JPH11335676A - Hydrogenation and denitrification of heavy oil - Google Patents

Hydrogenation and denitrification of heavy oil

Info

Publication number
JPH11335676A
JPH11335676A JP14365398A JP14365398A JPH11335676A JP H11335676 A JPH11335676 A JP H11335676A JP 14365398 A JP14365398 A JP 14365398A JP 14365398 A JP14365398 A JP 14365398A JP H11335676 A JPH11335676 A JP H11335676A
Authority
JP
Japan
Prior art keywords
catalyst
regenerated catalyst
hydrodenitrogenation
regenerated
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14365398A
Other languages
Japanese (ja)
Inventor
Ryuichiro Iwamoto
隆一郎 岩本
Takao Nozaki
隆生 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP14365398A priority Critical patent/JPH11335676A/en
Priority to US09/463,387 priority patent/US6406615B1/en
Priority to KR1020007000823A priority patent/KR100600189B1/en
Priority to PCT/JP1999/002743 priority patent/WO1999061557A1/en
Priority to EP99921262A priority patent/EP1010744A1/en
Priority to TW088108550A priority patent/TW483931B/en
Publication of JPH11335676A publication Critical patent/JPH11335676A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To regenerate a deactivated and unutilized catalyst and effectively utilize the catalyst due to the obtaining of suitable denitrification effects by regenerating the deactivated catalyst and optimizing the method for arranging the regenerated catalyst and a new catalyst when hydrodenitrifying a heavy oil. SOLUTION: When a heavy oil is hydrodenitrified in a reactional zone filled with a catalyst, a regenerated catalyst is disposed on the side of the former stage of the reactional zone and a new catalyst is disposed on the side of the latter stage of the reactional zone. The amount of the filled new catalyst in the reactional zone is preferably 20-95 vol.% and that of the regenerated catalyst is preferably 5-80 vol.% therein. The regenerating treatment of the catalyst is preferably carried out by a method for washing the used catalyst with a solvent such as toluene and then removing the carbonaceous material according to an oxidizing treatment. The regenerated catalyst preferably has 3-15 wt.% vanadium content, <=10 wt.% of carbon content, 100-200 m<2> /g specific surface area and 0.3-1.0 cc/g pore volume. A catalyst prepared by regenerating treatment of a catalyst, etc., supporting nickel on alumina is preferred.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は重質油の水素化脱窒
素方法に関するものである。さらに詳しくは触媒の一部
に再生触媒を用いた重質油の水素化脱窒素方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for hydrodenitrogenation of heavy oil. More specifically, the present invention relates to a method for hydrodenitrogenation of heavy oil using a regenerated catalyst as a part of the catalyst.

【0002】[0002]

【従来の技術】石油精製においては各種の留分を水素化
処理により精製する工程は多数ある。ナフサ、灯油、軽
油等の脱硫脱窒素や、重質軽油の脱硫脱窒素、分解、さ
らには残油、重油の脱硫脱窒素などがある。そのうちで
も、比較的沸点が低く、バナジウム等の金属不純物含有
量のほとんどないナフサや灯油、軽油を処理する水素化
処理工程に用いられる触媒は使用による劣化の度合いが
少ない。
2. Description of the Related Art In petroleum refining, there are many steps for purifying various fractions by hydrotreating. Examples include desulfurization and denitrification of naphtha, kerosene, light oil, etc., and desulfurization and denitrification of heavy gas oil, and desulfurization and denitrification of residual oil and heavy oil. Among them, the catalyst used in the hydrotreating process for treating naphtha, kerosene, and gas oil, which have a relatively low boiling point and little content of metal impurities such as vanadium, has a low degree of deterioration due to use.

【0003】また、これらの触媒は使用による劣化はほ
とんど少量の炭素質の蓄積によるものであり、これを燃
焼等により除去してやれば再使用可能であった。さらに
炭素質の除去についても、触媒上の炭素質の量が少ない
ため厳密な燃焼制御は必要としないで再使用可能な触媒
がえられる。また、一旦使用した触媒でも劣化の度合い
が少ない触媒もあり、このようなものはそのまま再使用
できる。これらの触媒は特別の注意を払うことなく再度
ナフサ、灯油、軽油等の処理に用いられている。
[0003] Further, the deterioration of these catalysts due to their use is due to the accumulation of almost a small amount of carbonaceous material, and they can be reused if they are removed by combustion or the like. Further, for the removal of carbonaceous material, a reusable catalyst can be obtained without requiring strict combustion control because the amount of carbonaceous material on the catalyst is small. Also, some catalysts that have been used once have a small degree of deterioration, and such a catalyst can be reused as it is. These catalysts are used again for the treatment of naphtha, kerosene, light oil and the like without any special care.

【0004】また、最近は重質軽油や減圧軽油の水素化
処理触媒についても、再生等により再使用をしている
が、その再生、使用方法についても確立されている。た
とえば、重質軽油水素化分解プロセスにおいては水素化
分解触媒も、その前処理のための水素化脱窒素触媒も水
素賦活または酸素賦活により再生使用できることが知ら
れている。
[0004] Recently, a catalyst for hydrotreating heavy gas oil or reduced pressure gas oil has been reused by regeneration or the like, and the method of regeneration and use has been established. For example, it is known that in a heavy gas oil hydrocracking process, both a hydrocracking catalyst and a hydrodenitrogenation catalyst for pretreatment thereof can be recycled by hydrogen activation or oxygen activation.

【0005】これらの留出油の水素化処理に用いられた
触媒は、処理原料油中に金属不純物はほとんどないの
で、触媒上にも原料に起因するバナジウム等の金属の堆
積は少ない。また、炭素質の堆積も少ないだけでなく、
炭素質の質も燃焼させ易いものであり燃焼による再生時
にも触媒表面はそれほど高温にならず、触媒担体の細孔
構造や活性金属相の担持状態等の変化も小さく、再度重
質軽油や減圧軽油等の留出油の処理に使用することはで
きていた。(Stadies in Surface
and Catalysis vol.88 P199
(1994))しかし、残渣油のようなさらに沸点の高
い、あるいは蒸留できない留分を含む重質油の水素化処
理においては、原料油中に含まれる金属不純物やアスフ
ァルテン分等の炭素質化し易い成分が多く、これらが使
用済み触媒上に多量の金属分や炭素質を堆積させる。ま
た、質的にも金属分と炭素質が同時に蓄積した使用済み
触媒は簡単には炭素質の燃焼除去ができなかった。(C
atal.Todayvol.17 No.4 P53
9(1993),Catal.Rev.Sci.En
g.33(3&4)P281(1991))このため、
これらの使用済み触媒は再利用されることはなく処分さ
れていた。
[0005] In the catalyst used for the hydrotreating of these distillate oils, there is almost no metal impurities in the raw material oil to be treated, so that the deposition of metals such as vanadium on the catalyst due to the raw material is small. Not only is carbonaceous deposition low,
The quality of carbonaceous material is also easy to burn, and the surface of the catalyst does not become so high even during regeneration by combustion, the change in the pore structure of the catalyst carrier and the loading state of the active metal phase are small, and heavy gas oil and decompression again It could be used to treat distillate such as light oil. (Stadies in Surface
and Catalysis vol. 88 P199
(1994)) However, in the hydrogenation treatment of heavy oil such as residual oil having a higher boiling point or a distillate that cannot be distilled, metal impurities and asphaltenes contained in the raw material oil tend to be carbonized. There are many components, which deposit a large amount of metal and carbon on the spent catalyst. In addition, the spent catalyst in which the metal content and the carbonaceous material have accumulated at the same time cannot be easily removed by burning the carbonaceous material. (C
atal. Todayvol. 17 No. 4 P53
9 (1993), Catal. Rev .. Sci. En
g. 33 (3 & 4) P281 (1991))
These spent catalysts were discarded without being reused.

【0006】[0006]

【発明が解決しようとする課題】本発明は、重質油等の
水素化処理プロセスにおいて使用により失活し、利用さ
れていなかった触媒を、再生処理し有効に活用する重質
油の脱窒素方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a denitrification of heavy oil for regenerating and effectively utilizing a catalyst which has been deactivated by use in a hydrotreating process of heavy oil and the like and has not been used. The aim is to provide a method.

【0007】[0007]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、重質油等の水素化処理プロセスにおいて使用によ
り失活した触媒を、再生処理し、同時に使用する新触媒
との配置方法を最適化することにより好適な脱窒素効果
が得られること、さらには失活した触媒に付着した不純
物量や物理性状を再生処理により制御することが有効で
あることを見出し、この知見に基づいて本発明を完成し
たものである。
Means for Solving the Problems As a result of intensive studies, the present inventors regenerated a catalyst deactivated by use in a hydrotreating process for heavy oil and the like, and arranged it with a new catalyst used at the same time. It has been found that a suitable denitrification effect can be obtained by optimizing, and that it is effective to control the amount of impurities and physical properties attached to the deactivated catalyst by a regeneration treatment. The present invention has been completed.

【0008】すなわち、本発明の要旨は下記のとおりで
ある。 (1) 触媒を充填して反応ゾーン中で、重質油を水素
化脱窒素するにあたり、少なくとも一部の反応ゾーンの
前段側に再生触媒を、後段側に新触媒を配置することを
特徴とする重質油の水素化脱窒素方法。 (2) 前記の少なくとも一部の反応ゾーンにおける新
触媒の充填量20〜95体積%、再生触媒の充填量が5
〜80体積%である(1)記載の水素化脱窒素方法。 (3) 再生触媒のバナジウム含有量が再生触媒基準で
35重量%以下である(1)または(2)記載の水素化
脱窒素方法。 (4) 再生触媒の炭素含有量が再生触媒基準で15重
量%以下である(1)〜(3)のいずれかに記載の水素
化脱窒素方法。 (5) 再生触媒の比表面積が60〜200m2/gである
(1)〜(4)のいずれかに記載の水素化脱窒素方法。 (6) 再生触媒の細孔容積が0.3〜1.0cc/gであ
る(1)〜(5)のいずれかに記載の水素化脱窒素方
法。 (7) 再生触媒が、酸化物担体にモリブデン、タング
ステン、コバルトまたは、ニッケルのうち少なくとも一
種類の金属種を担持した触媒を水素化処理プロセスで使
用した後、再生処理したものである(1)〜(6)のい
ずれかに記載の水素化脱窒素方法。 (8) 酸化物担体がアルミナで担持金属種がニッケル
およびモリブデンである(7)記載の水素化脱窒素方
法。 (9) 酸化物担体が、リン、ほう素、けい素の酸化物
のうち少なくとも一種類を含むアルミナで、担持金属種
がニッケルまたはコバルト、およびモリブデンである
(7)記載の水素化脱窒素方法。 (10) 担持金属種であるニッケル又はコバルトの含
有量が再生触媒基準で0.1〜10重量%、およびモリ
ブデンの含有量が再生触媒基準で0.1〜25重量%の
範囲にある(7)〜(9)のいずれかに記載の水素化脱
窒素方法。
That is, the gist of the present invention is as follows. (1) In the case where heavy oil is hydrodenitrogenated in a reaction zone by filling a catalyst, a regenerated catalyst is disposed at a front stage of at least a part of the reaction zone, and a new catalyst is disposed at a rear stage thereof. Method for hydrodenitrogenation of heavy oils. (2) The charged amount of the fresh catalyst in at least a part of the reaction zones is 20 to 95% by volume, and the charged amount of the regenerated catalyst is 5%.
(1) The hydrodenitrogenation method according to (1), wherein the amount is from 80 to 80% by volume. (3) The hydrodenitrogenation method according to (1) or (2), wherein the vanadium content of the regenerated catalyst is 35% by weight or less based on the regenerated catalyst. (4) The hydrodenitrogenation method according to any one of (1) to (3), wherein the carbon content of the regenerated catalyst is 15% by weight or less based on the regenerated catalyst. (5) The hydrodenitrogenation method according to any one of (1) to (4), wherein the specific surface area of the regenerated catalyst is 60 to 200 m 2 / g. (6) The hydrodenitrogenation method according to any one of (1) to (5), wherein the regenerated catalyst has a pore volume of 0.3 to 1.0 cc / g. (7) The regenerated catalyst is obtained by using a catalyst in which at least one kind of metal selected from molybdenum, tungsten, cobalt and nickel is supported on an oxide carrier in a hydrogenation process and then regenerated. (1) The hydrodenitrogenation method according to any one of (1) to (6). (8) The hydrodenitrogenation method according to (7), wherein the oxide carrier is alumina and the supported metal species is nickel and molybdenum. (9) The hydrodenitrogenation method according to (7), wherein the oxide carrier is alumina containing at least one of phosphorus, boron and silicon oxides, and the supported metal species is nickel or cobalt and molybdenum. . (10) The content of nickel or cobalt as the supported metal species is in the range of 0.1 to 10% by weight based on the regenerated catalyst, and the content of molybdenum is in the range of 0.1 to 25% by weight based on the regenerated catalyst. ) The hydrodenitrogenation method according to any one of (1) to (9).

【0009】[0009]

【発明の実施の形態】以下に本発明の実施の形態につき
説明する。本発明は、触媒を充填した反応ゾーン中で重
質油を水素化脱窒素するにあたり、再生触媒と新触媒を
特定の組み合わせで使用することを特徴とする水素化脱
窒素方法である。すなわち、すくなくとも一部の反応ゾ
ーン中に充填する触媒の配置を、前段側に再生触媒、後
段側に新触媒、とする組合せとする水素化脱窒素方法で
ある。
Embodiments of the present invention will be described below. The present invention is a hydrodenitrogenation method characterized by using a regenerated catalyst and a new catalyst in a specific combination when hydrodenitrogenating heavy oil in a reaction zone filled with a catalyst. That is, this is a hydrodenitrogenation method in which at least a part of the reaction zone is filled with a catalyst in which the regenerated catalyst is disposed in the front stage and the new catalyst is disposed in the rear stage.

【0010】重質油水素化処理プロセスにおいては、い
ろいろな目的で重質油の処理が行われている。主目的と
しては脱硫、分解などが多いが、これらの場合でも生成
油の窒素分を低減させる目的も兼ねている場合が多い。
たとえば、重油製造のための脱硫プロセスでは、製品重
油の硫黄含有量のほか、窒素含有量、金属分含有量は重
要な品質管理項目と成っている場合が多い。また、重質
油脱硫プロセスはガソリン製造用の接触分解プロセスの
前処理用に利用されることがあるが、接触分解用の原料
としては硫黄分だけでなく窒素分の低減も重要な要素で
ある。また、水素化分解プロセスのように分解触媒の触
媒毒となる原料油中の窒素化合物を予備的に脱窒素反応
により除去する場合もある。
In the heavy oil hydrotreating process, heavy oil is treated for various purposes. Although the main purpose is desulfurization, decomposition, and the like in many cases, these cases also often serve the purpose of reducing the nitrogen content of the produced oil.
For example, in a desulfurization process for producing heavy oil, the sulfur content, nitrogen content, and metal content of the product heavy oil are often important quality control items. In addition, heavy oil desulfurization process is sometimes used for pretreatment of catalytic cracking process for gasoline production, but as a raw material for catalytic cracking, reduction of not only sulfur content but also nitrogen content is an important factor . In some cases, as in the hydrocracking process, nitrogen compounds in the feedstock oil, which are poisons of the cracking catalyst, are preliminarily removed by a denitrification reaction.

【0011】ここで、重質油水素化処理プロセスにおけ
る脱窒素処理とは、上記のように各種の脱窒素処理を言
い、脱窒素反応を主目的としている場合はもちろん、他
の反応と同時に行わせたり、他の反応の前処理や後処理
のための脱窒素処理をも含む。なお、上記水素化分解プ
ロセスのように分解触媒の前処理の場合はその脱窒素処
理をしている部分のみを言う。
Here, the denitrification treatment in the heavy oil hydrotreating process refers to various denitrification treatments as described above, and is carried out simultaneously with other reactions when the main purpose is a denitrification reaction. Or a denitrification treatment for pre-treatment or post-treatment of other reactions. In the case of the pretreatment of the cracking catalyst as in the above-described hydrocracking process, only the portion where the denitrification treatment is performed is referred to.

【0012】また、反応ゾーン中に充填する触媒とは脱
窒素反応のみを目的としているものを言うだけでなく、
脱窒素反応をも兼ねていれば脱硫、脱スケール、脱金属
を主目的としている触媒も含む。それ故、たとえば脱窒
素をも目的としている重油脱硫プロセスでの反応ゾーン
とは、いわゆる狭義の脱窒素反応ゾーンはもちろん、脱
硫ゾーン、脱メタルゾーン、脱スケールゾーンなどを含
んだ脱硫プロセスの反応帯域全体の触媒層のことを言う
場合もある。そのうち、すくなくとも一部の反応ゾーン
とは、上記狭義の脱窒素反応ゾーン、脱硫反応ゾーン、
脱メタルゾーン、脱スケールゾーンなどを言う他、反応
帯域全体でも反応器毎や反応器中のベッド部分毎でもよ
い。さらに、ひとつの反応器の下流部と次の反応器の上
流部にわたるものでもよい。すなわち、目的の主従を問
わず幾分かでも脱窒素反応が起こっているひとつのまと
まった部分を言うものである。
The catalyst to be charged into the reaction zone means not only a catalyst for the purpose of denitrification but also a catalyst for the purpose.
If it also serves as a denitrification reaction, it includes catalysts whose main purpose is desulfurization, descaling, and demetallization. Therefore, for example, a reaction zone in a heavy oil desulfurization process that also aims at denitrification is a reaction zone of a desulfurization process including a desulfurization zone, a demetalization zone, a descaling zone, etc., as well as a so-called narrowly defined denitrification reaction zone. It may also refer to the entire catalyst layer. Among them, at least a part of the reaction zone is a denitrification reaction zone in the narrow sense, a desulfurization reaction zone,
In addition to the demetallizing zone, the descaling zone, etc., the reaction zone may be the entire reaction zone, the reactor, or the bed portion in the reactor. Further, it may extend downstream of one reactor and upstream of the next reactor. In other words, it refers to a single part in which the denitrification reaction has occurred to some extent, regardless of the purpose or purpose.

【0013】一部の反応ゾーンの典型的な態様として
は、脱窒素反応ゾーン全体の場合や、直列に複数の反応
器がある場合の異なる反応器にまたがっている場合、一
つの反応器の場合、反応器中のひとつのベットの部分の
みの場合などがある。また、脱金属脱窒素反応ゾーンと
脱硫脱窒素反応ゾーンを別個のものと考えて、脱金属脱
窒素反応ゾーンで前段、後段とする配置方法、脱硫脱窒
素反応ゾーンで前段、後段とする配置方法でもよい。し
かし、脱窒素反応に全く関与しない触媒ゾーン、たとえ
ば水素化分解のみを行う触媒ゾーン、は脱窒素反応ゾー
ンには含んではいない。
Typical embodiments of some of the reaction zones include the case of the entire denitrification reaction zone, the case where a plurality of reactors are connected in series, and the case where a single reactor is used. Or only one bet in the reactor. In addition, the demetallization and denitrification reaction zone and the desulfurization and denitrification reaction zone are considered to be separate, and the arrangement method of the former stage and the latter stage in the demetallization and denitrification reaction zone, the former method and the latter stage of the desulfurization and denitrification reaction zone May be. However, a catalyst zone that does not participate in the denitrification reaction at all, for example, a catalyst zone that performs only hydrocracking, is not included in the denitrification reaction zone.

【0014】触媒の配置において、少なくとも一部の反
応ゾーンの前段側には再生触媒、後段側には新触媒とす
ることが重要である。これは、重質油の脱窒素反応にお
いては最初に原料重質油中の除去し易い窒素化合物を水
素化反応により除去し、残った反応しにくい窒素化合物
は活性の比較的高い新触媒により水素化し除去する反応
方法が有効な脱窒素方法であるからである。そのために
は、相対的に水素化活性の少し低い再生触媒を前段側
に、活性の高い新触媒を後段側に配置することで良い結
果を得ることができる。
In the arrangement of the catalyst, it is important that at least a part of the reaction zone be a regenerated catalyst at the front stage and a new catalyst at the rear stage. This is because, in the denitrification reaction of heavy oil, the easily removable nitrogen compounds in the raw heavy oil are first removed by a hydrogenation reaction, and the remaining hard-to-react nitrogen compounds are hydrogenated by a relatively active new catalyst. This is because the reaction method of denitration and removal is an effective denitrification method. For this purpose, good results can be obtained by arranging a regenerated catalyst having a relatively low hydrogenation activity at the front stage and a new catalyst having a high activity at the rear stage.

【0015】水素化脱窒素プロセスの少なくとも一部の
反応ゾーン(以下特定反応ゾーン」という)において、
この効果を十分に期待するには、新触媒を特定反応ゾー
ンの20%(触媒の充填状態での特定反応ゾーンの全触
媒に対する体積%を言う、以下同じ)以上、できれば4
0%以上使用することが好ましい。逆に再生触媒を5%
以上、好ましくは10%以上使用していないと触媒の配
置による脱窒素効果の向上は顕著ではない。触媒の配置
における前段側、後段側と言うのは反応物の流れの上
流、下流を表しており、相対的に上流側にあるものを前
段側、下流側にあるものを後段側としている。
In at least a part of the reaction zone of the hydrodenitrogenation process (hereinafter, referred to as a specific reaction zone),
In order to fully expect this effect, the new catalyst should be at least 20% of the specific reaction zone (volume% based on the total catalyst in the specific reaction zone with the catalyst charged, the same applies hereinafter), and preferably 4% or more.
It is preferable to use 0% or more. Conversely, 5% of regenerated catalyst
As described above, the improvement of the denitrification effect by the arrangement of the catalyst is not remarkable unless it is preferably used in an amount of 10% or more. The upstream side and downstream side of the catalyst arrangement indicate upstream and downstream of the flow of the reactant, and the upstream side is the upstream side and the downstream side is the downstream side.

【0016】また、本発明における重質油とは常圧残
油、減圧残油などの蒸留残渣分を含むものを言い、灯
油、軽油、減圧軽油などの留出油のみからなるものは含
まない。通常、重質油中には硫黄分1重量%以上、窒素
分200重量ppm以上、残炭分5重量%以上、バナジ
ウム5ppm以上、アスファルテン分0.5%以上がふ
くまれている。たとえば、前記常圧残油等の他原油、ア
スファルト油、熱分解油、タールサンド油あるいはこれ
らを含む混合油などがあげられる。なお、本発明の水素
化脱窒素プロセスとは固定床反応器を用いるものであ
り、移動床や沸騰床などの反応形式のプロセスは想定し
ていない。ただし、反応物の流れとしては上昇流でも下
降流でもよい。
The heavy oil in the present invention means a residue containing a distillation residue such as an atmospheric residue and a vacuum residue, and does not include a distillate consisting of only a distillate such as kerosene, gas oil, and vacuum gas oil. . Usually, heavy oil contains 1% by weight or more of sulfur, 200% by weight or more of nitrogen, 5% by weight or more of residual carbon, 5ppm or more of vanadium, and 0.5% or more of asphaltenes. For example, other crude oils such as the above-mentioned atmospheric residual oil, asphalt oil, pyrolysis oil, tar sand oil, or a mixed oil containing these oils can be used. The hydrodenitrification process of the present invention uses a fixed bed reactor, and does not assume a reaction type process such as a moving bed or a boiling bed. However, the flow of the reactant may be an upward flow or a downward flow.

【0017】つぎに、新触媒、再生触媒および再生処理
につき説明する。まず、新触媒とは鉱油、好ましくは重
質油の水素化脱窒素触媒として製造されたものや、重質
油の水素化処理触媒として製造され、脱硫、脱メタル、
分解などと同時に脱窒素活性を持つものをも言い、一般
に市販されている水素化脱硫触媒、水素化脱メタル触媒
などでもよいし、水素化脱窒素機能を持った触媒を特別
に製造したものでもよい。
Next, the new catalyst, the regenerated catalyst and the regenerating process will be described. First, the new catalyst is manufactured as a catalyst for hydrodenitrification of mineral oil, preferably heavy oil, or as a catalyst for hydrotreating heavy oil, desulfurization, demetallization,
It also refers to those that have denitrification activity at the same time as decomposition, such as generally available hydrodesulfurization catalysts, hydrodemetallation catalysts, or specially manufactured catalysts with hydrodenitrification function. Good.

【0018】これらは触媒として一度も水素化処理に使
用されていないものはもちろん、一旦水素化処理に使用
されたが装置上のトラブル等のため短期間で使用を中断
し、再度そのまま使用するものも含む。すなわち、一時
的に使用されても特別の賦活処理をしなくとも、当初か
ら想定されている脱窒素活性がまだ十分にある触媒も含
まれる。
These are not only those which have never been used in the hydrotreating process but also those which have been used in the hydrotreating process but whose use has been interrupted for a short time due to troubles in the equipment and used again as it is. Including. That is, a catalyst that has a sufficient denitrification activity that is assumed from the beginning, even if it is used temporarily and does not require any special activation treatment, is included.

【0019】再生触媒とは、上記新触媒を一旦重質油等
の水素化処理に使用し、そのままでは十分な脱窒素活性
が得られなくなった触媒(使用済み触媒と言う。)を再
生処理により賦活したものである。水素化処理は脱硫処
理が一般的であるが、脱金属、脱窒素、脱芳香族、分解
などの水素化処理でもよい。また、重質油の処理が一般
的だが重質軽油等の留出油の水素化処理に使用された使
用済み触媒を再生処理したものでもよい。再生触媒が重
質油の水素化脱窒素処理に利用できればよい。
The regenerated catalyst is a catalyst in which the above-mentioned new catalyst is once used for the hydrogenation treatment of heavy oil or the like, and a catalyst (hereinafter referred to as used catalyst) which cannot obtain sufficient denitrification activity by itself is regenerated. It has been activated. The hydrogenation treatment is generally a desulfurization treatment, but may be a hydrogenation treatment such as metal removal, nitrogen removal, aromatic removal, or decomposition. In addition, heavy oil is generally treated, but a regenerated treatment of a used catalyst used for hydrotreating a distillate such as heavy light oil may be used. It suffices if the regenerated catalyst can be used for hydrodenitrogenation of heavy oil.

【0020】再生処理には溶剤洗浄による油分等の除
去、炭素質や硫黄分、窒素分等の燃焼による除去、塊状
化したり細粒化した触媒の除去による正常な形状の触媒
の選別などがあるが、本発明における再生処理とは、酸
化による炭素質の除去、好ましくは反応器外での酸化に
よる炭素質の除去処理、を含む処理を言う。なお、再生
処理では完全に炭素質を除去する必要はない。
The regeneration treatment includes removal of oil and the like by washing with a solvent, removal of carbonaceous matter, sulfur and nitrogen by combustion, and selection of a catalyst having a normal shape by removing agglomerated or finely divided catalyst. However, the regeneration treatment in the present invention refers to a treatment including removal of carbonaceous matter by oxidation, preferably removal treatment of carbonaceous matter by oxidation outside the reactor. It is not necessary to completely remove the carbonaceous material in the regeneration treatment.

【0021】特に好ましい再生処理としては、使用済み
触媒をまず溶剤洗浄する。溶剤としてはトルエン、アセ
トン、アルコールや、ナフサ、灯油、軽油などの石油類
が好ましい。その他でも、使用済み触媒上に付着した有
機物を溶かし易い溶剤であれば良い。この洗浄処理は触
媒が水素化処理反応器中にあるうちに軽油を循環させて
洗浄し、その後50〜200℃程度の窒素ガス等を流通
させて乾燥させることでも達成できる。あるいは、軽油
を循環させて洗浄した後そのまま抜き出し、発熱や自然
発火を防ぐため軽油で濡れた状態にしておき必要な時に
乾燥してもよい。また、反応器から抜き出した使用済み
触媒から塊状物を粉砕したり、粉化触媒、スケール等を
除去し、これを軽油で洗浄しさらにナフサで洗浄して乾
燥し易くする方法もある。少量の場合は、トルエンで洗
浄する方法が油分を完全に除去するのに適している。
As a particularly preferred regeneration treatment, the used catalyst is first washed with a solvent. As the solvent, petroleum such as toluene, acetone, alcohol, naphtha, kerosene, and light oil are preferable. Any other solvent may be used as long as it is a solvent that can easily dissolve the organic substances attached to the used catalyst. This washing treatment can also be achieved by circulating light oil for washing while the catalyst is in the hydrotreating reactor, and then drying by passing nitrogen gas at about 50 to 200 ° C. Alternatively, the light oil may be circulated and washed and then withdrawn as it is, kept wet with light oil to prevent heat generation and spontaneous ignition, and dried when necessary. There is also a method of pulverizing a lump from the spent catalyst extracted from the reactor, removing a powdered catalyst, scale, and the like, washing the same with light oil, and further washing with naphtha to facilitate drying. In the case of a small amount, washing with toluene is suitable for completely removing the oil.

【0022】洗浄により油分および不純物を除去した触
媒に十分な活性を発揮させるには、さらに酸化処理によ
り炭素質を除去することが必要である。酸化処理は一般
には雰囲気温度および酸素濃度を制御した燃焼処理によ
り行う。雰囲気温度が高すぎたり、酸素濃度が高すぎる
と触媒表面が高温になり、担持金属の結晶形や担持状態
が変化したり、担体の細孔が減少し触媒活性が低下して
しまう。また、雰囲気温度が低すぎたり、酸素濃度が低
すぎると燃焼による炭素質の除去が不十分となり十分な
活性回復が望めない。望ましい雰囲気温度としては20
0〜800℃、特に望ましくは300〜600℃であ
る。
In order for the catalyst from which oil and impurities have been removed by washing to exhibit sufficient activity, it is necessary to further remove carbonaceous matter by oxidation treatment. The oxidation treatment is generally performed by a combustion treatment in which the ambient temperature and the oxygen concentration are controlled. If the ambient temperature is too high or the oxygen concentration is too high, the temperature of the catalyst surface will be high, and the crystal form and the state of the supported metal will change, and the pores of the carrier will decrease, resulting in a decrease in catalytic activity. On the other hand, if the ambient temperature is too low or the oxygen concentration is too low, the removal of carbonaceous material by combustion becomes insufficient, and sufficient activity recovery cannot be expected. A desirable ambient temperature is 20
The temperature is from 0 to 800 ° C, particularly preferably from 300 to 600 ° C.

【0023】酸素濃度は1〜21%の範囲で制御するこ
とが望ましいが、燃焼方法、特に燃焼ガスと触媒との接
触状態に対応して制御することが好ましい。雰囲気温
度、酸素濃度、雰囲気ガスの流速などを調製して触媒の
表面温度を制御し、再生後の触媒の比表面積や細孔容量
の低下を防ぎ、水素化活性金属であるニッケルやモリブ
デンなどの結晶構造や結晶粒子の担持状態の変化を抑え
ることが重要である。
It is desirable to control the oxygen concentration in the range of 1 to 21%, but it is preferable to control the oxygen concentration in accordance with the combustion method, particularly, the contact state between the combustion gas and the catalyst. The surface temperature of the catalyst is controlled by adjusting the ambient temperature, oxygen concentration, flow rate of the ambient gas, etc., to prevent the specific surface area and pore volume of the regenerated catalyst from decreasing, and to reduce the hydrogenation active metals such as nickel and molybdenum. It is important to suppress changes in the crystal structure and the state of supporting the crystal particles.

【0024】燃焼処理した触媒は粉化したもの等を除去
し正常な形状のもののみを再生触媒として使用すること
が望ましい。この操作をしないと初期活性は十分望める
場合もあるが、触媒層で詰まりや偏流を起こしたり反応
器中での流体の圧力損失を大きくし正常な運転が継続で
きなくなることがある。つぎに、再生触媒の組成、物性
について説明する。
It is desirable that the catalyst subjected to the combustion treatment be removed from the powdered one and the like, and that only the catalyst having a normal shape be used as the regenerated catalyst. If this operation is not performed, the initial activity may be sufficiently obtained, but the catalyst layer may be clogged or drifted, or the pressure loss of the fluid in the reactor may be increased, and normal operation may not be continued. Next, the composition and physical properties of the regenerated catalyst will be described.

【0025】水素化処理プロセスでの使用による劣化の
指標として、バナジウムと炭素質がある。バナジウムは
通常、触媒成分としては含まれていないが水素化処理さ
れる原料油中に含まれる微量不純物に起因するものであ
り、使用による劣化の指標とすることができる。バナジ
ウム含有量は再生触媒基準で35%(触媒中の金属分含
有量は対象触媒を測定前に400℃以上で酸化処理して
減量しなくなったものを基準として、その金属の酸化物
としての重量%で表わすものとする、以下金属含有量に
ついては同じ)以下、好ましくは20%以下、さらに好
ましくは3〜15%以下であることが望ましい。バナジ
ウム含有量が35%を超えると再生触媒の活性が低すぎ
て全体としての脱窒素反応が十分進まない。なお、バナ
ジウム含有量が2%より少ない場合は再生触媒自身に活
性が十分に残っており、触媒の配置による脱窒素効果の
差は小さくなることが多い。よって、バナジウム含有量
2〜35%がよく、望ましくは3〜15%以下のときに
触媒配置による再生触媒の活性の引出し効果はより良く
なる。
Indicators of degradation due to use in the hydrotreating process include vanadium and carbonaceous materials. Vanadium is not usually contained as a catalyst component, but is caused by trace impurities contained in a feed oil to be hydrotreated, and can be used as an index of deterioration due to use. The vanadium content is 35% on the basis of the regenerated catalyst. (The metal content in the catalyst is the weight of the metal as an oxide based on the target catalyst which has been oxidized at 400 ° C. or more before measurement and no longer loses weight.) %, The same applies to the following metal content), preferably 20% or less, more preferably 3 to 15% or less. If the vanadium content exceeds 35%, the activity of the regenerated catalyst is too low, and the denitrification reaction as a whole does not proceed sufficiently. When the vanadium content is less than 2%, sufficient activity remains in the regenerated catalyst itself, and the difference in the denitrification effect due to the arrangement of the catalyst often decreases. Therefore, when the vanadium content is 2 to 35%, preferably 3 to 15% or less, the effect of drawing out the activity of the regenerated catalyst by the catalyst arrangement becomes better.

【0026】なお、バナジウム等の元素分析は、試料を
650℃、1時間焼成後、Mo,P,Vは灰分を酸で溶
解し誘導結合プラズマ発光吸光分析により、Co,N
i,Alは灰分と四ほう酸リチウムの混合物を高周波加
熱でガラスビードとし、蛍光X線分析法で測定した。炭
素含有量についても、15%(触媒中の炭素分含有量は
対象触媒を測定前に400℃以上で酸化処理して減量し
なくなったものを基準として、対象触媒中に含まれてい
る炭素の重量%で表わすものとする、以下同じ)以下好
ましくは10%以下とすることが望ましい。炭素含有量
は使用済み段階では10〜70%程度であることが多い
が、再生処理により炭素分を触媒上から除去しその含有
量を低減できる。炭素分が多すぎるとこれが触媒表面を
覆い触媒活性を低下させるが、再生処理により炭素含有
量を減少させれば活性を回復させることができる。な
お、炭素および硫黄はC−S同時分析計で分析した。
For elemental analysis of vanadium and the like, Mo, P, and V were dissolved in an acid after calcination of the sample at 650 ° C. for one hour, and Co, N
i and Al were measured by X-ray fluorescence analysis using a mixture of ash and lithium tetraborate as glass beads by high-frequency heating. The carbon content is also 15% (the carbon content in the catalyst is determined based on the amount of carbon contained in the target catalyst based on the value of the target catalyst that has been oxidized at 400 ° C. or more before measurement and has not been reduced. It should be expressed in terms of% by weight. Although the carbon content is often about 10 to 70% in the used stage, the carbon content can be removed from the catalyst by the regeneration treatment to reduce the content. If the carbon content is too large, this will cover the catalyst surface and reduce the catalytic activity, but if the carbon content is reduced by the regeneration treatment, the activity can be recovered. In addition, carbon and sulfur were analyzed by a CS simultaneous analyzer.

【0027】再生処理では酸化処理とくに一般的な方法
としては燃焼処理を伴うので、そのときに触媒表面が過
熱して触媒の細孔構造や担持金属の担持状態が変化し、
触媒活性が低下してしまうことがある。これらを評価す
る指標として触媒の比表面積と細孔容量がある。触媒の
比表面積や細孔容量は水素化処理反応での使用中にも不
純物の付着や反応中の熱による劣化等により徐々に減少
するが、再生触媒として使用可能であるためには、再生
後の触媒に使用前の新触媒であった時のおよそ70%の
比表面積および細孔容量が残っていることが好ましい。
これを、再生触媒の物性としてみればそれぞれ比表面積
60〜200m2/g、好ましくは100〜200m2/g、細
孔容積0.3〜1.0cc/gであることが望ましい。これ
らの測定は窒素吸着法で行った。
In the regeneration treatment, oxidation treatment, particularly a general method, involves combustion treatment. At that time, the surface of the catalyst is overheated, and the pore structure of the catalyst and the loaded state of the loaded metal change.
The catalyst activity may be reduced. Indices for evaluating these include the specific surface area and pore volume of the catalyst. The specific surface area and pore volume of the catalyst gradually decrease during use in the hydrogenation reaction due to adhesion of impurities and deterioration due to heat during the reaction. It is preferable that about 70% of the specific surface area and the pore volume of the new catalyst before use are retained.
This, physical properties and to Come In each specific surface area 60~200m 2 / g of regenerated catalyst, preferably 100 to 200 m 2 / g, it is desirable that the pore volume 0.3~1.0cc / g. These measurements were performed by the nitrogen adsorption method.

【0028】この再生触媒は重質油の水素化脱窒素処理
に使用する触媒であるので、もともと水素化脱窒素能力
のある触媒である必要がある。そのための基本的な触媒
構成として酸化物担体、たとえばアルミナやアルミナ・
りん、アルミナ・ほう素担体、アルミナ・けい素担体な
どに、モリブデン、タングステン、コバルトまたはニッ
ケルの酸化物を担持したものが好適に使用される。この
中でも、ニッケル・モリブデン担持/アルミナ担体触
媒、ニッケル・モリブデン担持/アルミナ・りん担体触
媒、コバルト・モリブデン担持/アルミナ・ほう素担体
触媒やニッケル・モリブデン担持/アルミナ・けい素担
体触媒がとくに好ましい。さらに、重質油処理であるの
で担持金属であるコバルトまたはニッケルを0.1〜1
0%(再生触媒に対する酸化物としての重量%、以下同
じ)、モリブデンを0.2〜25%含有することが好ま
しい。りんの含有量については0.1〜15%(金属含
有量と同じ基準)が好ましい。
Since this regenerated catalyst is a catalyst used for hydrodenitrogenation of heavy oil, it must be originally a catalyst having hydrodenitrogenation ability. The basic catalyst composition for this purpose is an oxide carrier such as alumina or alumina.
A carrier in which molybdenum, tungsten, cobalt or nickel oxide is supported on a phosphorus, alumina / boron carrier, alumina / silicon carrier or the like is preferably used. Among these, nickel-molybdenum-supported / alumina-supported catalyst, nickel-molybdenum-supported / alumina-phosphorus-supported catalyst, cobalt-molybdenum-supported / alumina-boron-supported catalyst, and nickel-molybdenum-supported / alumina-silicon-supported catalyst are particularly preferable. Furthermore, since it is a heavy oil treatment, the supported metal, cobalt or nickel, is 0.1 to 1%.
It is preferable to contain 0% (weight% as an oxide with respect to the regenerated catalyst, the same applies hereinafter) and 0.2 to 25% of molybdenum. The content of phosphorus is preferably 0.1 to 15% (the same standard as the metal content).

【0029】つぎに、本発明のひとつの態様である重質
油の水素化脱窒素処理を含む水素化脱硫処理を具体的に
説明する。上記の触媒配置方法をとれば、反応条件はと
くに制限されるものではないが一般的な条件で説明す
る。触媒の配置としては、脱金属ゾーンには脱金属用の
新触媒を、脱硫脱窒素反応ゾーンの前段50%には脱硫
脱窒素用の新触媒を後段50%には脱硫脱窒素用の再生
触媒を充填すると好適である。重質油として前記で説明
したようなものでよいが、常圧残油が好適に使用され
る。この場合の反応温度は300〜450℃好ましくは
350〜420℃、水素分圧7.0〜25.0Pa好ま
しくは10.0〜15.0Pa、液空間速度0.01〜
10h-1好ましくは0.1〜5h-1、水素/原料油比5
00〜2500Nm3/kl好ましくは500〜2000Nm3/
klの範囲の条件が好適である。
Next, the hydrodesulfurization treatment including the hydrodenitrogenation treatment of heavy oil, which is one embodiment of the present invention, will be specifically described. If the above-mentioned catalyst arrangement method is adopted, the reaction conditions are not particularly limited, but will be described with general conditions. As for the arrangement of the catalyst, a new catalyst for demetallization is used in the demetallization zone, a new catalyst for desulfurization and denitrification is used in the first 50% of the desulfurization and denitrification reaction zone, and a regenerated catalyst for use in the latter 50%. Is preferably filled. As the heavy oil, those described above may be used, but a normal pressure residual oil is preferably used. In this case, the reaction temperature is 300 to 450 ° C., preferably 350 to 420 ° C., the hydrogen partial pressure is 7.0 to 25.0 Pa, preferably 10.0 to 15.0 Pa, and the liquid hourly space velocity is 0.01 to
10h -1 Preferably 0.1~5h -1, a hydrogen / feed oil ratio of 5
00~2500Nm 3 / kl preferably 500~2000Nm 3 /
Conditions in the range of kl are preferred.

【0030】生成油の窒素分、硫黄含有量、金属分含有
量(ニッケル、バナジウム)の調整は上記の反応条件の
うちから必要な条件たとえば反応温度を適宜選択して調
整すればよい。以上のようにして本発明の重質油水素化
脱窒素方法を用いれば、従来使用できないと考えられて
いた使用済み触媒を有効に活用し、残油等の脱窒素処理
が可能となる。
The nitrogen content, sulfur content, and metal content (nickel, vanadium) of the produced oil may be adjusted by appropriately selecting necessary conditions such as the reaction temperature from the above reaction conditions. As described above, the use of the heavy oil hydrodenitrogenation method of the present invention makes it possible to effectively utilize a spent catalyst which has been considered to be unusable in the past, and to perform a denitrification treatment of residual oil and the like.

【0031】[0031]

【実施例】次に、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例によりなんら制限される
ものではない。 〔実施例1〕市販のニッケル・モリブデンを担持したア
ルミナ担体触媒(新触媒1と言う)を用いた残油水素化
脱硫装置に8000時間中東系の常圧残油を通油した。
生成油中の主成分(343℃以上の沸点留分)の硫黄分
を一定になるよう反応温度を調整しながら水素化脱硫処
理を続け、使用済み触媒を得た。通油した代表的な常圧
残油の性状を表1に、脱硫装置での反応条件を表2に示
す。
EXAMPLES Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. [Example 1] Middle-east ordinary pressure residual oil was passed through a hydrodesulfurization unit for residual oil using a commercially available alumina-supported catalyst supporting nickel / molybdenum (referred to as New Catalyst 1) for 8000 hours.
The hydrodesulfurization treatment was continued while adjusting the reaction temperature so that the sulfur content of the main component (the boiling point fraction of 343 ° C. or higher) in the produced oil was constant, to obtain a used catalyst. Table 1 shows the properties of typical atmospheric residual oil that has passed through, and Table 2 shows the reaction conditions in the desulfurization unit.

【0032】この使用済み触媒を反応器から取り出し、
トルエンで十分洗浄した後乾燥させた。(洗浄触媒1と
言う)この洗浄触媒を500℃で3時間空気気流中で酸
化処理した。(再生触媒1と言う)それぞれの触媒の組
成、物性を表3に示す。小型高圧固定床反応器(容量2
00cc)の前段側に再生触媒1を50cc、後段側に
新触媒1を50cc充填した。これを、硫化剤であるD
MDSを添加し硫黄濃度を2.5%に調整した軽質軽油
を、135kg/cm3水素気流中、250℃で、24時間通
油し予備硫化処理をした。その後、前記常圧残油を用い
て水素化脱窒素反応を行った。反応条件を表6に、生成
油の性状を表7に示す。
The used catalyst is taken out of the reactor,
After sufficiently washing with toluene, it was dried. This washing catalyst was oxidized at 500 ° C. for 3 hours in a stream of air. Table 3 shows the composition and physical properties of each catalyst (referred to as regenerated catalyst 1). Small high pressure fixed bed reactor (capacity 2
(00 cc), 50 cc of the regenerated catalyst 1 was filled in the first stage, and 50 cc of the new catalyst 1 was packed in the second stage. This is converted to the sulfurizing agent D
Light gas oil, to which MDS was added to adjust the sulfur concentration to 2.5%, was passed through a 135 kg / cm 3 hydrogen stream at 250 ° C. for 24 hours to carry out preliminary sulfurization treatment. Thereafter, a hydrodenitrogenation reaction was carried out using the normal pressure residual oil. The reaction conditions are shown in Table 6, and the properties of the produced oil are shown in Table 7.

【0033】〔実施例2〕小型高圧固定床反応器(容量
200cc)の前段側に再生触媒1を25cc、後段側
に新触媒1を75cc充填した以外は〔実施例1〕と同
様の操作を行った。得られた生成油の性状を表7に示
す。
Example 2 The same operation as in Example 1 was carried out except that 25 cc of the regenerated catalyst 1 was charged to the front stage of the small high-pressure fixed bed reactor (capacity: 200 cc), and 75 cc of the new catalyst 1 was charged to the rear stage. went. Table 7 shows the properties of the resulting oil.

【0034】〔実施例3〕市販のニッケル・モリブデン
を担持したアルミナ・りん担体触媒(新触媒2と言う)
を用いて、〔実施例1〕と同様の操作により洗浄触媒
2、再生触媒2を得た。それぞれの触媒の組成、物性を
表4に示す。小型高圧固定床反応器(容量200cc)
の前段側に再生触媒2を50cc、後段側に新触媒2を
50cc充填した以外は〔実施例1〕と同様の操作を行
った。得られた生成油の性状を表7に示す。
Example 3 Commercially available nickel / molybdenum supported alumina / phosphorus supported catalyst (referred to as New Catalyst 2)
The washing catalyst 2 and the regenerated catalyst 2 were obtained by the same operation as in [Example 1]. Table 4 shows the composition and physical properties of each catalyst. Small high pressure fixed bed reactor (capacity 200cc)
The same operation as in [Example 1] was performed except that 50 cc of the regenerated catalyst 2 was filled in the first stage and 50 cc of the new catalyst 2 was filled in the second stage. Table 7 shows the properties of the resulting oil.

【0035】〔実施例4〕〔実施例1〕において、新触
媒1を減圧軽油水素化脱硫装置にて8000時間中東系
の減圧軽油を通油した。生成油中の主成分(360℃以
上の沸点留分)の硫黄分を一定になるよう反応温度を調
整しながら水素化脱硫処理を続け、使用済み触媒を得
た。減圧軽油の性状を表1に、脱硫装置での反応条件を
表2に示す。この使用済み触媒より、〔実施例1〕と同
様の操作により洗浄触媒3、再生触媒3を得た。それぞ
れの触媒の組成、物性を表5に示す。小型高圧固定床反
応器(容量200cc)の前段側に再生触媒3を50c
c、後段側に新触媒1を50cc充填した以外は〔実施
例1〕と同様の操作を行った。得られた生成油の性状を
表7に示す。
Example 4 In Example 1, the fresh catalyst 1 was passed through a Middle Eastern vacuum gas oil for 8000 hours in a vacuum gas oil hydrodesulfurization unit. The hydrodesulfurization treatment was continued while adjusting the reaction temperature so that the sulfur content of the main component (the boiling point fraction of 360 ° C. or higher) in the produced oil was constant, to obtain a used catalyst. Table 1 shows the properties of the vacuum gas oil, and Table 2 shows the reaction conditions in the desulfurization unit. From this used catalyst, a washing catalyst 3 and a regenerated catalyst 3 were obtained in the same manner as in [Example 1]. Table 5 shows the composition and physical properties of each catalyst. 50c of regenerated catalyst 3 in front of small high pressure fixed bed reactor (capacity 200cc)
c, The same operation as in [Example 1] was performed except that 50 cc of the new catalyst 1 was filled in the subsequent stage. Table 7 shows the properties of the resulting oil.

【0036】〔比較例1〕小型高圧固定床反応器(容量
200cc)の前段側に新触媒1を50cc、後段側に
再生触媒1を50cc充填した以外は〔実施例1〕と同
様の操作を行った。得られた生成油の性状を表7に示
す。 〔比較例2〕小型高圧固定床反応器(容量200cc)
の前段側に新触媒1を75cc、後段側に再生触媒1を
25cc充填した以外は〔実施例2〕と同様の操作を行
った。得られた生成油の性状を表7に示す。 〔比較例3〕小型高圧固定床反応器(容量200cc)
の前段側に新触媒2を50cc、後段側に再生触媒2を
50cc充填した以外は〔実施例3〕と同様の操作を行
った。得られた生成油の性状を表7に示す。 〔比較例4〕小型高圧固定床反応器(容量200cc)
の前段側に新触媒1を50cc、後段側に再生触媒3を
50cc充填した以外は〔実施例4〕と同様の操作を行
った。得られた生成油の性状を表7に示す。
[Comparative Example 1] The same operation as in [Example 1] was performed except that 50 cc of the new catalyst 1 was charged in the front stage of the small high-pressure fixed bed reactor (capacity: 200 cc), and 50 cc of the regenerated catalyst 1 was charged in the rear stage. went. Table 7 shows the properties of the resulting oil. [Comparative Example 2] Small high-pressure fixed-bed reactor (capacity 200 cc)
The same operation as in [Example 2] was performed except that 75 cc of the new catalyst 1 was filled in the first stage and 25 cc of the regenerated catalyst 1 was charged in the second stage. Table 7 shows the properties of the resulting oil. [Comparative Example 3] Small high-pressure fixed-bed reactor (capacity 200 cc)
The same operation as in [Example 3] was performed except that 50 cc of the new catalyst 2 was filled in the first stage and 50 cc of the regenerated catalyst 2 was charged in the second stage. Table 7 shows the properties of the resulting oil. [Comparative Example 4] Small high-pressure fixed-bed reactor (capacity 200 cc)
The same operation as in [Example 4] was performed except that 50 cc of the new catalyst 1 was filled in the first stage and 50 cc of the regenerated catalyst 3 was filled in the second stage. Table 7 shows the properties of the resulting oil.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【発明の効果】本発明の触媒の配置方法による重質油水
素化脱窒素方法においては、残油等を通常の新触媒を使
用した脱窒素方法と同じような条件で良好な脱窒素反応
を行うことができ、使用済み触媒の有効利用方法として
優れた効果を表している。
In the method for hydrodenitrogenation of heavy oil according to the method of arranging catalysts according to the present invention, a good denitrification reaction of residual oils and the like is carried out under the same conditions as those for denitrification using an ordinary new catalyst. It can be carried out and shows an excellent effect as a method for effectively using the used catalyst.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 触媒を充填した反応ゾーン中で、重質油
を水素化脱窒素するにあたり、少なくとも一部の反応ゾ
ーンの前段側に再生触媒を、後段側に新触媒を配置する
触媒配置方法を特徴とする重質油の水素化脱窒素方法。
1. A method for arranging a regenerated catalyst at the front of at least a part of a reaction zone and a new catalyst at a rear of a reaction zone for hydrodenitrogenation of heavy oil in a reaction zone filled with the catalyst. A method for hydrodenitrogenation of heavy oil, comprising:
【請求項2】 前記の少なくとも一部の反応ゾーンにお
ける新触媒の充填量が20〜95体積%、再生触媒の充
填量が5〜80%である請求項1記載の水素化脱窒素方
法。
2. The hydrodenitrogenation method according to claim 1, wherein the charged amount of the fresh catalyst is 20 to 95% by volume and the charged amount of the regenerated catalyst is 5 to 80% in at least a part of the reaction zones.
【請求項3】 再生触媒のバナジウム含有量が再生触媒
基準で酸化物として35重量%以下である請求項1また
は2記載の水素化脱窒素方法。
3. The method according to claim 1, wherein the vanadium content of the regenerated catalyst is 35% by weight or less as an oxide based on the regenerated catalyst.
【請求項4】 再生触媒の炭素含有量が再生触媒基準で
15重量%以下である請求項1〜3のいずれかに記載の
水素化脱窒素方法。
4. The hydrodenitrogenation method according to claim 1, wherein the carbon content of the regenerated catalyst is 15% by weight or less based on the regenerated catalyst.
【請求項5】 再生触媒の比表面積が60〜200m2/g
である請求項1〜4のいずれかに記載の水素化脱窒素方
法。
5. The regenerated catalyst has a specific surface area of 60 to 200 m 2 / g.
The hydrodenitrogenation method according to any one of claims 1 to 4, wherein
【請求項6】 再生触媒の細孔容積が0.3〜1.0cc
/gである請求項1〜5のいずれかに記載の水素化脱窒素
方法。
6. The regenerated catalyst has a pore volume of 0.3 to 1.0 cc.
The hydrodenitrogenation method according to any one of claims 1 to 5, wherein the ratio is / g.
【請求項7】 再生触媒が、酸化物担体にモリブデン、
タングステン、コバルトまたは、ニッケルのうち少なく
とも一種類の金属種を担持した触媒を水素化処理プロセ
スで使用した後、再生処理したものである請求項1〜6
のいずれかに記載の水素化脱窒素方法。
7. A regenerated catalyst comprising: molybdenum on an oxide carrier;
The catalyst which supports at least one kind of metal selected from tungsten, cobalt and nickel is used in a hydrogenation process and then regenerated.
The method for hydrodenitrogenation according to any one of the above.
【請求項8】 酸化物担体がアルミナで担持金属種がニ
ッケルおよびモリブデンである請求項7記載の水素化脱
窒素方法。
8. The hydrodenitrogenation method according to claim 7, wherein the oxide carrier is alumina and the supported metal species are nickel and molybdenum.
【請求項9】 酸化物担体が、リン、ほう素、けい素の
酸化物のうちの少なくとも一種類を含むアルミナで、担
持金属種がニッケルまたはコバルト、およびモリブデン
である請求項7記載の水素化脱窒素方法。
9. The hydrogenation according to claim 7, wherein the oxide carrier is alumina containing at least one of phosphorus, boron and silicon oxides, and the supported metal species is nickel or cobalt and molybdenum. Denitrification method.
【請求項10】 担持金属種であるニッケルまたはコバ
ルトの含有量が再生触媒基準で0.1〜10重量%、お
よびモリブデンの含有量が再生触媒基準で0.1〜25
重量%の範囲にある、請求項7〜9のいずれかに記載の
水素化脱窒素方法。
10. The content of nickel or cobalt as a supported metal species is 0.1 to 10% by weight based on the regenerated catalyst, and the content of molybdenum is 0.1 to 25 based on the regenerated catalyst.
The hydrodenitrogenation process according to any of claims 7 to 9, which is in the range of% by weight.
JP14365398A 1998-05-26 1998-05-26 Hydrogenation and denitrification of heavy oil Pending JPH11335676A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14365398A JPH11335676A (en) 1998-05-26 1998-05-26 Hydrogenation and denitrification of heavy oil
US09/463,387 US6406615B1 (en) 1998-05-26 1999-05-25 Hydrotreating process for residual oil
KR1020007000823A KR100600189B1 (en) 1998-05-26 1999-05-25 Method of hydrogenating heavy oil
PCT/JP1999/002743 WO1999061557A1 (en) 1998-05-26 1999-05-25 Hydrotreating process for residual oil
EP99921262A EP1010744A1 (en) 1998-05-26 1999-05-25 Hydrotreating process for residual oil
TW088108550A TW483931B (en) 1998-05-26 1999-05-25 Method of hydrogenating heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14365398A JPH11335676A (en) 1998-05-26 1998-05-26 Hydrogenation and denitrification of heavy oil

Publications (1)

Publication Number Publication Date
JPH11335676A true JPH11335676A (en) 1999-12-07

Family

ID=15343803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14365398A Pending JPH11335676A (en) 1998-05-26 1998-05-26 Hydrogenation and denitrification of heavy oil

Country Status (1)

Country Link
JP (1) JPH11335676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212448A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Hydrodenitrogenation catalyst, production method of hydrodenitrogenation catalyst and manufacturing method of light oil base material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212448A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Hydrodenitrogenation catalyst, production method of hydrodenitrogenation catalyst and manufacturing method of light oil base material

Similar Documents

Publication Publication Date Title
US10414991B2 (en) Processing of heavy hydrocarbon feeds
JP3439790B2 (en) Hydroconversion method
US6398950B1 (en) Hydrogenation catalyst and method of hydrogenating heavy oil
KR100600189B1 (en) Method of hydrogenating heavy oil
TWI652339B (en) Recycling method for heavy oil desulfurization catalyst
JP3715893B2 (en) Method for regenerating hydrotreating catalyst
RU2607925C1 (en) Catalyst and method for hydroskimming diesel distillates
JP6420961B2 (en) Recycling method of heavy oil desulfurization catalyst
CA2054434C (en) Hydrodenitrification process
US4298458A (en) Low pressure hydrotreating of residual fractions
JP3516383B2 (en) Hydroprocessing of heavy oil
JP3957122B2 (en) Method for hydrotreating heavy hydrocarbon oils
JP3527635B2 (en) Hydrodesulfurization method for heavy oil
JPH11335676A (en) Hydrogenation and denitrification of heavy oil
JP3708381B2 (en) Regeneration method of heavy oil hydrotreating catalyst and regenerated hydrotreating catalyst
EP0034908A2 (en) Process for hydrodemetallization of hydrocarbon streams
JP2004161786A (en) Method for regenerating hydrogenation treatment catalyst for heavy oil
JP2016198691A (en) Regeneration catalyst for treating heavy oil and manufacturing method therefor and method for using regeneration catalyst for treating heavy oil
EP1066879A1 (en) Regenerated hydrogenation catalyst and methods of hydrogenating heavy oil
JP2000109852A (en) Hydrogen treating process for heavy oil

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040210

Free format text: JAPANESE INTERMEDIATE CODE: A02