WO2015029617A1 - Hydrocarbon oil production method - Google Patents

Hydrocarbon oil production method Download PDF

Info

Publication number
WO2015029617A1
WO2015029617A1 PCT/JP2014/068620 JP2014068620W WO2015029617A1 WO 2015029617 A1 WO2015029617 A1 WO 2015029617A1 JP 2014068620 W JP2014068620 W JP 2014068620W WO 2015029617 A1 WO2015029617 A1 WO 2015029617A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reactivity
mass
low
desulfurization
Prior art date
Application number
PCT/JP2014/068620
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 森
隆太郎 小出
義明 福井
智 高崎
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2015029617A1 publication Critical patent/WO2015029617A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen

Definitions

  • the present invention relates to a method for producing a hydrocarbon oil.
  • bottom tower oil (atmospheric residual, AR) is obtained by atmospheric distillation of crude oil.
  • Products such as gasoline, base oils for lubricants, and other chemicals can be obtained by subjecting atmospheric residue and vacuum gas oil obtained by vacuum distillation of atmospheric residue to desulfurization and catalytic cracking.
  • the vacuum residue obtained by vacuum distillation of the atmospheric residue is a product with a lower profit margin than the above products. Therefore, it is desirable to produce products with higher profit margins from vacuum residue.
  • Patent Document 1 prepares a raw material oil by mixing a solvent-removed oil (DAO: Desphailized Oil) obtained by solvent-removing a reduced-pressure residual oil with a normal-pressure residual oil and / or a reduced-pressure light oil.
  • DAO solvent-removed oil
  • a technique for producing fuel such as gasoline by hydrorefining of oil is disclosed.
  • the hydrorefining of raw material oil includes a demetallization process and a subsequent desulfurization process.
  • the metal oil (catalyst poison) that degrades the hydrodesulfurization catalyst is removed from the raw oil by bringing the raw oil into contact with the demetallation catalyst and hydrogenating it.
  • the sulfur in the raw material oil is removed by bringing the raw material oil after the demetallization process into contact with a desulfurization catalyst and hydrogenating it.
  • the activity of a demetallization catalyst that removes metal components can be obtained by hydrorefining solvent debris by the same method as conventional hydrorefining of atmospheric residue. It has been found that the activity reached the lower limit earlier than expected, and the desulfurization activity of the desulfurization catalyst rapidly decreased following the deactivation of the demetallization catalyst. In other words, the hydrorefining of solvent debris oil using the conventional demetallation catalyst and desulfurization catalyst for atmospheric residual oil has a longer life of each catalyst compared to the hydrorefining of atmospheric residual oil. It will be shorter.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a method for producing a hydrocarbon oil that can suppress deactivation of a desulfurization catalyst.
  • One aspect of the method for producing a hydrocarbon oil according to the present invention includes a demetallation step in which only a solvent defragmentation oil is brought into contact with a demetallation catalyst in the presence of hydrogen gas, and a solvent defragmentation oil that has undergone the demetallation step.
  • the low reactivity catalyst is composed of a porous carrier, a Group VI element supported on the carrier,
  • the content of the group VIII element based on the catalyst mass in the low-reactivity catalyst is 0% by mass or more
  • the high-reactivity catalyst is composed of a porous carrier and a group VI supported on the carrier.
  • Element and a Group VIII element, having a low reactivity The catalyst mass content of the Group VIII element is lower than the content of the catalyst based on the weight of the Group VIII element in the highly reactive catalysts in. Note that both the demetallation catalyst and the desulfurization catalyst have hydrogenation activity.
  • the content of the group VI element based on the catalyst mass in the low-reactivity catalyst is lower than the content of the group VI element based on the catalyst mass in the high-reactivity catalyst.
  • the Group VI element is at least one of molybdenum and tungsten
  • the Group VIII element is at least one of nickel and cobalt.
  • the content of the Group VI element oxide in the low-reactivity catalyst based on the catalyst mass is 1% by mass or more and less than 8% by mass, and the content of the Group VIII element oxide in the low-reactivity catalyst based on the catalyst mass
  • the rate is preferably 0% by mass or more and less than 1% by mass.
  • the reaction temperature is 350 to 450 ° C.
  • the partial pressure of hydrogen gas is 5 to 25 MPa
  • the liquid space velocity (LHSV) is 0.1 to 3.0 h ⁇ 1
  • the / oil ratio ratio of the volume of hydrogen gas to the volume of solvent removal oil is preferably 400 to 1500 Nm 3 / m 3 .
  • the reaction temperature is 350 to 450 ° C.
  • the partial pressure of hydrogen gas is 5 to 25 MPa
  • the liquid space velocity is 0.1 to 3.0 h ⁇ 1
  • the hydrogen / oil ratio is 400 to 1500 Nm 3 / m 3 is preferable.
  • a method for producing a hydrocarbon oil capable of suppressing deactivation of a desulfurization catalyst is provided.
  • FIG. 1a is the molecular weight distribution of the vanadium compound in the solvent-desorbed oil
  • FIG. 1b is the molecular weight distribution of the vanadium compound in the atmospheric residue.
  • bottom tower oil (atmospheric residue) is obtained by atmospheric distillation of crude oil.
  • the atmospheric residue is a heavy oil having a fraction having a boiling point of 343 ° C. or higher and a content of 80% by mass or higher.
  • a vacuum gas oil and a vacuum residue are obtained by vacuum distillation of the atmospheric residue.
  • specific examples of crude oil include petroleum-based crude oil, synthetic crude oil derived from oil sand, and bitumen reformed oil.
  • Hydrocarbon oil is obtained by desulfurization (for example, hydrodesulfurization) of vacuum gas oil and fluid catalytic cracking or hydrocracking after desulfurization. Similarly, hydrocarbon oil is obtained by desulfurization of atmospheric residue and catalytic cracking or hydrocracking after desulfurization.
  • solvent devolatilized oil is obtained by solvent devolatilization of the above vacuum residue.
  • the solvent deasphalting oil is a fraction obtained by extracting a heavy oil (for example, a vacuum residue) having a boiling point of 550 ° C. or higher and a fraction having a boiling point of 550 ° C. or higher with a solvent.
  • a heavy oil for example, a vacuum residue
  • a chain saturated hydrocarbon having 3 to 6 carbon atoms may be used.
  • Specific examples of the solvent include propane, normal butane, isobutane, normal pentane, isopentane, and normal hexane. One or more of these solvents may be used as the solvent.
  • the method for producing a hydrocarbon oil according to the present embodiment includes a demetallation step using the solvent debris oil and a subsequent desulfurization step.
  • the demetallation step only solvent degreasing oil is brought into contact with the demetallation catalyst in the presence of hydrogen gas.
  • the metal component in the solvent removal solvent is removed.
  • the desulfurization step the solvent debris oil after the demetallation step is brought into contact with the desulfurization catalyst in the presence of hydrogen gas.
  • the sulfur content (and nitrogen content) in the solvent removal solvent is removed.
  • Hydrocarbon oil is obtained by fluid catalytic cracking or hydrocracking of solvent debris oil that has undergone the demetallization process and the desulfurization process.
  • the metal-containing compound is a substance containing a metal and a hydrocarbon.
  • the structure of the metal-containing compound is not particularly limited.
  • the hydrocarbon and the metal may form a chemical bond (for example, coordination bond), or the hydrocarbon may cover the fine metal.
  • the metal is, for example, vanadium or nickel.
  • the hydrocarbon is not particularly limited, and may be, for example, a chain hydrocarbon or an isomer thereof, a cyclic hydrocarbon, a heterocyclic compound, or an aromatic hydrocarbon.
  • the smaller the molecular weight of the metal-containing compound the easier the hydrogenation and decomposition of the metal-containing compound by the demetallation catalyst, and the easier the metal is removed from the metal-containing compound.
  • the metal removed from the metal-containing compound in the demetallation step is taken into countless pores formed in the demetallation catalyst.
  • a metal-containing compound having a relatively low molecular weight is referred to as a “decomposable metal component”.
  • a metal-containing compound having a relatively large molecular weight is referred to as “persistent metallic composition”.
  • a metal-containing compound having vanadium is referred to as a vanadium-containing compound.
  • FIG. 1a shows the molecular weight distribution (hereinafter referred to as “DAO distribution”) of a vanadium-containing compound in solvent-desorbed oil. This DAO distribution is obtained by the following experiment conducted by the present inventors.
  • solvent permeated oil is fractionated by molecular weight difference using gel permeation chromatography (GPC: Gel Permeation Chromatography).
  • the molecular weight of each fractionated component is a polystyrene equivalent molecular weight (relative molecular weight) determined from a calibration curve using polystyrene as a standard sample.
  • the mass conversion or molar conversion concentration of metal (vanadium) in each component fractionated by GPC is measured by inductively coupled plasma (ICP: Inductively Coupled Plasma) emission spectroscopic analysis.
  • ICP Inductively Coupled Plasma
  • the horizontal axis of FIG. 1a is a value based on the GPC, and is the molecular weight of the vanadium-containing compound.
  • the scale on the horizontal axis is a logarithmic scale.
  • the vertical axis of FIG. 1a is a value corresponding to the vanadium concentration measured by the ICP emission spectroscopic analysis, and is the amount of vanadium at each molecular weight shown on the horizontal axis.
  • FIG. 1b shows the molecular weight distribution of the vanadium-containing compound in the atmospheric residue (hereinafter referred to as “AR distribution”). This AR distribution was obtained by the present inventors based on GPC and ICP emission spectroscopic analysis of atmospheric residual oil as in the case of the DAO distribution.
  • the DAO distribution in FIG. 1a has one peak at a small molecular weight.
  • the DAO distribution indicates that the metal component (vanadium component) is small in the region where the molecular weight is large.
  • the AR distribution in FIG. 1b shows that a large amount of metal component (vanadium component) is present from a region having a low molecular weight to a region having a high molecular weight, in contrast to the DAO distribution.
  • most of the metal component (vanadium component) contained in the solvent-peeling oil is an easily decomposable metal component.
  • atmospheric residual oil is not only an easily decomposable metal component but also a large amount of hardly decomposable metal. Contains ingredients.
  • the atmospheric residual oil contains not only readily decomposable metal components but also a large amount of hardly decomposable metal components. The higher the hydrogenation activity of the catalyst, the easier the metal component is removed from the atmospheric residue.
  • the inventors have clarified by experiments that when atmospheric residue is brought into contact with a demetallation catalyst having high hydrogenation activity, metal is deposited not only near the surface of the demetallation catalyst but also inside the demetalization catalyst. did.
  • the present inventors contact the solvent degreasing oil with a demetallation catalyst having a high hydrogenation activity, the amount of metal deposited near the surface of the demetallation catalyst is significantly higher than the amount of metal deposited inside the demetallation catalyst. It was clarified by experiment that it would increase.
  • the present inventors have found the following demetalization catalyst which is difficult to deactivate based on the above knowledge about the relationship between the molecular weight of the vanadium-containing compound and the demetallation activity of the demetallation catalyst.
  • the demetallation catalyst according to this embodiment includes at least a low-reactivity catalyst.
  • This low-reactivity catalyst is a catalyst having a low hydrogenation activity as compared with a high-reactivity catalyst suitable for a conventional demetallation step of atmospheric residue.
  • the ratio of the volume of the low-reactivity catalyst to the entire demetallation catalyst is 50% by volume or more and 100% by volume or less.
  • the proportion of the volume of the low-reactivity catalyst in the total demetallation catalyst may be 60% by volume or more, 70% by volume or more, 80% by volume or more, or 90% by volume or more.
  • the ratio of the volume of the highly reactive catalyst to the whole demetalization catalyst is 0% by volume or more and less than 50% by volume.
  • the proportion of the volume of the highly reactive catalyst in the entire demetallation catalyst may be 40% by volume or less, 30% by volume or less, 20% by volume or less, and 10% by volume or less.
  • the demetallation catalyst may consist only of a low-reactivity catalyst. That is, the demetallation catalyst does not need to contain a highly reactive catalyst.
  • the volume ratio of the low-reactivity catalyst in the demetalization catalyst is within the above range, hydrogenation of the easily decomposable metal component in the solvent debris oil proceeds rapidly on the demetallation catalyst surface. The phenomenon is suppressed. As a result, a phenomenon in which an excessive amount of metal derived from the metal component accumulates in the vicinity of the surface of the demetallization catalyst in a short period of time is suppressed, and the entrance of the pores formed in the demetallization catalyst is difficult to be blocked by the metal. . Therefore, in the present embodiment, the metal is easily taken into the pores of the catalyst for a long period of time, and the metal component is easily removed from the solvent desorbing oil.
  • the demetallation catalyst When the demetallation catalyst includes both a low-reactivity catalyst and a high-reactivity catalyst, the demetallation catalyst consists of a low-reactivity catalyst part (low-reactivity catalyst layer) composed of a low-reactivity catalyst, and a high-reactivity catalyst. It is preferable to comprise a highly reactive catalyst portion (highly reactive catalyst layer). And it is preferable to make solvent deasphalted oil contact a highly reactive catalyst part after making it contact a low reactive catalyst part. In this case, the phenomenon in which hydrogenation of the easily decomposable metal component proceeds rapidly on the surface of the highly reactive catalyst is suppressed, and the entrance of the pores formed in the highly reactive catalyst is less likely to be blocked by the metal.
  • the low-reactivity catalyst has a porous carrier and a Group VI element carried on the carrier.
  • the content of the Group VIII element in the low-reactivity catalyst based on the catalyst mass is 0% by mass or more.
  • the highly reactive catalyst has a porous carrier and a Group VI element and a Group VIII element supported on the carrier.
  • the content of the group VIII element based on the catalyst mass in the low-reactivity catalyst is lower than the content of the group VIII element based on the catalyst mass in the high-reactivity catalyst.
  • the demetallation catalyst and desulfurization catalyst are deactivated. Can be suppressed.
  • the porous carrier that the low-reactivity catalyst or the high-reactivity catalyst has is not particularly limited.
  • Specific examples of the porous carrier include inorganic oxides such as alumina, silica, and silica-alumina.
  • the carrier of the low reactivity catalyst and the carrier of the high reactivity catalyst may be the same or different.
  • the center pore diameter of each demetallation catalyst is preferably 10 to 50 nm.
  • the median pore diameter is the cumulative volume of pores having each diameter when V is the cumulative pore volume of pores having a pore diameter of 2 nm or more and less than 60 nm obtained by the nitrogen gas adsorption method. In the cumulative pore volume curve, it means the pore diameter at which the cumulative pore volume is V / 2.
  • each demetallation catalyst may be about 0.5 to 1.5 cm 3 / g.
  • the BET specific surface area of each demetallation catalyst may be about 100 to 250 m 2 / g.
  • the above Group VI element belongs to the short periodic table (old periodic table) and corresponds to the Group 6 element of the long periodic table (new periodic table) in the IUPAC format. That is, the Group VI element is at least one selected from the group consisting of chromium, molybdenum, tungsten, and seaborgium.
  • the Group VIII element belongs to the short periodic table and corresponds to the Group 8 element, the Group 9 element, and the Group 10 element of the long periodic table in the IUPAC format. In other words, the Group VIII element is at least one selected from the group consisting of iron, ruthenium, osmium, hashium, cobalt, rhodium, iridium, miterium, nickel, palladium, platinum, and darmstatium.
  • the Group VI element included in the low-reactivity catalyst and the Group VI element included in the high-reactivity catalyst may be the same or different.
  • the Group VIII element included in the low-reactivity catalyst and the Group VIII element included in the high-reactivity catalyst may be the same or different.
  • the content of the group VI element based on the catalyst mass in the low-reactivity catalyst is preferably lower than the content of the group VI element based on the catalyst mass in the highly reactive catalyst.
  • the hydrogenation activity of the low-reactivity catalyst tends to be lower than the hydrogenation activity of the high-reactivity catalyst.
  • the Group VI element possessed by the low-reactivity catalyst or the high-reactivity catalyst is preferably at least one of molybdenum and tungsten, and more preferably molybdenum. When the low-reactivity catalyst or the high-reactivity catalyst has these Group VI elements, deactivation of the demetallation catalyst and the desulfurization catalyst is remarkably suppressed.
  • the Group VIII element contained in the low-reactivity catalyst or the high-reactivity catalyst is preferably at least one of nickel and cobalt, and more preferably nickel. When the highly reactive catalyst has these Group VIII elements, deactivation of the demetallation catalyst and the desulfurization catalyst is remarkably suppressed.
  • standard content rate of the oxide of the group VI element in a low-reactivity catalyst is 1 to 8 mass%, and it is 1 to 6 mass%. Is more preferable.
  • the content of the catalyst based on the mass of the Group VIII element oxide in the low-reactivity catalyst is preferably 0% by mass or more and less than 1% by mass. When the lower limit of the content of the Group VI element oxide or Group VIII element oxide in the low-reactivity catalyst is the above value, the low-reactivity catalyst can have sufficient hydrogenation activity.
  • the Group VI element oxide is, for example, MoO 3 or WO 3 .
  • the oxide of the Group VIII element is, for example, NiO or CoO.
  • the catalyst-based content of the Group VI element oxide in the highly reactive catalyst may be 8% by mass or more and 30% by mass or less.
  • the content of the catalyst based on the mass of the Group VIII element oxide in the highly reactive catalyst may be 1% by mass or more and 10% by mass or less.
  • the desulfurization catalyst is not particularly limited.
  • a catalyst having a porous carrier and an active metal supported on the carrier may be used.
  • the carrier alumina, silica or silica-alumina may be used.
  • the active metal at least one of the Group 5 element, Group 6 element, Group 8 element, Group 9 element, and Group 10 element of the long periodic table may be used.
  • the active metal is preferably a combination of at least one of nickel and cobalt and at least one of molybdenum and tungsten. Specific examples include Ni—Mo, Co—Mo, and Ni—Co—Mo.
  • the central pore diameter of the desulfurization catalyst may be about 8 to 12 nm.
  • the pore volume of the desulfurization catalyst may be about 0.4 to 1.0 cm 3 / g.
  • the BET specific surface area of the desulfurization catalyst may be about 180 to 250 m 2 / g.
  • the shape of the demetallization catalyst and desulfurization catalyst is not particularly limited.
  • the shape of each catalyst may be, for example, a prismatic shape, a cylindrical shape, a three-leaf shape, a four-leaf shape, or a spherical shape.
  • the size of each catalyst is not particularly limited, but the particle size of the demetallation catalyst may be about 1 to 8 mm, and the particle size of the desulfurization catalyst may be about 0.8 to 3.0 mm.
  • reaction temperature temperature of the metal removal catalyst
  • Partial pressure of hydrogen gas in the reaction field 5 to 25 MPa. More preferably 10 to 20 MPa.
  • Liquid hourly space velocity (LHSV) 0.1 to 3.0 h ⁇ 1 . More preferably, 0.1 to 2.0 h ⁇ 1 .
  • Hydrogen / oil ratio 400-1500 Nm 3 / m 3 . More preferably, it is 500 to 1200 Nm 3 / m 3 .
  • the hydrodesulfurization of solvent debris oil in the desulfurization step is preferably performed under the following reaction conditions.
  • Reaction temperature temperature of the desulfurization catalyst
  • Partial pressure of hydrogen gas in the reaction field 5 to 25 MPa. More preferably 10 to 20 MPa.
  • Liquid hourly space velocity (LHSV) 0.1 to 3.0 h ⁇ 1 . More preferably, 0.1 to 2.0 h ⁇ 1 .
  • Hydrogen / oil ratio 400-1500 Nm 3 / m 3 . More preferably, it is 500 to 1200 Nm 3 / m 3 .
  • reaction temperature in the demetallization step or the desulfurization step is equal to or higher than the lower limit
  • the content of sulfur in the solvent debris oil after the desulfurization step is easily lowered.
  • reaction temperature is equal to or lower than the above upper limit value
  • the coking reaction is easily suppressed, and a differential pressure in the reactor (reaction tower) in which the demetallation step or the desulfurization step is performed is difficult to occur.
  • the partial pressure of the hydrogen gas in the demetallization process or the desulfurization process is equal to or higher than the lower limit, the demetallization and desulfurization reactions easily proceed, and deactivation of the demetallization catalyst and desulfurization catalyst is likely to be suppressed.
  • the partial pressure of the hydrogen gas is equal to or higher than the above upper limit value, high pressure resistance is required for the reaction tower or the consumption amount of the hydrogen gas increases, so that the economic efficiency of the demetallization process or the desulfurization process is not good.
  • the liquid space velocity of the solvent debris oil in the demetalization step or desulfurization step is less than the lower limit value, the amount of solvent debris oil treated is small, and the economics of the demetallation step or desulfurization step are not good.
  • the liquid space velocity is not more than the above upper limit value, the demetallation catalyst and the desulfurization catalyst are hardly deactivated, and the reaction temperature is easily maintained at a low level.
  • the reaction conditions for the demetallization process and the reaction conditions for the desulfurization process may be different. After performing the demetallization process in one reaction tower, the desulfurization process may be performed in another reaction tower.
  • the demetallation catalyst and the desulfurization catalyst may be installed in the same reaction tower, and the demetallation step and the desulfurization step may be continuously performed under the same reaction conditions.
  • a demetallization catalyst part demetallization catalyst layer
  • a desulfurization catalyst part composed of a desulfurization catalyst
  • solvent debris oil is removed from the demetallization catalyst part. After contacting, the desulfurization catalyst part may be contacted.
  • the ratio of the vanadium content in the vanadium-containing compound whose molecular weight (polystyrene equivalent molecular weight) is 3000 or less in the vanadium content in all the vanadium-containing compounds in the solvent-desorbed oil is the vanadium content in all the vanadium-containing compounds. It is preferable that it is 80 mass% or more with respect to it. In this case, deactivation of the demetallation catalyst and desulfurization catalyst is remarkably suppressed.
  • Example 1 The demetallation process and desulfurization process using only solvent deasphalted oil were carried out by the following procedure.
  • the properties of the solvent removal oil used were as follows. Sulfur content: 4.7% by mass. Vanadium content: 42 mass ppm. Nickel content: 21 ppm by mass. Asphaltene content: 0.2% by mass. Density at 15 ° C .: 1.01 g / cm 3 . Kinematic viscosity at 100 ° C .: 456 mm 2 / s. Residual carbon content: 14.4% by mass. Nitrogen content: 0.24% by mass.
  • a method for analyzing the above-described properties of the solvent-peeling oil is as follows.
  • Sulfur content JIS K2541 “Crude oil and petroleum products—sulfur content test method”.
  • Vanadium and nickel content JIS K0116 “General Rules for Emission Spectroscopy”.
  • Content of asphaltenes IP-143 (ASTM D6560) “Determination of Asphaltenes in Crude Petroleum and Petroleum Products”.
  • the molecular weight distribution of the vanadium-containing compound in the solvent-peeling oil was measured by the above GPC and ICP emission spectroscopic analysis.
  • the vanadium content in the vanadium-containing compound having a molecular weight of 3000 or less was 94% by mass with respect to the vanadium content in all the vanadium-containing compounds in the solvent-desorbed oil.
  • GPC and ICP emission spectroscopic analysis were performed under the following conditions.
  • the first catalyst layer, the second catalyst layer, and the third catalyst layer were stacked in this order in the reaction tower.
  • a 1st catalyst layer is a layer which consists only of the low-reactive catalyst which is a demetallation catalyst.
  • a 2nd catalyst layer is a layer which consists only of the highly reactive catalyst which is a demetallation catalyst.
  • a 3rd catalyst layer is a layer which consists only of a desulfurization catalyst. The ratio of the volume of the first catalyst layer (low-reactivity catalyst) to the total volume of the first catalyst layer and the second catalyst layer (total volume of the demetallation catalyst) was 50% by volume.
  • the ratio of the volume of the second catalyst layer (highly reactive catalyst) to the total volume of the first catalyst layer and the second catalyst layer (total volume of the demetalized catalyst) was 50% by volume.
  • the volume of the third catalyst layer was the same as the sum of the volumes of the first catalyst layer and the second catalyst layer.
  • the low-reactivity catalyst was provided with porous ⁇ -alumina, and MoO 3 and NiO supported on ⁇ -alumina.
  • the supported amount (content rate) of MoO 3 in the low-reactivity catalyst was 5.0% by mass with respect to the total mass of the low-reactivity catalyst.
  • the supported amount (content rate) of NiO in the low-reactivity catalyst was 0.5% by mass with respect to the total mass of the low-reactivity catalyst.
  • the median pore diameter of the low-reactivity catalyst ( ⁇ alumina) was 18 nm.
  • the BET specific surface area of the low-reactivity catalyst was 180 m 2 / g.
  • the highly reactive catalyst comprises porous ⁇ alumina and MoO 3 and NiO supported on ⁇ alumina.
  • the supported amount (content rate) of MoO 3 in the highly reactive catalyst was 9.0% by mass with respect to the total mass of the highly reactive catalyst.
  • the supported amount (content ratio) of NiO in the highly reactive catalyst was 2.0% by mass with respect to the total mass of the highly reactive catalyst.
  • the central pore diameter of the highly reactive catalyst ( ⁇ alumina) was 19 nm.
  • the BET specific surface area of the highly reactive catalyst was 180 m 2 / g.
  • the desulfurization catalyst was provided with porous ⁇ alumina and MoO 3 and NiO supported on ⁇ alumina.
  • the supported amount (content) of MoO 3 in the desulfurization catalyst was 12.0% by mass with respect to the total mass of the desulfurization catalyst.
  • the supported amount (content rate) of NiO in the desulfurization catalyst was 3.0% by mass with respect to the total mass of the desulfurization catalyst.
  • the median pore diameter of the desulfurization catalyst ( ⁇ alumina) was 10 nm.
  • the BET specific surface area of the desulfurization catalyst was 230 m 2 / g.
  • the solvent debris oil is introduced into the first catalyst layer in the reaction tower where hydrogen gas is present, and the solvent debris oil that has passed through the first catalyst layer is introduced into the second catalyst layer.
  • the solvent-peeling oil that passed through the second catalyst layer was introduced into the third catalyst layer.
  • the reaction temperature was increased by heating the inside of the reaction tower with a heater provided in the reaction tower as time passed, thereby supplementing the activities of the demetallation catalyst and the desulfurization catalyst.
  • the sulfur content in the solvent desorbed oil that passed through the third catalyst layer was maintained at less than 0.6% by mass. . Then, the number of days until the reaction temperature reached the heat resistant temperature of 400 ° C.
  • the absolute life of the desulfurization catalyst The value obtained by dividing the absolute life by 300 days is referred to as the relative life of the desulfurization catalyst.
  • the absolute life and relative life of the desulfurization catalyst in Example 1 are shown in Table 1 below.
  • Examples 2 and 3 and Comparative Examples 1 to 4 In Examples 2 and 3, and Comparative Examples 1 to 4, the volume of the first catalyst layer (low-reactive catalyst) in the total volume of the first catalyst layer and the second catalyst layer (total volume of the demetallized catalyst) The ratio was adjusted to the value shown in Table 1. In Examples 2 and 3 and Comparative Examples 1 to 4, the second catalyst layer (highly reactive catalyst) occupies the total volume of the first catalyst layer and the second catalyst layer (total volume of the demetallized catalyst). The volume ratio was adjusted to the values shown in Table 1. Except for the volume ratio of each catalyst layer, the demetalization process and the desulfurization process of Examples 2 and 3 and Comparative Examples 1 to 4 were performed in the same manner as in Example 1.
  • Comparative Example 1 only the second catalyst layer (high reactivity catalyst) was used as the demetallation catalyst without using the first catalyst layer (low reactivity catalyst).
  • Example 3 only the first catalyst layer (low-reactivity catalyst) was used as the demetallation catalyst without using the second catalyst layer (high-reactivity catalyst).
  • the method for producing hydrocarbon oil according to the present invention is suitable for the production of gasoline, base oil for lubricating oil, other chemicals, etc. using solvent-desorbed oil as a raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The present invention provides a hydrocarbon oil production method that makes it possible to minimize the deactivation of a desulfurization catalyst. A hydrocarbon oil production method according to one embodiment of the present invention is provided with a demetallization step in which only solvent-deasphalted oil is brought into contact with a demetallization catalyst under the presence of hydrogen gas and a desulfurization step in which the solvent-deasphalted oil that has been subjected to the demetallization step is brought into contact with a desulfurization catalyst in the presence of hydrogen gas. The demetallization catalyst comprises a low-reactivity catalyst. The proportion of the demetallization catalyst that is occupied by the low-reactivity catalyst is 50 vol% or more. The proportion of the demetallization catalyst that is occupied by a high-reactivity catalyst is 0 vol% or more. The low-reactivity catalyst comprises a porous carrier and a Group VI element that is carried by the carrier. The content of Group VIII elements in the low-reactivity catalyst is 0 mass% or more. The high-reactivity catalyst comprises a porous carrier and a Group VI element and a Group VIII element that are carried by the carrier. The content of Group VIII elements in the low-reactivity catalyst is lower than the content of Group VIII elements in the high-reactivity catalyst.

Description

炭化水素油の製造方法Method for producing hydrocarbon oil
 本発明は、炭化水素油の製造方法に関する。 The present invention relates to a method for producing a hydrocarbon oil.
 石油の精製過程では、原油の常圧蒸留によって底塔油(常圧残油、AR:atmospheric residue)が得られる。常圧残油、及び常圧残油の減圧蒸留によって得られる減圧軽油それぞれに対して、脱硫処理や接触分解処理を行うことにより、ガソリン、潤滑油用基油その他化学品等の製品が得られる。一方、常圧残油の減圧蒸留によって得られる減圧残油は、上記の製品に比べて利益率の低い製品である。したがって、より利益率の高い製品を減圧残油から製造することが望まれる。 In the refining process of petroleum, bottom tower oil (atmospheric residual, AR) is obtained by atmospheric distillation of crude oil. Products such as gasoline, base oils for lubricants, and other chemicals can be obtained by subjecting atmospheric residue and vacuum gas oil obtained by vacuum distillation of atmospheric residue to desulfurization and catalytic cracking. . On the other hand, the vacuum residue obtained by vacuum distillation of the atmospheric residue is a product with a lower profit margin than the above products. Therefore, it is desirable to produce products with higher profit margins from vacuum residue.
 下記特許文献1には、減圧残油の溶剤脱れきによって得た溶剤脱れき油(DAO:Deasphalted Oil)を、常圧残油及び/又は減圧軽油と混合して原料油を調製し、この原料油の水素化精製によってガソリン等の燃料を製造する技術が開示されている。 The following Patent Document 1 prepares a raw material oil by mixing a solvent-removed oil (DAO: Desphailized Oil) obtained by solvent-removing a reduced-pressure residual oil with a normal-pressure residual oil and / or a reduced-pressure light oil. A technique for producing fuel such as gasoline by hydrorefining of oil is disclosed.
特開2012-197350号公報JP 2012-197350 A
 一般的に、原料油の水素化精製は、脱メタル工程と、これに続く脱硫工程と、を備える。脱メタル工程では、原料油を脱メタル触媒に接触させて水素化することにより、水素化脱硫触媒を劣化させるメタル成分(触媒毒)を原料油から除去する。脱硫工程では、脱メタル工程後の原料油を脱硫触媒に接触させて水素化することにより、原料油中の硫黄分を除去する。 Generally, the hydrorefining of raw material oil includes a demetallization process and a subsequent desulfurization process. In the demetallation step, the metal oil (catalyst poison) that degrades the hydrodesulfurization catalyst is removed from the raw oil by bringing the raw oil into contact with the demetallation catalyst and hydrogenating it. In the desulfurization process, the sulfur in the raw material oil is removed by bringing the raw material oil after the demetallization process into contact with a desulfurization catalyst and hydrogenating it.
 本発明者らの研究の結果、従来の常圧残油の水素化精製と同様の方法で、溶剤脱れき油の水素化精製を行うと、メタル成分を除去する脱メタル触媒の活性(脱メタル活性)が予想に反して早期に下限に達し、脱メタル触媒の失活に追随して脱硫触媒の脱硫活性も急激に低下することが判明した。つまり、従来の常圧残油用の脱メタル触媒及び脱硫触媒を用いて溶剤脱れき油の水素化精製を行うと、常圧残油の水素化精製の場合に比べて、各触媒の寿命が短くなってしまう。 As a result of the present inventors' research, the activity of a demetallization catalyst that removes metal components (demetallization) can be obtained by hydrorefining solvent debris by the same method as conventional hydrorefining of atmospheric residue. It has been found that the activity reached the lower limit earlier than expected, and the desulfurization activity of the desulfurization catalyst rapidly decreased following the deactivation of the demetallization catalyst. In other words, the hydrorefining of solvent debris oil using the conventional demetallation catalyst and desulfurization catalyst for atmospheric residual oil has a longer life of each catalyst compared to the hydrorefining of atmospheric residual oil. It will be shorter.
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、脱硫触媒の失活を抑制することができる炭化水素油の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a method for producing a hydrocarbon oil that can suppress deactivation of a desulfurization catalyst.
 本発明に係る炭化水素油の製造方法の一態様は、溶剤脱れき油のみを、水素ガスの存在下で脱メタル触媒に接触させる、脱メタル工程と、脱メタル工程を経た溶剤脱れき油を水素ガスの存在下で脱硫触媒に接触させる、脱硫工程と、を備え、脱メタル触媒は、少なくとも低反応性触媒を含み、脱メタル触媒全体に占める低反応性触媒の体積の割合が、50体積%以上であり、脱メタル触媒全体に占める高反応性触媒の体積の割合が、0体積%以上であり、低反応性触媒は、多孔質の担体と、担体に担持された第VI族元素と、を有し、低反応性触媒における第VIII族元素の触媒質量基準の含有率が、0質量%以上であり、高反応性触媒は、多孔質の担体と、担体に担持された第VI族元素及び第VIII族元素と、を有し、低反応性触媒における第VIII族元素の触媒質量基準の含有率が、高反応性触媒における第VIII族元素の触媒質量基準の含有率よりも低い。なお、脱メタル触媒及び脱硫触媒のいずれも水素化活性を有するものである。 One aspect of the method for producing a hydrocarbon oil according to the present invention includes a demetallation step in which only a solvent defragmentation oil is brought into contact with a demetallation catalyst in the presence of hydrogen gas, and a solvent defragmentation oil that has undergone the demetallation step. A desulfurization step of contacting the desulfurization catalyst in the presence of hydrogen gas, wherein the demetallation catalyst includes at least a low-reactivity catalyst, and the volume ratio of the low-reactivity catalyst to the entire demetallation catalyst is 50 volumes. % Of the volume of the highly reactive catalyst in the total demetallation catalyst is 0 volume% or more. The low reactivity catalyst is composed of a porous carrier, a Group VI element supported on the carrier, The content of the group VIII element based on the catalyst mass in the low-reactivity catalyst is 0% by mass or more, and the high-reactivity catalyst is composed of a porous carrier and a group VI supported on the carrier. Element and a Group VIII element, having a low reactivity The catalyst mass content of the Group VIII element is lower than the content of the catalyst based on the weight of the Group VIII element in the highly reactive catalysts in. Note that both the demetallation catalyst and the desulfurization catalyst have hydrogenation activity.
 低反応性触媒における第VI族元素の触媒質量基準の含有率が、高反応性触媒における第VI族元素の触媒質量基準の含有率よりも低いことが好ましい。 It is preferable that the content of the group VI element based on the catalyst mass in the low-reactivity catalyst is lower than the content of the group VI element based on the catalyst mass in the high-reactivity catalyst.
 第VI族元素が、モリブデン又はタングステンのうち少なくともいずれか一種であり、第VIII族元素が、ニッケル又はコバルトのうち少なくともいずれか一種であることが好ましい。 It is preferable that the Group VI element is at least one of molybdenum and tungsten, and the Group VIII element is at least one of nickel and cobalt.
 低反応性触媒における第VI族元素の酸化物の触媒質量基準の含有率が、1質量%以上8質量%未満であり、低反応性触媒における第VIII族元素の酸化物の触媒質量基準の含有率が、0質量%以上1質量%未満であることが好ましい。 The content of the Group VI element oxide in the low-reactivity catalyst based on the catalyst mass is 1% by mass or more and less than 8% by mass, and the content of the Group VIII element oxide in the low-reactivity catalyst based on the catalyst mass The rate is preferably 0% by mass or more and less than 1% by mass.
 脱メタル工程において、反応温度が、350~450℃であり、水素ガスの分圧が、5~25MPaであり、液空間速度(LHSV)が、0.1~3.0h-1であり、水素/油比(溶剤脱れき油の体積に対する水素ガスの体積の比)が、400~1500Nm/mであることが好ましい。 In the metal removal step, the reaction temperature is 350 to 450 ° C., the partial pressure of hydrogen gas is 5 to 25 MPa, the liquid space velocity (LHSV) is 0.1 to 3.0 h −1 , hydrogen The / oil ratio (ratio of the volume of hydrogen gas to the volume of solvent removal oil) is preferably 400 to 1500 Nm 3 / m 3 .
 脱硫工程において、反応温度が、350~450℃であり、水素ガスの分圧が、5~25MPaであり、液空間速度が、0.1~3.0h-1であり、水素/油比が、400~1500Nm/mであることが好ましい。 In the desulfurization step, the reaction temperature is 350 to 450 ° C., the partial pressure of hydrogen gas is 5 to 25 MPa, the liquid space velocity is 0.1 to 3.0 h −1 , and the hydrogen / oil ratio is 400 to 1500 Nm 3 / m 3 is preferable.
 本発明によれば、脱硫触媒の失活を抑制することができる炭化水素油の製造方法が提供される。 According to the present invention, a method for producing a hydrocarbon oil capable of suppressing deactivation of a desulfurization catalyst is provided.
図1aは、溶剤脱れき油中の含バナジウム化合物の分子量分布であり、図1bは、常圧残油中の含バナジウム化合物の分子量分布である。FIG. 1a is the molecular weight distribution of the vanadium compound in the solvent-desorbed oil, and FIG. 1b is the molecular weight distribution of the vanadium compound in the atmospheric residue.
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は下記実施形態に限られるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiment.
 本実施形態に係る炭化水素油の製造方法では、原油の常圧蒸留によって底塔油(常圧残油)を得る。常圧残油は、沸点が343℃以上である留分の含有率が80質量%以上である重質油である。この常圧残油の減圧蒸留により、減圧軽油及び減圧残油を得る。原油の種類は特に限定されないが、原油の具体例としては、石油系の原油、オイルサンド由来の合成原油及びビチューメン改質油等が挙げられる。 In the method for producing hydrocarbon oil according to this embodiment, bottom tower oil (atmospheric residue) is obtained by atmospheric distillation of crude oil. The atmospheric residue is a heavy oil having a fraction having a boiling point of 343 ° C. or higher and a content of 80% by mass or higher. A vacuum gas oil and a vacuum residue are obtained by vacuum distillation of the atmospheric residue. Although the kind of crude oil is not particularly limited, specific examples of crude oil include petroleum-based crude oil, synthetic crude oil derived from oil sand, and bitumen reformed oil.
 減圧軽油の脱硫(例えば水素化脱硫)、及び脱硫後の流動接触分解又は水素化分解によって、炭化水素油が得られる。同様に、常圧残油の脱硫及び脱硫後の接触分解又は水素化分解によって、炭化水素油が得られる。 Hydrocarbon oil is obtained by desulfurization (for example, hydrodesulfurization) of vacuum gas oil and fluid catalytic cracking or hydrocracking after desulfurization. Similarly, hydrocarbon oil is obtained by desulfurization of atmospheric residue and catalytic cracking or hydrocracking after desulfurization.
 上記減圧残油の溶剤脱れきにより、溶剤脱れき油を得る。溶剤脱れき油は、溶剤脱れきにおいて、沸点が550℃以上である留分の含有率が70質量%以上である重質油(例えば、減圧残油)を溶剤で抽出した留分である。溶剤脱れきに用いる溶剤としては、炭素数が3~6である鎖状飽和炭化水素を用いればよい。溶剤の具体例としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン及びノルマルヘキサンが挙げられる。これらの溶剤の一種又は複数種を溶剤として用いればよい。 溶 剤 Solvent devolatilized oil is obtained by solvent devolatilization of the above vacuum residue. The solvent deasphalting oil is a fraction obtained by extracting a heavy oil (for example, a vacuum residue) having a boiling point of 550 ° C. or higher and a fraction having a boiling point of 550 ° C. or higher with a solvent. As the solvent used for solvent removal, a chain saturated hydrocarbon having 3 to 6 carbon atoms may be used. Specific examples of the solvent include propane, normal butane, isobutane, normal pentane, isopentane, and normal hexane. One or more of these solvents may be used as the solvent.
 本実施形態に係る炭化水素油の製造方法は、上記溶剤脱れき油を用いた脱メタル工程とこれに続く脱硫工程とを備える。脱メタル工程では、水素ガスの存在下で、溶剤脱れき油のみを脱メタル触媒に接触させる。その結果、溶剤脱れき油中のメタル成分が除去される。脱硫工程では、水素ガスの存在下で、脱メタル工程後の溶剤脱れき油を脱硫触媒に接触させる。その結果、溶剤脱れき油中の硫黄分(及び窒素分)が除去される。脱メタル工程及び脱硫工程を経た溶剤脱れき油の流動接触分解又は水素化分解により、炭化水素油が得られる。 The method for producing a hydrocarbon oil according to the present embodiment includes a demetallation step using the solvent debris oil and a subsequent desulfurization step. In the demetallation step, only solvent degreasing oil is brought into contact with the demetallation catalyst in the presence of hydrogen gas. As a result, the metal component in the solvent removal solvent is removed. In the desulfurization step, the solvent debris oil after the demetallation step is brought into contact with the desulfurization catalyst in the presence of hydrogen gas. As a result, the sulfur content (and nitrogen content) in the solvent removal solvent is removed. Hydrocarbon oil is obtained by fluid catalytic cracking or hydrocracking of solvent debris oil that has undergone the demetallization process and the desulfurization process.
 脱メタル工程において、脱硫触媒にとっての触媒毒であるメタル成分を溶剤脱れき油から除去することにより、脱硫工程における脱硫触媒の失活を抑制し、脱硫触媒の寿命を延ばすことが可能になる。 In the demetallization process, by removing the metal component that is a catalyst poison for the desulfurization catalyst from the solvent degreasing oil, it is possible to suppress the deactivation of the desulfurization catalyst in the desulfurization process and extend the life of the desulfurization catalyst.
 以下では、脱メタル工程及び脱硫工程について詳しく説明する。 Hereinafter, the demetallization process and the desulfurization process will be described in detail.
 含メタル化合物は、金属と炭化水素とを含む物質である。含メタル化合物の構造は特に限定されないが、例えば、炭化水素と金属とが化学結合(例えば配位結合)を形成していてもよく、炭化水素が微粒子状の金属を被覆していてもよい。金属は、例えば、バナジウム又はニッケルである。炭化水素は、特に限定されないが、例えば、鎖状炭化水素若しくはその異性体、環状炭化水素、ヘテロ環式化合物、又は芳香族炭化水素等であればよい。含メタル化合物の分子量が小さいほど、脱メタル触媒による含メタル化合物の水素化や分解が進行し易く、メタルが含メタル化合物から除去され易い。脱メタル工程において含メタル化合物から除去されたメタルは、脱メタル触媒に形成された無数の細孔内に取り込まれる。 The metal-containing compound is a substance containing a metal and a hydrocarbon. The structure of the metal-containing compound is not particularly limited. For example, the hydrocarbon and the metal may form a chemical bond (for example, coordination bond), or the hydrocarbon may cover the fine metal. The metal is, for example, vanadium or nickel. The hydrocarbon is not particularly limited, and may be, for example, a chain hydrocarbon or an isomer thereof, a cyclic hydrocarbon, a heterocyclic compound, or an aromatic hydrocarbon. The smaller the molecular weight of the metal-containing compound, the easier the hydrogenation and decomposition of the metal-containing compound by the demetallation catalyst, and the easier the metal is removed from the metal-containing compound. The metal removed from the metal-containing compound in the demetallation step is taken into countless pores formed in the demetallation catalyst.
 以上のように、含メタル化合物の分子量が小さいほど、メタルは脱メタル触媒中に取り込まれ易い。以下では、含メタル化合物のうち分子量が比較的小さいものを、「易分解性メタル成分(decomposable metallic composition)」という。また、含メタル化合物のうち分子量が比較的大きいものを、「難分解性メタル成分(persistent metallic composition)」という。なお、バナジウムを有する含メタル化合物を、含バナジウム化合物という。 As described above, the smaller the molecular weight of the metal-containing compound, the easier the metal is taken into the demetallation catalyst. Hereinafter, a metal-containing compound having a relatively low molecular weight is referred to as a “decomposable metal component”. Further, a metal-containing compound having a relatively large molecular weight is referred to as “persistent metallic composition”. A metal-containing compound having vanadium is referred to as a vanadium-containing compound.
 図1aに、溶剤脱れき油中の含バナジウム化合物の分子量分布(以下、「DAO分布」という。)を示す。このDAO分布は、本発明者らが行った以下の実験によって得たものである。 FIG. 1a shows the molecular weight distribution (hereinafter referred to as “DAO distribution”) of a vanadium-containing compound in solvent-desorbed oil. This DAO distribution is obtained by the following experiment conducted by the present inventors.
 実験では、ゲル浸透クロマトグラフィ(GPC:Gel Permeation Chromatography)を用いて、溶剤脱れき油を分子量の差により分画する。分画された個々の成分の分子量とは、ポリスチレンを標準試料とする較正曲線から求めたポリスチレン換算分子量(相対分子量)である。GPCによって分画された各成分中の金属(バナジウム)の質量換算又はモル換算の濃度を誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析によって測定する。図1aの横軸は、上記GPCに基づく値であり、含バナジウム化合物の分子量である。横軸の目盛は、対数目盛である。図1aの縦軸は、上記ICP発光分光分析で測定したバナジウムの濃度に対応する値であり、横軸に示す各分子量におけるバナジウムの量である。 In the experiment, solvent permeated oil is fractionated by molecular weight difference using gel permeation chromatography (GPC: Gel Permeation Chromatography). The molecular weight of each fractionated component is a polystyrene equivalent molecular weight (relative molecular weight) determined from a calibration curve using polystyrene as a standard sample. The mass conversion or molar conversion concentration of metal (vanadium) in each component fractionated by GPC is measured by inductively coupled plasma (ICP: Inductively Coupled Plasma) emission spectroscopic analysis. The horizontal axis of FIG. 1a is a value based on the GPC, and is the molecular weight of the vanadium-containing compound. The scale on the horizontal axis is a logarithmic scale. The vertical axis of FIG. 1a is a value corresponding to the vanadium concentration measured by the ICP emission spectroscopic analysis, and is the amount of vanadium at each molecular weight shown on the horizontal axis.
 図1bに、常圧残油中の含バナジウム化合物の分子量分布(以下、「AR分布」という。)を示す。このAR分布は、DAO分布と場合と同様に、常圧残油についてのGPC及びICP発光分光分析に基づいて、本発明者らが得たものである。 FIG. 1b shows the molecular weight distribution of the vanadium-containing compound in the atmospheric residue (hereinafter referred to as “AR distribution”). This AR distribution was obtained by the present inventors based on GPC and ICP emission spectroscopic analysis of atmospheric residual oil as in the case of the DAO distribution.
 図1aのDAO分布は、小さい分子量において一つのピークを有している。またDAO分布は、分子量が大きい領域ではメタル成分(バナジウム成分)が少ないことを示している。一方、図1bのAR分布は、DAO分布とは対照的に、分子量の小さい領域から分子量が大きい領域にわたって多量のメタル成分(バナジウム成分)が存在することを示している。つまり、溶剤脱れき油に含まれるメタル成分(バナジウム成分)の殆どが易分解性メタル成分であり、対照的に、常圧残油は易分解性メタル成分のみならず、多量の難分解性メタル成分も含有している。 The DAO distribution in FIG. 1a has one peak at a small molecular weight. The DAO distribution indicates that the metal component (vanadium component) is small in the region where the molecular weight is large. On the other hand, the AR distribution in FIG. 1b shows that a large amount of metal component (vanadium component) is present from a region having a low molecular weight to a region having a high molecular weight, in contrast to the DAO distribution. In other words, most of the metal component (vanadium component) contained in the solvent-peeling oil is an easily decomposable metal component. In contrast, atmospheric residual oil is not only an easily decomposable metal component but also a large amount of hardly decomposable metal. Contains ingredients.
 仮に溶剤脱れき油ではなく常圧残油を用いて脱メタル工程を実施する場合、常圧残油は、易分解性メタル成分のみならず、多量の難分解性メタル成分も含むので、脱メタル触媒の水素化活性が高いほど、メタル成分が常圧残油から除去され易い。 If the demetalization process is performed using atmospheric residual oil instead of solvent degreasing oil, the atmospheric residual oil contains not only readily decomposable metal components but also a large amount of hardly decomposable metal components. The higher the hydrogenation activity of the catalyst, the easier the metal component is removed from the atmospheric residue.
 一方、溶剤脱れき油に含まれるメタル成分の殆どは易分解性メタル成分である。したがって、溶剤脱れき油の脱メタル工程に用いる脱メタル触媒の水素化活性が、常圧残油用の脱メタル触媒と同程度に高い場合、易分解性メタル成分の水素化が脱メタル触媒表面において短期間のうちに過度に進行してしまう。その結果、メタル成分に由来する過量の金属が短期間のうちに脱メタル触媒の表面近傍に堆積して、脱メタル触媒に形成された細孔の入口を塞いでしまい、金属が触媒の細孔内に取り込まれ難くなる。つまり、溶剤脱れき油用の脱メタル触媒の水素化活性が高過ぎる場合、メタル成分を溶剤脱れき油から除去することが困難になる。その結果、脱メタル工程後の脱硫工程において、溶剤脱れき油中に残存したメタル成分が脱硫触媒を失活させてしまう。 On the other hand, most of the metal components contained in solvent-peeling oil are easily decomposable metal components. Therefore, when the hydrogenation activity of the demetallation catalyst used in the demetallation step of solvent debris oil is as high as that of the demetallation catalyst for atmospheric residual oil, the hydrogenation of easily decomposable metal components is The process proceeds excessively in a short period of time. As a result, an excessive amount of metal derived from the metal component accumulates in the vicinity of the surface of the demetallization catalyst within a short period of time, blocking the pore inlet formed in the demetallization catalyst, and the metal becomes the pores of the catalyst. It becomes difficult to be taken in. That is, when the hydrogenation activity of the demetallation catalyst for solvent debris oil is too high, it becomes difficult to remove the metal component from the solvent debris oil. As a result, in the desulfurization process after the demetallization process, the metal component remaining in the solvent degassed oil deactivates the desulfurization catalyst.
 本発明者らは、常圧残油を水素化活性の高い脱メタル触媒に接触させると、脱メタル触媒の表面近傍のみならず脱メタル触媒の内部においても金属が堆積することを、実験によって解明した。また本発明者らは、溶剤脱れき油を水素化活性の高い脱メタル触媒に接触させると、脱メタル触媒の表面近傍における金属の堆積量が脱メタル触媒の内部における金属の堆積量よりも著しく多くなることを、実験によって解明した。これらの実験結果は、上記の脱メタル触媒の失活のメカニズムを裏付けるものである。 The inventors have clarified by experiments that when atmospheric residue is brought into contact with a demetallation catalyst having high hydrogenation activity, metal is deposited not only near the surface of the demetallation catalyst but also inside the demetalization catalyst. did. In addition, when the present inventors contact the solvent degreasing oil with a demetallation catalyst having a high hydrogenation activity, the amount of metal deposited near the surface of the demetallation catalyst is significantly higher than the amount of metal deposited inside the demetallation catalyst. It was clarified by experiment that it would increase. These experimental results support the deactivation mechanism of the demetallation catalyst.
 そして本発明者らは、含バナジウム化合物の分子量と脱メタル触媒の脱メタル活性との関係についての上記知見に基づき、失活し難い以下の脱メタル触媒を見出した。 Then, the present inventors have found the following demetalization catalyst which is difficult to deactivate based on the above knowledge about the relationship between the molecular weight of the vanadium-containing compound and the demetallation activity of the demetallation catalyst.
 本実施形態に係る脱メタル触媒は、少なくとも低反応性触媒を含む。この低反応性触媒とは、従来の常圧残油の脱メタル工程に適した高反応性触媒に比べて、水素化活性が低い触媒である。脱メタル触媒全体に占める低反応性触媒の体積の割合は、50体積%以上100体積%以下である。脱メタル触媒全体に占める低反応性触媒の体積の割合は、60体積%以上、70体積%以上、80体積%以上、又は90体積%以上であってもよい。一方、脱メタル触媒全体に占める高反応性触媒の体積の割合は、0体積%以上50体積%未満である。脱メタル触媒全体に占める高反応性触媒の体積の割合は、40体積%以下、30体積%以下、20体積%以下、10体積%以下であってもよい。脱メタル触媒は、低反応性触媒のみからなってもよい。つまり脱メタル触媒は、高反応性触媒を含有しなくてもよい。 The demetallation catalyst according to this embodiment includes at least a low-reactivity catalyst. This low-reactivity catalyst is a catalyst having a low hydrogenation activity as compared with a high-reactivity catalyst suitable for a conventional demetallation step of atmospheric residue. The ratio of the volume of the low-reactivity catalyst to the entire demetallation catalyst is 50% by volume or more and 100% by volume or less. The proportion of the volume of the low-reactivity catalyst in the total demetallation catalyst may be 60% by volume or more, 70% by volume or more, 80% by volume or more, or 90% by volume or more. On the other hand, the ratio of the volume of the highly reactive catalyst to the whole demetalization catalyst is 0% by volume or more and less than 50% by volume. The proportion of the volume of the highly reactive catalyst in the entire demetallation catalyst may be 40% by volume or less, 30% by volume or less, 20% by volume or less, and 10% by volume or less. The demetallation catalyst may consist only of a low-reactivity catalyst. That is, the demetallation catalyst does not need to contain a highly reactive catalyst.
 本実施形態では、脱メタル触媒における低反応性触媒の体積の割合が上記の範囲内であるため、溶剤脱れき油中の易分解性メタル成分の水素化が脱メタル触媒表面において急激に進行する現象が抑制される。その結果、メタル成分に由来する過量の金属が短期間のうちに脱メタル触媒の表面近傍に堆積する現象が抑制され、脱メタル触媒に形成された細孔の入口が金属によって塞がれ難くなる。したがって、本実施形態では、長期間にわたって金属が触媒の細孔内に取り込まれ易くなり、メタル成分が溶剤脱れき油から除去され易くなる。その結果、脱メタル工程後の溶剤脱れき油中にメタル成分が残存し難くなり、脱硫工程においてメタル成分が脱硫触媒を失活させる現象が抑制される。つまり、脱硫触媒の寿命が長くなる。 In this embodiment, since the volume ratio of the low-reactivity catalyst in the demetalization catalyst is within the above range, hydrogenation of the easily decomposable metal component in the solvent debris oil proceeds rapidly on the demetallation catalyst surface. The phenomenon is suppressed. As a result, a phenomenon in which an excessive amount of metal derived from the metal component accumulates in the vicinity of the surface of the demetallization catalyst in a short period of time is suppressed, and the entrance of the pores formed in the demetallization catalyst is difficult to be blocked by the metal. . Therefore, in the present embodiment, the metal is easily taken into the pores of the catalyst for a long period of time, and the metal component is easily removed from the solvent desorbing oil. As a result, it is difficult for the metal component to remain in the solvent deasphalted oil after the demetallation step, and the phenomenon that the metal component deactivates the desulfurization catalyst in the desulfurization step is suppressed. That is, the lifetime of the desulfurization catalyst is extended.
 脱メタル触媒が低反応性触媒及び高反応性触媒の両方を含む場合、脱メタル触媒が低反応性触媒から構成される低反応性触媒部(低反応性触媒層)と、高反応性触媒から構成される高反応性触媒部(高反応性触媒層)と、を備えることが好ましい。そして、溶剤脱れき油を低反応性触媒部に接触させた後で、高反応性触媒部に接触させることが好ましい。この場合、易分解性メタル成分の水素化が高反応性触媒表面において急激に進行する現象が抑制され、高反応性触媒に形成された細孔の入口が金属によって塞がれ難くなる。 When the demetallation catalyst includes both a low-reactivity catalyst and a high-reactivity catalyst, the demetallation catalyst consists of a low-reactivity catalyst part (low-reactivity catalyst layer) composed of a low-reactivity catalyst, and a high-reactivity catalyst. It is preferable to comprise a highly reactive catalyst portion (highly reactive catalyst layer). And it is preferable to make solvent deasphalted oil contact a highly reactive catalyst part after making it contact a low reactive catalyst part. In this case, the phenomenon in which hydrogenation of the easily decomposable metal component proceeds rapidly on the surface of the highly reactive catalyst is suppressed, and the entrance of the pores formed in the highly reactive catalyst is less likely to be blocked by the metal.
 低反応性触媒は、多孔質の担体と、担体に担持された第VI族元素と、を有する。低反応性触媒における第VIII族元素の触媒質量基準の含有率が、0質量%以上である。一方、高反応性触媒は、多孔質の担体と、担体に担持された第VI族元素及び第VIII族元素と、を有する。低反応性触媒における第VIII族元素の触媒質量基準の含有率は、高反応性触媒における第VIII族元素の触媒質量基準の含有率よりも低い。 The low-reactivity catalyst has a porous carrier and a Group VI element carried on the carrier. The content of the Group VIII element in the low-reactivity catalyst based on the catalyst mass is 0% by mass or more. On the other hand, the highly reactive catalyst has a porous carrier and a Group VI element and a Group VIII element supported on the carrier. The content of the group VIII element based on the catalyst mass in the low-reactivity catalyst is lower than the content of the group VIII element based on the catalyst mass in the high-reactivity catalyst.
 上記のような組成を有する低反応性触媒の水素化活性は、上記のような組成を有する高反応性触媒の水素化活性よりも低いため、上記のような脱メタル触媒及び脱硫触媒の失活を抑制することが可能になる。 Since the hydrogenation activity of the low-reactivity catalyst having the above composition is lower than the hydrogenation activity of the high-reactivity catalyst having the above composition, the demetallation catalyst and desulfurization catalyst are deactivated. Can be suppressed.
 低反応性触媒又は高反応性触媒が有する多孔質の担体は、特に限定されない。多孔質の担体の具体例としては、アルミナ、シリカ、シリカ-アルミナ等の無機酸化物が挙げられる。低反応性触媒の担体と高反応性触媒の担体とは、同じであってもよく、異なってもよい。各脱メタル触媒の中央細孔径は、10~50nmであることが好ましい。なお、中央細孔径とは、窒素ガス吸着法で得られる細孔直径が2nm以上60nm未満である細孔の細孔容積の累積をVとするとき、各直径を有する細孔の容積量を累積させた累積細孔容積曲線において、累積細孔容積がV/2となる細孔径を意味する。中央細孔径が上記範囲内にある場合、メタル成分に由来する金属が脱メタル触媒中に取り込まれ易く、脱硫触媒の失活が抑制され易い。各脱メタル触媒の細孔容積は0.5~1.5cm/g程度であればよい。各脱メタル触媒のBET比表面積は100~250m/g程度であればよい。 The porous carrier that the low-reactivity catalyst or the high-reactivity catalyst has is not particularly limited. Specific examples of the porous carrier include inorganic oxides such as alumina, silica, and silica-alumina. The carrier of the low reactivity catalyst and the carrier of the high reactivity catalyst may be the same or different. The center pore diameter of each demetallation catalyst is preferably 10 to 50 nm. The median pore diameter is the cumulative volume of pores having each diameter when V is the cumulative pore volume of pores having a pore diameter of 2 nm or more and less than 60 nm obtained by the nitrogen gas adsorption method. In the cumulative pore volume curve, it means the pore diameter at which the cumulative pore volume is V / 2. When the central pore diameter is within the above range, the metal derived from the metal component is easily taken into the demetallation catalyst, and deactivation of the desulfurization catalyst is easily suppressed. The pore volume of each demetallation catalyst may be about 0.5 to 1.5 cm 3 / g. The BET specific surface area of each demetallation catalyst may be about 100 to 250 m 2 / g.
 上記の第VI族元素とは、短周期表(旧周期表)に属するものであり、IUPAC形式の長周期表(新周期表)の第6族元素に相当する。つまり、第VI族元素とは、クロム、モリブデン、タングステン及びシーボーギウムからなる群より選ばれる少なくとも一種である。上記の第VIII族元素とは、短周期表に属するものであり、IUPAC形式の長周期表の第8族元素、第9族元素及び第10族元素に相当する。つまり、第VIII族元素とは、鉄、ルテニウム、オスミウム、ハッシウム、コバルト、ロジウム、イリジウム、マイトネリウム、ニッケル、パラジウム、白金及びダームスタチウムからなる群より選ばれる少なくとも一種である。低反応性触媒が有する第VI族元素と、高反応性触媒が有する第VI族元素とは、同じであってもよく、異なってもよい。低反応性触媒が有する第VIII族元素と、高反応性触媒が有する第VIII族元素とは、同じであってもよく、異なってもよい。 The above Group VI element belongs to the short periodic table (old periodic table) and corresponds to the Group 6 element of the long periodic table (new periodic table) in the IUPAC format. That is, the Group VI element is at least one selected from the group consisting of chromium, molybdenum, tungsten, and seaborgium. The Group VIII element belongs to the short periodic table and corresponds to the Group 8 element, the Group 9 element, and the Group 10 element of the long periodic table in the IUPAC format. In other words, the Group VIII element is at least one selected from the group consisting of iron, ruthenium, osmium, hashium, cobalt, rhodium, iridium, miterium, nickel, palladium, platinum, and darmstatium. The Group VI element included in the low-reactivity catalyst and the Group VI element included in the high-reactivity catalyst may be the same or different. The Group VIII element included in the low-reactivity catalyst and the Group VIII element included in the high-reactivity catalyst may be the same or different.
 上記態様では、低反応性触媒における第VI族元素の触媒質量基準の含有率が、高反応性触媒における第VI族元素の触媒質量基準の含有率よりも低いことが好ましい。この場合、低反応性触媒の水素化活性が高反応性触媒の水素化活性よりも低くなり易い。 In the above aspect, the content of the group VI element based on the catalyst mass in the low-reactivity catalyst is preferably lower than the content of the group VI element based on the catalyst mass in the highly reactive catalyst. In this case, the hydrogenation activity of the low-reactivity catalyst tends to be lower than the hydrogenation activity of the high-reactivity catalyst.
 低反応性触媒又は高反応性触媒が有する第VI族元素は、モリブデン又はタングステンのうち少なくともいずれか一種であることが好ましく、モリブデンであることがより好ましい。低反応性触媒又は高反応性触媒がこれらの第VI族元素を有することにより、脱メタル触媒及び脱硫触媒の失活が顕著に抑制される。低反応性触媒又は高反応性触媒が有する第VIII族元素は、ニッケル又はコバルトのうち少なくともいずれか一種であることが好ましく、ニッケルであることがより好ましい。高反応性触媒がこれらの第VIII族元素を有することにより、脱メタル触媒及び脱硫触媒の失活が顕著に抑制される。 The Group VI element possessed by the low-reactivity catalyst or the high-reactivity catalyst is preferably at least one of molybdenum and tungsten, and more preferably molybdenum. When the low-reactivity catalyst or the high-reactivity catalyst has these Group VI elements, deactivation of the demetallation catalyst and the desulfurization catalyst is remarkably suppressed. The Group VIII element contained in the low-reactivity catalyst or the high-reactivity catalyst is preferably at least one of nickel and cobalt, and more preferably nickel. When the highly reactive catalyst has these Group VIII elements, deactivation of the demetallation catalyst and the desulfurization catalyst is remarkably suppressed.
 上記態様では、低反応性触媒における第VI族元素の酸化物の触媒質量基準の含有率は、1質量%以上8質量%未満であることが好ましく、1質量%以上6質量%以下であることがより好ましい。低反応性触媒における第VIII族元素の酸化物の触媒質量基準の含有率は、0質量%以上1質量%未満であることが好ましい。低反応性触媒における第VI族元素の酸化物又は第VIII族元素の酸化物の含有率の下限が上記の値であることにより、低反応性触媒が十分な水素化活性を有することができる。また、低反応性触媒における第VI族元素の酸化物又は第VIII族元素の酸化物の含有率の上限が上記の値であることにより、易分解性メタル成分の急激な水素化が抑制され、脱メタル触媒の脱メタル活性が維持され易くなる。なお、第VI族元素の酸化物とは、例えば、MoO又はWOである。第VIII族元素の酸化物とは、例えば、NiO又はCoOである。 In the said aspect, it is preferable that the catalyst mass reference | standard content rate of the oxide of the group VI element in a low-reactivity catalyst is 1 to 8 mass%, and it is 1 to 6 mass%. Is more preferable. The content of the catalyst based on the mass of the Group VIII element oxide in the low-reactivity catalyst is preferably 0% by mass or more and less than 1% by mass. When the lower limit of the content of the Group VI element oxide or Group VIII element oxide in the low-reactivity catalyst is the above value, the low-reactivity catalyst can have sufficient hydrogenation activity. In addition, when the upper limit of the content of the Group VI element oxide or the Group VIII element oxide in the low-reactivity catalyst is the above value, rapid hydrogenation of the easily decomposable metal component is suppressed, The demetalization activity of the demetallation catalyst is easily maintained. The Group VI element oxide is, for example, MoO 3 or WO 3 . The oxide of the Group VIII element is, for example, NiO or CoO.
 高反応性触媒における第VI族元素の酸化物の触媒質量基準の含有率は、8質量%以上30質量%以下であればよい。高反応性触媒における第VIII族元素の酸化物の触媒質量基準の含有率は、1質量%以上10質量%以下であればよい。高反応性触媒における第VI族元素の酸化物又は第VIII族元素の酸化物の含有率が上記の範囲にある場合、本発明の効果が得られ易い。 The catalyst-based content of the Group VI element oxide in the highly reactive catalyst may be 8% by mass or more and 30% by mass or less. The content of the catalyst based on the mass of the Group VIII element oxide in the highly reactive catalyst may be 1% by mass or more and 10% by mass or less. When the content of the Group VI element oxide or the Group VIII element oxide in the highly reactive catalyst is in the above range, the effect of the present invention is easily obtained.
 脱硫触媒は、特に限定されない。脱硫触媒としては、多孔質の担体と、担体に担持された活性金属とを有するものを用いればよい。担体としては、アルミナ、シリカ又はシリカ-アルミナを用いればよい。活性金属としては、長周期表の第5族元素、第6族元素、第8族元素、第9族元素及び第10族元素のうち少なくとも一種を用いればよい。特に活性金属としては、ニッケル又はコバルトのうち少なくとも一種と、モリブデン又はタングステンのうち少なくとも一種との組合せが好ましい。具体的な組合せとしては、Ni-Mo、Co-Mo又はNi-Co-Moが挙げられる。脱硫触媒の中央細孔径は8~12nm程度であればよい。脱硫触媒の細孔容積は0.4~1.0cm/g程度であればよい。脱硫触媒のBET比表面積は180~250m/g程度であればよい。 The desulfurization catalyst is not particularly limited. As the desulfurization catalyst, a catalyst having a porous carrier and an active metal supported on the carrier may be used. As the carrier, alumina, silica or silica-alumina may be used. As the active metal, at least one of the Group 5 element, Group 6 element, Group 8 element, Group 9 element, and Group 10 element of the long periodic table may be used. In particular, the active metal is preferably a combination of at least one of nickel and cobalt and at least one of molybdenum and tungsten. Specific examples include Ni—Mo, Co—Mo, and Ni—Co—Mo. The central pore diameter of the desulfurization catalyst may be about 8 to 12 nm. The pore volume of the desulfurization catalyst may be about 0.4 to 1.0 cm 3 / g. The BET specific surface area of the desulfurization catalyst may be about 180 to 250 m 2 / g.
 脱メタル触媒及び脱硫触媒の形状は、特に限定されない。各触媒の形状は、例えば、角柱状、円柱状、三つ葉状、四つ葉状、又は球状であればよい。各触媒の大きさも特に限定されないが、脱メタル触媒の粒径は1~8mm程度であれはよく、脱硫触媒の粒径は0.8~3.0mm程度であればよい。 The shape of the demetallization catalyst and desulfurization catalyst is not particularly limited. The shape of each catalyst may be, for example, a prismatic shape, a cylindrical shape, a three-leaf shape, a four-leaf shape, or a spherical shape. The size of each catalyst is not particularly limited, but the particle size of the demetallation catalyst may be about 1 to 8 mm, and the particle size of the desulfurization catalyst may be about 0.8 to 3.0 mm.
 脱メタル工程における溶剤脱れき油の水素化処理(脱メタル)は、以下の反応条件下で実施することが好ましい。
反応温度(脱メタル触媒の温度):350~450℃。より好ましくは350~410℃。
反応場における水素ガスの分圧:5~25MPa。より好ましくは10~20MPa。
液空間速度(LHSV):0.1~3.0h-1。より好ましくは0.1~2.0h-1
水素/油比:400~1500Nm/m。より好ましくは500~1200Nm/m
It is preferable to carry out the hydrogenation treatment (demetallation) of the solvent debris oil in the demetallation step under the following reaction conditions.
Reaction temperature (temperature of the metal removal catalyst): 350 to 450 ° C. More preferably, it is 350 to 410 ° C.
Partial pressure of hydrogen gas in the reaction field: 5 to 25 MPa. More preferably 10 to 20 MPa.
Liquid hourly space velocity (LHSV): 0.1 to 3.0 h −1 . More preferably, 0.1 to 2.0 h −1 .
Hydrogen / oil ratio: 400-1500 Nm 3 / m 3 . More preferably, it is 500 to 1200 Nm 3 / m 3 .
 脱硫工程における溶剤脱れき油の水素化脱硫は、以下の反応条件下で実施することが好ましい。
反応温度(脱硫触媒の温度):350~450℃。より好ましくは350~430℃。
反応場における水素ガスの分圧:5~25MPa。より好ましくは10~20MPa。
液空間速度(LHSV):0.1~3.0h-1。より好ましくは0.1~2.0h-1
水素/油比:400~1500Nm/m。より好ましくは500~1200Nm/m
The hydrodesulfurization of solvent debris oil in the desulfurization step is preferably performed under the following reaction conditions.
Reaction temperature (temperature of the desulfurization catalyst): 350 to 450 ° C. More preferably, it is 350 to 430 ° C.
Partial pressure of hydrogen gas in the reaction field: 5 to 25 MPa. More preferably 10 to 20 MPa.
Liquid hourly space velocity (LHSV): 0.1 to 3.0 h −1 . More preferably, 0.1 to 2.0 h −1 .
Hydrogen / oil ratio: 400-1500 Nm 3 / m 3 . More preferably, it is 500 to 1200 Nm 3 / m 3 .
 上記の条件下で脱メタル工程及び脱硫工程を実施することにより、脱メタル触媒及び脱硫触媒の失活が抑制され易く、脱硫工程後の溶剤脱れき油中の硫黄分の濃度を0.6質量%未満に低減することが可能となる。 By carrying out the demetallation step and the desulfurization step under the above conditions, deactivation of the demetallation catalyst and the desulfurization catalyst is easily suppressed, and the concentration of sulfur in the solvent debris oil after the desulfurization step is 0.6 mass. It becomes possible to reduce to less than%.
 脱メタル工程又は脱硫工程における反応温度が上記下限値以上である場合、脱硫工程後の溶剤脱れき油中の硫黄分の含有率を低下させ易くなる。反応温度が上記上限値以下である場合、コーキング反応が抑制され易く、脱メタル工程又は脱硫工程を行う反応器(反応塔)内の差圧が生じ難い。 When the reaction temperature in the demetallization step or the desulfurization step is equal to or higher than the lower limit, the content of sulfur in the solvent debris oil after the desulfurization step is easily lowered. When the reaction temperature is equal to or lower than the above upper limit value, the coking reaction is easily suppressed, and a differential pressure in the reactor (reaction tower) in which the demetallation step or the desulfurization step is performed is difficult to occur.
 脱メタル工程又は脱硫工程における水素ガスの分圧が上記下限値以上である場合、脱メタル及び脱硫反応が進行し易くなり、脱メタル触媒及び脱硫触媒の失活が抑制され易い。水素ガスの分圧が上記上限値以上である場合、反応塔に高い耐圧性が要求されたり、水素ガスの消費量が増加したりするため、脱メタル工程又は脱硫工程の経済性が良くない。 When the partial pressure of the hydrogen gas in the demetallization process or the desulfurization process is equal to or higher than the lower limit, the demetallization and desulfurization reactions easily proceed, and deactivation of the demetallization catalyst and desulfurization catalyst is likely to be suppressed. When the partial pressure of the hydrogen gas is equal to or higher than the above upper limit value, high pressure resistance is required for the reaction tower or the consumption amount of the hydrogen gas increases, so that the economic efficiency of the demetallization process or the desulfurization process is not good.
 脱メタル工程又は脱硫工程における溶剤脱れき油の液空間速度が上記下限値未満である場合、溶剤脱れき油の処理量が少なく、脱メタル工程又は脱硫工程の経済性が良くない。
液空間速度が上記上限値以下である場合、脱メタル触媒及び脱硫触媒が失活し難く、反応温度を低い水準に維持し易い。
When the liquid space velocity of the solvent debris oil in the demetalization step or desulfurization step is less than the lower limit value, the amount of solvent debris oil treated is small, and the economics of the demetallation step or desulfurization step are not good.
When the liquid space velocity is not more than the above upper limit value, the demetallation catalyst and the desulfurization catalyst are hardly deactivated, and the reaction temperature is easily maintained at a low level.
 水素/油比が上記下限値以上である場合、脱メタル触媒及び脱硫触媒の失活を抑制し易い。水素/油比が上記上限値以上である場合、水素/油比の増加によって各触媒の失活が抑制される傾向が緩やかになる。 When the hydrogen / oil ratio is equal to or higher than the lower limit, deactivation of the demetallation catalyst and the desulfurization catalyst is easily suppressed. When the hydrogen / oil ratio is equal to or higher than the above upper limit value, the tendency for the deactivation of each catalyst to be suppressed by the increase in the hydrogen / oil ratio becomes moderate.
 脱メタル工程の上記反応条件と、脱硫工程の上記反応条件とは、異なってもよい。一つの反応塔内で脱メタル工程を実施した後、別の反応塔内で脱硫工程を実施してもよい。脱メタル触媒と脱硫触媒とを同一の反応塔内に設置し、同一の反応条件下で脱メタル工程及び脱硫工程を連続的に実施してよい。この場合、脱メタル触媒から構成される脱メタル触媒部(脱メタル触媒層)と、脱硫触媒から構成される脱硫触媒部(脱硫触媒層)とを設けて、溶剤脱れき油を脱メタル触媒部に接触させた後に、脱硫触媒部に接触させればよい。 The reaction conditions for the demetallization process and the reaction conditions for the desulfurization process may be different. After performing the demetallization process in one reaction tower, the desulfurization process may be performed in another reaction tower. The demetallation catalyst and the desulfurization catalyst may be installed in the same reaction tower, and the demetallation step and the desulfurization step may be continuously performed under the same reaction conditions. In this case, a demetallization catalyst part (demetallization catalyst layer) composed of a demetallization catalyst and a desulfurization catalyst part (desulfurization catalyst layer) composed of a desulfurization catalyst are provided, and solvent debris oil is removed from the demetallization catalyst part. After contacting, the desulfurization catalyst part may be contacted.
 溶剤脱れき油中の全ての含バナジウム化合物中のバナジウム量のうち、分子量(ポリスチレン換算分子量)が3000以下である含バナジウム化合物中のバナジウム量の割合は、全ての含バナジウム化合物中のバナジウム量に対して80質量%以上であることが好ましい。この場合、脱メタル触媒及び脱硫触媒の失活が顕著に抑制される。 The ratio of the vanadium content in the vanadium-containing compound whose molecular weight (polystyrene equivalent molecular weight) is 3000 or less in the vanadium content in all the vanadium-containing compounds in the solvent-desorbed oil is the vanadium content in all the vanadium-containing compounds. It is preferable that it is 80 mass% or more with respect to it. In this case, deactivation of the demetallation catalyst and desulfurization catalyst is remarkably suppressed.
 以下、本発明の内容を実施例及び比較例を用いてより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to the following examples.
 (実施例1)
 以下の手順で、溶剤脱れき油のみを用いた脱メタル工程及び脱硫工程を実施した。
Example 1
The demetallation process and desulfurization process using only solvent deasphalted oil were carried out by the following procedure.
 用いた溶剤脱れき油の性状は、以下の通りであった。
硫黄分の含有率: 4.7質量%。
バナジウムの含有率: 42質量ppm。
ニッケルの含有率: 21質量ppm。
アスファルテンの含有率: 0.2質量%。
15℃における密度: 1.01g/cm
100℃における動粘度: 456mm/s。
残炭分の含有率: 14.4質量%。
窒素分の含有率: 0.24質量%。
The properties of the solvent removal oil used were as follows.
Sulfur content: 4.7% by mass.
Vanadium content: 42 mass ppm.
Nickel content: 21 ppm by mass.
Asphaltene content: 0.2% by mass.
Density at 15 ° C .: 1.01 g / cm 3 .
Kinematic viscosity at 100 ° C .: 456 mm 2 / s.
Residual carbon content: 14.4% by mass.
Nitrogen content: 0.24% by mass.
 溶剤脱れき油の上記性状の分析法は、以下の通りである。
硫黄分の含有率: JIS K2541「原油及び石油製品-硫黄分試験方法」。
バナジウム及びニッケルの含有率: JIS K0116「発光分光分析通則」。
アスファルテンの含有率: IP-143(ASTM D6560)「Determination of Asphaltenes in Crude Petroleum and Petroleum Products」。
15℃における密度: JIS K2249「原油及び石油製品-密度試験方法及び密度・質量・容量換算法」。
100℃における動粘度: JIS K2283「原油及び石油製品-動粘度試験方法及び粘度指数算出方法」。
残炭分の含有率: JIS K2270「原油及び石油製品-残留炭素分試験方法」。
窒素分の含有率: JIS K2609「原油及び石油製品-窒素分試験方法」。
A method for analyzing the above-described properties of the solvent-peeling oil is as follows.
Sulfur content: JIS K2541 “Crude oil and petroleum products—sulfur content test method”.
Vanadium and nickel content: JIS K0116 “General Rules for Emission Spectroscopy”.
Content of asphaltenes: IP-143 (ASTM D6560) “Determination of Asphaltenes in Crude Petroleum and Petroleum Products”.
Density at 15 ° C .: JIS K2249 “Crude oil and petroleum products—Density test method and density / mass / volume conversion method”.
Kinematic viscosity at 100 ° C .: JIS K2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”.
Residual carbon content: JIS K2270 “Crude oil and petroleum products-Residual carbon content test method”.
Nitrogen content: JIS K2609 "Crude oil and petroleum products-nitrogen content test method".
 溶剤脱れき油中の含バナジウム化合物の分子量分布を、上記のGPC及びICP発光分光分析により測定した。分子量が3000以下である含バナジウム化合物中のバナジウム量は、溶剤脱れき油中の全ての含バナジウム化合物中のバナジウム量に対して94質量%であった。なお、GPC及びICP発光分光分析は以下の条件で行った。 The molecular weight distribution of the vanadium-containing compound in the solvent-peeling oil was measured by the above GPC and ICP emission spectroscopic analysis. The vanadium content in the vanadium-containing compound having a molecular weight of 3000 or less was 94% by mass with respect to the vanadium content in all the vanadium-containing compounds in the solvent-desorbed oil. GPC and ICP emission spectroscopic analysis were performed under the following conditions.
 [GPCの条件]
移動相: テトラヒドロフラン(THF)及びo-キシレンの混合溶媒。
移動相におけるTHFとo-キシレンとの体積比: 30%:70%。
移動層の流速: 0.8mL/min。
測定時間: 20分。
カラム(column)の種類: ShodexTM KF-G及びKF-803。
カラムのオーブンの温度:40℃。
RI attenuator: ×4。
RI polarity: +。
*装置名: アジレント社製のHP1100。
[GPC conditions]
Mobile phase: Mixed solvent of tetrahydrofuran (THF) and o-xylene.
Volume ratio of THF to o-xylene in mobile phase: 30%: 70%.
Flow rate of moving bed: 0.8 mL / min.
Measurement time: 20 minutes.
Column type: Shodex KF-G and KF-803.
Column oven temperature: 40 ° C.
RI attendant: x4.
RI polarity: +.
* Device name: HP1100 manufactured by Agilent.
 [ICP発光分光分析の条件]
観測高さ: 20.0mm。
RF出力: 1.5kW。
光電子増倍管の電圧: 高。
測定波長: 309.311nm。
分光器: R。
A/D attenuator: 1/4。
*装置名: SIIナノテクノロジー社製のSPS3100。
[Conditions for ICP emission spectroscopic analysis]
Observation height: 20.0 mm.
RF output: 1.5 kW.
Photomultiplier tube voltage: High.
Measurement wavelength: 309.311 nm.
Spectroscope: R.
A / D attendant: 1/4.
* Device name: SPS3100 manufactured by SII Nanotechnology.
 以下のように、脱メタル触媒及び脱硫触媒を反応塔内に充填した。 As described below, a demetalization catalyst and a desulfurization catalyst were packed in the reaction tower.
 第一触媒層、第二触媒層及び第三触媒層をこの順序で反応塔内に積層した。第一触媒層は、脱メタル触媒である低反応性触媒のみからなる層である。第二触媒層は、脱メタル触媒である高反応性触媒のみからなる層である。第三触媒層は、脱硫触媒のみからなる層である。第一触媒層及び第二触媒層の体積の合計(脱メタル触媒の全体積)に占める第一触媒層(低反応性触媒)の体積の割合は、50体積%であった。第一触媒層及び第二触媒層の体積の合計(脱メタル触媒の全体積)に占める第二触媒層(高反応性触媒)の体積の割合は、50体積%であった。第三触媒層の体積は、第一触媒層及び第二触媒層の体積の合計と同じであった。 The first catalyst layer, the second catalyst layer, and the third catalyst layer were stacked in this order in the reaction tower. A 1st catalyst layer is a layer which consists only of the low-reactive catalyst which is a demetallation catalyst. A 2nd catalyst layer is a layer which consists only of the highly reactive catalyst which is a demetallation catalyst. A 3rd catalyst layer is a layer which consists only of a desulfurization catalyst. The ratio of the volume of the first catalyst layer (low-reactivity catalyst) to the total volume of the first catalyst layer and the second catalyst layer (total volume of the demetallation catalyst) was 50% by volume. The ratio of the volume of the second catalyst layer (highly reactive catalyst) to the total volume of the first catalyst layer and the second catalyst layer (total volume of the demetalized catalyst) was 50% by volume. The volume of the third catalyst layer was the same as the sum of the volumes of the first catalyst layer and the second catalyst layer.
 低反応性触媒は、多孔質のγアルミナと、γアルミナに担持されたMoO及びNiOとを備えるものであった。低反応性触媒におけるMoOの担持量(含有率)は、低反応性触媒の全質量に対して5.0質量%であった。低反応性触媒におけるNiOの担持量(含有率)は、低反応性触媒の全質量に対して0.5質量%であった。低反応性触媒(γアルミナ)の中央細孔径は18nmであった。低反応性触媒のBET比表面積は180m/gであった。 The low-reactivity catalyst was provided with porous γ-alumina, and MoO 3 and NiO supported on γ-alumina. The supported amount (content rate) of MoO 3 in the low-reactivity catalyst was 5.0% by mass with respect to the total mass of the low-reactivity catalyst. The supported amount (content rate) of NiO in the low-reactivity catalyst was 0.5% by mass with respect to the total mass of the low-reactivity catalyst. The median pore diameter of the low-reactivity catalyst (γ alumina) was 18 nm. The BET specific surface area of the low-reactivity catalyst was 180 m 2 / g.
 高反応性触媒は、多孔質のγアルミナと、γアルミナに担持されたMoO及びNiOとを備えるものであった。高反応性触媒におけるMoOの担持量(含有率)は、高反応性触媒の全質量に対して9.0質量%であった。高反応性触媒におけるNiOの担持量(含有率)は、高反応性触媒の全質量に対して2.0質量%であった。高反応性触媒(γアルミナ)の中央細孔径は19nmであった。高反応性触媒のBET比表面積は180m/gであった。 The highly reactive catalyst comprises porous γ alumina and MoO 3 and NiO supported on γ alumina. The supported amount (content rate) of MoO 3 in the highly reactive catalyst was 9.0% by mass with respect to the total mass of the highly reactive catalyst. The supported amount (content ratio) of NiO in the highly reactive catalyst was 2.0% by mass with respect to the total mass of the highly reactive catalyst. The central pore diameter of the highly reactive catalyst (γ alumina) was 19 nm. The BET specific surface area of the highly reactive catalyst was 180 m 2 / g.
 脱硫触媒は、多孔質のγアルミナと、γアルミナに担持されたMoO及びNiOとを備えるものであった。脱硫触媒におけるMoOの担持量(含有率)は、脱硫触媒の全質量に対して12.0質量%であった。脱硫触媒におけるNiOの担持量(含有率)は、脱硫触媒の全質量に対して3.0質量%であった。脱硫触媒(γアルミナ)の中央細孔径は10nmであった。脱硫触媒のBET比表面積は230m/gであった。 The desulfurization catalyst was provided with porous γ alumina and MoO 3 and NiO supported on γ alumina. The supported amount (content) of MoO 3 in the desulfurization catalyst was 12.0% by mass with respect to the total mass of the desulfurization catalyst. The supported amount (content rate) of NiO in the desulfurization catalyst was 3.0% by mass with respect to the total mass of the desulfurization catalyst. The median pore diameter of the desulfurization catalyst (γ alumina) was 10 nm. The BET specific surface area of the desulfurization catalyst was 230 m 2 / g.
 脱メタル工程及び脱硫工程では、水素ガスが存在する反応塔内で、溶剤脱れき油を第一触媒層に導入し、第一触媒層を通過した溶剤脱れき油を第二触媒層に導入し、第二触媒層を通過した溶剤脱れき油を第三触媒層に導入した。このように、脱メタル工程及び脱硫工程を連続的に実施した。脱メタル工程及び脱硫工程の反応条件は、以下の通りであった。 In the demetallization process and the desulfurization process, the solvent debris oil is introduced into the first catalyst layer in the reaction tower where hydrogen gas is present, and the solvent debris oil that has passed through the first catalyst layer is introduced into the second catalyst layer. The solvent-peeling oil that passed through the second catalyst layer was introduced into the third catalyst layer. Thus, the demetallation process and the desulfurization process were continuously implemented. The reaction conditions of the demetallation step and the desulfurization step were as follows.
 [反応条件]
 初期の反応温度(各触媒層の温度)
  第一触媒層及び第二触媒層(脱メタル触媒): 360℃。
  第三触媒層(脱硫触媒): 370℃。
 反応塔内の水素ガスの分圧: 14.4MPa。
 液空間速度: 0.44h-1
 水素/油比: 900Nm/m
[Reaction conditions]
Initial reaction temperature (temperature of each catalyst layer)
First catalyst layer and second catalyst layer (demetallized catalyst): 360 ° C.
Third catalyst layer (desulfurization catalyst): 370 ° C.
Partial pressure of hydrogen gas in the reaction tower: 14.4 MPa.
Liquid space velocity: 0.44 h −1 .
Hydrogen / oil ratio: 900 Nm 3 / m 3 .
 脱メタル工程及び脱硫工程では、脱メタル触媒及び脱硫触媒の活性が時間の経過とともに低下する。そのため、脱メタル工程及び脱硫工程では、時間の経過に伴って反応塔が備えるヒーターで反応塔内を加熱して反応温度を増加させ、脱メタル触媒及び脱硫触媒の活性を補った。各触媒の活性を補うことにより、第三触媒層を通過した溶剤脱れき油(脱メタル工程及び脱硫工程後の溶剤脱れき油)における硫黄分の含有率を0.6質量%未満に維持した。そして、脱メタル工程及び脱硫工程の開始時点から反応温度が反応塔の耐熱温度400℃に到達するまでの日数を計測した。この日数を脱硫触媒の絶対寿命という。また、絶対寿命を300日で除した値を脱硫触媒の相対寿命という。実施例1における脱硫触媒の絶対寿命及び相対寿命を下記表1に示す。 In the demetallization process and the desulfurization process, the activities of the demetallization catalyst and the desulfurization catalyst decrease with time. Therefore, in the demetallization process and the desulfurization process, the reaction temperature was increased by heating the inside of the reaction tower with a heater provided in the reaction tower as time passed, thereby supplementing the activities of the demetallation catalyst and the desulfurization catalyst. By supplementing the activity of each catalyst, the sulfur content in the solvent desorbed oil that passed through the third catalyst layer (the solvent desorbed oil after the demetallation step and the desulfurization step) was maintained at less than 0.6% by mass. . Then, the number of days until the reaction temperature reached the heat resistant temperature of 400 ° C. of the reaction tower from the start time of the demetallation step and the desulfurization step was measured. This number of days is called the absolute life of the desulfurization catalyst. The value obtained by dividing the absolute life by 300 days is referred to as the relative life of the desulfurization catalyst. The absolute life and relative life of the desulfurization catalyst in Example 1 are shown in Table 1 below.
 (実施例2及び3、並びに比較例1~4)
 実施例2及び3、並びに比較例1~4では、第一触媒層及び第二触媒層の体積の合計(脱メタル触媒の全体積)に占める第一触媒層(低反応性触媒)の体積の割合を表1に示す値に調整した。また、実施例2及び3、並びに比較例1~4では、第一触媒層及び第二触媒層の体積の合計(脱メタル触媒の全体積)に占める第二触媒層(高反応性触媒)の体積の割合を表1に示す値に調整した。各触媒層の体積の割合以外は実施例1と同様に、実施例2及び3、並びに比較例1~4の脱メタル工程及び脱硫工程を実施した。なお、比較例1では、脱メタル触媒として、第一触媒層(低反応性触媒)を用いず、第二触媒層(高反応性触媒)のみを用いた。一方、実施例3では、脱メタル触媒として、第二触媒層(高反応性触媒)を用いず、第一触媒層(低反応性触媒)のみを用いた。
(Examples 2 and 3 and Comparative Examples 1 to 4)
In Examples 2 and 3, and Comparative Examples 1 to 4, the volume of the first catalyst layer (low-reactive catalyst) in the total volume of the first catalyst layer and the second catalyst layer (total volume of the demetallized catalyst) The ratio was adjusted to the value shown in Table 1. In Examples 2 and 3 and Comparative Examples 1 to 4, the second catalyst layer (highly reactive catalyst) occupies the total volume of the first catalyst layer and the second catalyst layer (total volume of the demetallized catalyst). The volume ratio was adjusted to the values shown in Table 1. Except for the volume ratio of each catalyst layer, the demetalization process and the desulfurization process of Examples 2 and 3 and Comparative Examples 1 to 4 were performed in the same manner as in Example 1. In Comparative Example 1, only the second catalyst layer (high reactivity catalyst) was used as the demetallation catalyst without using the first catalyst layer (low reactivity catalyst). On the other hand, in Example 3, only the first catalyst layer (low-reactivity catalyst) was used as the demetallation catalyst without using the second catalyst layer (high-reactivity catalyst).
 実施例1と同様の方法で計測した、実施例2及び3、並びに比較例1~4における脱硫触媒の絶対寿命及び相対寿命を下記表1に示す。 The absolute life and relative life of the desulfurization catalysts in Examples 2 and 3 and Comparative Examples 1 to 4 measured by the same method as in Example 1 are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、メタル触媒全体に占める低反応性触媒の体積の割合が50体積%以上である実施例1~3では、比較例1~4に比べて、脱硫触媒の寿命が長いことが確認された。つまり、実施例1~3では、脱硫触媒の失活が抑制されたことが確認された。脱硫触媒の失活は、脱メタル触媒の失活に起因することに鑑みれば、実施例1~3では、比較例1~4に比べて、脱メタル触媒の失活が抑制されたことが確認された。 As shown in Table 1, in Examples 1 to 3 in which the ratio of the volume of the low-reactive catalyst to the entire metal catalyst is 50% by volume or more, the life of the desulfurization catalyst is longer than that in Comparative Examples 1 to 4. Was confirmed. That is, in Examples 1 to 3, it was confirmed that deactivation of the desulfurization catalyst was suppressed. In view of the deactivation of the desulfurization catalyst due to the deactivation of the demetallation catalyst, it was confirmed that the deactivation of the demetallation catalyst was suppressed in Examples 1 to 3 compared to Comparative Examples 1 to 4. It was done.
 本発明に係る炭化水素油の製造方法は、溶剤脱れき油を原料として用いたガソリン、潤滑油用基油その他化学品等の製造に適している。 The method for producing hydrocarbon oil according to the present invention is suitable for the production of gasoline, base oil for lubricating oil, other chemicals, etc. using solvent-desorbed oil as a raw material.

Claims (6)

  1.  溶剤脱れき油のみを、水素ガスの存在下で脱メタル触媒に接触させる、脱メタル工程と、
     前記脱メタル工程を経た溶剤脱れき油を水素ガスの存在下で脱硫触媒に接触させる、脱硫工程と、
    を備え、
     前記脱メタル触媒は、少なくとも低反応性触媒を含み、
     前記脱メタル触媒全体に占める前記低反応性触媒の体積の割合が、50体積%以上であり、
     前記脱メタル触媒全体に占める高反応性触媒の体積の割合が、0体積%以上であり、
     前記低反応性触媒は、多孔質の担体と、前記担体に担持された第VI族元素と、を有し、
     前記低反応性触媒における第VIII族元素の触媒質量基準の含有率が、0質量%以上であり、
     前記高反応性触媒は、多孔質の担体と、前記担体に担持された第VI族元素及び第VIII族元素と、を有し、
     前記低反応性触媒における第VIII族元素の触媒質量基準の前記含有率が、前記高反応性触媒における第VIII族元素の触媒質量基準の含有率よりも低い、
     炭化水素油の製造方法。
    A demetallation step in which only solvent degreasing oil is brought into contact with a demetallation catalyst in the presence of hydrogen gas;
    A desulfurization step in which the solvent deasphalted oil that has undergone the demetallization step is brought into contact with a desulfurization catalyst in the presence of hydrogen gas;
    With
    The demetallation catalyst includes at least a low-reactivity catalyst,
    The volume ratio of the low-reactivity catalyst to the whole demetalization catalyst is 50% by volume or more,
    The volume ratio of the highly reactive catalyst in the total demetallation catalyst is 0% by volume or more,
    The low-reactivity catalyst has a porous carrier and a Group VI element supported on the carrier,
    The content of catalyst group based on the group VIII element in the low-reactivity catalyst is 0% by mass or more,
    The highly reactive catalyst has a porous carrier, and a Group VI element and a Group VIII element supported on the carrier,
    The content of the group VIII element catalyst mass basis in the low-reactivity catalyst is lower than the content of the group VIII element catalyst mass basis in the high-reactivity catalyst;
    A method for producing hydrocarbon oil.
  2.  前記低反応性触媒における第VI族元素の触媒質量基準の含有率が、前記高反応性触媒における第VI族元素の触媒質量基準の含有率よりも低い、
     請求項1に記載の炭化水素油の製造方法。
    The content of the group VI element based on catalyst mass in the low-reactivity catalyst is lower than the content of the group VI element based on catalyst mass in the high-reactivity catalyst,
    The method for producing a hydrocarbon oil according to claim 1.
  3.  第VI族元素が、モリブデン又はタングステンのうち少なくともいずれか一種であり、
     第VIII族元素が、ニッケル又はコバルトのうち少なくともいずれか一種である、
     請求項1又は2に記載の炭化水素油の製造方法。
    The Group VI element is at least one of molybdenum and tungsten;
    The Group VIII element is at least one of nickel and cobalt,
    The manufacturing method of the hydrocarbon oil of Claim 1 or 2.
  4.  前記低反応性触媒における第VI族元素の酸化物の触媒質量基準の含有率が、1質量%以上8質量%未満であり、
     前記低反応性触媒における第VIII族元素の酸化物の触媒質量基準の含有率が、0質量%以上1質量%未満である、
     請求項1~3のいずれか一項に記載の炭化水素油の製造方法。
    The content of the catalyst based on the mass of the Group VI element oxide in the low-reactivity catalyst is 1% by mass or more and less than 8% by mass,
    The catalyst mass-based content of the Group VIII element oxide in the low-reactivity catalyst is 0% by mass or more and less than 1% by mass,
    The method for producing a hydrocarbon oil according to any one of claims 1 to 3.
  5.  前記脱メタル工程において、
     反応温度が、350~450℃であり、
     前記水素ガスの分圧が、5~25MPaであり、
     液空間速度が、0.1~3.0h-1であり、
     水素/油比が、400~1500Nm/mである、
     請求項1~4のいずれか一項に記載の炭化水素油の製造方法。
    In the demetalization step,
    The reaction temperature is 350 to 450 ° C.,
    The partial pressure of the hydrogen gas is 5 to 25 MPa,
    The liquid space velocity is 0.1 to 3.0 h −1 ;
    The hydrogen / oil ratio is 400-1500 Nm 3 / m 3 ,
    The method for producing a hydrocarbon oil according to any one of claims 1 to 4.
  6.  前記脱硫工程において、
     反応温度が、350~450℃であり、
     前記水素ガスの分圧が、5~25MPaであり、
     液空間速度が、0.1~3.0h-1であり、
     水素/油比が、400~1500Nm/mである、
     請求項1~5のいずれか一項に記載の炭化水素油の製造方法。
     
    In the desulfurization step,
    The reaction temperature is 350 to 450 ° C.,
    The partial pressure of the hydrogen gas is 5 to 25 MPa,
    The liquid space velocity is 0.1 to 3.0 h −1 ;
    The hydrogen / oil ratio is 400-1500 Nm 3 / m 3 ,
    The method for producing a hydrocarbon oil according to any one of claims 1 to 5.
PCT/JP2014/068620 2013-08-30 2014-07-11 Hydrocarbon oil production method WO2015029617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013180565A JP6104761B2 (en) 2013-08-30 2013-08-30 Method for producing hydrocarbon oil
JP2013-180565 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015029617A1 true WO2015029617A1 (en) 2015-03-05

Family

ID=52586192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068620 WO2015029617A1 (en) 2013-08-30 2014-07-11 Hydrocarbon oil production method

Country Status (2)

Country Link
JP (1) JP6104761B2 (en)
WO (1) WO2015029617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116060023A (en) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 Hydrogenation catalyst and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279566A (en) * 1998-03-31 1999-10-12 Nippon Mitsubishi Oil Corp Production of ultralow-sulfur heavy oil
WO2002034865A1 (en) * 2000-10-24 2002-05-02 Jgc Corpopation Refined oil and process for producing the same
JP2003340281A (en) * 2002-05-24 2003-12-02 Inst Fr Petrole Treatment method for hydro-refining and/or hydro- conversion of hydrocarbon raw material load by using catalyst
JP2012197350A (en) * 2011-03-22 2012-10-18 Jx Nippon Oil & Energy Corp Hydrorefining method of heavy oil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093493A (en) * 2006-10-05 2008-04-24 Idemitsu Kosan Co Ltd Demetallization catalyst and method for hydrotreating heavy oil by using the same
JP4818163B2 (en) * 2007-03-01 2011-11-16 日揮触媒化成株式会社 Alumina support, hydrodemetallation catalyst using the same, and production method thereof
JP2010201281A (en) * 2009-02-27 2010-09-16 Jgc Catalysts & Chemicals Ltd Hydrogen demetalization catalyst for hydrocarbon oil and hydrogen treating method using the catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279566A (en) * 1998-03-31 1999-10-12 Nippon Mitsubishi Oil Corp Production of ultralow-sulfur heavy oil
WO2002034865A1 (en) * 2000-10-24 2002-05-02 Jgc Corpopation Refined oil and process for producing the same
JP2003340281A (en) * 2002-05-24 2003-12-02 Inst Fr Petrole Treatment method for hydro-refining and/or hydro- conversion of hydrocarbon raw material load by using catalyst
JP2012197350A (en) * 2011-03-22 2012-10-18 Jx Nippon Oil & Energy Corp Hydrorefining method of heavy oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116060023A (en) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 Hydrogenation catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP6104761B2 (en) 2017-03-29
JP2015048397A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
US20190359899A1 (en) Processing of heavy hydrocarbon feeds
US10221366B2 (en) Residue hydrocracking
JP6104762B2 (en) Method for producing hydrocarbon oil
JP6770953B2 (en) Method for producing hydrotreated oil and method for producing catalytically cracked oil
Pérez-Romo et al. Morphological and structural study of the Si deposition on the sulfided NiMo/γ-Al2O3 catalyst: Effect on the support
JP5460224B2 (en) Method for producing highly aromatic hydrocarbon oil
Hauser et al. Relation between feed quality and coke formation in a three-stage atmospheric residue desulfurization (ARDS) process
Quitian et al. Characterization of upgraded oil fractions obtained by slurry-phase hydrocracking at low-severity conditions using analytical and ore catalysts
JP5406629B2 (en) Method for producing highly aromatic hydrocarbon oil
CA2899196C (en) Fixed bed hydrovisbreaking of heavy hydrocarbon oils
JP6104761B2 (en) Method for producing hydrocarbon oil
JP2013249385A (en) Hydrotreatment method of heavy oil
JP6565048B2 (en) Heavy oil hydroprocessing method
JP5291940B2 (en) Hydrorefining method for naphtha fraction
US11795405B2 (en) Process for the hydrodesulfurization of sulfur-containing olefinic gasoline cuts using a regenerated catalyst
Alfadhli et al. Performance assessment of NiMo/γ-Al2O3 catalysts for upgrading KEC-AR: An assessment of selected apparent kinetic parameters of selected hydrotreating reactions
KR20180096750A (en) Hybrid Reactor Heavy Product Upgrade Method Using Dispersed Catalytic Absorption
JP5751876B2 (en) Method for hydrorefining heavy oil
JP6548223B2 (en) Method of producing fuel oil base material
JP6346837B2 (en) Method for desulfurizing hydrocarbon oil, method for producing desulfurized oil, and method for suppressing decrease in catalyst activity
RU2671978C2 (en) Double-stage method of saturation of aromatic diesel fuel compounds using intermediate steaming and basic metal catalyst
JP7011479B2 (en) Hydrocarbon oil manufacturing method
US20200199464A1 (en) Naphthenic compositions derived from fcc process fractions
JP5207923B2 (en) Process for producing refined hydrocarbon oil
JP4771509B2 (en) Hydrorefining method for diesel oil fraction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601996

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14840132

Country of ref document: EP

Kind code of ref document: A1