JP6420961B2 - Recycling method of heavy oil desulfurization catalyst - Google Patents

Recycling method of heavy oil desulfurization catalyst Download PDF

Info

Publication number
JP6420961B2
JP6420961B2 JP2014065548A JP2014065548A JP6420961B2 JP 6420961 B2 JP6420961 B2 JP 6420961B2 JP 2014065548 A JP2014065548 A JP 2014065548A JP 2014065548 A JP2014065548 A JP 2014065548A JP 6420961 B2 JP6420961 B2 JP 6420961B2
Authority
JP
Japan
Prior art keywords
catalyst
heavy oil
stage
regenerated
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014065548A
Other languages
Japanese (ja)
Other versions
JP2015189772A (en
Inventor
岩本 隆一郎
隆一郎 岩本
圭祐 三宅
圭祐 三宅
純司 山田
純司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2014065548A priority Critical patent/JP6420961B2/en
Priority to CN201580016251.1A priority patent/CN106459782B/en
Priority to KR1020167026216A priority patent/KR102366902B1/en
Priority to PCT/JP2015/059505 priority patent/WO2015147223A1/en
Priority to TW104110048A priority patent/TWI652114B/en
Publication of JP2015189772A publication Critical patent/JP2015189772A/en
Application granted granted Critical
Publication of JP6420961B2 publication Critical patent/JP6420961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

本発明は、重油の水素化脱硫処理に使用した重油脱硫触媒の再生利用方法に関する。   The present invention relates to a method for recycling a heavy oil desulfurization catalyst used for hydrodesulfurization treatment of heavy oil.

石油精製には、各種の留分を水素化脱硫処理により精製する工程が多数あり、そのための触媒が各種開発されている。そのような触媒には、ナフサ、灯油および軽油などの脱硫脱窒素触媒、重質軽油の脱硫脱窒素触媒、分解触媒、ならびに残油および重油などの脱硫脱窒素触媒などがある。そのうちでも、比較的沸点が低く、バナジウム等の金属不純物含有量がほとんどないナフサ、灯油および軽油などを水素化脱硫処理するときに用いられる触媒は、使用による劣化の度合いが少ない。   Petroleum refining has many processes for refining various fractions by hydrodesulfurization, and various catalysts have been developed. Such catalysts include desulfurization and denitrification catalysts such as naphtha, kerosene and light oil, desulfurization and denitrification catalysts for heavy gas oil, and desulfurization and denitrification catalysts such as residual oil and heavy oil. Among them, the catalyst used when hydrodesulfurizing naphtha, kerosene, light oil and the like having a relatively low boiling point and almost no metal impurities such as vanadium has a low degree of deterioration due to use.

ナフサ、灯油および軽油などを水素化脱硫処理するときに用いられる触媒はバナジウムなどの金属不純物による劣化はなく、触媒の劣化は少量の炭素質の蓄積によるものである。したがって、燃焼により触媒から炭素を除去すれば触媒の再利用は可能であった。さらに炭素質の除去についても、触媒上の炭素質の量が少ないため、厳密な燃焼制御を必要とせずに触媒を再生できた。また、使用した触媒の中には劣化の度合いが少ないものもあり、そのような触媒は再生処理をせずにそのまま再利用できた。   The catalyst used when hydrodesulfurizing naphtha, kerosene, light oil and the like is not deteriorated by metal impurities such as vanadium, and the deterioration of the catalyst is due to the accumulation of a small amount of carbonaceous matter. Therefore, if carbon was removed from the catalyst by combustion, the catalyst could be reused. Furthermore, regarding the removal of carbonaceous matter, since the amount of carbonaceous matter on the catalyst was small, the catalyst could be regenerated without requiring strict combustion control. Some of the catalysts used have a low degree of deterioration, and such catalysts can be reused as they are without being regenerated.

最近、重質軽油および減圧軽油などの水素化脱硫処理触媒についても、再生して再利用しており、その触媒の再生方法および再利用方法が確立されている。たとえば、重質軽油水素化分解プロセスにおいて使用される水素化分解触、およびその前処理のために使用される水素化脱窒素触媒は、水素賦活または酸素賦活により再生され、再利用されている。これらの留出油の水素化脱硫処理に用いられた触媒は、金属不純物が少ない原料油に使用されるので、バナジウムなどの金属の触媒上の堆積は少ない。また、触媒上に堆積する炭素質も少なく、触媒上に堆積した炭素質は燃えやすい。このため、燃焼による再生時に触媒表面はそれほど高温にならないので、再生処理による触媒の細孔構造および活性金属の担持状態の変化は小さく、重質軽油および減圧軽油などの留出油の処理に再度使用することができた(非特許文献1参照)。   Recently, hydrodesulfurization treatment catalysts such as heavy gas oil and vacuum gas oil have also been regenerated and reused, and a regeneration method and a reuse method of the catalyst have been established. For example, the hydrocracking catalyst used in the heavy gas oil hydrocracking process and the hydrodenitrogenation catalyst used for its pretreatment are regenerated and reused by hydrogen activation or oxygen activation. Since the catalyst used in the hydrodesulfurization treatment of these distillate oils is used as a raw material oil with few metal impurities, there is little deposition on the catalyst of metals such as vanadium. In addition, the amount of carbon deposited on the catalyst is small, and the carbon deposited on the catalyst tends to burn. For this reason, since the catalyst surface does not become so high during regeneration by combustion, the change in the pore structure of the catalyst and the supported state of the active metal by the regeneration process is small, and it is again used for the treatment of distillate oil such as heavy gas oil and vacuum gas oil. It was able to be used (refer nonpatent literature 1).

しかし、さらに沸点の高い留分または蒸留できない留分を含む重油は、アスファルテン分などの炭素質化しやすい成分および金属不純物を多く含み、水素化脱硫処理に使用した後の使用済触媒上に多量の炭素質および金属分が堆積する。炭素質および金属分が同時に蓄積した使用済触媒から炭素質を簡単には除去できないため、高い燃焼温度で炭素質を除去しなければならない。このため、再生処理による触媒の細孔構造および活性金属の担持状態の変化が大きくなり、炭素質の除去した後の触媒の機能が著しく低下した(非特許文献2および非特許文献3参照)。このようなことから、重油の水素化脱硫処理に使用された触媒は、再利用されることなく処分されていた。   However, heavy oil containing a fraction having a higher boiling point or a fraction that cannot be distilled contains a large amount of carbonaceous components such as asphaltenes and metal impurities, and a large amount of the catalyst on the spent catalyst after being used for hydrodesulfurization treatment. Carbonaceous and metallic components are deposited. The carbonaceous matter must be removed at a high combustion temperature because the carbonaceous matter cannot be easily removed from the spent catalyst in which the carbonaceous matter and the metal content are simultaneously accumulated. For this reason, the change in the pore structure of the catalyst and the supported state of the active metal due to the regeneration treatment became large, and the function of the catalyst after removing the carbonaceous matter was remarkably lowered (see Non-Patent Document 2 and Non-Patent Document 3). For this reason, the catalyst used for the hydrodesulfurization treatment of heavy oil has been disposed of without being reused.

しかし、廃棄物低減および触媒コスト削減のために、重油の水素化脱硫処理で使用した触媒を再生して再利用することは非常に重要である。再生触媒の再利用方法として、たとえば特許文献1に記載されている重質油水素化処理触媒の再生方法および特許文献2に記載されている重質油の水素化脱硫方法が知られている。特許文献1に記載の重質油水素化処理触媒の再生方法によれば、重質油水素化脱硫処理プロセスにおいて使用により失活した触媒を再生処理し、その細孔容積、細孔直径、バナジウム堆積量および体積当たりの外表面積から算出されるメタル許容量が特定の値である再生水素化処理触媒を重質油の水素化処理に再び利用
することができる。また、特許文献2に記載の重質油の水素化脱硫方法によれば、重質油などの水素化処理プロセスにおいて使用により失活し、利用されなかった触媒を再生処理し、有効に活用することができる。
However, it is very important to regenerate and reuse the catalyst used in the hydrodesulfurization treatment of heavy oil in order to reduce waste and catalyst costs. As a method for reusing a regenerated catalyst, for example, a method for regenerating a heavy oil hydrotreating catalyst described in Patent Document 1 and a method for hydrodesulfurizing a heavy oil described in Patent Document 2 are known. According to the method for regenerating a heavy oil hydrotreating catalyst described in Patent Document 1, a catalyst deactivated by use in a heavy oil hydrodesulfurization process is regenerated, and its pore volume, pore diameter, vanadium A regenerated hydrotreating catalyst having a specific metal allowance calculated from the amount deposited and the outer surface area per volume can be used again for the hydrotreating of heavy oil. In addition, according to the hydrodesulfurization method for heavy oil described in Patent Document 2, a catalyst that has been deactivated by use in a hydroprocessing process such as heavy oil and has not been used is regenerated and effectively used. be able to.

特許第3708381号公報Japanese Patent No. 3708811 特許第3527635号公報Japanese Patent No. 3527635

Stadies in Surface and Catalysis vol.88 P199(1994)Studies in Surface and Catalysis vol. 88 P199 (1994) Catal.Today vol.17 No.4 P539(1993)Catal. Today vol. 17 No. 4 P539 (1993) Catal.Rev.Sci.Eng.33(3&4)P281(1991)Catal. Rev. Sci. Eng. 33 (3 & 4) P281 (1991)

しかしながら、特許文献1に記載されている重質油水素化処理触媒の再生方法では、再生触媒の原料となる使用済触媒の物性は原料や運転条件に依存しており、再生性に大きな影響を与えるため、運転過酷度の高い装置においては、必ずしも再生触媒として利用できるわけではなかった。また、特許文献2に記載されている重質油の水素化脱硫方法は、1装置1回限りの再生方法を提案しているのみで、継続的かつ安定的な再生方法ではなかった。そこで、本発明は、使用済触媒をさらに有効に再利用できる、重油脱硫触媒の再生利用方法を提供することを目的とする。   However, in the method for regenerating a heavy oil hydrotreating catalyst described in Patent Document 1, the physical properties of the used catalyst that is the raw material for the regenerated catalyst depend on the raw material and the operating conditions, and this greatly affects the reproducibility. For this reason, in a device having a high driving severity, it cannot always be used as a regenerated catalyst. Moreover, the hydrodesulfurization method of heavy oil described in Patent Document 2 only proposes a one-time one-time regeneration method, and is not a continuous and stable regeneration method. Accordingly, an object of the present invention is to provide a method for recycling a heavy oil desulfurization catalyst that can more effectively reuse a used catalyst.

本発明者らは鋭意研究の結果、重油水素化脱硫処理で使用して失活した、従来、再生使用できなかった触媒であっても、反応塔の塔頂側から所定段目の位置ならば、その触媒を使用できることを見出し、本発明を完成させた。すなわち、本発明は、以下のとおりである。
[1]1つの装置において、触媒を充填した反応塔の塔頂側から原料重油を投入し、水素化脱硫された原料重油を反応塔の塔底側から排出する水素化脱硫装置に用いる触媒の再生利用方法であって、反応塔に充填される重油脱硫触媒を2以上の複数段に分割し、該反応塔の塔頂側からm段目(mは2以上の整数)の重油脱硫触媒と該反応塔の塔頂側からn段目(nはn<mを満たす整数)の重油脱硫触媒とを抜き出す工程と、反応塔の塔頂側からm段目より抜き出された重油脱硫触媒を再生する工程と、反応塔の塔頂側からn段目に再生された重油脱硫触媒を充填し、m段目よりも反応塔の塔頂から離れた段目より抜き出して再生した触媒または新触媒をm段目に充填する工程とを有することを特徴とする重油脱硫触媒の再生利用方法。
[2]m段目に充填される重油脱硫触媒を再生してn段目で使用する場合の下記の式(1)で表されるメタル許容量MPrが、n+1段目(ただしn+1<m)に充填される触媒を再生して同じn+1段で使用する場合のメタル許容量MPrより大きい、上記[1]に記載の重油脱硫触媒の再生利用方法。
・MPr= (PV/2Vv)×{8×105 ×(PD)1.3}×(Sp/Vp)−(VA1+VA2) ・・・ (1)
式(1)において、各記号は各々以下を表す。
PV :新触媒時の細孔容積(m3 /kg)
Vv :1kgの新触媒上にバナジウムが1重量%堆積したときのそれを硫化バナジウムとみなしたときの体積= 3.8×10-6(m3 /%kg)
PD :新触媒時の平均細孔直径(m)
Sp :新触媒時の1粒の平均外表面積(m2
Vp :新触媒時の1粒の平均体積(m3
VA1:新たに水素化脱硫装置に供する前の触媒上のバナジウム堆積量(重量%)(新触媒基準)
VA2 :同じ装置で新たに水素化脱硫に供することで蓄積すると予想されるバナジウム堆積量(重量%)
[3]再生された重油脱硫触媒が充填された反応塔の各段の、式(1)で表されるメタル許容量MPrの総和が0以上になるように、再生された重油脱硫触媒を反応塔に充填する、上記[1]または[2]に記載の重油脱硫触媒の再生利用方法。
[4]メタル許容量MPrの総和が1以上5以下となるように、再生された重油脱硫触媒を反応塔に充填する、上記[3]に記載の重油脱硫触媒の再生利用方法。
As a result of intensive studies, the present inventors have determined that the catalyst that has been deactivated by heavy oil hydrodesulfurization treatment and cannot be regenerated conventionally is located at a predetermined stage from the top of the reaction tower. The present inventors have found that the catalyst can be used and completed the present invention. That is, the present invention is as follows.
[1] In one apparatus, a catalyst for use in a hydrodesulfurization apparatus in which raw material heavy oil is introduced from the top side of a reaction tower packed with a catalyst and hydrodesulfurized raw material heavy oil is discharged from the bottom side of the reaction tower. A recycling method in which a heavy oil desulfurization catalyst charged in a reaction tower is divided into two or more stages, and an m-th stage (m is an integer of 2 or more) heavy oil desulfurization catalyst from the top of the reaction tower; Extracting a heavy oil desulfurization catalyst in the n-th stage (n is an integer satisfying n <m) from the top of the reaction tower; and a heavy oil desulfurization catalyst extracted from the m-th stage from the top of the reaction tower. A regenerated step, a catalyst or a new catalyst which is filled with a heavy oil desulfurization catalyst regenerated at the nth stage from the top of the reaction tower and is regenerated by being extracted from a stage farther from the top of the reaction tower than at the mth stage And a step of charging the heavy oil desulfurization catalyst, comprising the step of:
[2] When the heavy oil desulfurization catalyst charged in the m-th stage is regenerated and used in the n-th stage, the allowable metal amount MPr represented by the following formula (1) is n + 1-th stage (where n + 1 <m) The method for recycling the heavy oil desulfurization catalyst according to the above [1], which is larger than the allowable metal amount MPr when the catalyst charged in the catalyst is regenerated and used in the same n + 1 stage.
MPr = (PV / 2Vv) × {8 × 10 5 × (PD) 1.3 } × (Sp / Vp) − (VA1 + VA2) (1)
In the formula (1), each symbol represents the following.
PV: Pore volume at the time of new catalyst (m 3 / kg)
Vv: Volume when vanadium is deposited by 1 wt% on a new catalyst of 1 kg = volume when considered as vanadium sulfide = 3.8 × 10 −6 (m 3 /% kg)
PD: average pore diameter (m) for new catalyst
Sp: average outer surface area of one grain at the time of new catalyst (m 2 )
Vp: average volume of one grain at the time of new catalyst (m 3 )
VA1: Vanadium deposition amount (% by weight) on the catalyst before being newly supplied to the hydrodesulfurization unit (new catalyst standard)
VA2: Vanadium deposition amount (% by weight) that is expected to accumulate by being subjected to hydrodesulfurization using the same equipment
[3] Reacting the regenerated heavy oil desulfurization catalyst so that the sum of the allowable metal amount MPr represented by the formula (1) at each stage of the reaction tower packed with the regenerated heavy oil desulfurization catalyst is 0 or more. The method for recycling a heavy oil desulfurization catalyst according to [1] or [2], which is packed in a tower.
[4] The method for recycling a heavy oil desulfurization catalyst according to the above [3], wherein the regenerated heavy oil desulfurization catalyst is charged into a reaction tower so that a sum of metal allowable amounts MPr is 1 or more and 5 or less.

本発明によれば、使用済触媒をさらに有効に再利用できる、重油脱硫触媒の再生利用方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the recycling method of the heavy oil desulfurization catalyst which can reuse a used catalyst still more effectively can be provided.

図1は、本発明の反応器の一例を説明するための模式図である。FIG. 1 is a schematic diagram for explaining an example of the reactor of the present invention. 図2は、本発明の実施例に使用した下降流型固定床反応器を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the downflow type fixed bed reactor used in the examples of the present invention.

本発明は、1つの装置において、触媒を充填した反応塔の塔頂側から原料重油を投入し、水素化脱硫された原料重油を反応塔の塔底側から排出する水素化脱硫装置に用いる触媒の再生利用方法であって、重油脱硫触媒を抜き出す工程と、抜き出された重油脱硫触媒を再生する工程と、重油脱硫触媒を充填する工程とを有することを特徴とする。以下、図1を参照して、本発明の重油脱硫触媒の再生利用方法を詳細に説明する。図1は、本発明の反応器の一例を説明するための図である。なお、図1に示す反応器は、あくまで本発明の反応器の一例であり、本発明を限定しない。   The present invention relates to a catalyst used in a hydrodesulfurization apparatus in which raw material heavy oil is introduced from the top side of a reaction tower packed with a catalyst and the hydrodesulfurized raw material heavy oil is discharged from the bottom side of the reaction tower in one apparatus. The recycling method of the present invention comprises a step of extracting the heavy oil desulfurization catalyst, a step of regenerating the extracted heavy oil desulfurization catalyst, and a step of filling the heavy oil desulfurization catalyst. Hereinafter, the method for recycling the heavy oil desulfurization catalyst of the present invention will be described in detail with reference to FIG. FIG. 1 is a diagram for explaining an example of the reactor of the present invention. In addition, the reactor shown in FIG. 1 is an example of the reactor of this invention to the last, and does not limit this invention.

[水素化脱硫装置]
図1に示すように、本発明における水素化脱硫装置10は、触媒を充填した反応塔の塔頂側12から原料重油Lを投入し、水素化脱硫された原料重油Lを反応塔の塔底側14から排出する。また、反応塔に充填される触媒は重油脱硫触媒であり、重油脱硫触媒は2以上の複数段に分割されている。
[Hydrodesulphurization equipment]
As shown in FIG. 1, a hydrodesulfurization apparatus 10 according to the present invention is charged with raw material heavy oil L from a tower top side 12 of a reaction tower filled with a catalyst, and hydrodesulfurized raw material heavy oil L is supplied to the bottom of the reaction tower. Drain from side 14. The catalyst charged in the reaction tower is a heavy oil desulfurization catalyst, and the heavy oil desulfurization catalyst is divided into two or more stages.

本発明における水素化脱硫装置は、水素化脱硫処理により、重油に対して脱硫、脱窒素、脱酸素ならびに炭化水素の水素化および分解を実施する。また、水素化脱硫装置は、脱硫および脱窒素などの水素化精製のみならず、脱金属およびアスファルテンの水素化分解を実施できる。この点が着目されて、水素化脱硫装置は、単に重油の脱硫を目的として使用されるのみならず、残油流動接触分解(RFCC)、コーカー、溶剤脱れきなどの残油アップグレーディングプロセスと組み合わせて使用される場合もある。水素化脱硫装置により得られた製品重油は、たとえばRFCC原料、コーカー原料および低硫黄製品重油として利用される。   The hydrodesulfurization apparatus in the present invention performs desulfurization, denitrogenation, deoxygenation, and hydrocarbon hydrogenation and decomposition on heavy oil by hydrodesulfurization treatment. The hydrodesulfurization apparatus can perform not only hydrorefining such as desulfurization and denitrogenation, but also demetallization and asphaltene hydrocracking. With this in mind, hydrodesulfurization equipment is used not only for desulfurization of heavy oil, but also in combination with residual oil upgrading processes such as residual oil fluid catalytic cracking (RFCC), coker, and solvent debris. Sometimes used. Product heavy oil obtained by hydrodesulfurization equipment is used as, for example, RFCC raw material, coker raw material, and low sulfur product heavy oil.

次に、水素化脱硫装置で実施される水素化脱硫処理を説明する。水素化脱硫装置で実施される水素化脱硫処理は、重油を脱硫できればとくに限定されない。固定床反応器による水素化脱硫処理を例に挙げて水素化脱硫装置で実施される水素化脱硫処理を説明する。水素化脱硫処理の原料となる重油は、常圧残油および減圧残油などの残渣分を含む。しかし、重油は、灯油、軽油および減圧軽油などの留出油のみからなるものは含まない。たとえば、重油は、硫黄分1質量%以上、窒素分200重量ppm以上、残炭分5質量%以上、バナジウム5ppm以上およびアスファルテン分0 . 5 質量%以上を含む。重油には、たとえば、常圧残油以外の原油、アスファルト油、熱分解油、タールサンド油およびこれらの混合油などが挙げられる。水素化脱硫処理の原料となる重油は上記のようなものであればとくに限定されないが、常圧残油、減圧残油、減圧残油またはアスファルト油と分解軽油との混合油などが水素化脱硫処理の原料として好適に使用される。   Next, the hydrodesulfurization process implemented with a hydrodesulfurization apparatus is demonstrated. The hydrodesulfurization treatment performed in the hydrodesulfurization apparatus is not particularly limited as long as heavy oil can be desulfurized. The hydrodesulfurization process performed by the hydrodesulfurization apparatus will be described by taking the hydrodesulfurization process using a fixed bed reactor as an example. The heavy oil used as the raw material for the hydrodesulfurization treatment includes residues such as atmospheric residual oil and vacuum residual oil. However, heavy oil does not include those consisting only of distillate oil such as kerosene, light oil, and vacuum gas oil. For example, heavy oil has a sulfur content of 1% by weight or more, a nitrogen content of 200% by weight or more, a residual carbon content of 5% by weight or more, a vanadium of 5 ppm or more and an asphaltene content of 0. 5 Including at least mass%. Examples of heavy oil include crude oil other than atmospheric residue, asphalt oil, pyrolysis oil, tar sand oil, and mixed oils thereof. The heavy oil used as a raw material for the hydrodesulfurization treatment is not particularly limited as long as it is as described above. It is preferably used as a raw material for treatment.

水素化脱硫処理の反応温度は、好ましくは300〜450℃であり、より好ましくは350〜420℃ 、さらに好ましくは370〜410℃である。水素化脱硫処理の水素分圧は、好ましくは7.0〜25.0MPaであり、より好ましくは10.0〜18.0MPaである。水素化脱硫処理の液空間速度は、好ましくは0.01〜10h-1であり、より好ましくは0.1〜5h-1であり、さらに好ましくは0.1〜1h-1である。水素化脱硫処理の水素/原料油比は、好ましくは500〜2,500Nm3/klであり、より好ましくは700〜2,000Nm3/klである。なお、水素化脱硫処理により得られた生成油の硫黄含有量および金属分(バナジウム、ニッケルなど)含有量の調整は、たとえば水素化脱硫処理における反応温度を適宜調節することにより実施できる。 The reaction temperature of the hydrodesulfurization treatment is preferably 300 to 450 ° C, more preferably 350 to 420 ° C, still more preferably 370 to 410 ° C. The hydrogen partial pressure of the hydrodesulfurization treatment is preferably 7.0 to 25.0 MPa, and more preferably 10.0 to 18.0 MPa. The liquid space velocity of the hydrodesulfurization treatment is preferably 0.01 to 10 h −1 , more preferably 0.1 to 5 h −1 , further preferably 0.1 to 1 h −1 . The hydrogen / raw oil ratio in the hydrodesulfurization treatment is preferably 500 to 2,500 Nm 3 / kl, and more preferably 700 to 2,000 Nm 3 / kl. The sulfur content and the metal content (vanadium, nickel, etc.) content of the product oil obtained by the hydrodesulfurization treatment can be adjusted, for example, by appropriately adjusting the reaction temperature in the hydrodesulfurization treatment.

[重油脱硫触媒]
本発明における重油脱硫触媒は、重油の脱硫に通常用いられる触媒(硫化処理済みの触媒を含む。)を少なくとも一度は重油の水素化脱硫処理に使用した触媒である。通常は、使用により炭素およびバナジウムなどが触媒上に付着している。重油脱硫触媒は、重油の水素化脱硫処理に使用されるものであれば、とくに限定されない。たとえば、アルミナ担体上にモリブデンを担持したアルミナ触媒を重油脱硫触媒として使用する。この場合、助触媒としてコバルトまたはニッケルが用いられる。
[Heavy oil desulfurization catalyst]
The heavy oil desulfurization catalyst in the present invention is a catalyst that is used for hydrodesulfurization treatment of heavy oil at least once a catalyst (including a sulfurized catalyst) that is usually used for desulfurization of heavy oil. Usually, carbon, vanadium and the like are deposited on the catalyst by use. The heavy oil desulfurization catalyst is not particularly limited as long as it is used for hydrodesulfurization treatment of heavy oil. For example, an alumina catalyst having molybdenum supported on an alumina carrier is used as a heavy oil desulfurization catalyst. In this case, cobalt or nickel is used as a promoter.

アルミナ担体は、リン、ケイ素およびホウ素の少なくとも1種を含有してもよい。酸化物で換算した場合のリン、ケイ素およびホウ素の少なくとも1種における重油脱硫触媒中の含有量は、好ましくは30.0質量%以下であり、より好ましくは0.1〜10.0質量%であり、さらに好ましくは0.2〜5.0質量%である。ただし、触媒中のリン、ケイ素およびホウ素の少なくとも1種の含有量は、400℃以上の温度で酸化処理し、加熱による減量が起こらなくなったものを基準質量として、リン、ケイ素およびホウ素の少なくとも1種の含有量を質量%で表すものとする。   The alumina support may contain at least one of phosphorus, silicon and boron. The content in the heavy oil desulfurization catalyst in at least one of phosphorus, silicon and boron when converted in terms of oxide is preferably 30.0% by mass or less, more preferably 0.1 to 10.0% by mass. Yes, more preferably 0.2 to 5.0 mass%. However, the content of at least one of phosphorus, silicon, and boron in the catalyst is at least one of phosphorus, silicon, and boron, based on a reference mass that is oxidized at a temperature of 400 ° C. or higher and no weight loss due to heating occurs. The seed content is expressed in mass%.

重油脱硫触媒中のモリブデンの含有量は、好ましくは0.1〜25.0質量%であり、より好ましくは0.2〜8.0質量%である。また、重油脱硫触媒中のコバルトまたはニッケルの含有量は、好ましくは0.1〜10.0質量%であり、より好ましくは0.2〜8.0質量%である。なお、重油脱硫触媒中の金属分含有量は、400℃以上の温度で酸化処理し、加熱による減量が起こらなくなったものを基準質量として、測定対象金属の酸化物の質量を質量%で表すものとする。   The content of molybdenum in the heavy oil desulfurization catalyst is preferably 0.1 to 25.0% by mass, more preferably 0.2 to 8.0% by mass. The content of cobalt or nickel in the heavy oil desulfurization catalyst is preferably 0.1 to 10.0% by mass, more preferably 0.2 to 8.0% by mass. The metal content in the heavy oil desulfurization catalyst represents the mass of the oxide of the metal to be measured in mass%, based on the oxidation mass at a temperature of 400 ° C. or higher and no loss due to heating. And

重油はアスファルテンおよびバナジウムを多く含むため、重油の水素化脱硫処理に使用した重油脱硫触媒には、炭素分およびバナジウムが堆積している。炭素分は、重油脱硫触媒の触媒表面を被覆し、重油脱硫触媒の触媒活性を低下させる。しかし、溶剤抽出および酸化燃焼処理などの再生処理により、重油脱硫触媒に堆積している炭素分を除去することができ、重油脱硫触媒の触媒活性を増加させることができる。再生処理する前の使用済みの重油脱硫触媒中の炭素分の含有量は、好ましくは10〜70質量%であり、より好ましくは0.2〜8.0質量%である。重油脱硫触媒中の炭素分の含有量が70質量%よりも大きいと、再生処理しても触媒の活性が十分に増加しなかったり、触媒の活性を増加させるために高い温度で再生処理する必要があるため、触媒の強度が低下したりする場合がある。なお、重油脱硫触媒中の炭素分の含有量は、400℃以上の温度で酸化処理し、加熱による減量が起こらなくなったものを基準質量として、対象触媒中の炭素分の質量を質量%で表すものとする。   Since heavy oil contains a large amount of asphaltenes and vanadium, carbon and vanadium are deposited on the heavy oil desulfurization catalyst used for hydrodesulfurization treatment of heavy oil. The carbon component covers the catalyst surface of the heavy oil desulfurization catalyst, and reduces the catalytic activity of the heavy oil desulfurization catalyst. However, the carbon content deposited on the heavy oil desulfurization catalyst can be removed by regeneration treatment such as solvent extraction and oxidative combustion treatment, and the catalytic activity of the heavy oil desulfurization catalyst can be increased. The carbon content in the used heavy oil desulfurization catalyst before the regeneration treatment is preferably 10 to 70% by mass, more preferably 0.2 to 8.0% by mass. If the carbon content in the heavy oil desulfurization catalyst is greater than 70% by mass, the catalyst activity does not increase sufficiently even after regeneration, or the catalyst needs to be regenerated at a high temperature to increase the catalyst activity. Therefore, the strength of the catalyst may be reduced. In addition, the carbon content in the heavy oil desulfurization catalyst is expressed by mass% with respect to the mass of the carbon in the target catalyst, based on the oxidation mass at a temperature of 400 ° C. or higher and the weight loss due to heating no longer occurs. Shall.

再生処理する前の使用済みの重油脱硫触媒中のバナジウムの含有量は、好ましくは35質量%以下であり、より好ましくは20質量%以下である。バナジウムの含有量が35質量%よりも大きいと、再生処理しても触媒の活性が十分に増加しなかったり、触媒の活性を増加させるために高い温度で再生処理する必要があるため、触媒の強度が低下したりする場合がある。重油脱硫触媒に堆積しているバナジウムは、通常、再生処理では除去できない。   The vanadium content in the used heavy oil desulfurization catalyst before the regeneration treatment is preferably 35% by mass or less, more preferably 20% by mass or less. If the vanadium content is greater than 35% by mass, the catalyst activity does not increase sufficiently even after regeneration, or the catalyst needs to be regenerated at a high temperature to increase the catalyst activity. The strength may decrease. Vanadium deposited on heavy oil desulfurization catalyst cannot usually be removed by regeneration treatment.

使用済触媒中のバナジウムの含有量は、再生処理の前と後との間でほとんど変わらない。このため、使用済触媒中のバナジウムの含有量に基づいて、再生処理の前に、再生して使用可能な触媒と再生しても使用できない触媒とを判別することができる。再生しても使用できない触媒を再生処理することは無駄であるので、再生処理の前に、明らかに再生しても使用できない触媒を使用済触媒から選別して除去することが好ましい。   The vanadium content in the spent catalyst is almost unchanged before and after the regeneration treatment. Therefore, based on the vanadium content in the used catalyst, it is possible to discriminate between a catalyst that can be regenerated and a catalyst that cannot be used even if it is regenerated before the regeneration treatment. Since it is useless to regenerate a catalyst that cannot be used even if it is regenerated, it is preferable to select and remove from the used catalyst those catalysts that cannot be clearly regenerated before the regeneration process.

水素化脱硫処理に使用した触媒および再生処理のため酸化処理とくに燃焼処理をした触媒は、処理時の触媒の加熱により触媒の細孔構造および活性金属の担持状態が変化し、触媒活性が低下してしまうことがある。これらを評価する指標として、触媒の比表面積や細孔容量がある。触媒の比表面積および細孔容量は、水素化脱硫処理および不純物の付着により徐々に減少し、再生処理でも減少しやすい。使用済みの重油脱硫触媒の比表面積および細孔容積は、新触媒の比表面積および細孔容積のそれぞれ70%以上であることが好ましい。使用済みの重油脱硫触媒の比表面積は、好ましくは60〜220m2 /gであり、より好ましくは100〜200m2 /gである。また、使用済みの重油脱硫触媒の細孔容積は、好ましくは0.3〜1.2cc/gであり、より好ましくは0.4〜0.8cc/gである。 The catalyst used for hydrodesulfurization treatment and the catalyst that was oxidized for regeneration treatment, especially the combustion treatment, changed the catalyst pore structure and the active metal loading state due to the heating of the catalyst during treatment, and the catalyst activity decreased. May end up. As an index for evaluating these, there are specific surface area and pore volume of the catalyst. The specific surface area and pore volume of the catalyst are gradually reduced by hydrodesulfurization treatment and adhesion of impurities, and are easily reduced by regeneration treatment. The specific surface area and pore volume of the used heavy oil desulfurization catalyst are preferably 70% or more of the specific surface area and pore volume of the new catalyst, respectively. The specific surface area of the spent fuel oil desulfurization catalyst is preferably a 60~220m 2 / g, more preferably 100 to 200 m 2 / g. The pore volume of the used heavy oil desulfurization catalyst is preferably 0.3 to 1.2 cc / g, more preferably 0.4 to 0.8 cc / g.

なお、新触媒は、触媒として製造され一度も水素化脱硫処理に使用されていない触媒である。さらに、新触媒は、一旦水素化脱硫処理に使用されたが装置上のトラブル等のため短期間で使用を中断し、再度そのまま使用する触媒も含む。すなわち、一時的に使用されても特別の賦活処理をしたり、反応器から抜き出して選別、洗浄および酸化などの再生処理をしたりしなくとも、当初から想定されている水素化活性がまだ十分にありそのまま使用できる触媒も新触媒に含まれる。新触媒は、市販されている触媒でもよく、特別に調製した触媒でもよい。また、新触媒は、水素化処理に使用するための前処理として硫化処理を施した触媒でもよい。   The new catalyst is a catalyst that has been produced as a catalyst and has never been used for hydrodesulfurization treatment. Furthermore, the new catalyst includes a catalyst that has been once used for hydrodesulfurization treatment, but has been used for a short period of time due to troubles on the apparatus and used again as it is. In other words, even if it is temporarily used, the hydrogenation activity assumed from the beginning is still sufficient even if it is not specially activated or removed from the reactor and subjected to regeneration such as sorting, washing and oxidation. Catalysts that can be used as they are are also included in the new catalyst. The new catalyst may be a commercially available catalyst or a specially prepared catalyst. In addition, the new catalyst may be a catalyst that has been subjected to sulfurization treatment as a pretreatment for use in the hydrotreatment.

[重油脱硫触媒を抜き出す工程]
本発明における重油脱硫触媒を抜き出す工程は、反応塔の塔頂側からm段目(mは2以上の整数)の重油脱硫触媒と反応塔の塔頂側からn段目(nはn<mを満たす整数)の重油脱硫触媒とを抜き出す工程である。反応塔内の触媒におけるバナジウムの蓄積量は、反応塔の充填部位に大きく依存しており、触媒の位置が反応塔の塔頂に近くなればなるほど、反応塔内の触媒におけるバナジウムの蓄積量は大きくなる。したがって、反応塔の塔頂側からm段目の重油脱硫触媒におけるバナジウムの蓄積量は、反応塔の塔頂側からn段目の重油脱硫触媒におけるバナジウムの蓄積量よりも小さい。
[Process for extracting heavy oil desulfurization catalyst]
The step of extracting the heavy oil desulfurization catalyst in the present invention comprises the m-th stage (m is an integer of 2 or more) heavy oil desulfurization catalyst and the n-th stage (n is n <m) from the top of the reaction tower. This is a step of extracting a heavy oil desulfurization catalyst satisfying an integer). The amount of vanadium accumulated in the catalyst in the reaction tower greatly depends on the packed portion of the reaction tower. The closer the position of the catalyst is to the top of the reaction tower, the more the amount of vanadium accumulated in the catalyst in the reaction tower is. growing. Therefore, the amount of vanadium accumulated in the m-stage heavy oil desulfurization catalyst from the tower top side of the reaction tower is smaller than the amount of vanadium accumulated in the n-stage heavy oil desulfurization catalyst from the tower top side of the reaction tower.

[抜き出された重油脱硫触媒を再生する工程]
抜き出された重油脱硫触媒を再生する工程は、反応塔の塔頂側からm段目より抜き出された重油脱硫触媒を再生する。重油脱硫触媒を再生する工程で実施する再生処理は、たとえば、溶剤洗浄による油分などの除去、酸化処理による炭素分、硫黄分および窒素分などの除去、ならびに塊状化したり細粒化したりした触媒を除去することによる正常な形状の触媒の選別などを含む。酸化処理は、好ましくは反応器外で行われる。
[Regeneration of the extracted heavy oil desulfurization catalyst]
The step of regenerating the extracted heavy oil desulfurization catalyst regenerates the heavy oil desulfurization catalyst extracted from the m-th stage from the top of the reaction tower. The regeneration process carried out in the process of regenerating the heavy oil desulfurization catalyst includes, for example, removal of oil, etc. by solvent washing, removal of carbon, sulfur, and nitrogen, etc. by oxidation treatment, and agglomerated or finely divided catalyst. Including selection of the catalyst in the normal shape by removing it. The oxidation treatment is preferably performed outside the reactor.

大量の炭素分が付着した使用済触媒の好ましい再生処理では、使用済触媒を溶剤でまず洗浄する。好ましい溶剤には、たとえば、トルエン、アセトン、アルコールならびにナフサ、灯油および軽油などの石油類などがある。この洗浄処理では、たとえば、触媒が水素化脱硫処理反応器中にある間に軽油を循環させて触媒を洗浄し、その後50〜300℃程度の窒素ガスなどのガスを流通させて触媒を乾燥させる。あるいは、軽油を循環させて洗浄した後そのまま抜き出し、発熱や自然発火を防ぐために触媒を軽油で濡れた状態にしておき必要な時に乾燥してもよい。また、反応器から抜き出した使用済触媒から塊状物の粉砕、粉化触媒およびスケールなどを除去し、これを軽油で洗浄しさらにナフサで洗浄して、触媒を乾燥しやすくする方法もある。使用済触媒が少量である場合、トルエンで触媒を洗浄する方法が、触媒から油分を完全に除去するのに適している。   In a preferred regeneration process of a spent catalyst with a large amount of carbon attached, the spent catalyst is first washed with a solvent. Preferred solvents include, for example, toluene, acetone, alcohol and petroleum such as naphtha, kerosene and light oil. In this cleaning treatment, for example, gas oil is circulated while the catalyst is in the hydrodesulfurization treatment reactor to wash the catalyst, and then a gas such as nitrogen gas at about 50 to 300 ° C. is circulated to dry the catalyst. . Alternatively, the gas oil may be circulated and washed and then extracted as it is, and the catalyst may be wetted with the gas oil and dried when necessary in order to prevent heat generation and spontaneous ignition. There is also a method in which the crushed and pulverized catalyst and scale are removed from the spent catalyst extracted from the reactor, and this is washed with light oil and further washed with naphtha to make it easier to dry the catalyst. When the amount of spent catalyst is small, a method of washing the catalyst with toluene is suitable for completely removing oil from the catalyst.

洗浄により油分および不純物を除去した触媒の触媒活性を回復させるためには、さらに酸化処理により触媒に堆積した炭素分を除去する必要がある。酸化処理は、一般には雰囲気温度および酸素濃度を制御した燃焼処理により行う。雰囲気温度が高すぎたり、酸素濃度が高すぎたりすると、触媒表面が高温になり、担持金属の結晶形および担持状態が変化したり、担体の細孔が減少したりして触媒活性が低下する場合がある。また、雰囲気温度が低すぎたり、酸素濃度が低すぎたりすると、燃焼による炭素分の除去が不十分となり触媒活性が十分に回復しない場合がある。燃焼処理の雰囲気温度は、好ましくは200〜800℃であり、より好ましくは300〜600℃である。   In order to recover the catalytic activity of the catalyst from which oil and impurities have been removed by washing, it is necessary to further remove carbon deposited on the catalyst by oxidation treatment. The oxidation treatment is generally performed by a combustion treatment in which the atmospheric temperature and oxygen concentration are controlled. If the ambient temperature is too high or the oxygen concentration is too high, the catalyst surface will become high temperature, and the crystal form and state of the supported metal will change, or the pores of the carrier will decrease and the catalytic activity will decrease. There is a case. Further, if the ambient temperature is too low or the oxygen concentration is too low, removal of carbon by combustion may be insufficient and the catalyst activity may not be sufficiently recovered. The atmospheric temperature of the combustion treatment is preferably 200 to 800 ° C, more preferably 300 to 600 ° C.

燃焼処理における酸素濃度は、燃焼方法、とくに燃焼ガスと触媒との接触状態に対応して制御することが好ましい。たとえば、燃焼処理における酸素濃度は、好ましくは1〜21体積%である。燃焼処理における雰囲気温度、酸素濃度および雰囲気ガスの流速などを調整して触媒の表面温度を制御し、燃焼処理時の触媒中のモリブデンなどの金属の結晶構造および結晶粒子の担持状態の変化を抑えたり、触媒の比表面積および細孔容量の低下を防いだりすることが重要である。   The oxygen concentration in the combustion treatment is preferably controlled in accordance with the combustion method, particularly the contact state between the combustion gas and the catalyst. For example, the oxygen concentration in the combustion treatment is preferably 1 to 21% by volume. The surface temperature of the catalyst is controlled by adjusting the atmospheric temperature, oxygen concentration, and atmospheric gas flow rate in the combustion process, and changes in the crystal structure of metal such as molybdenum and the support state of the crystal particles in the catalyst during the combustion process are suppressed. It is important to prevent a decrease in the specific surface area and pore volume of the catalyst.

燃焼処理した触媒から粉化した触媒等を除去し、正常な形状の触媒のみを再生触媒として使用することが望ましい。粉化した触媒が触媒中に残留していると、反応器内の触媒層で詰まりおよび偏流が起きたり、反応器中での流体の圧力損失を大きくなったりして反応器の正常な運転が継続できなくなることがある。   It is desirable to remove the powdered catalyst from the combustion-treated catalyst and use only a catalyst having a normal shape as a regenerated catalyst. If the pulverized catalyst remains in the catalyst, the catalyst layer in the reactor may become clogged and drifted, and the pressure loss of the fluid in the reactor may increase, resulting in normal operation of the reactor. It may not be possible to continue.

[重油脱硫触媒を充填する工程]
重油脱硫触媒を充填する工程は、反応塔の塔頂側からn段目に再生された重油脱硫触媒を充填し、反応塔の空いた段に新触媒を充填する。上述したように、反応塔の塔頂側からm段目の重油脱硫触媒におけるバナジウムの蓄積量は、反応塔の塔頂側からn段目の重油脱硫触媒におけるバナジウムの蓄積量よりも小さい。したがって、反応塔の塔頂側からm段目から抜き出して再生した重油脱硫触媒を、反応塔の塔頂側からn段目の充填することにより、反応塔の塔頂側からn段目の重油脱硫触媒におけるバナジウムの蓄積量を小さくすることができ、反応塔全体の重油を脱硫する能力を高めることができる。また、反応塔の塔頂側からm段目の重油脱硫触媒におけるバナジウムの蓄積量が高くても、反応塔の塔頂側からm段目から抜き出して再生した重油脱硫触媒を、反応塔の塔頂側からn段目の充填することにより、反応塔の塔頂側からn段目の重油脱硫触媒におけるバナジウムの蓄積量を小さくすることができる。したがって、従来はバナジウムの蓄積量が高いため再利用できなかった使用済触媒も再利用することができ、使用済触媒をさらに有効に再利用できる。
[Step of filling heavy oil desulfurization catalyst]
In the step of filling the heavy oil desulfurization catalyst, the heavy oil desulfurization catalyst regenerated at the nth stage from the top of the reaction tower is filled, and the new catalyst is filled in the stage where the reaction tower is empty. As described above, the amount of vanadium accumulated in the m-stage heavy oil desulfurization catalyst from the tower top side of the reaction tower is smaller than the amount of vanadium accumulated in the n-stage heavy oil desulfurization catalyst from the tower top side of the reaction tower. Therefore, the heavy oil desulfurization catalyst extracted and regenerated from the m-th stage from the tower top side of the reaction tower is charged with the n-th stage heavy oil from the tower top side of the reaction tower, thereby filling the n-th stage heavy oil from the reaction tower top side. The amount of vanadium accumulated in the desulfurization catalyst can be reduced, and the ability to desulfurize heavy oil in the entire reaction tower can be increased. Even if the amount of vanadium accumulated in the m-stage heavy oil desulfurization catalyst from the top of the reaction tower is high, the recovered heavy oil desulfurization catalyst is extracted from the m-th stage from the top of the reaction tower and regenerated. By filling the n-th stage from the top side, the amount of vanadium accumulated in the n-stage heavy oil desulfurization catalyst from the top side of the reaction tower can be reduced. Therefore, it is possible to reuse a spent catalyst that could not be reused due to the high amount of vanadium that has been accumulated in the past, and the spent catalyst can be reused more effectively.

反応塔の塔頂側からm段目の重油脱硫触媒を抜き出しているので、反応塔の塔頂側からm段目の部分は空になる。その空の段には、m段目よりも反応塔の塔頂からさらに離れたp段目(p>m)の重油脱硫触媒を抜き出して再生した触媒を充填してもよいし、新触媒を充填してもよい。なお、再生した触媒を充填するとき、反応塔に入っている触媒をすべて抜き出して、再度同じ段数に分けて塔底から順次充填してもよい。   Since the m-th stage heavy oil desulfurization catalyst is extracted from the top of the reaction tower, the m-th part from the top of the reaction tower becomes empty. The empty stage may be filled with a catalyst regenerated by removing the p-stage (p> m) heavy oil desulfurization catalyst further away from the top of the reaction tower than the m-th stage. It may be filled. When the regenerated catalyst is charged, all of the catalyst in the reaction tower may be extracted, and again packed in the same number of stages and charged sequentially from the bottom of the tower.

[メタル許容量MPr]
m段目に充填される重油脱硫触媒を再生してn段目で使用する場合の下記の式(1)で表されるメタル許容量MPrが、n+1段目(ただしn+1<m)に充填される触媒を再生して同じn+1段で使用する場合のメタル許容量MPrより大きいことが好ましい。これにより、m段目に充填される重油脱硫触媒を再生した再生触媒を充填する段を適切に選択することができ、メタル許容量MPrを効果的に増加させることができる。
[Metal tolerance MPr]
When the heavy oil desulfurization catalyst filled in the m-th stage is regenerated and used in the n-th stage, the allowable metal amount MPr represented by the following formula (1) is filled in the n + 1-th stage (where n + 1 <m). When the catalyst is regenerated and used in the same n + 1 stage, it is preferably larger than the metal allowable amount MPr. Thereby, the stage filled with the regenerated catalyst regenerated from the heavy oil desulfurization catalyst filled in the m-th stage can be appropriately selected, and the allowable metal amount MPr can be effectively increased.

・MPr= (PV/2Vv)×{8×105 ×(PD)1.3}×(Sp/Vp)−(VA1+VA2) ・・・ (1)
式(1)において、各記号は各々以下を表す。
PV :新触媒時の細孔容積(m3 /kg)
Vv :1kgの新触媒上にバナジウムが1重量%堆積したときのそれを硫化バナジウムとみなしたときの体積= 3.8×10-6(m3 /%kg)
PD :新触媒時の平均細孔直径(m)
Sp :新触媒時の1粒の平均外表面積(m2
Vp :新触媒時の1粒の平均体積(m3
VA1:新たに水素化脱硫装置に供する前の触媒上のバナジウム堆積量(重量%)(新触媒基準)
VA2 :同じ装置で新たに水素化脱硫に供することで蓄積すると予想されるバナジウム堆積量(重量%)
MPr = (PV / 2Vv) × {8 × 10 5 × (PD) 1.3 } × (Sp / Vp) − (VA1 + VA2) (1)
In the formula (1), each symbol represents the following.
PV: Pore volume at the time of new catalyst (m 3 / kg)
Vv: Volume when vanadium is deposited by 1 wt% on a new catalyst of 1 kg = volume when considered as vanadium sulfide = 3.8 × 10 −6 (m 3 /% kg)
PD: average pore diameter (m) for new catalyst
Sp: average outer surface area of one grain at the time of new catalyst (m 2 )
Vp: average volume of one grain at the time of new catalyst (m 3 )
VA1: Vanadium deposition amount (% by weight) on the catalyst before being newly supplied to the hydrodesulfurization unit (new catalyst standard)
VA2: Vanadium deposition amount (% by weight) that is expected to accumulate by being subjected to hydrodesulfurization using the same equipment

上記式(1)のメタル許容量MPr は、使用済触媒を再生して再生触媒として再利用する際に、再生触媒を使用する予定期間の間に許容できるバナジウム堆積量の指標である。メタル許容量MPrが大きいほど多量のバナジウム堆積を許容できる。メタル許容量MPrが0未満の場合、再生触媒は、再生触媒を使用する予定期間を満了する前に、バナジウムの堆積が許容量を超えてしまうことを意味する。なお、市販触媒のMPrの値は、バナジウム堆積量(VA1+VA2)が0%の場合(新触媒)でも通常は50以下であり、脱メタル触媒では20〜35、脱硫触媒では10〜25である。   The allowable metal amount MPr in the above formula (1) is an index of the amount of vanadium deposited that can be allowed during the scheduled period of using the regenerated catalyst when the used catalyst is regenerated and reused as a regenerated catalyst. Larger metal allowance MPr allows a larger amount of vanadium deposition. When the allowable metal amount MPr is less than 0, the regenerated catalyst means that the vanadium deposition exceeds the allowable amount before the scheduled period for using the regenerated catalyst expires. The MPr value of the commercially available catalyst is usually 50 or less even when the vanadium deposition amount (VA1 + VA2) is 0% (new catalyst), 20 to 35 for a demetallized catalyst, and 10 to 25 for a desulfurized catalyst.

上記式(1)の第1項は新触媒時のバナジウム堆積許容量を表し、新触媒の細孔容積等の初期物性により決まるものであり、触媒の使用および再生処理により変化するものではない。PVは新触媒時の細孔容積である。Vvは、1kgの新触媒上にバナジウムが1質量%堆積したときの、そのバナジウムを硫化バナジウムとみなしたときのバナジウムの体積であり、定数3.8×10-6(m3 /%kg)である。なお、通常の水素化脱硫処理ではバナジウムは硫化バナジウムとして堆積すると考えられる。PDは新触媒時の平均細孔直径である。定数8×105×(PD)1.3は、検討をした各種の触媒の解析結果より得られたバナジウムの触媒の細孔中への拡散深さである。拡散深さは通常、(拡散係数/反応速度定数)-0.5に比例し、拡散係数は触媒細孔直径に比例するとされている(参照 改訂五版化学工学便覧第27章)。しかし、本発明者らの研究によれば、本触媒においては上記のように(触媒細孔直径PD)1.3 に比例することが見いだされた。 The first term of the above formula (1) represents the allowable amount of vanadium deposition at the time of the new catalyst, is determined by the initial physical properties such as the pore volume of the new catalyst, and does not change due to the use and regeneration treatment of the catalyst. PV is the pore volume of the new catalyst. Vv is the volume of vanadium when 1% by mass of vanadium is deposited on 1 kg of the new catalyst, and the vanadium is regarded as vanadium sulfide. The constant is 3.8 × 10 −6 (m 3 /% kg). It is. In addition, it is considered that vanadium is deposited as vanadium sulfide in a normal hydrodesulfurization treatment. PD is the average pore diameter at the time of the new catalyst. The constant 8 × 10 5 × (PD) 1.3 is the diffusion depth of vanadium into the pores of the catalyst obtained from the analysis results of the various catalysts studied. The diffusion depth is usually proportional to (diffusion coefficient / reaction rate constant) -0.5 , and the diffusion coefficient is proportional to the catalyst pore diameter (see Rev. 5th edition, Chemical Engineering Handbook, Chapter 27). However, according to the study by the present inventors, it was found that the present catalyst is proportional to (catalyst pore diameter PD) 1.3 as described above.

Spは新触媒時の1粒の外表面積であり、現実には平均値としての値である。また、Vpは新触媒時の1粒の体積であり、Spと同様平均値である。(Sp/Vp)は平均としての個々の触媒の体積当たりの外表面積であり、新触媒製造時の形状により特定される。   Sp is the outer surface area of one grain at the time of the new catalyst, and is actually a value as an average value. Moreover, Vp is the volume of one grain at the time of a new catalyst, and is an average value similarly to Sp. (Sp / Vp) is the outer surface area per volume of the individual catalyst as an average, and is specified by the shape when the new catalyst is produced.

第2項のVA1は、新触媒を水素化脱硫装置で所定期間使用した際に蓄積するバナジウム堆積量(新触媒基準質量%)の実績値または予測値である。VA2は水素化脱硫装置で使用した新触媒を再生した再生触媒を水素化脱硫装置でさらに必要期間使用した際に蓄積するバナジウム堆積量(新触媒基準質量%)の実績値である。VA1が0.5質量%より小さい場合、触媒におけるバナジウムの堆積は少なく、再生しなくとも使用済触媒を再利用できる。したがって、再生処理する使用済触媒は、VA1が1.0質量%以上のものが好ましい。なお、VA1およびVA2は触媒上に堆積したバナジウムの堆積量と表現しているが、触媒に含まれるバナジウムは必ずしも触媒上に堆積していなくともよい。たとえば、触媒の細孔中や触媒の中に進入したり、触媒成分等と反応したりしているバナジウムの量もバナジウムの上記堆積量に含まれる。使用済触媒のVA1およびVA2の値は、通常、0〜70質量%である場合が多い。また、A装置の反応帯域の上流部ではVA1およびVA2の値は、30〜70質量%と高い値である。   VA1 in the second term is an actual value or a predicted value of the vanadium deposition amount (new catalyst reference mass%) accumulated when the new catalyst is used in the hydrodesulfurization apparatus for a predetermined period. VA2 is the actual value of the amount of vanadium deposited (new catalyst reference mass%) that is accumulated when the regenerated catalyst obtained by regenerating the new catalyst used in the hydrodesulfurization apparatus is further used in the hydrodesulfurization apparatus. When VA1 is less than 0.5% by mass, there is little deposition of vanadium on the catalyst, and the spent catalyst can be reused without regeneration. Accordingly, the spent catalyst to be regenerated preferably has a VA1 of 1.0% by mass or more. Although VA1 and VA2 are expressed as the amount of vanadium deposited on the catalyst, vanadium contained in the catalyst does not necessarily have to be deposited on the catalyst. For example, the amount of vanadium that enters the pores of the catalyst, enters the catalyst, or reacts with the catalyst component or the like is also included in the amount of vanadium deposited. In many cases, the VA1 and VA2 values of the spent catalyst are usually 0 to 70% by mass. Moreover, the value of VA1 and VA2 is as high as 30 to 70% by mass in the upstream part of the reaction zone of the A apparatus.

再生された重油脱硫触媒が充填された反応塔の各段の、上記式(1)で表されるメタル許容量MPrの総和が好ましくは0以上になるように、好ましくは1以上5以下となるように、より好ましくは3以上5以下となるように再生された重油脱硫触媒を反応塔に充填してもよい。これにより、反応塔の塔頂側からm段目から抜き出した重油脱硫触媒を、反応塔の塔頂側からn段目に充填することによって、再生触媒を使用する予定期間を満了する前に、バナジウムの堆積が許容量を超えてしまうことを防止することができる。   The total allowable metal amount MPr represented by the above formula (1) in each stage of the reaction tower filled with the regenerated heavy oil desulfurization catalyst is preferably 0 or more, and preferably 1 or more and 5 or less. In this way, the reaction tower may be filled with a heavy oil desulfurization catalyst regenerated so as to be more preferably 3 or more and 5 or less. Thereby, before filling the heavy oil desulfurization catalyst extracted from the m-th stage from the tower top side of the reaction tower into the n-th stage from the tower top side of the reaction tower, before the scheduled period of using the regenerated catalyst expires, It is possible to prevent the deposition of vanadium from exceeding an allowable amount.

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.

[原料重油の性状]
各実施例および比較例に使用する原料重油について、以下の評価を行った。原料重油には常圧残油を使用した。
(密度)
JIS K 2249に準拠して15℃における常圧残油の密度を測定した。
(動粘度)
JIS K 2283に準拠して50℃における常圧残油の動粘度を測定した。
(残炭分の含有量)
JIS K 2270に準拠して常圧残油の残炭分の含有量を測定した。
(アスファルテン分の含有量)
IP 143に準拠して常圧残油のアスファルテン分の含有量を測定した。
(硫黄分の含有量)
JIS K 2541に準拠して常圧残油の硫黄分の含有量を測定した。
(窒素分の含有量)
JIS K 2609に準拠して常圧残油の窒素分の含有量を測定した。
(バナジウムの含有量)
石油学会法JPI−5S−10−79に準拠して常圧残油のバナジウムの含有量を測定した。
(ニッケルの含有量)
石油学会法JPI−5S−11−79に準拠して常圧残油のニッケルの含有量を測定した。
(蒸留性状)
JIS K 2254に準拠して常圧残油の蒸留性状を測定した。
[Properties of raw fuel oil]
The following evaluation was performed about the raw material heavy oil used for each Example and a comparative example. Atmospheric residual oil was used as the raw material heavy oil.
(density)
The density of the atmospheric residue at 15 ° C. was measured according to JIS K 2249.
(Kinematic viscosity)
Based on JIS K 2283, the kinematic viscosity of the atmospheric residue at 50 ° C. was measured.
(Content of residual coal)
Based on JIS K 2270, the residual carbon content of atmospheric residual oil was measured.
(Content of asphaltene)
In accordance with IP143, the content of asphaltene in the atmospheric residue was measured.
(Sulfur content)
The sulfur content of the atmospheric residue was measured according to JIS K2541.
(Nitrogen content)
In accordance with JIS K 2609, the nitrogen content of the atmospheric residue was measured.
(Vanadium content)
The vanadium content of the atmospheric residue was measured in accordance with the Japan Petroleum Institute method JPI-5S-10-79.
(Nickel content)
The nickel content of the atmospheric residue was measured according to the Petroleum Institute method JPI-5S-11-79.
(Distillation properties)
Based on JIS K 2254, the distillation property of the atmospheric residue was measured.

[触媒の性状]
各実施例および比較例に使用した触媒について、以下の評価を行った。
バナジウム等の元素分析については650℃で1時間焼成した後、モリブデンおよびバナジウムについては灰分を酸で溶解後、誘導結合プラズマ発光吸光分析法にて、また、コバルトおよびニッケルについては灰分と四ほう酸リチウムの混合物を高周波過熱でビードを作り、蛍光X線分析法で分析した。炭素含有量についても、15%(触媒中の炭素分含有量は、対象触媒を400℃以上で減量しなくなるまで酸化処理したものを基準として、対象触媒中の炭素の質量%で表わすものとする、以下同じ)以下、好ましくは10%以下とすることが望ましい。炭素含有量は使用済み段階では10〜70%程度であることが多いが、再生処理により炭素分を触媒上から除去しその含有量を低減できる。炭素分が多すぎるとこれが触媒表面を覆い触媒活性を低下させるが、再生処理により炭素含有量を減少させれば活性を回復させることができる。なお、炭素、硫黄の分析は粉砕試料をC−S同時分析計で分析した。なお、触媒の平均長さはノギスにて任意に抽出した10粒の粒子の断面に垂直方向の長さを測定して平均した。1粒の平均外表面積及び平均体積は粒子断面積の形状と平均長さから計算で求めた。
[Catalyst properties]
The following evaluation was performed about the catalyst used for each Example and the comparative example.
For elemental analysis of vanadium and the like, after baking at 650 ° C. for 1 hour, ash was dissolved with acid for molybdenum and vanadium, and then by inductively coupled plasma optical emission spectrometry. For ash and lithium tetraborate for cobalt and nickel A bead was made from this mixture by high-frequency overheating and analyzed by X-ray fluorescence analysis. The carbon content is also 15% (the carbon content in the catalyst is expressed in mass% of the carbon in the target catalyst based on the oxidation of the target catalyst until it is not reduced at 400 ° C. or higher. The same shall apply hereinafter), preferably 10% or less. The carbon content is often about 10 to 70% at the used stage, but the carbon content can be removed from the catalyst by the regeneration treatment to reduce the content. If there is too much carbon, this will cover the catalyst surface and reduce catalyst activity, but if the carbon content is reduced by regeneration treatment, the activity can be recovered. For the analysis of carbon and sulfur, the ground sample was analyzed with a CS simultaneous analyzer. The average length of the catalyst was averaged by measuring the length in the direction perpendicular to the cross section of 10 particles arbitrarily extracted with calipers. The average outer surface area and average volume of one grain were calculated from the shape and average length of the particle cross-sectional area.

[生成油の性状]
各実施例および比較例で水素化脱硫処理により原料重油から得られた生成油について、上記の原料重油の性状の評価と同じ評価を行った。生成油の性状の評価方法は、上記の原料重油の性状の評価方法と同じであるので、生成油の性状の評価方法の説明は省略する。
[Properties of the product oil]
The same evaluation as the evaluation of the properties of the above-mentioned raw material heavy oil was performed on the product oil obtained from the raw material heavy oil by hydrodesulfurization treatment in each Example and Comparative Example. Since the method for evaluating the properties of the product oil is the same as the method for evaluating the properties of the above-mentioned raw material heavy oil, description of the method for evaluating the properties of the product oil is omitted.

[各実施例および比較例で使用する新触媒の製造]
630gの酸化モリブデンおよびNiO換算で150gの塩基性炭酸ニッケルを、りんご酸180gを用いてイオン交換水に溶解させ、2000ミリリットルの含浸液を作製した。この含浸液の水分量を、下記担体の吸水量に見合うように調製し、4,000gの四葉型アルミナ担体(比表面積230m2/g、平均細孔径120オングストローム、細孔容量0.69ml/g)をこの含浸液に15分間含浸させた。含浸液を含浸させたアルミナ担体を120℃で3時間乾燥し、500℃で5時間焼成し、新触媒1を得た。
[Production of New Catalyst Used in Each Example and Comparative Example]
630 g of molybdenum oxide and 150 g of basic nickel carbonate in terms of NiO were dissolved in ion-exchanged water using 180 g of malic acid to prepare 2000 ml of impregnation liquid. The water content of this impregnating solution was prepared so as to match the water absorption amount of the following carrier, and 4,000 g of a four-leaf type alumina carrier (specific surface area 230 m 2 / g, average pore diameter 120 angstrom, pore volume 0.69 ml / g). ) Was impregnated in this impregnating solution for 15 minutes. The alumina support impregnated with the impregnating solution was dried at 120 ° C. for 3 hours and calcined at 500 ° C. for 5 hours to obtain a new catalyst 1.

[各実施例および比較例で使用する再生触媒の製造]
(実施例1)
−新触媒による水素化脱硫処理−
図2に示すように下降流型固定床反応器を4ベッド(体積基準で4等分)に分割し、最上流部ベッド( 「第一ベッド」という、以下同様)に市販の脱メタル触媒を、残り3ベッド(第2〜第4ベッド)に新触媒1を充填した。なお、新触媒1の物性およびメタル許容量を下記の表1に示す。通常の予備硫化処理を行った後、下記の表2に示す性状の常圧残油を用いて、下記の表3に示す反応条件で、硫黄分が一定(0.3質量%以下)になるよう反応温度を調整しながら330日間、水素化脱硫処理を行った。330日目の反応温度は396 ℃ であった。水素化脱硫処理により常圧残油から得られた生成油1の性状を下記の表4に示す。
[Production of regenerated catalyst used in each example and comparative example]
Example 1
-Hydrodesulfurization treatment with new catalyst-
As shown in FIG. 2, the downflow type fixed bed reactor is divided into 4 beds (4 parts by volume), and a commercially available demetallization catalyst is placed in the uppermost bed (hereinafter referred to as “first bed”). The remaining 3 beds (second to fourth beds) were filled with the new catalyst 1. The physical properties and metal tolerance of the new catalyst 1 are shown in Table 1 below. After performing the normal preliminary sulfidation treatment, the sulfur content becomes constant (0.3% by mass or less) under the reaction conditions shown in Table 3 below using atmospheric residual oil having the properties shown in Table 2 below. The hydrodesulfurization treatment was performed for 330 days while adjusting the reaction temperature. The reaction temperature on the 330th day was 396 ° C. The properties of the product oil 1 obtained from the atmospheric residue by hydrodesulfurization treatment are shown in Table 4 below.

−再生処理−
上記反応器中の触媒1を軽油により洗浄し、さらに窒素ガスを流通させながら乾燥および冷却した後、反応器の第2〜4ベッドから使用済触媒を取り出した。第3ベッドから取り出した使用済触媒を以下、使用済触媒1と呼び、第4ベッドから取り出した使用済触媒を以下、使用済触媒2と呼ぶ。使用済触媒1および使用済触媒2の物性およびメタル許容量を下記の表1に示す。その後、ふるい分けにより使用済触媒1から塊状物および粉化物を除去した。塊状物および粉化物を除去した、約100gの使用済触媒1を、回転式焼成炉(回転速度:5回転/分)を使用して100%窒素ガスを100cc/分の流量で供給しながら、300℃の加熱温度で、それぞれ1時間乾燥処理した。その後、50%窒素ガス−50%空気の混合ガスを100cc/分の流量で供給しながら、450℃の焼成温度で3時間焼成し、焼成した使用済触媒1を冷却後、ふるい分けにより塊状物および粉化物を使用済触媒1から除去し、再生触媒1を得た。同様の方法で、使用済触媒2から再生触媒2を得た。再生触媒1および再生触媒2の物性およびメタル許容量を下記の表1に示す。
-Reproduction processing-
The catalyst 1 in the reactor was washed with light oil, dried and cooled while circulating nitrogen gas, and then the spent catalyst was taken out from the second to fourth beds of the reactor. The used catalyst taken out from the third bed is hereinafter referred to as a used catalyst 1 and the used catalyst taken out from the fourth bed is hereinafter referred to as a used catalyst 2. The physical properties and metal tolerances of the used catalyst 1 and the used catalyst 2 are shown in Table 1 below. Thereafter, lump and powder were removed from the spent catalyst 1 by sieving. About 100 g of the spent catalyst 1 from which lump and powder were removed was supplied 100% nitrogen gas at a flow rate of 100 cc / min using a rotary calciner (rotation speed: 5 rev / min), Each was dried for 1 hour at a heating temperature of 300 ° C. Thereafter, while supplying a mixed gas of 50% nitrogen gas-50% air at a flow rate of 100 cc / min, the mixture was calcined at a calcining temperature of 450 ° C. for 3 hours. The pulverized product was removed from the spent catalyst 1 to obtain a regenerated catalyst 1. The regenerated catalyst 2 was obtained from the spent catalyst 2 in the same manner. The physical properties and metal tolerance of the regenerated catalyst 1 and the regenerated catalyst 2 are shown in Table 1 below.

−再生触媒による水素化脱硫処理−
下降流型固定床反応器を4ベッド(体積基準で4等分)に分割し、第1ベッドに市販脱メタル触媒を、そのすぐ下の第2ベッドに再生触媒2を充填し、第3および第4ベッドに新触媒1を充填した。これを、通常の予備硫化処理を行った後、下記の表2に示す性状の常圧残油を用いて、下記の表3に示す反応条件で、硫黄分が一定(0.3質量%以下)になるよう反応温度を調整しながら330日間、水素化脱硫処理を行った。330日目の反応温度は400 ℃ であった。水素化脱硫処理により常圧残油から得られた生成油2Aの性状を下記の表4に示す。
-Hydrodesulfurization treatment with regenerated catalyst-
The down flow type fixed bed reactor is divided into 4 beds (4 parts by volume), the first bed is filled with a commercial demetallized catalyst, the second bed just below it is loaded with the regenerated catalyst 2, and the third and The fourth bed was filled with new catalyst 1. After performing normal preliminary sulfidation treatment, the sulfur content was constant (0.3% by mass or less) under the reaction conditions shown in Table 3 below using atmospheric residual oil having the properties shown in Table 2 below. The hydrodesulfurization treatment was performed for 330 days while adjusting the reaction temperature so that The reaction temperature on the 330th day was 400 ° C. Table 4 below shows the properties of the product oil 2A obtained from the atmospheric residue by hydrodesulfurization treatment.

−再生処理−
上記使用済みの触媒1の再生処理と同様な方法で、使用済みの再生触媒2を再生処理して、再生触媒3Aを得た。再生触媒3Aの物性およびメタル許容量を下記の表1に示す。
-Reproduction processing-
The regenerated catalyst 3A was obtained by regenerating the used regenerated catalyst 2 in the same manner as in the regeneration process of the used catalyst 1 described above. The physical properties and metal tolerance of the regenerated catalyst 3A are shown in Table 1 below.

(比較例1)
−新触媒による水素化脱硫処理−
実施例1と同じように、下記の表2に示す性状の常圧残油と新触媒1とを用いて、下記の表3に示す反応条件で、水素化脱硫処理を行った。
−再生処理−
実施例1と同じように、使用済触媒1および使用済触媒2を再生して、再生触媒1および再生触媒2を得た。
(Comparative Example 1)
-Hydrodesulfurization treatment with new catalyst-
In the same manner as in Example 1, hydrodesulfurization treatment was performed under the reaction conditions shown in Table 3 below using the atmospheric residual oil having the properties shown in Table 2 below and the new catalyst 1.
-Reproduction processing-
In the same manner as in Example 1, the used catalyst 1 and the used catalyst 2 were regenerated to obtain a regenerated catalyst 1 and a regenerated catalyst 2.

−再生触媒による水素化脱硫処理−
下降流型固定床反応器を4ベッド(体積基準で4等分)に分割し、第1ベッドに市販脱メタル触媒を、そのすぐ下の第2および第3ベッドに新触媒1を充填し、第4ベッドに再生触媒2を充填した。これを、通常の予備硫化処理を行った後、下記の表2に示す性状の常圧残油を用いて、下記の表3に示す反応条件で、硫黄分が一定(0.3質量%以下)になるよう反応温度を調整しながら330日間、水素化脱硫処理を行った。330日目の反応温度は413 ℃ であった。水素化脱硫処理により常圧残油から得られた生成油2Bの性状を下記の表4に示す。
-Hydrodesulfurization treatment with regenerated catalyst-
The downflow type fixed bed reactor is divided into 4 beds (4 parts by volume), the first bed is filled with a commercial demetallized catalyst, the second and third beds just below it are charged with the new catalyst 1, The regenerated catalyst 2 was filled in the fourth bed. After performing normal preliminary sulfidation treatment, the sulfur content was constant (0.3% by mass or less) under the reaction conditions shown in Table 3 below using atmospheric residual oil having the properties shown in Table 2 below. The hydrodesulfurization treatment was performed for 330 days while adjusting the reaction temperature so that The reaction temperature on the 330th day was 413 ° C. Table 4 below shows the properties of the product oil 2B obtained from the atmospheric residue by the hydrodesulfurization treatment.

−再生処理−
上記使用済みの触媒1の再生処理と同様な方法で、使用済みの再生触媒2を再生処理して、再生触媒3Bを得た。再生触媒3Bの物性およびメタル許容量を下記の表1に示す。
-Reproduction processing-
A used regeneration catalyst 2 was regenerated by the same method as the above regeneration treatment of the used catalyst 1 to obtain a regenerated catalyst 3B. The physical properties and metal tolerance of the regenerated catalyst 3B are shown in Table 1 below.

Figure 0006420961
Figure 0006420961

Figure 0006420961
Figure 0006420961

Figure 0006420961
Figure 0006420961

Figure 0006420961
Figure 0006420961

実施例1および比較例1の結果から、第4ベッドに充填されていた使用済触媒を再生してそのまま第4ベッドに充填した場合に比べて、第4ベッドに充填されていた使用済触媒を再生して第2ベッドに充填することにより、水素化脱硫処理により得られる生成油の硫黄分およびアスファルテンの含有量を低減できることがわかった。   From the results of Example 1 and Comparative Example 1, the spent catalyst filled in the fourth bed was compared with the case where the spent catalyst filled in the fourth bed was regenerated and filled in the fourth bed as it was. It was found that the sulfur content and asphaltene content of the product oil obtained by the hydrodesulfurization treatment can be reduced by regenerating and filling the second bed.

1 第1ベッド
2 第2ベッド
3 第3ベッド
4 第4ベッド
10 水素化脱硫装置
12 反応塔の塔頂側
14 反応塔の塔底側
DESCRIPTION OF SYMBOLS 1 1st bed 2 2nd bed 3 3rd bed 4 4th bed 10 Hydrodesulfurization equipment 12 Tower top side of reaction tower 14 Tower bottom side of reaction tower

Claims (4)

一つの装置において、触媒を充填した反応塔の塔頂側から原料重油を投入し、水素化脱硫された原料重油を前記反応塔の塔底側から排出する水素化脱硫装置に用いる触媒の再生利用方法であって、
前記反応塔に充填される重油脱硫触媒を2以上の複数段に分割し、該反応塔の塔頂側からm段目(mは2以上の整数)の重油脱硫触媒と該反応塔の塔頂側からn段目(nはn<mを満たす整数)の重油脱硫触媒とを抜き出す工程と、
前記反応塔の塔頂側からm段目より抜き出された重油脱硫触媒を再生する工程と、
前記反応塔の塔頂側からn段目に前記再生された重油脱硫触媒を充填し、前記m段目よりも前記反応塔の塔頂から離れた段目より抜き出して再生した触媒または新触媒を前記m段目に充填する工程とを有することを特徴とする重油脱硫触媒の再生利用方法。
In one apparatus, recycling of a catalyst used in a hydrodesulfurization apparatus in which raw material heavy oil is introduced from the top side of a reaction tower packed with a catalyst and hydrodesulfurized raw material heavy oil is discharged from the bottom side of the reaction tower. A method,
The heavy oil desulfurization catalyst charged in the reaction tower is divided into two or more stages, and the m-th stage (m is an integer of 2 or more) heavy oil desulfurization catalyst and the top of the reaction tower from the top of the reaction tower. Extracting the n-th stage (n is an integer satisfying n <m) heavy oil desulfurization catalyst from the side;
Regenerating the heavy oil desulfurization catalyst extracted from the m-th stage from the top of the reaction tower;
The regenerated heavy oil desulfurization catalyst is packed in the nth stage from the tower top side of the reaction tower, and the regenerated catalyst or new catalyst is extracted from the stage farther from the tower top of the reaction tower than the mth stage. And a step of filling the m-th stage with a heavy oil desulfurization catalyst recycling method.
前記m段目に充填される重油脱硫触媒を再生してn段目で使用する場合の下記の式(1)で表されるメタル許容量MPrが、n+1段目(ただしn+1<m)に充填される触媒を再生して同じn+1段で使用する場合のメタル許容量MPrより大きい、請求項1に記載の重油脱硫触媒の再生利用方法。
・MPr= (PV/2Vv)×{8×10×(PD)1.3}×(Sp/Vp)−(VA1+VA2) ・・・ (1)
式(1)において、各記号は各々以下を表す。
PV :新触媒時の細孔容積(m/kg)
Vv :1kgの新触媒上にバナジウムが1重量%堆積したときのそれを硫化バナジウムとみなしたときの体積= 3.8×10−6(m/%kg)
PD :新触媒時の平均細孔直径(m)
Sp :新触媒時の1粒の平均外表面積(m
Vp :新触媒時の1粒の平均体積(m
VA1:新たに水素化脱硫装置に供する前の触媒上のバナジウム堆積量(重量%)(新触媒基準)
VA2 :同じ装置で新たに水素化脱硫に供することで蓄積すると予想されるバナジウム堆積量(重量%)
When the heavy oil desulfurization catalyst charged in the m-th stage is regenerated and used in the n-th stage, the allowable metal amount MPr expressed by the following formula (1) is charged in the n + 1-th stage (where n + 1 <m). The method for reusing a heavy oil desulfurization catalyst according to claim 1, wherein the catalyst is larger than the allowable metal amount MPr when regenerated and used in the same n + 1 stage.
MPr = (PV / 2Vv) × {8 × 10 5 × (PD) 1.3 } × (Sp / Vp) − (VA1 + VA2) (1)
In the formula (1), each symbol represents the following.
PV: Pore volume at the time of a new catalyst (m 3 / kg)
Vv: Volume when vanadium is deposited on 1 kg of new catalyst on the weight of 1 wt%, assuming that it is vanadium sulfide = 3.8 × 10 −6 (m 3 /% kg)
PD: average pore diameter (m) for new catalyst
Sp: average outer surface area of one grain at the time of new catalyst (m 2 )
Vp: average volume of one grain at the time of a new catalyst (m 3 )
VA1: Vanadium deposition amount (% by weight) on the catalyst before being newly supplied to the hydrodesulfurization unit (new catalyst standard)
VA2: Vanadium deposition amount (% by weight) that is expected to accumulate by being subjected to hydrodesulfurization using the same equipment
前記再生された重油脱硫触媒が充填された前記反応塔の各段の、前記式(1)で表されるメタル許容量MPrの総和が0以上になるように、前記再生された重油脱硫触媒を前記反応塔に充填する、請求項2に記載の重油脱硫触媒の再生利用方法。 The regenerated heavy oil desulfurization catalyst is adjusted so that the sum of the allowable metal amount MPr represented by the formula (1) at each stage of the reaction tower filled with the regenerated heavy oil desulfurization catalyst becomes 0 or more. The method for recycling the heavy oil desulfurization catalyst according to claim 2 , wherein the reaction tower is packed. 前記メタル許容量MPrの総和が1以上5以下となるように、前記再生された重油脱硫触媒を前記反応塔に充填する、請求項3に記載の重油脱硫触媒の再生利用方法。   The method for reusing a heavy oil desulfurization catalyst according to claim 3, wherein the regenerated heavy oil desulfurization catalyst is charged into the reaction tower so that a sum of the metal allowable amount MPr is 1 or more and 5 or less.
JP2014065548A 2014-03-27 2014-03-27 Recycling method of heavy oil desulfurization catalyst Active JP6420961B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014065548A JP6420961B2 (en) 2014-03-27 2014-03-27 Recycling method of heavy oil desulfurization catalyst
CN201580016251.1A CN106459782B (en) 2014-03-27 2015-03-26 Regeneration and Utilization Method of Heavy Oil Desulfurization Catalyst
KR1020167026216A KR102366902B1 (en) 2014-03-27 2015-03-26 Method for regenerating and utilizing heavy-oil desulfurization catalyst
PCT/JP2015/059505 WO2015147223A1 (en) 2014-03-27 2015-03-26 Method for regenerating and utilizing heavy-oil desulfurization catalyst
TW104110048A TWI652114B (en) 2014-03-27 2015-03-27 Recycling method for heavy oil desulfurization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014065548A JP6420961B2 (en) 2014-03-27 2014-03-27 Recycling method of heavy oil desulfurization catalyst

Publications (2)

Publication Number Publication Date
JP2015189772A JP2015189772A (en) 2015-11-02
JP6420961B2 true JP6420961B2 (en) 2018-11-07

Family

ID=54195727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014065548A Active JP6420961B2 (en) 2014-03-27 2014-03-27 Recycling method of heavy oil desulfurization catalyst

Country Status (5)

Country Link
JP (1) JP6420961B2 (en)
KR (1) KR102366902B1 (en)
CN (1) CN106459782B (en)
TW (1) TWI652114B (en)
WO (1) WO2015147223A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US20190233741A1 (en) 2017-02-12 2019-08-01 Mag&#275;m&#257; Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527635A (en) 1975-07-08 1977-01-20 Fuji Electric Co Ltd Wide-area audio response system
JPS5378203A (en) * 1976-12-21 1978-07-11 Agency Of Ind Science & Technol Gydrocracking of hydrocarbons by powdered catalysts
JPS5499790A (en) * 1978-01-25 1979-08-06 Chiyoda Chem Eng & Constr Co Ltd Regenerating method for vanadium-deposited catalyst
JPS5950276B2 (en) * 1979-11-12 1984-12-07 千代田化工建設株式会社 Method for hydrotreating mineral oils
JP3527635B2 (en) 1998-05-26 2004-05-17 出光興産株式会社 Hydrodesulfurization method for heavy oil
JP3516383B2 (en) * 1998-07-01 2004-04-05 出光興産株式会社 Hydroprocessing of heavy oil
JP2000109852A (en) * 1998-10-06 2000-04-18 Idemitsu Kosan Co Ltd Hydrogen treating process for heavy oil
JP3708381B2 (en) 1998-09-30 2005-10-19 出光興産株式会社 Regeneration method of heavy oil hydrotreating catalyst and regenerated hydrotreating catalyst
CN1202211C (en) * 2002-10-10 2005-05-18 中国石油化工股份有限公司 Use method of reduced catalyst
JP2010069467A (en) * 2008-09-22 2010-04-02 Idemitsu Kosan Co Ltd Method of activating spent hydrogenation catalyst
CN102310005A (en) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 Regeneration method for heavy oil hydro-treating catalyst
CN102151588B (en) * 2011-01-25 2012-08-08 江苏科创石化有限公司 Novel hydrogenation catalyst regeneration method

Also Published As

Publication number Publication date
TW201601838A (en) 2016-01-16
CN106459782B (en) 2018-06-22
KR102366902B1 (en) 2022-02-23
JP2015189772A (en) 2015-11-02
KR20160138043A (en) 2016-12-02
CN106459782A (en) 2017-02-22
WO2015147223A1 (en) 2015-10-01
TWI652114B (en) 2019-03-01

Similar Documents

Publication Publication Date Title
US3923635A (en) Catalytic upgrading of heavy hydrocarbons
US20190359899A1 (en) Processing of heavy hydrocarbon feeds
WO1999065604A1 (en) Hydrogenation catalyst and method of hydrogenating heavy oil
JP6335575B2 (en) Recycling method of heavy oil desulfurization catalyst
JP6420961B2 (en) Recycling method of heavy oil desulfurization catalyst
US10358608B2 (en) Process for hydrocracking heavy oil and oil residue
WO1999061557A1 (en) Hydrotreating process for residual oil
JP4891934B2 (en) Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
JP3715893B2 (en) Method for regenerating hydrotreating catalyst
KR102329701B1 (en) Process for rejuvenation of a used hydrotreating catalyst
JP3708381B2 (en) Regeneration method of heavy oil hydrotreating catalyst and regenerated hydrotreating catalyst
JP3957122B2 (en) Method for hydrotreating heavy hydrocarbon oils
JP3527635B2 (en) Hydrodesulfurization method for heavy oil
JP3516383B2 (en) Hydroprocessing of heavy oil
JP2004161786A (en) Method for regenerating hydrogenation treatment catalyst for heavy oil
JPH11335676A (en) Hydrogenation and denitrification of heavy oil
WO2021001474A1 (en) Gas phase sulfidation of hydrotreating and hydrocracking catalysts
JP5695548B2 (en) Method for producing pre-sulfided regenerated hydrotreating catalyst, method for producing regenerated hydrotreating catalyst, method for selecting regenerating treatment conditions for hydrotreating catalyst, and method for producing petroleum product
JP2000109852A (en) Hydrogen treating process for heavy oil
KR20010032428A (en) Regenerated hydrogenation catalyst and methods of hydrogenating heavy oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6420961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150