. The obtained suspension slurry was aged at 60 ° C. for 1 hour with stirring. The suspension slurry was 10% by mass in terms of Al 2 O 3 concentration.
The suspension slurry after aging was dehydrated and washed with 1.5 L of hot water at 60 ° C. to obtain a cake slurry. Next, ion-exchanged water was added to the cake-like slurry so as to be 10% by mass in terms of Al 2 O 3 concentration, and the mixture was aged at 95 ° C. for 10 hours while stirring. The slurry after completion of aging was heated while kneading with a double-arm kneader with a steam jacket, concentrated to a predetermined moisture content (45% by mass), then the heating was stopped, and the mixture was further kneaded for 30 minutes. The obtained kneaded product was molded into a 1.8 mm cylindrical shape with an extrusion molding machine and then dried at 110 ° C. The dried pellets were fired in an electric furnace at a temperature of 550 ° C. for 3 hours to obtain a γ-alumina carrier that is a porous inorganic oxide. The carrier had a surface area of 195 m 2 / g and a pore volume of 0.80 cm 3 / g.
(2) Preparation of impregnation solution
In a 200 ml beaker, 150 ml of ion exchange water and 29.1 g of molybdenum trioxide [manufactured by Taiyo Mining Co., Ltd .: 99.9% as MoO 3 ] were added and stirred at 95 ° C. for 10 hours. Next, 11.8 g of cobalt carbonate [manufactured by Tanaka Chemical Laboratory Co., Ltd .: 61.1% as CoO] was added and stirred at 95 ° C. for 5 hours. 13.5 g [malic acid / cobalt = 1/1 (mol / mol)] of malic acid [manufactured by Fuso Chemical Industry Co., Ltd .: 99.9%] was added to this mixture and stirred at the same temperature for 5 hours. The resulting solution was concentrated to 80 ml to obtain an impregnation solution.

[第1工程:担持工程]
調製したアルミナ担体に上記含浸溶液をポアフィリング法によって含浸させた。続いて得られた担体と活性金属成分の原料との混合物は、大気中110℃で2時間の乾燥し、更に大気中550℃にて焼成し、活性金属担持体aを得た。
[第2工程:含浸工程]
100gの活性金属担持体aに、キレート剤含有水溶液として50%グルコン酸水溶液46.4g(グルコン酸/モリブデン=0.8/1[mol/mol])を加え細孔容積が飽和するまで含浸し、含浸担持体aを得た。
[第3工程:熟成工程]
含浸担持体aを、混合し温度110℃、圧力0.10MPa(1atm)の飽和水蒸気雰囲気にある密閉容器(オートクレーブ)内で2時間熟成し、熟成後の熟成担持体aを得た。
第3工程終了後に熟成担持体aの一部を取り出し、その質量(W2)を測定したところ15.61gであり、これを500℃で乾燥させた触媒の質量(W1)は9.94gであった。ここで、(1)式より、熟成担持体aにおけるグルコン酸水溶液の含液量は57質量%であった。
含液量[質量%]={(W2−W1)/W1}×100・・・(1)
[第4工程:乾燥工程]
次に約150℃の温度の空気中で約2時間の乾燥を行い、水素化処理触媒aを得た。表1に水素化処理触媒aの性状等を示す。
[First step: loading step]
The prepared alumina carrier was impregnated with the above impregnation solution by a pore filling method. Subsequently, the obtained mixture of the support and the raw material of the active metal component was dried at 110 ° C. for 2 hours in the atmosphere and further fired at 550 ° C. in the atmosphere to obtain an active metal carrier a.
[Second step: impregnation step]
46.4 g of 50% gluconic acid aqueous solution (gluconic acid / molybdenum = 0.8 / 1 [mol / mol]) as a chelating agent-containing aqueous solution is added to 100 g of active metal carrier a, and impregnated until the pore volume is saturated. An impregnated carrier a was obtained.
[Third step: Aging step]
The impregnated carrier a was mixed and aged for 2 hours in an airtight container (autoclave) in a saturated steam atmosphere at a temperature of 110 ° C. and a pressure of 0.10 MPa (1 atm) to obtain an aged carrier a after aging.
After completion of the third step, a part of the aged carrier a was taken out and its mass (W2) was measured to be 15.61 g. The mass (W1) of the catalyst dried at 500 ° C. was 9.94 g. It was. Here, from formula (1), the liquid content of the gluconic acid aqueous solution in the aging carrier a was 57% by mass.
Liquid content [% by mass] = {(W2−W1) / W1} × 100 (1)
[Fourth step: drying step]
Next, drying was performed in air at a temperature of about 150 ° C. for about 2 hours to obtain a hydrotreating catalyst a. Table 1 shows properties of the hydrotreating catalyst a.

<実施例2:水素化処理触媒b>
第2工程終了後の含浸担持体aを室温雰囲気下で30分静置の上乾燥させて水分を調整した後、第3工程を行った以外は実施例1と同様にして、水素化処理触媒bを得た。ここで、熟成担持体bのグルコン酸水溶液の含液量は50質量%であった。表1に水素化処理触媒bの性状等を示す。
<Example 2: Hydrotreating catalyst b>
The hydrotreated catalyst was treated in the same manner as in Example 1 except that the impregnated carrier a after completion of the second step was dried after standing for 30 minutes in a room temperature atmosphere to adjust the moisture, and then performing the third step. b was obtained. Here, the liquid content of the gluconic acid aqueous solution of the aging carrier b was 50% by mass. Table 1 shows properties of the hydrotreating catalyst b.

<実施例3〜7:水素化処理触媒c〜g>
第3工程において、熟成温度をそれぞれ80℃、90℃、100℃、120℃、140℃とした点以外は実施例1と同様にして水素化処理触媒c〜gを得た。ここで、熟成担持体c〜gのグルコン酸水溶液の含液量は、それぞれ60質量%、58質量%、57質量%、54質量%、51質量%であった。表1に水素化処理触媒c〜gの性状等を示す。
<Examples 3 to 7: hydrotreating catalysts c to g>
In the third step, hydrotreating catalysts c to g were obtained in the same manner as in Example 1 except that the aging temperatures were 80 ° C., 90 ° C., 100 ° C., 120 ° C., and 140 ° C., respectively. Here, the liquid content of the gluconic acid aqueous solution of the aging carriers c to g was 60% by mass, 58% by mass, 57% by mass, 54% by mass, and 51% by mass, respectively. Table 1 shows properties of the hydrotreating catalysts c to g.

<実施例8:水素化処理触媒h>
熟成温度を80℃とし、熟成時間を8時間とした点以外は実施例1と同様にして水素化処理触媒hを得た。熟成担持体hにおけるグルコン酸水溶液の含液量は55質量%であった。表1に水素化処理触媒hの性状等を示す。
<Example 8: Hydrotreating catalyst h>
A hydrotreating catalyst h was obtained in the same manner as in Example 1 except that the aging temperature was 80 ° C. and the aging time was 8 hours. The liquid content of the gluconic acid aqueous solution in the aging carrier h was 55% by mass. Table 1 shows properties of the hydrotreating catalyst h.

<実施例9:水素化処理触媒i>
熟成温度を90℃とし、熟成時間を5時間とした点以外は実施例1と同様にして水素化処理触媒iを得た。熟成担持体iにおけるグルコン酸水溶液の含液量は58質量%であった。表1に水素化処理触媒iの性状等を示す。
<Example 9: Hydrotreating catalyst i>
A hydrotreating catalyst i was obtained in the same manner as in Example 1 except that the aging temperature was 90 ° C. and the aging time was 5 hours. The liquid content of the gluconic acid aqueous solution in the aging carrier i was 58% by mass. Table 1 shows properties of the hydrotreating catalyst i.

<実施例10〜16:水素化処理触媒j〜p>
第3工程において、熟成時の圧力条件を、それぞれ0.08MPa(0.8atm)、0.12MPa(1.2atm)、0.18MPa(1.8atm)、0.22MPa(2.2atm)、0.25MPa(2.5atm)、0.43MPa(4.2atm)、0.62MPa(6.1atm)とした点以外は実施例1と同様にして水素化処理触媒j〜pを得た。ここで、熟成担持体j〜pにおけるグルコン酸水溶液の含液量はそれぞれ53質量%、56質量%、56質量%、61質量%、52質量%、54質量%、57質量%であった。表1に水素化処理触媒j〜pの性状等を示す。
<Examples 10 to 16: hydrotreating catalysts j to p>
In the third step, the pressure conditions during aging were 0.08 MPa (0.8 atm), 0.12 MPa (1.2 atm), 0.18 MPa (1.8 atm), 0.22 MPa (2.2 atm), and 0, respectively. Hydrotreating catalysts j to p were obtained in the same manner as in Example 1 except that the pressure was .25 MPa (2.5 atm), 0.43 MPa (4.2 atm), and 0.62 MPa (6.1 atm). Here, the liquid contents of the gluconic acid aqueous solution in the aging carriers j to p were 53 mass%, 56 mass%, 56 mass%, 61 mass%, 52 mass%, 54 mass%, and 57 mass%, respectively. Table 1 shows properties of the hydrotreating catalysts j to p.

<実施例17:水素化処理触媒q>
熟成時の圧力条件を0.25MPa(2.5atm)とし、熟成時間を1時間とした点以外は実施例1と同様にして水素化処理触媒qを得た。熟成担持体qにおけるグルコン酸水溶液の含液量は55質量%であった。表1に水素化処理触媒qの性状等を示す。
<Example 17: Hydrotreating catalyst q>
A hydrotreating catalyst q was obtained in the same manner as in Example 1 except that the pressure condition during aging was 0.25 MPa (2.5 atm) and the aging time was 1 hour. The liquid content of the gluconic acid aqueous solution in the aging carrier q was 55% by mass. Table 1 shows properties of the hydrotreating catalyst q.

<実施例18:水素化処理触媒r>
酸化コバルトに換算して、水素化処理触媒の質量の0.5質量%に相当する、61.1質量%の炭酸コバルト0.82gをグルコン酸水溶液に添加した点以外は実施例1と同様にして水素化処理触媒rを得た。熟成担持体rにおけるグルコン酸水溶液の含液量は56質量%であった。表1に水素化処理触媒rの性状等を示す。
<Example 18: Hydrotreating catalyst r>
In the same manner as in Example 1, except that 0.82 g of 61.1% by mass of cobalt carbonate corresponding to 0.5% by mass of the hydrotreating catalyst in terms of cobalt oxide was added to the gluconic acid aqueous solution. Thus, a hydrotreating catalyst r was obtained. The liquid content of the gluconic acid aqueous solution in the aging carrier r was 56% by mass. Table 1 shows properties of the hydrotreating catalyst r.

<実施例19:水素化処理触媒s>
酸化コバルトに換算して、水素化処理触媒の質量の1.0質量%に相当する、61.1質量%の炭酸コバルト1.64gをグルコン酸水溶液に添加した点以外は実施例1と同様にして水素化処理触媒sを得た。熟成担持体におけるグルコン酸水溶液の含液量は53質量%であった。表1に水素化処理触媒sの性状等を示す。
<Example 19: Hydrotreating catalyst s>
In the same manner as in Example 1, except that 1.64 g of 61.1% by mass of cobalt carbonate corresponding to 1.0% by mass of the hydrotreating catalyst in terms of cobalt oxide was added to the gluconic acid aqueous solution. Thus, a hydrotreating catalyst s was obtained. The liquid content of the gluconic acid aqueous solution in the aging support was 53% by mass. Table 1 shows properties of the hydrotreating catalyst s.

<実施例20:水素化処理触媒t>
酸化コバルトに換算して、水素化処理触媒の質量の1.5質量%に相当する、61.1質量%の炭酸コバルト2.45gをグルコン酸水溶液に添加した点以外は実施例1と同様にして水素化処理触媒tを得た。熟成担持体tにおけるグルコン酸水溶液の含液量は53質量%であった。表1に水素化処理触媒tの性状等を示す。
<Example 20: Hydrotreating catalyst t>
In the same manner as in Example 1 except that 2.45 g of 61.1% by mass of cobalt carbonate corresponding to 1.5% by mass of the hydrotreating catalyst in terms of cobalt oxide was added to the gluconic acid aqueous solution. Thus, a hydrotreating catalyst t was obtained. The liquid content of the gluconic acid aqueous solution in the aging carrier t was 53% by mass. Table 1 shows properties of the hydrotreating catalyst t.

<実施例21:水素化処理触媒u>
酸化ニッケルに換算して、水素化処理触媒の質量の0.5質量%に相当する、55.0質量%の酸化ニッケル0.91gをグルコン酸水溶液に添加した点以外は実施例1と同様にして水素化処理触媒uを得た。熟成担持体uにおけるグルコン酸水溶液の含液量は57質量%であった。表1に水素化処理触媒uの性状等を示す。
<Example 21: Hydrotreating catalyst u>
In the same manner as in Example 1, except that 0.91 g of 55.0% by mass of nickel oxide corresponding to 0.5% by mass of the hydrotreating catalyst in terms of nickel oxide was added to the gluconic acid aqueous solution. Thus, a hydrotreating catalyst u was obtained. The liquid content of the gluconic acid aqueous solution in the aging carrier u was 57% by mass. Table 1 shows properties of the hydrotreating catalyst u.

<実施例22:水素化処理触媒v>
酸化ニッケルに換算して、水素化処理触媒の質量の1.0質量%に相当する、55.0質量%の酸化ニッケル1.82gをグルコン酸水溶液に添加した点以外は実施例1と同様にして水素化処理触媒vを得た。熟成担持体vにおけるグルコン酸水溶液の含液量は57質量%であった。表1に水素化処理触媒vの性状等を示す。
<Example 22: Hydrotreating catalyst v>
In the same manner as in Example 1 except that 1.82 g of 55.0% by mass of nickel oxide corresponding to 1.0% by mass of the hydrotreating catalyst in terms of nickel oxide was added to the gluconic acid aqueous solution. Thus, a hydrotreating catalyst v was obtained. The liquid content of the gluconic acid aqueous solution in the aging carrier v was 57% by mass. Table 1 shows properties of the hydrotreating catalyst v.

<実施例23:水素化処理触媒w>
酸化ニッケルに換算して、水素化処理触媒の質量の1.5質量%に相当する、55.0質量%の酸化ニッケル2.74gをグルコン酸水溶液に添加した点以外は実施例1と同様にして水素化処理触媒wを得た。熟成担持体wにおけるグルコン酸水溶液の含液量は54質量%であった。表1に水素化処理触媒wの性状等を示す。
<Example 23: Hydrotreating catalyst w>
In the same manner as in Example 1 except that 2.74 g of 55.0% by mass of nickel oxide corresponding to 1.5% by mass of the hydrotreating catalyst in terms of nickel oxide was added to the gluconic acid aqueous solution. Thus, a hydrotreating catalyst w was obtained. The liquid content of the gluconic acid aqueous solution in the aging carrier w was 54% by mass. Table 1 shows properties of the hydrotreating catalyst w.

<比較例1:水素化処理触媒x>
含浸担持体aを熟成させずに乾燥をした(すなわち、第3工程を経ない)点以外は実施例1と同様にして水素化処理触媒xを得た。表1に水素化処理触媒xの性状等を示す。
<Comparative Example 1: Hydrotreating catalyst x>
A hydrotreating catalyst x was obtained in the same manner as in Example 1 except that the impregnated carrier a was dried without being aged (that is, not passed through the third step). Table 1 shows properties of the hydrotreating catalyst x.

<比較例2:水素化処理触媒y>
熟成温度を60℃とした点以外は実施例1と同様にして水素化処理触媒yを得た。熟成担持体yにおけるグルコン酸水溶液の含液量は59質量%であった。表1に水素化処理触媒yの性状等を示す。
<Comparative Example 2: Hydrotreating catalyst y>
A hydrotreating catalyst y was obtained in the same manner as in Example 1 except that the aging temperature was 60 ° C. The liquid content of the gluconic acid aqueous solution in the aging carrier y was 59% by mass. Table 1 shows properties of the hydrotreating catalyst y.

<比較例3:水素化処理触媒z>
熟成温度を70℃とした点以外は実施例1と同様にして水素化処理触媒を得た。熟成担持体zにおけるグルコン酸水溶液の含液量は58質量%であった。表1に水素化処理触媒zの性状等を示す。
<Comparative Example 3: Hydrotreating catalyst z>
A hydrotreating catalyst was obtained in the same manner as in Example 1 except that the aging temperature was 70 ° C. The liquid content of the gluconic acid aqueous solution in the aging support z was 58% by mass. Table 1 shows properties of the hydrotreating catalyst z.

<比較例4:水素化処理触媒a1>
熟成温度を160℃とした点以外は実施例1と同様にして水素化処理触媒a1を得た。熟成担持体a1におけるグルコン酸水溶液の含液量は51質量%であった。表1に水素化処理触媒a1の性状等を示す。
<Comparative Example 4: Hydrotreating catalyst a1>
A hydrotreating catalyst a1 was obtained in the same manner as in Example 1 except that the aging temperature was 160 ° C. The liquid content of the aqueous gluconic acid solution in the aging carrier a1 was 51% by mass. Table 1 shows properties of the hydrotreating catalyst a1.

<比較例5:水素化処理触媒a2>
熟成温度を60℃とし、熟成時間を8時間とした点以外は実施例1と同様にして水素化処理触媒a2を得た。熟成担持体a2におけるグルコン酸水溶液の含液量は53質量%であった。表1に水素化処理触媒a2の性状等を示す。
<Comparative Example 5: Hydrotreating catalyst a2>
A hydrotreating catalyst a2 was obtained in the same manner as in Example 1 except that the aging temperature was 60 ° C. and the aging time was 8 hours. The liquid content of the gluconic acid aqueous solution in the aging carrier a2 was 53% by mass. Table 1 shows properties of the hydrotreating catalyst a2.

<比較例6:水素化処理触媒a3>
熟成温度を70℃とし、熟成時間を10時間とした点以外は実施例1と同様にして水素化処理触媒a3を得た。熟成担持体a3におけるグルコン酸水溶液の含液量は51質量%であった。表1に水素化処理触媒a3の性状等を示す。
<Comparative Example 6: Hydrotreating catalyst a3>
A hydrotreating catalyst a3 was obtained in the same manner as in Example 1 except that the aging temperature was 70 ° C. and the aging time was 10 hours. The liquid content of the gluconic acid aqueous solution in the aging carrier a3 was 51% by mass. Table 1 shows properties of the hydrotreating catalyst a3.

<比較例7:水素化処理触媒a4>
熟成工程前の含浸触媒を室温雰囲気下で60分静置の上乾燥させた以外は実施例1と同様にして水素化処理触媒a4を得た。熟成担持体a4におけるグルコン酸水溶液の含液量は43質量%であった。表1に水素化処理触媒a4の性状等を示す。
<Comparative Example 7: Hydrotreating catalyst a4>
A hydrotreating catalyst a4 was obtained in the same manner as in Example 1 except that the impregnated catalyst before the aging step was allowed to stand for 60 minutes in a room temperature atmosphere and then dried. The liquid content of the gluconic acid aqueous solution in the aging carrier a4 was 43% by mass. Table 1 shows properties of the hydrotreating catalyst a4.

[試験例1:安定性評価試験]
60メッシュ以下に粉砕した評価対象の水素化処理触媒を約0.02g秤取り、これを石英製のセルに充填した後、400℃に加熱して硫化水素5容量%/水素95容量%のガスを0.2L/minの流量で流通させて、硫化処理を行った。この硫化処理の時間を1時間、5時間と変化させて、処理時間の変化に伴う反応活性点の変化量を計測した。
各触媒の反応活性点の量は、反応活性点に一酸化窒素を吸着させてその吸着量を計測するNO吸着量測定法により計測した。NO吸着量測定には全自動触媒ガス吸着量測定装置(大倉理研製)を用い、前記条件にて硫化処理行った水素化処理触媒に、HeとNOの混合ガス(NO濃度10容量%)をパルスで導入し、水素化処理触媒1gあたりのNO分子吸着量を測定した。測定されたNO分子吸着量に基づき、下記(3)式に基づいてNO吸着量変化率[%]を算出した。この変化率が小さい程、実際に触媒が使用される高温高圧雰囲気下での触媒反応の性能低下が小さい安定性の高い水素化処理触媒であると評価できる。
NO吸着量変化率[%]={(A5−A1)/A1}×100・・・(3)
但し、A1は、400℃で1時間の硫化処理を行った水素化処理触媒におけるNO吸着量であり、A5は、400℃で5時間の硫化処理を行った水素化処理触媒におけるNO吸着量である。
[Test Example 1: Stability evaluation test]
About 0.02 g of the hydrotreating catalyst to be evaluated, pulverized to 60 mesh or less, was filled in a quartz cell, heated to 400 ° C., and 5% hydrogen sulfide / 95% hydrogen by volume gas. Was circulated at a flow rate of 0.2 L / min to perform sulfurization treatment. The amount of change in the reaction active site accompanying the change in the treatment time was measured by changing the sulfurization treatment time to 1 hour and 5 hours.
The amount of reaction active sites of each catalyst was measured by a NO adsorption amount measurement method in which nitrogen monoxide was adsorbed on the reaction active sites and the amount of adsorption was measured. The NO adsorption amount is measured using a fully automatic catalytic gas adsorption amount measuring device (manufactured by Okura Riken). A mixed gas of He and NO (NO concentration 10% by volume) is applied to the hydrotreating catalyst subjected to the sulfidation treatment under the above conditions. It introduce | transduced with the pulse and measured the NO molecule adsorption amount per 1g of hydrotreating catalysts. Based on the measured NO molecule adsorption amount, the NO adsorption amount change rate [%] was calculated based on the following equation (3). It can be evaluated that the smaller the rate of change is, the more highly stable the hydrotreating catalyst is that the performance degradation of the catalytic reaction under high temperature and high pressure atmosphere in which the catalyst is actually used is small.
NO adsorption amount change rate [%] = {(A5-A1) / A1} × 100 (3)
However, A1 is the NO adsorption amount in the hydrotreating catalyst subjected to sulfiding treatment at 400 ° C. for 1 hour, and A5 is the NO adsorption amount in the hydrotreating catalyst subjected to sulfiding treatment at 400 ° C. for 5 hours. is there.

[試験例2:水素化処理活性評価試験]
評価対象の水素化処理触媒にて硫黄及び窒素化合物を含む芳香族炭化水素油を処理し、その水素化脱硫活性を評価した。該水素化処理触媒を粉砕後26〜60メッシュに篩分け、そこから0.25gを取り出して外径1/4インチのリアクター(SUS316)に充填した。しかる後、当該触媒を360℃に加熱して硫化水素5容量%/水素95%のガスを0.2L/minの流量で通流させて、6時間、硫化処理(予備硫化)を行った。
硫化処理後の水素化処理触媒に、4,6−ジメチルジベンゾチオフェン(硫黄分として1000質量ppm相当量)/n−ブチルアミン(窒素分として質量20ppm)/テトラリン(30容量%)/n−ドデカン(約70容量%)を混合した混合油を、反応温度320℃に加熱した触媒層に水素ガスと共に通流させて水素化処理を行った。反応条件は、反応圧力4.0MPa、質量空間速度16h−1、水素/原料油比500Nm/mとした。
この水素化処理により得られた生成油中の硫黄分の含有量を紫外蛍光法(三菱化学、TS−100V)にて計測し、その減少量に基づいて水素化処理活性(脱硫活性)を算出した。水素化処理活性は、水素化処理触媒x(比較例1)の脱硫活性との相対値として下記(4)式から算出した(以下、相対脱硫活性という)。この相対脱硫活性が110%以上であれば、良好な水素化処理触媒が得られたものと触媒と判断した。
水素化処理触媒の相対脱硫活性(%)=(Da/Df)×100 ・・・(4)
但し、Daは、製造した水素化処理触媒を用いて処理した混合油の硫黄分減少量であり、Dfは、水素化処理触媒x(比較例1)を用いて処理した混合油の硫黄分減少率である。
[Test Example 2: Hydrogenation activity evaluation test]
An aromatic hydrocarbon oil containing sulfur and nitrogen compounds was treated with the hydrotreating catalyst to be evaluated, and its hydrodesulfurization activity was evaluated. The hydrotreated catalyst was pulverized and sieved to 26-60 mesh, and 0.25 g was taken out from it and charged into a reactor (SUS316) having an outer diameter of 1/4 inch. Thereafter, the catalyst was heated to 360 ° C., and 5% by volume of hydrogen sulfide / 95% of hydrogen was passed at a flow rate of 0.2 L / min, and sulfidation treatment (preliminary sulfidation) was performed for 6 hours.
The hydrotreating catalyst after the sulfidation treatment was subjected to 4,6-dimethyldibenzothiophene (equivalent to 1000 mass ppm as a sulfur content) / n-butylamine (mass 20 ppm as a nitrogen content) / tetralin (30% by volume) / n-dodecane ( The mixed oil mixed with about 70% by volume was passed through a catalyst layer heated to a reaction temperature of 320 ° C. together with hydrogen gas to perform a hydrogenation treatment. The reaction conditions were a reaction pressure of 4.0 MPa, a mass space velocity of 16 h −1 , and a hydrogen / feed oil ratio of 500 Nm 3 / m 3 .
The sulfur content in the product oil obtained by this hydrotreating is measured by the ultraviolet fluorescence method (Mitsubishi Chemical, TS-100V), and the hydrotreating activity (desulfurization activity) is calculated based on the decreased amount. did. The hydrotreating activity was calculated from the following formula (4) as a relative value to the desulfurization activity of the hydrotreating catalyst x (Comparative Example 1) (hereinafter referred to as relative desulfurization activity). If this relative desulfurization activity was 110% or more, it was judged that a good hydrotreating catalyst was obtained as a catalyst.
Relative desulfurization activity (%) of hydrotreating catalyst = (Da / Df) × 100 (4)
However, Da is a sulfur content reduction amount of the mixed oil processed using the manufactured hydroprocessing catalyst, and Df is a sulfur content reduction of the mixed oil processed using the hydroprocessing catalyst x (Comparative Example 1). Rate.

Figure 2013027839
Figure 2013027839

相対脱硫活性を測定した実施例では110%を超える結果が得られており、十分な活性向上結果が得られた。これに対して比較例の相対脱硫活性は、実用上要求される101〜105%の範囲であり、実施例の相対脱硫活性を下回っている。
ここで、熟成時間、熟成圧力を一定(2時間、0.10MPa(1atm))とし、熟成温度を変化させた実施例1、3〜7、比較例2〜4についての高温処理時の安定性(NO吸着量変化率の絶対値)の変化を図1にひし形のプロットで示し、実施例1、3、4、6、7比較例2についての脱硫活性(相対脱硫活性)の変化を図2にひし形のプロットで示す。これらの図によれば、活性向上処理を行った水素化処理触媒の安定性は、熟成温度に対して下に突の傾向線を描き、脱硫活性は上に突の傾向線を描くことが分かる。そして、熟成温度が100〜140℃の範囲では、相対脱硫活性が120%を超え、NO吸着量変化率も10%を下回っており、高活性で安定な活性向上結果が得られたといえる。
In the examples where the relative desulfurization activity was measured, a result exceeding 110% was obtained, and a sufficient activity improvement result was obtained. On the other hand, the relative desulfurization activity of the comparative example is in a range of 101 to 105% that is practically required, and is lower than the relative desulfurization activity of the examples.
Here, the aging time and the aging pressure were constant (2 hours, 0.10 MPa (1 atm)), and the aging temperature was changed, and the stability during high-temperature treatment for Examples 1, 3 to 7, and Comparative Examples 2 to 4 was changed. The change of (absolute value of NO adsorption amount change rate) is shown by a rhombus plot in FIG. Is shown in a diamond plot. According to these figures, it can be seen that the stability of the hydrotreating catalyst subjected to the activity improvement treatment has a downward trend line with respect to the aging temperature, and the desulfurization activity has a upward trend line. . And in the range of aging temperature of 100-140 degreeC, relative desulfurization activity exceeds 120%, NO adsorption amount change rate is also less than 10%, and it can be said that the highly active and stable activity improvement result was obtained.

一方、実施例3(熟成温度80℃)は、熟成時間が2時間の場合には120%を超える相対脱硫活性が得られなかったが、実施例8(熟成温度80℃)では、熟成時間を8時間に伸ばすことで、121%の相対脱硫活性が得られており、高温処理時の安定性も向上している。熟成温度が90℃の場合にも熟成時間を長くすることによって同様の結果が得られると考えられる。例えば熟成時間が10時間以内で110%以上の相対的脱硫活性が得られれば、例えば特許文献6と比較しても十分に短時間で、良好な安定性を持つ活性向上処理が行われていると評価できる。
また、比較例7によれば、熟成後に計測したグルコン酸水溶液の含液量が50質量%未満の値(43質量%)となっている比較例7ではNO吸着量の変化率も10%を大きく上回り、相対脱硫活性も100%と低い。
On the other hand, in Example 3 (aging temperature 80 ° C.), when the aging time was 2 hours, a relative desulfurization activity exceeding 120% was not obtained, but in Example 8 (aging temperature 80 ° C.), the aging time was reduced. By extending to 8 hours, a relative desulfurization activity of 121% is obtained, and the stability during high temperature treatment is also improved. Even when the aging temperature is 90 ° C., it is considered that the same result can be obtained by extending the aging time. For example, if a relative desulfurization activity of 110% or more is obtained within 10 hours of aging time, for example, an activity improving process having good stability is performed in a sufficiently short time even compared to Patent Document 6. Can be evaluated.
Moreover, according to the comparative example 7, in the comparative example 7 in which the liquid content of the gluconic acid aqueous solution measured after the aging is less than 50% by mass (43% by mass), the change rate of the NO adsorption amount is also 10%. It is much higher and the relative desulfurization activity is as low as 100%.

次に、熟成温度、熟成時間を一定(110℃、2時間)とし、熟成時の圧力を変化させた実施例1、10〜16についての使用時の硫化処理及び触媒反応時を想定した条件下における触媒の活性点の量的変化(NO吸着量変化率の絶対値)を図3にひし形のプロットで示し、実施例1、10、11、14〜16についての脱硫活性(相対脱硫活性)の変化を図4にひし形のプロットで示す。これらの図によれば、活性向上処理を行った水素化処理触媒のNOが吸着した活性点の量は、熟成時の圧力に対して下に突の傾向線を描き、脱硫活性は上に突の傾向線を描くことが分かる。そして、熟成時の圧力が0.10〜0.43MPa(1〜4.2atm)の範囲では、相対脱硫活性が110%を超え、NO吸着量変化率も10%を下回っており、高活性で安定な活性向上結果が得られたといえる。
最後に活性金属成分としてコバルト原料を添加した実施例18〜20、ニッケル原料を添加した実施例21〜23では、いずれの活性金属成分においても、酸化物換算で0.5〜1.0質量%の範囲の活性金属成分を添加した場合には、NO吸着量変化率は10%を下回った。また、実施例19、21では相対脱硫活性が120%を超えている。これに対して活性金属成分の添加量が1.5質量%になると、NO吸着量変化率は10%を超え、相対脱硫活性は120%を下回った。
また、熟成後の含液量が50質量%となるように調製した実施例2の結果によれば、NO吸着量変化率(絶対値)は10%を下回り、相対脱硫活性は127%であった。これにより、熟成後の含液量が50質量%以上あれば、NO吸着量変化率(絶対値)や相対脱硫活性が目標値を満たす再生結果が得られることを確認できた。
Next, the aging temperature and the aging time were constant (110 ° C., 2 hours), and the pressures during the aging were changed, and the conditions under the assumption of the sulfidation treatment and the catalytic reaction of Examples 1 to 10-16 were used. 3 shows the quantitative change in the active sites of the catalyst (absolute value of the NO adsorption amount change rate) in the form of a rhombus plot in FIG. 3, and the desulfurization activity (relative desulfurization activity) of Examples 1, 10, 11, and 14-16. The change is shown as a diamond plot in FIG. According to these figures, the amount of active sites adsorbed by NO of the hydrotreating catalyst that has been subjected to the activity improvement treatment has a downward trend line with respect to the pressure during aging, and the desulfurization activity has increased upward. It can be seen that the trend line is drawn. And when the pressure at the time of aging is in the range of 0.10 to 0.43 MPa (1 to 4.2 atm), the relative desulfurization activity exceeds 110%, the NO adsorption amount change rate is also less than 10%, and high activity. It can be said that a stable activity improvement result was obtained.
Finally, in Examples 18 to 20 in which a cobalt raw material was added as an active metal component and Examples 21 to 23 in which a nickel raw material was added, 0.5 to 1.0% by mass in terms of oxide in any active metal component When the active metal component in the range was added, the NO adsorption amount change rate was less than 10%. In Examples 19 and 21, the relative desulfurization activity exceeds 120%. On the other hand, when the addition amount of the active metal component was 1.5% by mass, the NO adsorption amount change rate exceeded 10%, and the relative desulfurization activity was less than 120%.
Further, according to the result of Example 2 prepared so that the liquid content after aging was 50% by mass, the NO adsorption amount change rate (absolute value) was less than 10%, and the relative desulfurization activity was 127%. It was. As a result, it was confirmed that when the liquid content after aging was 50% by mass or more, a regeneration result satisfying the target values of the NO adsorption amount change rate (absolute value) and the relative desulfurization activity was obtained.

<実施例24:水素化処理触媒A>
[第一工程:含浸工程]
水素化処理触媒x(比較例1)を大気中550℃で焼成した焼成触媒(使用前の水素化処理触媒)100gに、キレート剤含有水溶液として50%グルコン酸水溶液46.4g(グルコン酸/モリブデン=0.8/1[mol/mol])を加え細孔容積が飽和するまで含浸し、含浸触媒Aを得た。
[第二工程:熟成工程]
含浸触媒Aを、混合し温度110℃、圧力0.10MPa(1atm)の飽和水蒸気雰囲気にある密閉容器(オートクレーブ)内で2時間熟成し、熟成触媒Aを得た。
第二工程終了後に熟成触媒Aの一部を取り出し、その質量(W4)を測定したところ15.85gであり、これを500℃で乾燥させた触媒の質量(W3)は9.97gであった。ここで、(1)式より、熟成触媒Aにおけるグルコン酸水溶液の含液量は59質量%であった。
含液量[質量%]={(W4−W3)/W3}×100・・・(2)
[第三工程:乾燥工程]
次に約150℃の温度の空気中で約2時間の乾燥を行い、水素化処理触媒(改良触媒)Aを得た。表2に水素化処理触媒Aの性状等を示す。
<Example 24: Hydrotreating catalyst A>
[First step: Impregnation step]
The hydrotreating catalyst x (Comparative Example 1) was calcined at 550 ° C. in the atmosphere at a calcining catalyst (hydrotreating catalyst before use) 100 g, and as a chelating agent-containing aqueous solution 46.4 g of 50% gluconic acid aqueous solution (gluconic acid / molybdenum) = 0.8 / 1 [mol / mol]) was added and impregnation was performed until the pore volume was saturated, and impregnation catalyst A was obtained.
[Second step: Aging step]
The impregnated catalyst A was mixed and aged for 2 hours in a closed vessel (autoclave) in a saturated steam atmosphere at a temperature of 110 ° C. and a pressure of 0.10 MPa (1 atm) to obtain an aged catalyst A.
A part of the aging catalyst A was taken out after completion of the second step, and its mass (W4) was measured to be 15.85 g. The mass (W3) of the catalyst dried at 500 ° C. was 9.97 g. . Here, from formula (1), the liquid content of the gluconic acid aqueous solution in the aging catalyst A was 59% by mass.
Liquid content [% by mass] = {(W4−W3) / W3} × 100 (2)
[Third step: drying step]
Next, drying was carried out in air at a temperature of about 150 ° C. for about 2 hours to obtain a hydrotreating catalyst (improved catalyst) A. Table 2 shows properties of the hydrotreating catalyst A.

<実施例25:水素化処理触媒B>
含浸触媒Aを室温雰囲気下で30分静置の上乾燥させて水分を調整した後、第二工程を行った以外は実施例24と同様にして、水素化処理触媒Bを得た。ここで、熟成触媒Bのグルコン酸水溶液の含液量は50質量%であった。表2に水素化処理触媒Bの性状等を示す。
<Example 25: Hydrotreating catalyst B>
The impregnated catalyst A was allowed to stand for 30 minutes in a room temperature atmosphere and dried to adjust the moisture, and then the hydrogenation catalyst B was obtained in the same manner as in Example 24 except that the second step was performed. Here, the liquid content of the gluconic acid aqueous solution of the aging catalyst B was 50% by mass. Table 2 shows the properties and the like of the hydrotreating catalyst B.

<実施例26〜30:水素化処理触媒C〜G>
第二工程において、熟成温度をそれぞれ80℃、90℃、100℃、120℃、140℃とした点以外は実施例24と同様にして水素化処理触媒C〜Gを得た。ここで、熟成触媒C〜Gのグルコン酸水溶液の含液量は、それぞれ54質量%、59質量%、58質量%、54質量%、56質量%であった。表2に水素化処理触媒C〜Gの性状等を示す。
<Examples 26 to 30: hydrotreating catalysts C to G>
In the second step, hydrotreating catalysts C to G were obtained in the same manner as in Example 24 except that the aging temperatures were 80 ° C., 90 ° C., 100 ° C., 120 ° C., and 140 ° C., respectively. Here, the liquid contents of the gluconic acid aqueous solution of the aging catalysts C to G were 54 mass%, 59 mass%, 58 mass%, 54 mass%, and 56 mass%, respectively. Table 2 shows the properties and the like of the hydrotreating catalysts C to G.

<実施例31:水素化処理触媒H>
熟成温度を80℃とし、熟成時間を8時間とした点以外は実施例24と同様にして水素化処理触媒Hを得た。熟成触媒Hにおけるグルコン酸水溶液の含液量は58質量%であった。表2に水素化処理触媒Hの性状等を示す。
<Example 31: Hydrotreating catalyst H>
A hydrotreating catalyst H was obtained in the same manner as in Example 24 except that the aging temperature was 80 ° C. and the aging time was 8 hours. The liquid content of the gluconic acid aqueous solution in the aging catalyst H was 58 mass%. Table 2 shows the properties and the like of the hydrotreating catalyst H.

<実施例32:水素化処理触媒I>
熟成温度を90℃とし、熟成時間を5時間とした点以外は実施例24と同様にして水素化処理触媒Iを得た。熟成触媒Iにおけるグルコン酸水溶液の含液量は59質量%であった。表2に水素化処理触媒Iの性状等を示す。
<Example 32: Hydrotreating catalyst I>
A hydrotreating catalyst I was obtained in the same manner as in Example 24 except that the aging temperature was 90 ° C. and the aging time was 5 hours. The liquid content of the gluconic acid aqueous solution in the aging catalyst I was 59% by mass. Table 2 shows properties of the hydrotreating catalyst I.

<実施例33〜39:水素化処理触媒J〜P>
第3工程において、熟成時の圧力条件を、それぞれ0.08MPa(0.8atm)、0.12MPa(1.2atm)、0.18MPa(1.8atm)、0.22MPa(2.2atm)、0.25MPa(2.5atm)、0.43MPa(4.2atm)、0.62MPa(6.1atm)とした点以外は実施例24と同様にして水素化処理触媒J〜Pを得た。ここで、熟成触媒J〜Pにおけるグルコン酸水溶液の含液量はそれぞれ55質量%、60質量%、56質量%、55質量%、57質量%、54質量%、58質量%であった。表2に水素化処理触媒J〜Pの性状等を示す。
<Examples 33 to 39: Hydrotreating catalysts J to P>
In the third step, the pressure conditions during aging were 0.08 MPa (0.8 atm), 0.12 MPa (1.2 atm), 0.18 MPa (1.8 atm), 0.22 MPa (2.2 atm), and 0, respectively. Hydrotreatment catalysts J to P were obtained in the same manner as in Example 24 except that the pressure was set to .25 MPa (2.5 atm), 0.43 MPa (4.2 atm), and 0.62 MPa (6.1 atm). Here, the liquid contents of the gluconic acid aqueous solution in the aging catalysts J to P were 55% by mass, 60% by mass, 56% by mass, 55% by mass, 57% by mass, 54% by mass, and 58% by mass, respectively. Table 2 shows properties of the hydrotreating catalysts J to P.

<実施例40:水素化処理触媒Q>
熟成時の圧力条件を0.25MPa(2.5atm)とし、熟成時間を1時間とした点以外は実施例24と同様にして水素化処理触媒Qを得た。熟成触媒Qにおけるグルコン酸水溶液の含液量は59質量%であった。表2に水素化処理触媒Qの性状等を示す。
<Example 40: Hydrotreating catalyst Q>
A hydrotreating catalyst Q was obtained in the same manner as in Example 24 except that the pressure condition during aging was 0.25 MPa (2.5 atm) and the aging time was 1 hour. The liquid content of the gluconic acid aqueous solution in the aging catalyst Q was 59% by mass. Table 2 shows properties of the hydrotreating catalyst Q.

<実施例41:水素化処理触媒R>
酸化コバルトに換算して、水素化処理触媒の質量の0.5質量%に相当する、61.1質量%の炭酸コバルト0.82gをグルコン酸水溶液に添加した点以外は実施例24と同様にして水素化処理触媒Rを得た。熟成触媒Rにおけるグルコン酸水溶液の含液量は55質量%であった。表2に水素化処理触媒Rの性状等を示す。
<Example 41: Hydrotreating catalyst R>
In the same manner as in Example 24, except that 0.82 g of 61.1% by mass of cobalt carbonate corresponding to 0.5% by mass of the hydrotreating catalyst in terms of cobalt oxide was added to the gluconic acid aqueous solution. Thus, a hydrotreating catalyst R was obtained. The liquid content of the gluconic acid aqueous solution in the aging catalyst R was 55% by mass. Table 2 shows the properties and the like of the hydrotreating catalyst R.

<実施例42:水素化処理触媒S>
酸化コバルトに換算して、水素化処理触媒の質量の1.0質量%に相当する、61.1質量%の炭酸コバルト1.64gをグルコン酸水溶液に添加した点以外は実施例24と同様にして水素化処理触媒Sを得た。熟成触媒Sにおけるグルコン酸水溶液の含液量は56質量%であった。表2に水素化処理触媒Sの性状等を示す。
<Example 42: Hydrotreating catalyst S>
In the same manner as in Example 24 except that 1.64 g of 61.1% by mass of cobalt carbonate corresponding to 1.0% by mass of the hydrotreating catalyst in terms of cobalt oxide was added to the aqueous gluconic acid solution. Thus, a hydrotreating catalyst S was obtained. The liquid content of the gluconic acid aqueous solution in the aging catalyst S was 56 mass%. Table 2 shows the properties and the like of the hydrotreating catalyst S.

<実施例43:水素化処理触媒T>
酸化コバルトに換算して、水素化処理触媒の質量の1.5質量%に相当する、61.1質量%の炭酸コバルト2.45gをグルコン酸水溶液に添加した点以外は実施例24と同様にして水素化処理触媒Tを得た。熟成触媒Tにおけるグルコン酸水溶液の含液量は57質量%であった。表2に水素化処理触媒Tの性状等を示す。
<Example 43: Hydrotreating catalyst T>
In the same manner as in Example 24, except that 2.45 g of 61.1% by mass of cobalt carbonate corresponding to 1.5% by mass of the hydrotreating catalyst in terms of cobalt oxide was added to the gluconic acid aqueous solution. Thus, a hydrotreating catalyst T was obtained. The liquid content of the gluconic acid aqueous solution in the aging catalyst T was 57% by mass. Table 2 shows properties of the hydrotreating catalyst T.

<実施例44:水素化処理触媒U>
酸化ニッケルに換算して、水素化処理触媒の質量の0.5質量%に相当する、55.0質量%の酸化ニッケル0.91gをグルコン酸水溶液に添加した点以外は実施例24と同様にして水素化処理触媒Uを得た。熟成触媒Uにおけるグルコン酸水溶液の含液量は58質量%であった。表2に水素化処理触媒Uの性状等を示す。
<Example 44: Hydrotreating catalyst U>
In the same manner as in Example 24 except that 0.91 g of 55.0% by mass of nickel oxide corresponding to 0.5% by mass of the hydrotreating catalyst in terms of nickel oxide was added to the gluconic acid aqueous solution. Thus, a hydrotreating catalyst U was obtained. The liquid content of the gluconic acid aqueous solution in the aging catalyst U was 58 mass%. Table 2 shows properties of the hydrotreating catalyst U.

<実施例45:水素化処理触媒V>
酸化ニッケルに換算して、水素化処理触媒の質量の1.0質量%に相当する、55.0質量%の酸化ニッケル1.82gをグルコン酸水溶液に添加した点以外は実施例24と同様にして水素化処理触媒Vを得た。熟成触媒Vにおけるグルコン酸水溶液の含液量は55質量%であった。表2に水素化処理触媒Vの性状等を示す。
<Example 45: Hydrotreating catalyst V>
In the same manner as in Example 24 except that 1.82 g of 55.0% by mass of nickel oxide corresponding to 1.0% by mass of the hydrotreating catalyst in terms of nickel oxide was added to the gluconic acid aqueous solution. Thus, a hydrotreating catalyst V was obtained. The liquid content of the gluconic acid aqueous solution in the aging catalyst V was 55% by mass. Table 2 shows the properties and the like of the hydrotreating catalyst V.

<実施例46:水素化処理触媒W>
酸化ニッケルに換算して、水素化処理触媒の質量の1.5質量%に相当する、55.0質量%の酸化ニッケル2.74gをグルコン酸水溶液に添加した点以外は実施例24と同様にして水素化処理触媒Wを得た。熟成触媒Wにおけるグルコン酸水溶液の含液量は54質量%であった。表2に水素化処理触媒Wの性状等を示す。
<Example 46: Hydrotreating catalyst W>
In the same manner as in Example 24 except that 2.74 g of 55.0% by mass of nickel oxide corresponding to 1.5% by mass of the hydrotreating catalyst in terms of nickel oxide was added to the gluconic acid aqueous solution. Thus, a hydrotreating catalyst W was obtained. The liquid content of the gluconic acid aqueous solution in the aging catalyst W was 54 mass%. Table 2 shows properties of the hydrotreating catalyst W.

<比較例8:水素化処理触媒X>
グルコン酸水溶液を含浸させた水素化触媒を熟成させずに、直ちに乾燥を開始した点以外は実施例24と同様にして水素化処理触媒Xを得た。表2に水素化処理触媒Xの性状等を示す。
<Comparative Example 8: Hydrotreating catalyst X>
A hydrotreatment catalyst X was obtained in the same manner as in Example 24 except that drying was started immediately without aging the hydrogenation catalyst impregnated with the gluconic acid aqueous solution. Table 2 shows properties of the hydrotreating catalyst X.

<比較例9:水素化処理触媒Y>
熟成温度を60℃とした点以外は実施例24と同様にして水素化処理触媒Yを得た。熟成触媒Yにおけるグルコン酸水溶液の含液量は61質量%であった。表2に水素化処理触媒Yの性状等を示す。
<Comparative Example 9: Hydrotreating catalyst Y>
A hydrotreating catalyst Y was obtained in the same manner as in Example 24 except that the aging temperature was 60 ° C. The liquid content of the gluconic acid aqueous solution in the aging catalyst Y was 61% by mass. Table 2 shows the properties and the like of the hydrotreating catalyst Y.

<比較例10:水素化処理触媒Z>
熟成温度を70℃とした点以外は実施例24と同様にして水素化処理触媒Zを得た。熟成触媒Zにおけるグルコン酸水溶液の含液量は57質量%であった。表2に水素化処理触媒Zの性状等を示す。
<Comparative Example 10: Hydrotreating catalyst Z>
A hydrotreating catalyst Z was obtained in the same manner as in Example 24 except that the aging temperature was 70 ° C. The liquid content of the gluconic acid aqueous solution in the aging catalyst Z was 57% by mass. Table 2 shows properties of the hydrotreating catalyst Z.

<比較例11:水素化処理触媒A1>
熟成温度を160℃とした点以外は実施例24と同様にして水素化処理触媒A1を得た。熟成触媒A1におけるグルコン酸水溶液の含液量は58質量%であった。表2に水素化処理触媒A1の性状等を示す。
<Comparative Example 11: Hydrotreating catalyst A1>
A hydrotreating catalyst A1 was obtained in the same manner as in Example 24 except that the aging temperature was 160 ° C. The liquid content of the gluconic acid aqueous solution in the aging catalyst A1 was 58% by mass. Table 2 shows properties of the hydrotreating catalyst A1.

<比較例12:水素化処理触媒A2>
熟成温度を60℃とし、熟成時間を8時間とした点以外は実施例24と同様にして水素化処理触媒A2を得た。熟成触媒A2におけるグルコン酸水溶液の含液量は52質量%であった。表2に水素化処理触媒A2の性状等を示す。
<Comparative Example 12: Hydrotreating catalyst A2>
A hydrotreating catalyst A2 was obtained in the same manner as in Example 24 except that the aging temperature was 60 ° C. and the aging time was 8 hours. The liquid content of the gluconic acid aqueous solution in the aging catalyst A2 was 52% by mass. Table 2 shows properties of the hydrotreating catalyst A2.

<比較例13:水素化処理触媒A3>
熟成温度を70℃とし、熟成時間を10時間とした点以外は実施例24と同様にして水素化処理触媒A3を得た。熟成触媒A3におけるグルコン酸水溶液の含液量は51質量%であった。表2に水素化処理触媒A3の性状等を示す。
<Comparative Example 13: Hydrotreating catalyst A3>
A hydrotreating catalyst A3 was obtained in the same manner as in Example 24 except that the aging temperature was 70 ° C. and the aging time was 10 hours. The liquid content of the gluconic acid aqueous solution in the aging catalyst A3 was 51% by mass. Table 2 shows properties of the hydrotreating catalyst A3.

<比較例14:水素化処理触媒A4>
熟成工程前の含浸触媒を室温雰囲気下で60分静置の上乾燥させた以外は実施例24と同様にして水素化処理触媒A4を得た。表2に水素化処理触媒A4の性状等を示す。
<Comparative Example 14: Hydrotreating catalyst A4>
A hydrotreating catalyst A4 was obtained in the same manner as in Example 24 except that the impregnated catalyst before the aging step was left to stand for 60 minutes in a room temperature atmosphere and then dried. Table 2 shows properties of the hydrotreating catalyst A4.

触媒A〜触媒Z、触媒A1〜触媒A4について、前記した安定性評価試験及び水素化処理活性評価試験を行った結果を表2に示す。   Table 2 shows the results of the stability evaluation test and the hydrotreating activity evaluation test described above for Catalyst A to Catalyst Z and Catalyst A1 to Catalyst A4.

Figure 2013027839
Figure 2013027839

実施例24〜46においては、相対脱硫活性が110%を超える結果が得られており、十分な活性向上結果が得られた。これに対して比較例の相対脱硫活性は、実用上要求される100〜105%の範囲であり、実施例の相対脱硫活性を下回っている。
ここで、熟成時間、熟成圧力を一定(2時間、0.10MPa(1atm))とし、熟成温度を変化させた実施例24、26〜30、比較例9〜11についての高温処理時の安定性(NO吸着量変化率の絶対値)の変化を図1に丸のプロットで示し、実施例24、26、28、30、比較例9についての脱硫活性(相対脱硫活性)の変化を図2に丸のプロットで示す。これらの図によれば、活性向上処理を行った水素化処理触媒の安定性は、熟成温度に対して下に突の傾向線を描き、脱硫活性は上に突の傾向線を描くことが分かる。そして、熟成温度が100〜140℃の範囲では、相対脱硫活性が120%を超え、NO吸着量変化率も10%を下回っており、高活性で安定な活性向上結果が得られたといえる。
In Examples 24-46, the result that relative desulfurization activity exceeded 110% was obtained, and the sufficient activity improvement result was obtained. On the other hand, the relative desulfurization activity of the comparative example is in the range of 100 to 105% that is practically required, and is lower than the relative desulfurization activity of the examples.
Here, the aging time and the aging pressure were constant (2 hours, 0.10 MPa (1 atm)), and stability at the time of high temperature treatment for Examples 24, 26 to 30 and Comparative Examples 9 to 11 in which the aging temperature was changed. The change in (absolute value of NO adsorption amount change rate) is shown by a circle plot in FIG. 1, and the change in desulfurization activity (relative desulfurization activity) for Examples 24, 26, 28, 30 and Comparative Example 9 is shown in FIG. Shown as a circle plot. According to these figures, it can be seen that the stability of the hydrotreating catalyst subjected to the activity improvement treatment has a downward trend line with respect to the aging temperature, and the desulfurization activity has a upward trend line. . And in the range of aging temperature of 100-140 degreeC, relative desulfurization activity exceeds 120%, NO adsorption amount change rate is also less than 10%, and it can be said that the highly active and stable activity improvement result was obtained.

一方、実施例26(熟成温度80℃)は、熟成時間が2時間の場合には120%を超える相対脱硫活性が得られなかったが、実施例31(熟成温度80℃)では、熟成時間を8時間に伸ばすことで、120%の相対脱硫活性が得られており、高温処理時の安定性も向上している。熟成温度が90℃の場合にも熟成時間を長くすることによって同様の結果が得られると考えられる。例えば熟成時間が10時間以内で110%以上の相対的脱硫活性が得られれば、十分に短時間で、良好な安定性を持つ活性向上処理が行われていると評価できる。
また、比較例14は、熟成後に計測したグルコン酸水溶液の含液量が50質量%未満(44質量%)となっており、NO吸着量の変化率も10%を大きく上回り、相対脱硫活性も102%と低い。
On the other hand, in Example 26 (aging temperature 80 ° C.), when the aging time was 2 hours, a relative desulfurization activity exceeding 120% was not obtained, but in Example 31 (aging temperature 80 ° C.), the aging time was reduced. By extending to 8 hours, a relative desulfurization activity of 120% is obtained, and the stability during high temperature treatment is also improved. Even when the aging temperature is 90 ° C., it is considered that the same result can be obtained by extending the aging time. For example, if a relative desulfurization activity of 110% or more is obtained within 10 hours of aging time, it can be evaluated that the activity improving treatment having good stability is performed in a sufficiently short time.
Further, in Comparative Example 14, the liquid content of the gluconic acid aqueous solution measured after aging was less than 50% by mass (44% by mass), the rate of change in the NO adsorption amount greatly exceeded 10%, and the relative desulfurization activity was also high. It is as low as 102%.

次に、熟成温度、熟成時間を一定(110℃、2時間)とし、熟成時の圧力を変化させた実施例24、33〜39についての使用時の硫化処理及び触媒反応時を想定した条件下における触媒の活性点の量的変化(NO吸着量変化率の絶対値)を図3に丸のプロットで示し、また、実施例24、33、34、37〜39についての脱硫活性(相対脱硫活性)の変化を図4に丸のプロットで示す。これらによれば、活性向上処理を行った水素化処理触媒のNOが吸着した活性点の量は、熟成時の圧力に対して下に突の傾向線を描き、脱硫活性は上に突の傾向線を描くことが分かる。そして、熟成時の圧力が0.10〜0.42MPa(1〜4.2atm)の範囲では、相対脱硫活性が110%を超え、NO吸着量変化率も10%を下回っており、高活性で安定な活性向上結果が得られたといえる。
最後に活性金属成分としてコバルト原料を添加した実施例41〜43、ニッケル原料を添加した実施例44〜46では、いずれの活性金属成分においても、酸化物換算で0.5〜1.0質量%の範囲の活性金属成分を添加した場合には、NO吸着量変化率は10%を下回った。また、実施例41、45では相対脱硫活性が120%を超えている。これに対して活性金属成分の添加量が1.5質量%になると、NO吸着量変化率は10%を超え、相対脱硫活性は120%を下回った。
また、熟成後の含液量が50質量%となるように調製した実施例25は、NO吸着量変化率(絶対値)が10%を下回り、相対脱硫活性が123%であった。これにより、熟成後の含液量が50質量%以上あれば、NO吸着量変化率(絶対値)や相対脱硫活性が目標値を満たす再生結果が得られることを確認できた。
Next, the aging temperature and the aging time were constant (110 ° C., 2 hours), and the conditions under the assumption of sulfidation treatment and catalytic reaction during use of Examples 24, 33 to 39 in which the pressure during aging was changed 3 shows the quantitative change (the absolute value of the NO adsorption amount change rate) of the catalyst in FIG. 3 as a circle plot, and the desulfurization activity (relative desulfurization activity) for Examples 24, 33, 34, and 37-39. ) Is shown as a circle plot in FIG. According to these, the amount of active sites adsorbed NO of the hydrotreating catalyst that has been subjected to the activity improving treatment draws a downward trend line with respect to the pressure at the time of aging, and the desulfurization activity tends to protrude upward. You can see that it draws a line. And when the pressure at the time of aging is in the range of 0.10 to 0.42 MPa (1 to 4.2 atm), the relative desulfurization activity exceeds 110%, the NO adsorption amount change rate is also less than 10%, and high activity. It can be said that a stable activity improvement result was obtained.
Finally, in Examples 41 to 43 in which a cobalt raw material was added as an active metal component and Examples 44 to 46 in which a nickel raw material was added, 0.5 to 1.0% by mass in terms of oxide in any active metal component When the active metal component in the range was added, the NO adsorption amount change rate was less than 10%. In Examples 41 and 45, the relative desulfurization activity exceeds 120%. On the other hand, when the addition amount of the active metal component was 1.5% by mass, the NO adsorption amount change rate exceeded 10%, and the relative desulfurization activity was less than 120%.
Further, in Example 25 prepared so that the liquid content after aging was 50% by mass, the NO adsorption amount change rate (absolute value) was less than 10%, and the relative desulfurization activity was 123%. As a result, it was confirmed that when the liquid content after aging was 50% by mass or more, a regeneration result satisfying the target values of the NO adsorption amount change rate (absolute value) and the relative desulfurization activity was obtained.

Claims (8)

担体に周期表第6族、第8族〜第10族から選ばれる少なくとも1つ以上の活性金属成分を担持して活性金属担持体を得る第1工程と、
前記活性金属担持体にキレート剤及び水分を含むキレート剤含有水溶液を含浸し、含浸担持体を得る第2工程と、
前記含浸担持体について、下記(1)式で計算される前記キレート剤含有水溶液の含液量を50%以上の状態に保ちながら、80℃以上150℃以下で熟成させ、熟成担持体を得る第3工程と、
前記熟成担持体を300℃以下で乾燥させ、水素化処理触媒を得る第4工程と、を含むことを特徴とする水素化処理触媒の製造方法。
含液量[質量%]={(W2−W1)/W1}×100・・・(1)
但し、W1は、第3工程終了後の熟成担持体を500℃で乾燥させた後の質量であり、W2は、第3工程終了時の熟成担持体の質量である。
A first step of obtaining an active metal carrier by supporting at least one active metal component selected from Group 6, Group 8 to Group 10 of the periodic table on the carrier;
A second step of impregnating the active metal carrier with a chelating agent-containing aqueous solution containing a chelating agent and moisture to obtain an impregnated carrier;
The impregnated carrier is aged at 80 ° C. or higher and 150 ° C. or lower while maintaining the liquid content of the chelating agent-containing aqueous solution calculated by the following formula (1) at 50% or higher. 3 steps,
And a fourth step of drying the aging support at 300 ° C. or lower to obtain a hydrotreating catalyst, and a method for producing a hydrotreating catalyst.
Liquid content [% by mass] = {(W2−W1) / W1} × 100 (1)
However, W1 is the mass after drying the aged carrier after completion of the third step at 500 ° C., and W2 is the mass of the aged carrier at the end of the third step.
前記第3工程を、0.10〜0.51MPaの範囲で行うことを特徴とする請求項1記載の水素化処理触媒の製造方法。   The method for producing a hydroprocessing catalyst according to claim 1, wherein the third step is performed in a range of 0.10 to 0.51 MPa. 前記第1工程に代え、前記第2工程において、前記キレート剤含有水溶液に、周期表第6族、第8族〜第10族から選ばれる少なくとも1つ以上の活性金属成分を添加することを特徴とする請求項1又は2に記載の水素化処理触媒の製造方法。   Instead of the first step, in the second step, at least one active metal component selected from Groups 6 and 8 to 10 of the periodic table is added to the chelating agent-containing aqueous solution. The method for producing a hydrotreating catalyst according to claim 1 or 2. 使用前の水素化処理触媒に担持された活性金属成分を再分散させて活性を向上させる水素化処理触媒の製造方法であって、
使用前の水素化処理触媒に、キレート剤及び水分を含むキレート剤含有水溶液を含浸し、含浸触媒を得る第一工程と、
前記含浸触媒について、下記(2)式で計算される前記キレート剤含有水溶液の含液量を50%以上の状態に保ちながら、80℃以上150℃以下で熟成させ、熟成触媒を得る第二工程と、
前記熟成触媒を300℃以下で乾燥させ、改良触媒を得る第三工程と、を含むことを特徴とする水素化処理触媒の製造方法。
含液量[質量%]={(W4−W3)/W3}×100・・・(2)
但し、W3は、第二工程終了後の熟成触媒を500℃で乾燥させた後の質量であり、W4は、第二工程終了時の熟成触媒の質量である。
A method for producing a hydrotreating catalyst, wherein the active metal component supported on the hydrotreating catalyst before use is redispersed to improve the activity,
A first step of impregnating a hydrotreatment catalyst before use with a chelating agent-containing aqueous solution containing a chelating agent and moisture to obtain an impregnated catalyst;
Second step of obtaining an aged catalyst by aging the impregnated catalyst at 80 ° C. or higher and 150 ° C. or lower while maintaining the liquid content of the chelating agent-containing aqueous solution calculated by the following formula (2) at 50% or higher. When,
And a third step of drying the aged catalyst at 300 ° C. or lower to obtain an improved catalyst, and a method for producing a hydrotreating catalyst.
Liquid content [% by mass] = {(W4−W3) / W3} × 100 (2)
However, W3 is a mass after drying the aged catalyst after completion | finish of a 2nd process at 500 degreeC, and W4 is a mass of the aged catalyst at the end of a 2nd process.
前記第二工程を、0.10〜0.51MPaの範囲で行うことを特徴とする請求項4記載の水素化処理触媒の製造方法。   The method for producing a hydrotreating catalyst according to claim 4, wherein the second step is performed in a range of 0.10 to 0.51 MPa. 前記第一工程において、前記キレート剤含有水溶液に、周期表第6族、第8族〜第10族から選ばれる少なくとも1つ以上の活性金属成分を添加することを特徴とする請求項4又は5に記載の水素化処理触媒の製造方法。   The said 1st process WHEREIN: At least 1 or more active metal component chosen from the periodic table 6th group and 8th group-10th group is added to the said chelating agent containing aqueous solution. The manufacturing method of the hydrotreating catalyst as described in 1 above. 前記活性金属成分が周期表第8族〜第10族から選ばれ、その添加量が酸化物換算で前記改良触媒の1質量%以下であることを特徴とする請求項6に記載の水素化処理触媒の製造方法。   The hydrometallurgy treatment according to claim 6, wherein the active metal component is selected from Groups 8 to 10 of the periodic table, and its addition amount is 1% by mass or less of the improved catalyst in terms of oxide. A method for producing a catalyst. 前記第一工程において、予め使用前の水素化処理触媒を300℃を超える温度で焼成した焼成触媒を使用することを特徴とする請求項4〜7のいずれかに記載の水素化処理触媒の製造方法。   In the said 1st process, the calcination catalyst which baked the hydroprocessing catalyst before use in advance at the temperature exceeding 300 degreeC is used, The manufacture of the hydroprocessing catalyst in any one of Claims 4-7 characterized by the above-mentioned. Method.
JP2011167170A 2011-07-29 2011-07-29 Method for producing hydrotreating catalyst Active JP5863096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011167170A JP5863096B2 (en) 2011-07-29 2011-07-29 Method for producing hydrotreating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011167170A JP5863096B2 (en) 2011-07-29 2011-07-29 Method for producing hydrotreating catalyst

Publications (2)

Publication Number Publication Date
JP2013027839A true JP2013027839A (en) 2013-02-07
JP5863096B2 JP5863096B2 (en) 2016-02-16

Family

ID=47785439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011167170A Active JP5863096B2 (en) 2011-07-29 2011-07-29 Method for producing hydrotreating catalyst

Country Status (1)

Country Link
JP (1) JP5863096B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048333A (en) * 2013-09-02 2015-03-16 富士シリシア化学株式会社 Nitrating agent and method for producing nitro compound
CN105521791A (en) * 2014-10-22 2016-04-27 中国石油化工股份有限公司 Method for preparing sulfuration-type gasoline selective hydro-desulfurization catalyst
WO2017135193A1 (en) * 2016-02-01 2017-08-10 日揮触媒化成株式会社 Hydrotreating catalyst for hydrocarbon oil, method for producing hydrotreating catalyst, and hydrotreating method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156948A (en) * 1990-10-17 1992-05-29 Sumitomo Metal Mining Co Ltd Production of catalyst for hydrogenation of hydrocarbon oil
JPH06339635A (en) * 1993-06-01 1994-12-13 Japan Energy Corp Preparation of hydrogenation catalyst
JPH07136523A (en) * 1993-11-12 1995-05-30 Japan Energy Corp Production of hydrogenation catalyst
JP2007507334A (en) * 2003-10-03 2007-03-29 アルベマーレ ネザーランズ ビー.ブイ. Method for activating hydrotreating catalyst
JP2008272646A (en) * 2007-04-27 2008-11-13 Shimane Univ Hydrogenation catalyst re-activation method and manufacturing method of hydrogenation catalyst
JP2008290071A (en) * 2007-04-27 2008-12-04 Cosmo Oil Co Ltd Method for manufacturing catalyst for hydrotreating hydrocarbon oil and regeneration method
JP2008290043A (en) * 2007-05-28 2008-12-04 Cosmo Oil Co Ltd Hydrotreatment catalyst for heavy hydrocarbon oil, method for producing same, and hydrotreatment method
JP2009160498A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Method of regenerating hydrogenation catalyst

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156948A (en) * 1990-10-17 1992-05-29 Sumitomo Metal Mining Co Ltd Production of catalyst for hydrogenation of hydrocarbon oil
JPH06339635A (en) * 1993-06-01 1994-12-13 Japan Energy Corp Preparation of hydrogenation catalyst
JPH07136523A (en) * 1993-11-12 1995-05-30 Japan Energy Corp Production of hydrogenation catalyst
JP2007507334A (en) * 2003-10-03 2007-03-29 アルベマーレ ネザーランズ ビー.ブイ. Method for activating hydrotreating catalyst
JP2008272646A (en) * 2007-04-27 2008-11-13 Shimane Univ Hydrogenation catalyst re-activation method and manufacturing method of hydrogenation catalyst
JP2008290071A (en) * 2007-04-27 2008-12-04 Cosmo Oil Co Ltd Method for manufacturing catalyst for hydrotreating hydrocarbon oil and regeneration method
JP2008290043A (en) * 2007-05-28 2008-12-04 Cosmo Oil Co Ltd Hydrotreatment catalyst for heavy hydrocarbon oil, method for producing same, and hydrotreatment method
JP2009160498A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Method of regenerating hydrogenation catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048333A (en) * 2013-09-02 2015-03-16 富士シリシア化学株式会社 Nitrating agent and method for producing nitro compound
CN105521791A (en) * 2014-10-22 2016-04-27 中国石油化工股份有限公司 Method for preparing sulfuration-type gasoline selective hydro-desulfurization catalyst
WO2017135193A1 (en) * 2016-02-01 2017-08-10 日揮触媒化成株式会社 Hydrotreating catalyst for hydrocarbon oil, method for producing hydrotreating catalyst, and hydrotreating method
CN108602055A (en) * 2016-02-01 2018-09-28 日挥触媒化成株式会社 The hydrotreating catalyst of hydrocarbon ils, its manufacturing method and hydrogenation treatment method
KR20180111815A (en) * 2016-02-01 2018-10-11 니끼 쇼꾸바이 카세이 가부시키가이샤 Process for hydrotreating hydrocarbon oil, process for producing same, and hydrotreating process
KR102608017B1 (en) 2016-02-01 2023-11-30 니끼 쇼꾸바이 카세이 가부시키가이샤 Hydrocarbon oil catalyst, production method, and hydrogenation method thereof

Also Published As

Publication number Publication date
JP5863096B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
US10507458B2 (en) Hydrotreating catalyst and process for preparing the same
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4187383B2 (en) Method for sulfiding a hydrotreating catalyst comprising an organic compound containing N and carbonyl
JP5796871B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP5060044B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
WO2011040224A1 (en) Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
JP6476525B2 (en) Heavy hydrocarbon oil hydrotreating catalyst and heavy hydrocarbon oil hydrotreating method
CN105579135A (en) Hydroprocessing catalyst for heavy hydrocarbon oil, method for manufacturing hydroprocessing catalyst for heavy hydrocarbon oil, and hydroprocessing method for heavy hydrocarbon oil
CN111632613A (en) Process for preparing hydroprocessing catalysts
JP2011072928A (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing the same
JP5863096B2 (en) Method for producing hydrotreating catalyst
JP5825572B2 (en) Method for regenerating hydrotreating catalyst
CN109772387B (en) Hydrotreating catalyst and preparation method thereof
CN100556994C (en) Phosphorated diesel oil hydrofining catalyst and preparation method thereof
CN102309970B (en) Hydro-treating catalyst and preparation method thereof
JP2006000726A (en) Hydrogenation catalyst of hydrocarbon oil, manufacturing method therefor and hydrogenation method for hydrocarbon oil
JP5340101B2 (en) Hydrorefining method of hydrocarbon oil
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4916370B2 (en) Process for hydrotreating diesel oil
JP7340593B2 (en) Comixed catalysts derived from solutions containing heteropolyanions, methods for their preparation, and use of the same in the hydroconversion of heavy hydrocarbon feedstocks
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP2018167196A (en) Desulfurization catalyst for hydrocarbon oil and method for producing desulfurization catalyst
RU2610869C2 (en) Hydroprocessing catalyst and methods of making and using such catalyst
JP5265426B2 (en) Hydrorefining catalyst and method for producing the same, and hydrorefining method of hydrocarbon oil
JP4519379B2 (en) Heavy hydrocarbon oil hydrotreating catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151218

R150 Certificate of patent or registration of utility model

Ref document number: 5863096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250